The right choice for the ultimate yield!

LS ELECTRIC strives to maximize your profits in gratitude for choosing us as your partner.

IS7 RAPIEnet+ Option Module

SV-iS7 Series

User's Manual

[RAPIEnet, EtherNet/IP, Modbus TCP Protocol]

- Use this board after read Safety Instruction of this manual carefully before using and follow the instructions exactly.
- · Please hand this user manual to end user and trouble shooting manager
- · After read this manual, keep it at handy for future reference.
- 사용 전에 '안전상의 주의사항'을 반드시 읽고 정확하게 사용하여 주십시오.
- 본 설명서는 제품을 사용하는 사람이 항상 볼 수 있는 곳에 잘 보관하십시오.

Before using the product

Thank you for purchasing the iS7 RAPIEnet+ communication board.

SAFETY PRECAUTIONS

- Always follow safety instructions to prevent accidents and potentially hazardous situations.
- Safety precautions are classified into "WARNING" and "CAUTION," and their meanings are as follows:

WARNING Indicates a potentially hazardous situation which, if not avoided, may cause death or serious injury.

CAUTION Indicates a potentially hazardous situation, which, if not avoided, may cause minor injury or damage to the product.

Symbols used in this document and on the product indicate the following.

Read and follow the instructions carefully to avoid dangerous situations.

Presence of "dangerous voltage" inside the product that may cause harm or electric shock.

- Keep the operating instructions handy for quick reference.
- Read the operating instructions carefully to fully understand the functions of the SV-iS7 series inverters and use them properly.

Be careful not to damage the CMOS elements on the communication board.

Static charge may cause malfunctioning of the product.

Turn off the inverter before connecting communication cables.

Otherwise, the module may be damaged or a communication error may result.

 Correctly align the communication board to the installation connector for installation and ensure that it is firmly connected to the inverter.

Otherwise, the module may be damaged or a communication error may result.

Check the parameter units when configuring the parameter values.

Otherwise, a communication error may occur.

Table of Contents

٦

1. Overview	5
2. RAPIEnet+ technical specifications	5
3. Package components	6
4. Device type for the iS7 RAPIEnet+ communication board	6
5. iS7 RAPIEnet+ communication board layout and installation	6
(1) External layout	6
(2) Installing the iS7 RAPIEnet+ communication board	7
6. Network connection	8

'-	Netwo		.0
	(1)	Network connection cable wiring	. 8
	(2)	Communication cable connector	. 8

7.	'. Network cable specifications					
	(1)	Frequency band	. 9			
	(2)	Twisted pair cable types	. 9			

8.	Inver	ter communication address	10
9.	Кеур	ad parameters for RAPIEnet+ communication board	11
10	. Des	cription of keypad parameters related to RAPIEnet+ communication board	14
	(1)	Description of keypad parameters (simplified)	14
	(2)	CNF group	16
	(3)	DRV group	16
	(4)	COM group	16
	(5)	PRT group (Lost Command)	20
11	. Ser	vice when connected with our products	21
	11.1		
		Overview	21
	11.2	Overview Smart scaling (LS ELECTRIC master module: XGL-EFMxB V8.0 or later)	21 21
	11.2 (1)	Overview Smart scaling (LS ELECTRIC master module: XGL-EFMxB V8.0 or later) Configuring the XG5000 program for the PLC	21 21 23
	11.2 (1) (2)	Overview Smart scaling (LS ELECTRIC master module: XGL-EFMxB V8.0 or later) Configuring the XG5000 program for the PLC Configuring the master module	21 21 23 24
	11.2 (1) (2) (3)	Overview	21 21 23 24 24
	 11.2 (1) (2) (3) (4) 	Overview	
	 11.2 (1) (2) (3) (4) (5) 	Overview	
	 11.2 (1) (2) (3) (4) (5) (6) 	Overview	
	 11.2 (1) (2) (3) (4) (5) (6) (7) 	Overview Smart scaling (LS ELECTRIC master module: XGL-EFMxB V8.0 or later) Configuring the XG5000 program for the PLC Configuring the master module Network device settings Input/Output parameter settings Diagnostic parameter settings Network device connections Service status	

www.PLC1.ir

Γ

2. Services with LS ELECTRIC products or other manufacturer's products	31
12.1 Overview	31
12.2 EtherNet/IP	31
(1) Basic protocol structure	31
(2) Implicit message	32
(3) Explicit messages	38
(4) Supported objects	38
12.3 Modbus TCP frame	46
(1) Modbus TCP frame structure	46
(2) Function codes	47
(3) Exception (Except) frame	49
12.4 LED indications and troubleshooting	51

٦

1. Overview

The RAPIEnet+ communication board allows the SV-iS7 inverter to connect to an Ethernet or RAPIEnet network that is compliant with international standards, Type 21 of IEC 61158 and RRP of IEC 62439. The RAPIEnet+ communication board supports three protocols: RAPIEnet, EtherNet/IP, and Modbus TCP.

By utilizing the 100 Mbps auto negotiation feature, the RAPIEnet+ communication board provides realtime network communication without collisions and allows for controlling and monitoring of the inverter via PLC sequence programs or a Profibus master module.

With simple network cable wiring, installation times can be reduced and maintenance becomes easier.

(When accessing a RAPIEnet v2.0 network with XG5000, LS ELECTRIC network master module XGL-EFMxB V8.0 or later is required.)

** You can download the user manual ("Manual_XGT_FEnet") at: <u>http://www.lselectric.co.kr/</u>

Note) What is "RAPIEnet+"?

RAPIEnet+ is a hybrid networking solution that incorporates RAPIEnet, LS ELECTRIC's real-time industrial Ethernet based on international standards, with highly compatible Modbus TCP and EtherNet/IP network technologies. This highly efficient industrial Ethernet by LS ELECTRIC allows for integration of various future technologies required for factory automation, such as the IoT.

2. RAPIEnet+ technical specifications

Items	Desc	ription
Communication Protocol	RAPIEnet, EtherN	let/IP, Modbus TCP
Communication speed	100	Mbps
Communication type	Auto ne	egotiation
Communication range	100 m (twisted pair)	
Service	Smart scaling	Up to 8 words
Max. number of stations	64 sta	ations
Topology	Line/Ring	topology
Communication range	100 m (tw	isted pair)
Recommended cable	UTP, F	ſP, STP

* The iS7 RAPIEnet+ communication board supports all the features of the iS7 Ethernet communication board.

5

3. Package components

The product package contains: RAPIEnet+ communication board (1 ea), fix screws (2 ea), and RAPIEnet+ communication board User Manual.

4. Device type for the iS7 RAPIEnet+ communication board

Device type: CENT

5. iS7 RAPIEnet+ communication board layout and installation

(1) External layout

(2) Installing the iS7 RAPIEnet+ communication board

- ① Remove the front cover from the iS7 inverter.
- ② Install the RAPIEnet+ communication board to the installation connector on the iS7 inverter, then install the fixing screws (2 ea).
- ③ The RAPIEnet+ communication board has been installed on the iS7 Inverter.

Do not install or remove the RAPIEnet+ communication board to or from the iS7 inverter while the inverter is turned on.

Ensure that the electric charge in the capacitors inside the inverter is completely discharged before installing or uninstalling the RAPIEnet+ communication board.

Correctly align the communication board to the installation connector for installation and ensure that it is firmly connected to the inverter.

6. Network connection

Pin no.	Signal	Description	Cable color
1	TX+	Data transmission (+)	White/Yellow
2	TX-	Data transmission (-)	Yellow
3	RX+	Data reception (+)	White/Green
4	NONE	Not used	Blue
5	NONE	Not used	White/Blue
6	RX-	Data reception (-)	Green
7	NONE	Not used	White/Brown
8	NONE	Not used	Brown

(1) Network connection cable wiring

(2) Communication cable connector

** The cables connected to pin 1 and pin 2 must be twisted in a pair.

** The cables connected to pin 3 and pin 6 must be twisted in a pair.

8 | LSELECTRIC

7. Network cable specifications

(1) Frequency band

ſ

There are five types of UTP cable specifications according to different applications, from category 1 through category 5. Category 5 network cables are required for utilizing the RAPIEnet+ communication board.

Category 5 network cables support a frequency band up to 100 MHz, with up to 60 MHz channel performance and up to 100 Mbps data transmission speed.

(2) Twisted pair cable types

Category	Description	Specifications/Usage
UTP (U.UTP)	Unshielded Twisted Pair cable for high speed signals	200 MHz max. Voice + Data + Low quality video signals
FTP (S.UTP)	Single insulation for the cable core * Insulation material: AL/Plastic complex foil or copper braid	100 MHz max. Protection against EMI, electrically stable Voice + Data + Low quality video signals
STP (S.STP)	Dual insulation for the cable pair and the cable core * Material for cable pair insulation: AL/Plastic complex foil * Material for cable core: AL/Plastic complex foil or copper braid	500MHz max. Voice + Data + Video signals Replaces 75Ω coaxial cable

8. Inverter communication address

Refer to "Chapter 11. Communication features" of the "iS7 Complete User Manual in EnglishUser Manual" for details.

** You can download the "iS7 User Manual" at: <u>http://www.lselectric.co.kr/</u>

10 | **LS**ELECTRIC

9. Keypad parameters for RAPIEnet+ communication board

The following table lists the inverter parameters related to RAPIEnet, EtherNet/IP, and Modbus TCP communication features. Application types for each parameter is specified in the "Protocol" column: R (RAPIEnet), E (EtherNet/IP), or M (Modbus TCP).

Set DRV-06 (Cmd Source) to "4 (Fieldbus)" using the keypad to operate the iS7 inverter via the RAPIEnet+ communication board.

Set DRV-07 (Frq Ref Src) to "8 (Fieldbus)" using the keypad to provide frequency reference via the RAPIEnet+ communication board.

Keypad parameters related to iS7 RAPIEnet+ communication board					
Code No.	Parameter Name	Initial Value	Range	Description	Protocol
CNF-30	Option-1 Type	-	-	Indicates the name of the communication board installed. 'RAPIEnet+' (Depending on the inverter version, "Reserved-18" may be displayed instead of "RAPIEnet+.")	R/E/M
DRV-06	Cmd Source	1	0 – 5	4: Set to "Field Bus."	R/E/M
DRV-07	Freq Ref Src	0	0 – 11	8: Set to "Field Bus."	R/E/M
COM-06	FBus S/W Ver	-	-	Indicates the version of the communication board installed.	R/E/M
COM-07	FBus ID	1	0 – 63	Set the station number of the RAPIEnet+ communication board.	R/E
COM-09	FBus Led			Displays the on/off status of the LED indicators on the RAPIEnet+ communication board.	R/E/M
COM-10	Opt Parameter1	0	0 – 255	Sets the IP address.	
COM-11	Opt Parameter2	0	0 – 255	* To connect to the network via the RAPIEnet	
COM-12	Opt Parameter3	0	0 – 255	protocol after setting COM-25 to "2	R/E/M
COM-13	Opt Parameter4	0	0 – 255	(RAPIEnet Enable)," set COM-13 to "100 + COM-07."	
COM-14	Opt Parameter5	0	0 – 255		
COM-15	Opt Parameter6	0	0 – 255	Sat the subset mask	
COM-16	Opt Parameter7	0	0 – 255		R/E/IVI
COM-17	Opt Parameter8	0	0 – 255		
COM-18	Opt Parameter9	0	0 – 255		
COM-19	Opt Parameter 10	0	0 – 255	Sata the Cateway address	
COM-20	Opt Parameter 11	0	0 – 255	Sets the Galeway address.	R/E/IVI
COM-21	Opt Parameter 12	0	0 – 255		
COM-22	Opt Parameter 13	0	0	Set the network communication speed. (fixed to 100 Mbps Auto)	R/E/M
COM-23	Opt Parameter 14	0	0 – 11	CIP Input Instance	R/E
COM-24	Opt Parameter 15	0	0 – 11	CIP Output Instance	R/E
COM-25	Opt Parameter 16	0	0-2	2: RAPIEnet Enable 0: RAPIEnet Disable	R/E

Note) After making changes to parameter COM-07 and parameters COM-10 – 25, you must set COM-94 (Comm-Update) to "1 (Yes)" to save the changes. (If COM-94 [Comm-Update] has not been set after making the parameter changes, the LED indicator will flash in red at 2-second intervals to warn the user.)

Keypad parameters related to iS7 RAPIEnet+ communication board					
Code No.	Parameter Name	Initial Value	Range	Description	Protocol
COM-30	Para Status Num	8	0–8	Automatically set according to the CIP Input Instance.	R/E
COM-31	Para Status-1	000A	0x0000 -0xFFFF	Sets up the inverter data address to be read by the client. (Hex.)	R/E
COM-32	Para Status-2	000E	0x0000 -0xFFFF	Sets up the inverter data address to be read by the client. (Hex.)	R/E
COM-33	Para Status-3	000F	0x0000 -0xFFFF	Sets up the inverter data address to be read by the client. (Hex.)	R/E
COM-34	Para Status-4	-	0x0000 -0xFFFF	Sets up the inverter data address to be read by the client. (Hex.)	R/E
COM-35	Para Status-5	-	0x0000 -0xFFFF	Sets up the inverter data address to be read by the client. (Hex.)	R/E
COM-36	Para Status-6	-	0x0000 -0xFFFF	Sets up the inverter data address to be read by the client. (Hex.)	R/E
COM-37	Para Status-7	-	0x0000 -0xFFFF	Sets up the inverter data address to be read by the client. (Hex.)	R/E
COM-38	Para Status-8	-	0x0000 -0xFFFF	Sets up the inverter data address to be read by the client. (Hex.)	R/E
COM-50	Para Ctrl Num	8	0–8	Automatically set according to the CIP Output Instance.	R/E
COM-51	Para Control-1	0005	0x0000 -0xFFFF	Sets up the client's command address. (Hex.)	R/E
COM-52	Para Control-2	0006	0x0000 -0xFFFF	Sets up the client's command address. (Hex.)	R/E
COM-53	Para Control-3	-	0x0000 -0xFFFF	Sets up the client's command address. (Hex.)	R/E
COM-54	Para Control-4	-	0x0000 -0xFFFF	Sets up the client's command address. (Hex.)	R/E
COM-55	Para Control-5	-	0x0000 -0xFFFF	Sets up the client's command address. (Hex.)	R/E
COM-56	Para Control-6	-	0x0000 -0xFFFF	Sets up the client's command address. (Hex.)	R/E
COM-57	Para Control-7	-	0x0000 -0xFFFF	Sets up the client's command address. (Hex.)	R/E
COM-58	Para Control-8	-	0x0000 -0xFFFF	Sets up the client's command address. (Hex.)	R/E
COM-94	Comm Update	0	0: NO 1: YES	Update keypad parameters related to network communication.	R/E/M
PRT-12	Lost Cmd Mode	None	0: None 1: Free-Run 2: Dec 3: Hold Input 4: Hold Output 5: Lost Preset	Set the inverter operation for when a Lost Command has occurred. (Note1)	R/E/M
PRT-13	Lost Cmd Time	1.0	0.1–120	Lost Command trigger time	R/E/M
PRT-14	Lost Preset F	0.00	0.05 - 60.00	Sets the Lost Preset speed	R/E/M

٦

(Note1) Lost Command Mode

12 | LSELECTRIC

Set value	Function
"None"	Maintains the previous status.
"Free-Run"	Lost Command Trip occurs and a free run stop is made.
"Dec"	Lost Command Trip occurs and a deceleration stop is made.
"Hold Input"	Lost Command Warning occurs and the inverter operates with the previous speed reference.
"Hold Output"	Lost Command Warning occurs and the inverter operates with the previous running speed.
"Lost Preset"	Lost Command Warning occurs and the inverter operates with speed reference set at PRT-14.

Γ

10. Description of keypad parameters related to RAPIEnet+ communication board

(1) Description of keypad parameters (simplified)

The following table lists the simplified information of keypad parameters. The detailed information is provided in the parameter group section.

Code	Parameter Name	Description
CNF	30 Option-1 Type	Displays the option slot-1 type
	06 Cmd Source	Command Source
DRV	07 Freq Ref Src	Frequency setting
	06 FBus S/W Ver	Communication option S/W version
	07 FBus ID	Station ID of the communication board (communication board ID)
	09 FBus Led	Information about LED indicators on the communication board
	10 opt para-1	Enter the 1st decimal number of the IP address.
	11 opt para-2	Enter the 2nd decimal number of the IP address.
	12 opt para-3	Enter the 3rd decimal number of the IP address.
	13 opt para-4	Enter the 4th decimal number of the IP address.
	14 opt para-5	Enter the 1st decimal number of the subnet address.
	15 opt para-6	Enter the 2nd decimal number of the subnet address.
	16 opt para-7	Enter the 3rd decimal number of the subnet address.
	17 opt para-8	Enter the 4th decimal number of the subnet address.
COM	18 opt para-9	Enter the 1st decimal number of the gateway address.
	19 opt para-10	Enter the 2nd decimal number of the gateway address.
	20 opt para-11	Enter the 3rd decimal number of the gateway address.
	21 opt para-12	Enter the 4th decimal number of the gateway address.
	22 opt para-13	Network communication speed (0 fixed, automatically set to 100 Mbps)
	23 opt para-14	RAPIEnet: Set the Input Parameter Size EtherNet/IP: Set the Input Instance
	24 opt para-15	RAPIEnet: Set Output Parameter Size EtherNet/IP: Set Output Instance
	25 opt para-16	Enable or disable RAPIEnet 2: Enable RAPIEnet 0: RAPIEnet Disable
	30 ParaStatus Num	Displays the number of transmitted data
	31 Para Status-1	Set address 1 for storing the transmitted data.

14 | **LS**ELECTRIC

Code	Parameter Name	Description
	32 Para Status-2	Set address 2 for storing the transmitted data.
	33 Para Status-3	Set address 3 for storing the transmitted data.
	34 Para Status-4	Set address 4 for storing the transmitted data.
	35 Para Status-5	Set address 5 for storing the transmitted data.
	36 Para Status-6	Set address 6 for storing the transmitted data.
	37 Para Status-7	Set address 7 for storing the transmitted data.
	38 Para Status-8	Set address 8 for storing the transmitted data.
	50 Para Ctrl Num	Displays the number of received data
	51 Para Control-1	Set address 1 for storing the received data.
	52 Para Control-2	Set address 2 for storing the received data.
	53 Para Control-3	Set address 3 for storing the received data.
	54 Para Control-4	Set address 4 for storing the received data.
	55 Para Control-5	Set address 5 for storing the received data.
	56 Para Control-6	Set address 6 for storing the received data.
	57 Para Control-7	Set address 7 for storing the received data.
	58 Para Control-8	Set address 8 for storing the received data.
	94 Comm Update	Reflect the network parameter changes.
	12 Lost Cmd Mode	Select operation mode for a lost command.
PRT	13 Lost Cmd Time	Set the decision time for a lost command.
	14 Lost Preset F	Set the start frequency for a lost command.

Γ

(2) CNF group

(1) [CNF-30] Option-1 Type: Displays the option slot-1 type

Automatically displays the type of currently installed communication board. "RAPIEnet+" is automatically displayed when the RAPIEnet+ communication board has been installed to the iS7 inverter.

** Depending on the inverter version, "Reserved-18" may be displayed instead of "RAPIEnet+."

(3) DRV group

② [DRV-06] Cmd Source: Command Source

Select the command source for the iS7 inverter. Set to "4 (Field Bus)" to set the RAPIEnet+ communication board as the command source and provide commands via network.

③ [DRV-07] Freq Ref Src: Frequency setting

Select the frequency command source for the iS7 inverter. Set to "8 (Field Bus)" to set the RAPIEnet+ communication board as the frequency command source and provide frequency commands via network.

(4) COM group

① [COM-06] FBus S/W Ver: Communication option S/W version

Automatically indicates the version of the communication board installed to the iS7 inverter.

② [COM-07] FBus ID: Station ID of the communication board (communication board ID)

R: Set the station ID for the iS7 RAPIEnet+ communication board. A total of 64 station IDs are available from 0 to 63. (The station ID must be set before you can configure network communication using the RAPIEnet protocol.)

When setting the station ID, be careful not to use a station ID that is not already occupied by the PLC system or other network devices.

After making setting changes, you must set COM-94 (Comm Update) to "1 (Yes)" before the changes can take effect.

③ [COM-09] FBus Led: Information about LED indicators on the communication board

Displays on the Keypad the status of the LED indicators on the iS7 RAPIEnet+ communication board. Refer to sections "<u>11.3/12.4 LED indications and troubleshooting</u>."

16 | **LS**ELECTRIC

Example of the COM-09 (FBus LED) indication

09 FBus LED	

LED0	LED1	LED2	LED3		
LED is OFF	LED is ON	LED is ON	LED is ON		

④ [COM-22] opt para-13: Set the network communication speed. (100 Mbps, Auto Negotiation)

The Ethernet speed parameter is fixed at "0" by default for 100 Mbps communication speed.

(5) [COM-23] opt para-14: Transmission data setting

Used to monitor one of the smart scaling transmission data of the iS7 RAPIEnet+ communication board. You can select one of the data transmission addresses from COM31 to COM38 for monitoring.

You can set "opt para-14 (smart scaling transmission data index)" to between "0" and "11." Refer to the following table for the description of the "opt para-14" settings.

The "opt para-14 (smart scaling transmission data index)" setting cannot be written while the inverter is operating. Stop inverter operation before making changes to the setting.

This parameter setting is also required for a service via EtherNet/IP protocol. It specifies the data format of the inverter status to be transmitted to the client (originator) during an I/O communication via a CIP (Common Industrial Protocol). Refer to the Assembly Object section of the EtherNet/IP.

Set value	Input instance value (E)	Data size (R/E)	Number of parameters (R/E)
0	70	4	Х
1	71	4	Х
2	110	4	Х
3	111	4	Х

4	141	2	1
5	142	4	2
6	143	6	3
7	144	8	4
8	145	10	5
9	146	12	6
10	147	14	7
11	148	16	8

6 [COM-24] opt para-15: Reception data setting

Used to monitor one of the smart scaling reception data of the iS7 RAPIEnet+ communication board. You can select one of the data reception addresses from COM51 to COM58 for monitoring.

You can set "opt para-15 (smart scaling reception data index)" to between "0" and "11." The description of the "opt para-15" settings are as follows.

The "opt para-15 (smart scaling reception data index)" setting cannot be written while the inverter is operating. Stop inverter operation before making changes to the setting.

This parameter is also required for EtherNet/IP protocol service. It configures the format of the command data transmitted to the inverter by the client (originator) during the I/O communication via the CIP (Common Industrial Protocol). Refer to the Assembly Object section of the EtherNet/IP.

Set value	Output instance value (E)	Data size (R/E)	Number of parameters (R/E)
0	20	4	Х
1	21	4	Х
2	100	4	Х
3	101	4	Х
4	121	2	1
5	122	4	2
6	123	6	3
7	124	8	4
8	125	10	5
9	126	12	6
10	127	14	7
11	128	16	8

⑦ [COM-25] RAPIEnet Enable/Disable settings

This feature is compatible with LS ELECTRIC products (XGL-EFMxB V8.0 or later) for the RAPIEnet v2 smart scaling service.

(2: RAPIEnet v2 Enable / 0: RAPIEnet v2 Disable)

** You can download the user manual ("Manual_XGT_FEnet") at: <u>http://www.lselectric.co.kr/</u>

If you have installed the iS7 RAPIEnet+ communication board to an inverter made by another manufacturer (to utilize it as an iS7 Ethernet communication board), set the parameter to "0," then run "Comm Update" to operate the inverter with the RAPIEnet feature disabled.

(8) [COM-30] ParaStatus Num: Number of transmission data

You can set COM-23 (opt para-14) to change the number of transmission data to between "0" and "8." The RAPIEnet+ communication board can transmit up to 8 pieces of data. You can configure the address of the transmission data with parameters COM-31 through COM-38.

(9) [COM-31] Para Status1 – [COM38] Para Status8: Transmission data address settings

After setting the number of transmission data with COM-30, enter the matching number of data addresses for the data to transmit to the client (originator) with parameters COM-31 through COM-38.

This parameter setting is not required for Modbus TCP network communications.

(1) [COM-50] Para Ctrl Num: Number of reception data

You can set COM-50 (opt para-15) to change the number of reception data to between "0" and "8."

The RAPIEnet+ communication board can receive up to 8 pieces of data. You can configure the address for the received data with parameters COM-51 through COM-58.

(1) [COM-51] Para Control1 – [COM58] Para Control8: Reception data address settings

After setting the number of reception data with COM-50, enter the matching number of data addresses for receiving command data from the client (originator) with parameters COM-51 through COM-58.

This parameter setting is not required for Modbus TCP network communications.

(2) [COM-94] Comm Update: Update setting changes via the communication board

The COM group parameters display the settings stored on the inverter connected to the RAPIEnet+ communication board and the changes made on the keypad are not directly reflected on the RAPIEnet+ communication board.

The changed settings will be reflected on the RAPIEnet+ communication board when you set COM-94 (Comm Update) to "1 (Yes)." (Parameters that require communication updates include COM-7 and COM 10 through COM-25.)

(5) PRT group (Lost Command)

① [PRT-12] Lost Cmd Mode: Operation mode for a command loss

You can select the operation mode for when a network failure or connection failure between the inverter and the communication occurs while the inverter is operated via network communication.

(2) [PRT-13] Lost Cmd Time: Decision time for a command loss

Set the time duration until the operation mode set with PRT-12 will be reflected following a command loss. You can set a value between "0.1" and "120" seconds.

③ [PRT-14] Lost Preset F: Operation frequency for a command loss

When a lost command occurs, a protective function is activated and the inverter continues to operate using the frequency set with PRT-14. The setting value is from the start frequency to the max frequency [Hz].

(4) Lost command conditions by protocol

- RAPIEnet

When the RAPIEnet master (XGL-EFMxB V8.0 or later) fails to receive data for the watchdog time, the communication board enters lost command mode, and the inverter will operate according to the settings at PRT-12 after the time set with PRT-13 has elapsed.

Refer to item (2) of section 11 for how to set the watchdog timer for the master module.

- EtherNet/IP

If the implicit message connection (Class 1 Connection) between the originator (a PLC or client) and the target (inverter) breaks for longer than one second, the Ethernet communication board enters lost command mode, and the inverter will operate according to the settings at PRT-12 after the time set with PRT-13 has elapsed.

- Modbus TCP

If the Modbus TCP receives no data from the client for five seconds, the Ethernet communication board enters lost command mode, and the inverter will operate according to the settings at PRT-12 after the time set with PRT-13 has elapsed.

20 | LSELECTRIC

11. Service when connected with our products

11.1 Overview

This chapter explains about services utilizing the RAPIEnet protocol when the communication board is connected with LS ELECTRIC products.

The keypad settings required to utilize the RAPIEnet service are as follows.

RAPIEnet+ communication board PAR -> COM-25 [Opt Parameter-16]	RAPIEnet v2 Availability	EtherNet/IP Availability	Modbus TCP Availability
Setting: '2' RAPIEnet v2 Enable	0	0	0
Setting: '0' RAPIEnet v2 Disable	Х	0	0

11.2 Smart scaling (LS ELECTRIC master module: XGL-EFMxB V8.0 or later)

The smart scaling service is a communication service between automation products that allows for the extension of multiple PLCs and inverters utilizing simple configurations, without the need for complicated parameters settings or programming. The smart scaling service also has the EtherNet/IP service integrated within.

The iS7 RAPIEnet+ communication board enables 8-word data input/out transmissions via an LS ELECTRIC master module, simply by configuring the number of transmission/reception data (COM-30/COM-50) and the addresses for transmission/reception data (COM-31 – COM-38 / COM-51 – COM-58). Besides, it provides various features, such as, monitoring of diagnostic parameters, RAPIEnet auto scan, and system diagnosis.

** You can download the user manual ("Manual_XGT_FEnet_V3.00") at: <u>http://www.lselectric.co.kr/</u>

The following figure shows an example of the XG5000 settings screen for an LS ELECTRIC network master module (XGL-EFMxB V8.0 or later).

Media information

Note) "Smart scaling memory area settings": The iS7 RAPIEnet+ communication board has a 64-byte (32 Word) memory area assigned for it (fixed). When configuring the addresses, be careful not to use addresses already occupied by other programs to avoid collisions. Separate warnings are not provided, nor are duplicated addresses prohibited because users may configure a certain area of the addresses to be superimposed for special purposes.

(1) Configuring the XG5000 program for the PLC

For an iS7 inverter to communicate with the PLC via the RAPIEnet+ communication board, the XGL-EFMxB module (RAPIEnet I/F module) must be utilized. For a smart scaling service, the station ID (EB) and the IP address of the smart scaling device must be specified first: Ex. PAR->COM-07 (FBUS ID): "05," PAR->COM-13 (Opt Parameter4): "100 + FBUS ID (05)" = "105" (This prevents IP address collisions between the communication boards installed to the inverters.) Refer to the user manual provided with the XGL-EFMxB product for detailed instructions.

Also, to configure a network communication utilizing a PLC system, installation of the XG5000 program is required. You can download XG5000 program from the LS ELECTRIC website.

•	ų ×		
1T(B)(TAG)] Open		
	Add Ite	em 🔸	Smart Extension
	Copy Paste Delete Proper	Ctrl+C Ctrl+V Delete	Network Communication Module P2P Communication High-speed Link Communication
e	Comm	unication Module Setting and Diagnosis	User Frame Add a Group Add Slave
	ит(в)(П С С	AT(B)(TAG)] Open Add Itu Copy Copy Paste Proper Comm	▼ ★ ★ MT(B)(TAG)] Open Add Item ▲ Copy Ctrl+C Paste Ctrl+V ➤ Delete Properties Communication Module Setting and Diagnosis

** Access the website (http://www.lselectric.co.kr/) and download the document.

In the Connection tap of the Add Network Device window, you can configure the properties and click "OK" to add a network device [CENT] (RAPIEnet+ communication board) for a smart scaling service.

(2) Configuring the master module

You can configure the "Watchdog timer" for a master module (XGL-EFMxB V8.0 or later). If lost command mode (PAR->PRT-12 [Lost Cmd Mode]) is enabled on the keypad, the lost command time (PAR->PRT-13 [Lost Cmd Time]) is extended by the time set as the watchdog time for the master module. Therefore, the watchdog time must be considered when setting the PAR->PRT-13 (Lost Cmd Time) parameter value.

Watchdog timer: The time for the network device (iS7 RAPIEnet+ communication board) to monitor the uninterrupted network connection with the master module.

Project 👻 🕂 🗙	NewPLC [B0S1 Smart Extension]	ז ×
✓ W KK_EFMTB_RDB * ✓ Wetwork Configuration ✓ Undefined Network ✓ Undefined Network ✓ P2P 01 ✓ P2P 03 ✓ EB09 - CENT Im EB09 - CENT Im EB09 - CENT Im NewV Variable/Comment ✓ Im ✓ Basic Parameter Im InOut_Instance_value_check	Smart Extension Master Setting Communication Device Settings Allocate Input/Output Variables Allocate diagnostic variables Connection View EIP Cycle/Details	Master Setting Name: MasterName00 EB No.: 0 Module: XGL-EFMT(B) Image: FEnet_XGL.bmp Control Frequency: 10 ms Watchdog timer: 50 ms comment:

(3) Network device settings

Select the hot swap feature. If the hot swap feature is not selected, losing one station ID (EB) on the network will cause the entire network to stop communicating.

Smart Extension Master Setting	Communication Device Settings					
Communication Device Settings	Sets all I/O parameters	Standard Input Pitter 5 * Ins				
Allocate Input/Output Variables	Settings	Detailed description				
Allocate diagnostic variables	Run CPU->Continue output when stopped	Γ	Set: Continue output when stopped Unset: Clear output when stopped			
EIP Cycle/Details	Keep output when an error occurs		Keep output when an error occurs			
	Exchange EB or modules while running(hot swap)	Set: Continue running when breakdown occu resolved return to normal operation Unset: Error when breakdown				
	Use redundant power	Γ	Sets when use redundant power			
	 * Supports all EB hot swap, mod ** Supports expansion driver de 	dule hot sw evice only	vap supports only expansion driver device			

(4) Input/Output parameter settings

Γ

The following settings enable an automatic 8 word / 8 word communication of input/output parameters.

Smart Extension Master Setting Communication Device Settings	Forma	Format: Hexadecimal Variable setting										
Allocate Input/Output Variables		EB No.	Station No/IP	Slot number	Variable name	Туре	Device	Monitor value	Comment			
Allocate diagnostic variables	1	EB09 🖃	9	Slot00 🖃								
Connection View	2				_0001_EB09_StatusInputNum	WORD	D01000	0x0010	Status input			
EIP Ovele/Details	3	1			_0001_EB09_ControlOutputNum	WORD	D01001	0x0010	Control output			
Ele Cycle/Detalla	4	1			_0001_EB09_StatusInput1	WORD	D01002	0x0000	Device status input 1			
	5]			_0001_EB09_StatusInput2	WORD	D01003	0x0000	Device status input 2			
	6	1			_0001_EB09_StatusInput3	WORD	D01004	0x0000	Device status input 3			
	7		_0001_EB09_StatusInput4	WORD	D01005	0x0000	Device status input 4					
	8]			_0001_EB09_StatusInput5	WORD	D01006	0x0129	Device status input 5			
	9	1			_0001_EB09_StatusInput6	WORD	D01007	0x0000	Device status input 6			
	10	1			_0001_EB09_StatusInput7	WORD	D01008	0x0000	Device status input 1			
	11	1			_0001_EB09_StatusInput8	WORD	D01009	0x000B	Device status input 1			
	12	1			_0001_EB09_ControlOutput1	WORD	D01010	0x0000	Device status input 1			
	13	1			_0001_EB09_ControlOutput2	WORD	D01011	0x0000	Device status input 1			
	14	1			_0001_EB09_ControlOutput3	WORD	D01012	0x0000	Device status input 1			
	15	1			_0001_EB09_ControlOutput4	WORD	D01013	0x0000	Device status input 1			
	16	1			_0001_EB09_ControlOutput5	WORD	D01014	0x0000	Device status input 1			
	17	1			_0001_EB09_ControlOutput6	WORD	D01015	0x0000	Device status input 1			
	18				_0001_EB09_ControlOutput7	WORD	D01016	0x0000	Device status input 1			
	19				_0001_EB09_ControlOutput8	WORD	D01017	0x0000	Device status input 1			

(5) Diagnostic parameter settings

Smart Extension								
Master Setting	Form	at:	Hexadecima	I 🗸 Varial	ble setting			
Communication Device Settings		EDNa	Otation No/ID	Verieble Kind	Verieble nome	Tuno	Device	Manitarualua
Allocate Input/Output Variables		EB NO.	0/102 169 1 1	System diag	variable frame	туре	Device	Monitor value
-Allocate diagnostic variables			0/192.100.1.1	System ulag 🖻	0001 STATUS OHO ONT		000526	0,0002
Connection View	2	-			_0001_STATUS_CHG_CIVI		D02530	0x0002
EIP Cycle/Details	3	-			_0001_SCAN_MIN		D02037	0x0000
	4	-			_0001_SCAN_MIN		D02530	0x0003
	6	-					D02535	0,0004
	7	-			0001 SYSTEM WAR	BIT	D02540.0	0
	6	-			0001_BR DEER	BIT	D02540.1	0
		-					D02540.2	0
	10	-			0001 IO TVER	BIT	D02540.0	0
	11	-			0001 IO DEER	BIT	D02540.4	0
	12	-			0001_0_022ER	BIT	D02540.6	0
	12	-				BIT	D02540.0	0
	14	-			0001 FB CRC FR	BIT	D02540.8	0
	15	-			0001 TAG FR	BIT	D02540.9	0
	16	-			0001 SCAN CLEAR	BIT	D02541 F	0
	17	-			0001 FRR CLEAR	BIT	D02541 F	0
1	455	<u> </u>			0001 EP00 CEC EP	DIT	002559.0	0
	155	-			_0001_EB09_CFG_ER	DIT	D02558.0	0
	150	-			_0001_EB09_DEER	DIT	D02558.1	0
	157	-			_0001_EB09_REF_11ME_001	DII	D02558.2	0
	158	-			_0001_EB09_P1_CRC_ER	BII	D02558.3	0
	159	-			_0001_EB09_P2_CRC_ER	BII	D02558.4	0
	160	-		01-100	_0001_EB09_IO_TTER	ы	D02559.1	U
	101	-		510100	0001 EP00 800 IO TVEP	DIT	D02560.0	0
	162	ED40 0	10	ED diagnosia	_0001_EB09_500_10_11ER	ы	D02560.0	U
	163	EBIU	10	EB diagnosis 🖻	0001 ED10 OFO ED		D00560.0	
	164	-			_0001_EB10_CFG_ER	DIT	D02560.8	0
	165	-			_0001_EB10_DEER	DII	D02560.9	0
	166	-			_0001_EB10_REF_TIME_001	BII	D02560.A	0
	167	-			_0001_EB10_P1_CRC_ER	BII	D02560.B	0
	168	-			_0001_EB10_P2_CRC_ER	BII	D02560.C	0
	169	-		01-100	_0001_EB10_I0_IYER	BII	002561.9	0
	1/0	-		510100	0004 5540 000 10 7/55	DIT	Daaraa	
	171				_0001_EB10_S00_IO_TYER	BII	D02562.8	0

(6) Network device connections

(7) Service status

Service status shows the service operation status of the scaling service, service counts, and error counts. (Service status can be provided only when the system is online.)

1 Click [Online] -> [Network module settings and diagnosis] -> [System diagnosis].

26 | LSELECTRIC

② In the [System diagnosis] window, right-click the master module (XGL-EFMxB) on the figure, then click Service status.

③ Click [Service status] -> [Smart scaling] tap to view the scaling service status.

				Service Into	mation				
Base N	lo.:		0	Service Sta	atus Enable				
Slot N	lo.:		1	SCAN MA	X: 0.8 ms	SCAN MIN:	0.3 ms	SCAN CURR:	0.4 ms
	EB	No.	Protocol	Station No./IP	Service	EB Status	Service Count	EB Detach Coun	EB Flag
÷	5		RAPIEnet/IP	5	VO service	WORKING	4276	0	0
+	9		RAPIEnet/IP	9	VO service	WORKING	4276	0	0
+	10		RAPIEnet/IP	10					,
+	p		i to a lational	10	VO service	WORKING	4276	0	0
	11		RAPIEnet/IP	11	VO service VO service	WORKING WORKING	42/6	0	0
	11		RAPEnet/P	11	VO service VO service	WORKING WORKING	42/6	0	0

ſ

④ In step ②, you can click the [Auto scan] tap to view the RAPIEnet connection status.

11.3 LED indications and troubleshooting

Γ

LEDO LED1 LED2 LED3

	LED Indication	Color	Description	Status	Remarks
		Green	Network normal	ON	Network connection at LINK 1 is operating normal
LED0	LINK1	Orange	Check network settings	ON	Check RAPIEnet network settings *1 When the communication cycle stops for longer than one second.
		-	LINK 1 Not connected	OFF	RAPIEnet communication is operating, but the network is not connected to LINK 1.
		Green	Network normal	ON	Network connection at LINK 2 is operating normal
LED1	LINK2	LINK2 Orange		ON	Check RAPIEnet network settings *1 When the communication cycle stops for longer than one second.
		-	LINK 1 Not connected	OFF	RAPIEnet communication is operating, but network is connected to LINK 2.

*1: For a RAPIEnet network communication, check keypad parameter settings for COM-7, COM-13, COM-30, and COM-50, and the PLC settings. (When the RAPIEnet+ communication board is communicating with an LS ELECTRIC master module and the RAPIEnet network feature is enabled, the COM-7 [station ID] and COM-13 [IP address] parameters must be set to avoid collisions with other RAPIEnet+ communication boards on the same network.)

	LED Indication	Color	Description	Status	Remarks
	ERROR		Normal	OFF	Communication between the communication board and the inverter is normal.
		Ded		Flashing Synchronous flashing with LED0 (1 second interval)	Communication between the RAPIEnet+ communication board and the inverter is abnormal.
LED2		Red	Network fault	Flashing (2 second interval)	The communication board parameters are set differently from the communication parameter settings on the keypad* ²
				ON	EEPROM failure No network connection to LINK 1 and LINK 2 Station ID or IP address collision is detected.
LED3	CPU	Green	Normal	Flashing (1 second interval)	The communication board has been properly installed to the inverter.

*²: To synchronize the Keypad parameter settings with the communication module settings, check the COM group settings and set COM-94 (Comm Update) to "1 (Yes)."

30 | **LS**ELECTRIC

12. Services with LS ELECTRIC products or other manufacturer's products

12.1 Overview

Г

This chapter explains the services utilizing EtherNet/IP and Modbus/TCP protocols when the communication board is connected with LS ELECTRIC products or another manufacturer's products.

RAPIEnet+ communication board PAR -> COM-25 [Opt Parameter-16]	RAPIEnet v2 Availability	EtherNet/IP Availability	Modbus TCP Availability
Setting: '2' RAPIEnet v2 Enable	0	О	0
Setting: '0' RAPIEnet v2 Disable	Х	0	0

12.2 EtherNet/IP

(1) Basic protocol structure

The EtherNet/IP is a protocol which implements the CIP (Common Industrial Protocol, specified by the ODVA) using the TCP and UDP protocols.

Originator: Devices that make connection requests, which are also called clients.

PLCs or scanners are examples of originators.

Target: Devices that respond to connection requests, which are also called servers.

Inverters are examples of targets.

(2) Implicit message

Implicit messages are also called I/O messages. It refers to the data communicated between the client (originator) and the server (target) at predefined intervals, via input and output instances.

The class 1 connection is used for implicit messages.

① Scope of support

Transport type

Originator->Target: Point to Point

Target->Originator: Multicast

Transport trigger: Cyclic

Configuration connection: 1

Connection tag: Not available

Priority

Originator->Target: Scheduled

Target->Originator: Scheduled

Configuration data: Not available

32 | **LS**ELECTRIC

② Input instances

Γ

Input instances refer to the status data periodically sent from the inverter to PLC or other client devices.

Instance	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
	0						Running1		Faulted					
70	0						(Fwd)		1 ddited					
	1	Speed Actual (Low Dute) DDM writ (rate 4)												
	2	Speed Actual (Low Byte) – RPM unit (note 1)												
	3	Speed Actual (High Byte) – RPM unit												
74	0	At	Ref From	Ctrl From	Ready	Running 2	Running1	Warning	Faulted					
	1	Reference	Net	Net	Drive	(Rev)	(FWO)							
71	1 2		Drive State											
	2			Speed A	ctual (Luv	h Byte) – RPM	unit							
	5			Opeeu A	stuar (ring		Running1							
	0						(Fwd)		Faulted					
110	1						(1 110)							
	2		Spe	ed Actual (Lo	ow Byte)	– Hz unit (note	1)							
	3	Speed Actual	(High Byte)	– Hz unit		, ,	,							
	0	At	Ref From	Ctrl From	Deedu	Running 2	Running1		E a vilta al					
	0	Reference	Net	Net	Ready	(Rev)	(Fwd)	vvarning	Faulted					
111	1		Drive State											
	2			Speed /	Actual (Lo	ow Byte) – Hz ι	unit							
	3	Speed Actual (High Byte) – Hz unit												
1/1	0			Status Pa	arameter	- 1 data (Low E	3yte)							
141	1			Status Pa	arameter ·	 1 data (High E 	Byte)							
	0			Status Pa	arameter	- 1 data (Low E	Byte)							
142	1			Status Pa	arameter ·	 1 data (High E 	Byte)							
1.12	2			Status Pa	arameter	- 2 data (Low E	Byte)							
	3			Status Pa	arameter ·	- 2 data (High E	Byte)							
	0			Status Pa	arameter	- 1 data (Low E	Byte)							
	1			Status Pa	arameter ·	 1 data (High E 	Byte)							
143	2			Status Pa	arameter	- 2 data (Low E	Byte)							
	3			Status Pa	arameter ·	2 data (High E	Byte)							
	4			Status Pa	arameter	- 3 data (Low E	Byte)							
	5			Status Pa	arameter ·	- 3 data (High E	Byte)							
	0			Status Pa	arameter	- 1 data (Low E	Byte)							
	1			Status Pa	arameter ·	 1 data (High E 	Byte)							
	2			Status Pa	arameter	- 2 data (Low E	Byte)							
144	3			Status Pa	arameter ·	2 data (High E	Byte)							
	4			Status Pa	arameter	- 3 data (Low E	Byte)							
	5			Status Pa	arameter ·	- 3 data (High E	Byte)							
	6			Status Pa	arameter	- 4 data (Low E	Byte)							
	7			Status Pa	arameter ·	- 4 data (High E	3yte)							

Instance	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	0			Status Pa	arameter -	1 data (Low	Byte)					
145	1			Status Pa	arameter -	1 data (High	Byte)					
	2		Status Parameter - 2 data (Low Byte)									
	3	Status Parameter - 2 data (High Byte)										
	4	Status Parameter - 3 data (Low Byte)										
	5	Status Parameter - 3 data (High Byte)										
	6		Status Parameter - 4 data (Low Byte)									
	7		Status Parameter - 4 data (High Byte)									
	8	Status Parameter - 5 data (Low Byte)										
	9			Status Pa	arameter -	5 data (High	Byte)					
	0		Status Parameter - 1 data (Low Byte)									
	1 2			Status Pa	arameter -	2 data (Low	Dyte) Byte)					
	2			Status P		2 data (LOW)	Dyte)					
	3 4		Status Parameter - 2 data (High Byte)									
	5			Status P	arameter -	3 data (High	Byte)					
146	6			Status P	arameter -	· 4 data (Low	Bvte)					
	7			Status Pa	arameter -	4 data (High	Bvte)					
	8		Status Parameter - 5 data (Low Byte)									
	9	Status Parameter - 5 data (High Byte)										
	10	Status Parameter - 6 data (Low Byte)										
	11			Status Pa	arameter -	6 data (High	Byte)					
	0			Status Pa	arameter -	1 data (Low	Byte)					
	1			Status Pa	arameter -	1 data (High	Byte)					
	2			Status Pa	arameter -	2 data (Low	Byte)					
	3			Status Pa	arameter -	2 data (High	Byte)					
	4			Status Pa	arameter -	- 3 data (Low	Byte)					
	5		Status Parameter - 3 data (High Byte)									
147	6			Status P	arameter -	- 4 data (Low	Byte)					
	7			Status Pa	arameter -	4 data (High	Byte)					
	8			Status Pa	arameter -	5 data (Low	Byte)					
	9			Status Pa	arameter -	5 data (High	Byte)					
	10			Status P		6 data (LOW	Dyte)					
	12			Status P	arameter -	7 data (Low	Dyte) Byte)					
	12			Status P	arameter -	7 data (Low	Byte)					
	0			Status P	arameter -	1 data (Low	Byte)					
	1			Status P	arameter -	1 data (Low	Byte)					
	2			Status P	arameter -	· 2 data (I ow	Bvte)					
	3			Status Pa	arameter -	2 data (High	Byte)					
	4			Status P	arameter -	- 3 data (Low	Byte)					
148	5			Status Pa	arameter -	3 data (High	Byte)					
	6			Status Pa	arameter -	- 4 data (Low	Byte)					
	7			Status Pa	arameter -	4 data (High	Byte)					
	8			Status Pa	arameter -	5 data (Low	Byte)					
	9			Status Pa	arameter -	5 data (High	Byte)					

٦

34 | **LS**ELECTRIC

Instance	Byte	Bit 7	Bit 6	Bit 5	Rit 4	Bit 3	Bit 2	Bit 1	Bit 0			
motarioc	Dyte	Dit i	Dit U					Dit i	Ditto			
	10		Status Parameter - 6 data (Low Byte)									
	11		Status Parameter - 6 data (High Byte)									
	12		Status Parameter - 7 data (Low Byte)									
	13		Status Parameter - 7 data (High Byte)									
	14		Status Parameter - 8 data (Low Byte)									
	15			Status Pa	arameter -	8 data (High E	3yte)					

The following table explains the data (bytes 0 and 1) for instances 70, 71, 110, and 111.

Nomo	Deparintion	Related	attribute	
Name	Description	Class Attr		
Faulted	Inverter Error	0x29	10	
Warning	Not supported	0x29	11	
Running1	Motor is running Forward	0x29	7	
Running2	Motor is running Reverse	0x29	8	
Ready	Motor is ready for operation	0x29	9	
Ctrl From Net	Run/Stop control	0x29	15	
Ref From Net	Speed control	0x2A	29	
At Reference	Reached reference Speed	0x2A	3	
Drive State	Current motor status	0x29	6	
Actual speed	Reference speed	0x2A	7	

③ Output instances

www.PLC1.ir

Γ

Out instance refers to the status data periodically sent from the PLC or other client devices to the inverter.

Instance	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
	0						Fault		Run				
	0						reset		Fwd				
20	1	0											
	2		Speed Reference (Low Byte) – RPM unit										
	3		5	Speed Refer	ence (Hig	h Byte) -	– RPM un	it					
	0		NetRef	NetCtrl			Fault	Run	Run				
			(note 2)	(note2)			reset	Rev	Fwd				
21	1	0											
	2	Speed Reference (Low Byte) – RPM unit											
	3		5	Speed Refer	ence (Hig	h Byte) -	– RPM un	it					
	3	Speed Reference (High Byte) – RPM unit											
0 Fault reset Run Fwd 100 2 Speed Reference (Low Byte) - Hz unit 3 Speed Reference (High Byte) - Hz unit 0 NetRef NetCtrl Fault reset Run Rev Fwd 101 1 0 Speed Reference (High Byte) - Hz unit Run reset Rev Fwd 101 1 0 Speed Reference (High Byte) - Hz unit Run reset Rev Fwd 121 0 Control Parameter - 1 data (Low Byte) Hz unit Speed Reference (High Byte) Run reset Run Fwd 122 0 Control Parameter - 1 data (Low Byte) Control Parameter - 1 data (Low Byte) Run Run (High Byte) Run (High Byte)	Instance	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
--	----------	--------	-------	--	-------------	-------------	------------------	------------	-------	-------	--	--	
0 reset Fwd 100 2 Speed Reference (Low Byte) – Hz unit 3 Speed Reference (High Byte) – Hz unit 3 Speed Reference (High Byte) – Hz unit 101 1 0 12 Speed Reference (Low Byte) – Hz unit 3 Speed Reference (Low Byte) – Hz unit 3 Speed Reference (Low Byte) – Hz unit 3 Speed Reference (Low Byte) – Hz unit 4 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 0 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (High Byte) 2 Control Parameter - 2 data (High Byte) 1 Control Parameter - 2 data (High Byte) 2 Control Parameter - 2 data (High Byte) 2 Control Parameter - 2 data (High Byte) 1 Control Parameter - 2 data (High Byte) </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Fault</td> <td></td> <td>Run</td>		-						Fault		Run			
100 1 0 2 Speed Reference (Low Byte) - Hz unit 3 Speed Reference (High Byte) - Hz unit 101 1 Rev 2 Speed Reference (Low Byte) - Hz unit 3 Speed Reference (Low Byte) - Hz unit 3 Speed Reference (High Byte) - Hz unit 3 Speed Reference (High Byte) - Hz unit 3 Speed Reference (High Byte) - Hz unit 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 1 Control Parameter - 2 data (High Byte) 1 Control Parameter - 2 data (High Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 3 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 3 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 3 data (High Byte) 2 Control Parameter - 3 data (Low Byte) 3 <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>reset</td> <td></td> <td>Fwd</td>		0						reset		Fwd			
2 Speed Reference (Low Byte) – Hz unit 0 NetRef NetCtrl Fault Run reset Run Rev Fault Run reset Run Fwd 10 0 Speed Reference (Low Byte) – Hz unit - - - 2 Speed Reference (High Byte) – Hz unit - - - - 11 0 Control Parameter - 1 data (Low Byte) - - - 121 0 Control Parameter - 1 data (Low Byte) - - - 122 Control Parameter - 1 data (Low Byte) - - - - 122 Control Parameter - 2 data (Low Byte) - - - - 123 0 Control Parameter - 2 data (Low Byte) - - - 124 0 Control Parameter - 2 data (Low Byte) - - - - 125 Control Parameter - 2 data (Low Byte) - - - - - - - - - - - - -	100	1	0	0									
3 Speed Reference (High Byte) – Hz unit 0 NetRef NetCtri Fault reset Run Rev Fwd 101 0 Speed Reference (Low Byte) – Hz unit Run Fwd 2 Speed Reference (High Byte) – Hz unit 0 Control Parameter - 1 data (Low Byte) 121 0 Control Parameter - 1 data (Low Byte) 0 122 0 Control Parameter - 1 data (High Byte) 0 122 0 Control Parameter - 2 data (High Byte) 0 122 0 Control Parameter - 2 data (Low Byte) 0 122 0 Control Parameter - 2 data (Low Byte) 0 1 Control Parameter - 2 data (Low Byte) 0 0 1 Control Parameter - 2 data (Low Byte) 0 0 1 Control Parameter - 2 data (Low Byte) 0 0 1 Control Parameter - 2 data (Low Byte) 0 0 1 Control Parameter - 2 data (Low Byte) 0 0 123 Control Parameter - 2 data (Low Byte) 0 0		2		Speed Reference (Low Byte) – Hz unit									
0 NetRef NetCtrl Fault reset Run Rev Run Fwd 101 1 0		3		Speed Reference (High Byte) – Hz unit									
0 Netret Netret reset Rev Fwd 101 1 0		0		NotRof	NetCtrl			Fault	Run	Run			
101 1 0 2 Speed Reference (Low Byte) – Hz unit 3 Speed Reference (High Byte) – Hz unit 0 Control Parameter - 1 data (Low Byte) 121 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 0 122 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 0 2 Control Parameter - 2 data (Low Byte) 0 3 Control Parameter - 1 data (High Byte) 0 0 Control Parameter - 1 data (Low Byte) 1 11 Control Parameter - 2 data (Low Byte) 1 123 2 Control Parameter - 2 data (Low Byte) 13 Control Parameter - 3 data (Low Byte) 1 14 Control Parameter - 3 data (Low Byte) 1 15 Control Parameter - 1 data (Low Byte) 1 16 Control Parameter - 2 data (Low Byte) 1 17 Control Parameter - 3 data (Low Byte) 1 18 Control Parameter - 3 data (Low Byte) 1		0		neuver	NetOtti			reset	Rev	Fwd			
2 Speed Reference (Low Byte) – Hz unit 3 Speed Reference (High Byte) – Hz unit 121 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 0 122 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 0 122 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 1 123 2 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 123 2 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 3 data (Low Byte) 1 1 Control Parameter - 3 data (Low Byte) 1 1 Control Parameter - 3 data (Low Byte) 1 1 Control Parameter - 2 data (High Byte) 2 2 Control Parameter - 2 data (Low Byte) 1 1 Control Parameter - 3 data (Low Byte) 1 2 Control Parameter - 3 data (Low Byte) 1 3 Control Paramete	101	1		0									
3 Speed Reference (High Byte) – Hz unit 121 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 122 0 Control Parameter - 1 data (High Byte) 122 2 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 1 data (High Byte) 1 Control Parameter - 1 data (High Byte) 123 0 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (High Byte) 123 2 Control Parameter - 2 data (Low Byte) 143 Control Parameter - 2 data (Low Byte) 15 Control Parameter - 3 data (Low Byte) 16 Control Parameter - 1 data (High Byte) 1724 0 Control Parameter - 2 data (Low Byte) 1 Control		2			Speed Ref	erence (Lo	ow Byte)	– Hz unit					
121 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 0 122 2 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 0 Control Parameter - 2 data (High Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 3 data (Low Byte) 1 Control Parameter - 3 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 3 data (Low Byte) 1 Control Parameter - 3 data (Low Byte) 2		3			Speed Refe	erence (Hi	igh Byte)	– Hz unit					
121 1 Control Parameter - 1 data (High Byte) 122 0 Control Parameter - 1 data (Low Byte) 122 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 0 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 123 0 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 3 data (Low Byte) 2 Control Parameter - 3 data (Low Byte) 3 Control Parameter - 1 data (High Byte) 4 Control Parameter - 1 data (High Byte) 5 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 3 data (Low Byte) 2 Control Parameter - 3 data (Low Byte) 3 Control Parameter - 3 data (Low Byte) 4 Control Parameter - 4 data (High Byte) 5 Control Parameter - 1 data (Low Byte)	121	0			Control Pa	rameter -	1 data (l	_ow Byte)					
0 Control Parameter - 1 data (Low Byte) 122 Control Parameter - 1 data (High Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (High Byte) 1 Control Parameter - 1 data (High Byte) 1 Control Parameter - 1 data (High Byte) 2 Control Parameter - 2 data (High Byte) 1 Control Parameter - 2 data (High Byte) 2 Control Parameter - 2 data (High Byte) 3 Control Parameter - 3 data (High Byte) 4 Control Parameter - 1 data (Low Byte) 5 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 3 data (High Byte) 2 Control Parameter - 2 data (Low Byte) 124 Control Parameter - 3 data (Low Byte) 124 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 3 data (Low Byte) 7 Control Parameter - 3 data (Low Byte) 1 Control Parameter - 4 data (Low Byte) 2 Control Parameter - 2 data (High Byt	121	1			Control Par	rameter -	1 data (F	ligh Byte)					
1 Control Parameter - 1 data (High Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 0 Control Parameter - 1 data (Low Byte) 123 0 2 Control Parameter - 1 data (Low Byte) 123 0 2 Control Parameter - 2 data (High Byte) 2 Control Parameter - 2 data (High Byte) 3 Control Parameter - 3 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 3 data (High Byte) 2 Control Parameter - 2 data (High Byte) 1 Control Parameter - 2 data (High Byte) 2 Control Parameter - 3 data (High Byte) 2 Control Parameter - 3 data (High Byte) 3 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 4 data (Low Byte) 6 Control Parameter - 2 data (High Byte) 1 Control Parameter - 2 data (High Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 2 Control		0			Control Pa	rameter -	1 data (l	_ow Byte)					
122 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 123 2 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 1 data (High Byte) 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 3 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 124 3 Control Parameter - 2 data (Low Byte) 125 Control Parameter - 3 data (Low Byte) 126 Control Parameter - 3 data (Low Byte) 1 Control Parameter - 4 data (Low Byte) 125 Control Parameter - 1 data (Low Byte) 126 Control Parameter - 2 data (Low Byte) <	400	1			Control Pa	rameter -	1 data (H	ligh Byte)					
3 Control Parameter - 2 data (High Byte) 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 0 Control Parameter - 3 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 2 data (High Byte) 2 Control Parameter - 3 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 3 data (Low Byte) 2 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 3 data (Low Byte) 2 Control Parameter - 3 data (Low Byte) </td <td>122</td> <td>2</td> <td></td> <td></td> <td>Control Pa</td> <td>rameter -</td> <td>2 data (l</td> <td>_ow Byte)</td> <td></td> <td></td>	122	2			Control Pa	rameter -	2 data (l	_ow Byte)					
0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 3 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 0 Control Parameter - 3 data (High Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 3 data (Low Byte) 124 Control Parameter - 3 data (Low Byte) 125 Control Parameter - 1 data (Low Byte) 126 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 3 data (Low By		3			Control Pa	rameter - 2	2 data (H	ligh Byte)					
1 Control Parameter - 1 data (High Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 1 data (High Byte) 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 3 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 2 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 3 data (Low Byte) 125 Control Parameter - 3 data (Low Byte) 3 Control Parameter - 3 data (Low Byt		0			Control Pa	rameter -	1 data (l	_ow Byte)					
123 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (High Byte) 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 2 data (High Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 3 data (Low Byte) 3 Control Parameter - 3 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 125 Control Parameter - 3 data (Low Byte) 126 Control Parameter - 3 data (Low Byte) 127 Control Para		1			Control Pa	rameter -	1 data (H	ligh Byte)					
123 3 Control Parameter - 2 data (High Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (High Byte) 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 3 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 3 data (Low Byte) 3 Control Parameter - 3 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 4 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter -	400	2			Control Pa	rameter -	2 data (l	_ow Byte)					
4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (High Byte) 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 4 Control Parameter - 2 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 3 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 1 data (High Byte) 1 Control Parameter - 1 data (Low Byte) 7 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 3 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 3 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) <	123	3		Control Parameter - 2 data (High Byte)									
5 Control Parameter - 3 data (High Byte) 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 2 Control Parameter - 2 data (High Byte) 3 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 3 data (Low Byte) 3 Control Parameter - 3 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (Low Byte)		4		Control Parameter - 3 data (Low Byte)									
1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (High Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 3 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 3 data (Low Byte) 3 Control Parameter - 3 data (Low Byte) 3 Control Parameter - 3 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 5 data (Low Byte) 8 Control Parameter - 5 data (Low Byte) <td></td> <td>5</td> <td></td> <td colspan="7">Control Parameter - 3 data (High Byte)</td>		5		Control Parameter - 3 data (High Byte)									
1 Control Parameter - 1 data (High Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 3 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 0 Control Parameter - 4 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 3 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 8 Control Parameter - 5 data (Low Byte) 9 Control Parameter - 5 data (Low Byte) 1 Control Parameter - 1 data (Low Byte)<		0			Control Pa	rameter -	1 data (l	_ow Byte)					
124 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 0 Control Parameter - 4 data (High Byte) 1 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 3 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 8 Control Parameter - 5 data (Low Byte) 9 Control Parameter - 5 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (1		Control Parameter - 1 data (High Byte)									
1243Control Parameter - 2 data (High Byte)4Control Parameter - 3 data (Low Byte)5Control Parameter - 3 data (High Byte)6Control Parameter - 4 data (Low Byte)7Control Parameter - 4 data (Low Byte)0Control Parameter - 1 data (Low Byte)1Control Parameter - 1 data (Low Byte)2Control Parameter - 1 data (Low Byte)3Control Parameter - 2 data (Low Byte)3Control Parameter - 2 data (Low Byte)3Control Parameter - 3 data (Low Byte)5Control Parameter - 3 data (Low Byte)6Control Parameter - 3 data (Low Byte)6Control Parameter - 4 data (Low Byte)7Control Parameter - 4 data (Low Byte)7Control Parameter - 5 data (Low Byte)8Control Parameter - 5 data (Low Byte)9Control Parameter - 5 data (Low Byte)11Control Parameter - 1 data (Low Byte)12622Control Parameter - 2 data (High Byte)3Control Parameter - 2 data (High Byte)1Control Parameter - 1 data (Low Byte)1Control Parameter - 2 data (High Byte)2Control Parameter - 2 data (High Byte)3Control Parameter - 2 data (High Byte)3Control Parameter - 2 data (High Byte)3Control Parameter		2		Control Parameter - 2 data (Low Byte)									
124 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (High Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 3 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 3 data (Low Byte) 7 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 8 Control Parameter - 4 data (Low Byte) 9 Control Parameter - 5 data (Low Byte) 9 Control Parameter - 5 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 3 Control Parameter -	124	3		Control Parameter - 2 data (High Byte)									
5 Control Parameter - 3 data (High Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (High Byte) 1 Control Parameter - 1 data (Low Byte) 2 Control Parameter - 1 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 8 Control Parameter - 5 data (Low Byte) 9 Control Parameter - 5 data (Low Byte) 1 Control Parameter - 5 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 2 data (High Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 2 Control Parameter - 2 data (Low Byte)	124	4		Control Parameter - 3 data (Low Byte)									
6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (High Byte) 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 8 Control Parameter - 5 data (Low Byte) 9 Control Parameter - 5 data (Low Byte) 9 Control Parameter - 5 data (High Byte) 11 Control Parameter - 1 data (Low Byte) 126 2 Control Parameter - 2 data (Low Byte) 126 2 Control Parameter - 2 data (Low Byte) 126 2 Control Parameter - 2 data (Low Byte) 126 2 Control Parameter - 2 data (Low Byte)		5		Control Parameter - 3 data (High Byte)									
7Control Parameter - 4 data (High Byte)0Control Parameter - 1 data (Low Byte)1Control Parameter - 1 data (High Byte)2Control Parameter - 2 data (Low Byte)3Control Parameter - 2 data (Low Byte)4Control Parameter - 3 data (Low Byte)5Control Parameter - 3 data (Low Byte)6Control Parameter - 4 data (Low Byte)7Control Parameter - 4 data (Low Byte)8Control Parameter - 5 data (Low Byte)9Control Parameter - 5 data (Low Byte)12621262127Control Parameter - 1 data (Low Byte)128312911202120Control Parameter - 2 data (High Byte)1211122Control Parameter - 2 data (Low Byte)12311242125112621263127112831291120112021201121112111221231124112411251126112611261127112811291129112011201120112011201120 </td <td></td> <td>6</td> <td></td> <td colspan="7">Control Parameter - 4 data (Low Byte)</td>		6		Control Parameter - 4 data (Low Byte)									
0Control Parameter - 1 data (Low Byte)1Control Parameter - 1 data (High Byte)2Control Parameter - 2 data (Low Byte)3Control Parameter - 2 data (High Byte)4Control Parameter - 3 data (Low Byte)5Control Parameter - 3 data (Low Byte)6Control Parameter - 4 data (Low Byte)7Control Parameter - 4 data (High Byte)8Control Parameter - 5 data (Low Byte)9Control Parameter - 5 data (Low Byte)9Control Parameter - 5 data (Low Byte)11Control Parameter - 1 data (High Byte)12622Control Parameter - 2 data (High Byte)3Control Parameter - 2 data (High Byte)4Control Parameter - 3 data (Low Byte)		7		Control Parameter - 4 data (High Byte)									
1Control Parameter - 1 data (High Byte)2Control Parameter - 2 data (Low Byte)3Control Parameter - 2 data (High Byte)4Control Parameter - 3 data (Low Byte)5Control Parameter - 3 data (High Byte)6Control Parameter - 4 data (Low Byte)7Control Parameter - 4 data (Low Byte)8Control Parameter - 5 data (Low Byte)9Control Parameter - 5 data (Low Byte)1Control Parameter - 1 data (Low Byte)12622Control Parameter - 1 data (High Byte)3Control Parameter - 2 data (Low Byte)4Control Parameter - 3 data (I ow Byte)		0			Control Pa	rameter -	1 data (l	_ow Byte)					
2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (Low Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (Low Byte) 8 Control Parameter - 5 data (Low Byte) 9 Control Parameter - 5 data (Low Byte) 126 0 126 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (High Byte) 1 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (Low Byte)		1		Control Parameter - 1 data (High Byte)									
3 Control Parameter - 2 data (High Byte) 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (High Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (High Byte) 8 Control Parameter - 5 data (Low Byte) 9 Control Parameter - 5 data (Low Byte) 9 Control Parameter - 5 data (High Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 126 2 Control Parameter - 2 data (Low Byte) 1 Control Parameter - 2 data (Low Byte) 3 126 3 Control Parameter - 2 data (Low Byte) 4 Control Parameter - 3 data (I ow Byte) 3		2		Control Parameter - 2 data (Low Byte)									
125 4 Control Parameter - 3 data (Low Byte) 5 Control Parameter - 3 data (High Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (High Byte) 8 Control Parameter - 5 data (Low Byte) 9 Control Parameter - 5 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 1 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 4 Control Parameter - 3 data (I ow Byte)		3			Control Pa	rameter - 2	2 data (F	ligh Byte)					
5 Control Parameter - 3 data (High Byte) 6 Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (High Byte) 8 Control Parameter - 5 data (Low Byte) 9 Control Parameter - 5 data (High Byte) 0 Control Parameter - 5 data (Low Byte) 1 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 126 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 4 Control Parameter - 3 data (Low Byte)	125	4			Control Pa	rameter -	<u>3 data (l</u>	_ow Byte)					
b Control Parameter - 4 data (Low Byte) 7 Control Parameter - 4 data (High Byte) 8 Control Parameter - 5 data (Low Byte) 9 Control Parameter - 5 data (High Byte) 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 126 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 4 Control Parameter - 3 data (Low Byte)		5			Control Par	rameter -	3 data (F	ligh Byte)					
7 Control Parameter - 4 data (High Byte) 8 Control Parameter - 5 data (Low Byte) 9 Control Parameter - 5 data (High Byte) 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 126 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 4 Control Parameter - 3 data (Low Byte)		6			Control Pa	rameter -	4 data (L	LOW Byte)					
0 Control Parameter - 5 data (Low Byte) 9 Control Parameter - 5 data (High Byte) 0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 126 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 4 Control Parameter - 3 data (Low Byte)		/ 0			Control Pa		4 uata (F						
0 Control Parameter - 1 data (Low Byte) 1 Control Parameter - 1 data (High Byte) 126 2 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 4 Control Parameter - 3 data (Low Byte)		0			Control Pa	rameter	5 data (L	Low Dyte)					
1 Control Parameter - 1 data (Low Byte) 126 2 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 4 Control Parameter - 3 data (Low Byte)		9 0			Control Do	rameter -	1 data (F						
126 2 Control Parameter - 2 data (Low Byte) 3 Control Parameter - 2 data (High Byte) 4 Control Parameter - 3 data (Low Byte)		1			Control Pa	rameter	1 data (L	Low Dyle)					
3 Control Parameter - 2 data (Low Byte) 4 Control Parameter - 3 data (Low Byte)	126	2			Control Pa	rameter -	2 data (l						
4 Control Parameter - 3 data (Low Byte)	120	3			Control Pa	rameter -	2 data (L	ligh Rvte					
		4			Control Pa	rameter -	3 data (I	_ow Bvte)					

٦

36 | **LS**ELECTRIC

www.PLC1.ir

Instance	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	5		2.0	Control Pa	rameter - '	3 data (F	ligh Byte)		2.00		
	6		Control Parameter - 4 data (Low Byte)								
	7			Control Pa	rameter -	4 data (F	liah Bvte)				
	8		Control Parameter - 5 data (Low Byte) Control Parameter - 5 data (High Byte)								
	9										
	10			Control Pa	rameter -	6 data (L	Low Byte)				
	11		Control Parameter - 6 data (High Byte)								
	0			Control Pa	rameter -	1 data (L	ow Byte)				
	1			Control Pa	rameter -	1 data (H	ligh Byte)				
	2			Control Pa	rameter -	2 data (L	ow Byte)				
	3			Control Pa	rameter - 2	2 data (H	ligh Byte)				
	4			Control Pa	rameter -	3 data (L	ow Byte)				
	5			Control Par	rameter - 3	3 data (⊦	ligh Byte)				
107	6			Control Pa	rameter -	4 data (L	ow Byte)				
127	7			Control Pa	rameter -	4 data (⊦	ligh Byte)				
	8		Control Parameter - 5 data (Low Byte)								
	9		Control Parameter - 5 data (High Byte)								
	10			Control Pa	rameter -	6 data (L	ow Byte)				
	11			Control Pa	rameter - (6 data (⊦	ligh Byte)				
	12		Control Parameter - 7 data (Low Byte)								
	13			Control Pa	rameter -	7 data (⊦	ligh Byte)				
	0			Control Pa	rameter -	1 data (L	ow Byte)				
	1			Control Par	rameter -	1 data (⊦	ligh Byte)				
	2			Control Pa	rameter -	2 data (L	ow Byte)				
	3		Control Parameter - 2 data (High Byte)								
	4		Control Parameter - 3 data (Low Byte)								
	5			Control Par	rameter - 3	3 data (⊦	ligh Byte)				
	6			Control Pa	rameter -	4 data (L	ow Byte)				
100	7			Control Par	rameter -	4 data (⊦	ligh Byte)				
120	8			Control Pa	rameter -	5 data (L	ow Byte)				
	9			Control Pa	rameter -	5 data (H	ligh Byte)				
	10			Control Pa	rameter -	6 data (L	ow Byte)				
	11			Control Pa	rameter -	6 data (⊦	ligh Byte)				
	12			Control Pa	rameter -	7 data (L	ow Byte)				
	13			Control Pa	rameter -	7 data (⊦	ligh Byte)				
	14			Control Pa	rameter -	8 data (L	ow Byte)				
	15			Control Pa	rameter - a	8 data (F	ligh Byte)				

Γ

The following table explains the data (bits for byte 0) for instances 20, 21, 100, and 101.

Nama	Description	Related attribute		
Name	Description	Class	Attr. ID	
Run Fwd (Note1)	Forward Run Command	0x29	3	
Run Rev (Note1)	Reverse Run Command	0x29	4	
Fault reset (Note1)	Fault Reset Command	0x29	12	
NetRef (Note2)	Not used	0x2A	4	
NetCtrl (Note2)	Not used	0x29	5	
Speed Reference	Reference speed	0x2A	8	

(Note1) Refer to the Drive Run and Fault sections in the "Control Supervisor Object (Class 0x29)".

(Note2) Reference speed and Run/Strop control can be set only on the LCD control panel. Network control instances 21 and 101 (NetRef, NetCtrl) are not available.

(3) Explicit messages

Explicit messages refer to non-periodic data communications used for reading or writing attribute values of an inverter or an EtherNet/IP.

Using the UCMM communication, data exchange is made without connecting the originator and the target, and periodic data exchange is available as well using the Class 3 connection.

(4) Supported objects

① Identity object (Class 0x01, Instance 1)

Attribute

Attribute ID	Access	Attribute Name	Data Length	Attribute Value
1	Get	Vendor ID (LS ELECTRIC)	Word	259
2	Get	Device Type (inverter)	Word	2
3	Get	Product Code	Word	100 (Note1)
4	Get	Revision High Byte - Major Revision Low Byte - Minor Revision	Word	(Note2) 0x0101

5	Get	Status	Word	(Note3)
6	Get	Serial Number	Double Word	(Note4)
7	Get	Product Name	4 Byte	CENT

(Note1) Product Code 100 refers to the iS7 inverter.

(Note2) The revision number is identical to the version of the Ethernet communication board. The high byte stands for a major revision number, and the low byte stands for a minor revision number. For example, "0x0102" stands for "version 1.02."

The version of the Ethernet communication board can be displayed on the Keypad using the COM-6 (FBus S/W Ver) parameter.

(Note3) Definition of status bits

Bit	Description					
0	0: Device is not connected to the master1: Device is connected to the master					
0						
1	Reserved					
2	Configured (fixed as '0' because LS ELECTRIC EtherNet/IP is not					
2	supported)					
3	Reserved					
4	0: Unknown					
5	2: Faulty IO connection					
6	3: IO connection has not been made					
	5: Major fault					
7	6: IO connection has been made					
8	Minor recoverable fault (Inverter is in warning status)					
9	Minor unrecoverable fault (N/A)					
10	Major recoverable fault (inverter H/W trip occurred)					
11	Major recoverable fault (inverter non-H/W trip occurred)					

(Note4) Serial number uses the last 4 digits of the MAC ID.

E.g.) The serial number is 0x29000022 when the MAC ID is "00:0B:29:00:00:22".

Service

Service code	Definition	Support for class	Support for instance
0x0E	Get Attribute Single	No	Yes
0x05	Reset	No	Yes
0x01	Get Attribute All	No	Yes

www.PLC1.ir

② Motor data object (Class 0x28, Instance 1)

Attribute

Attribute ID	Access	Attribute Name	Range	Definition
3	Get	Motor Type	0 – 10	0: Non-standard motor 1: PM DC Motor 2: FC DC Motor 3: PM Synchronous Motor 4: FC Synchronous Motor 5: Switched Reluctance Motor 6: Wound Rotor Induction Motor 7: Squirrel Cage Induction Motor 8: Stepper Motor 9: Sinusoidal PM BL Motor 10: Trapezoidal PM BL Motor
6	Get/Set	Motor Rated Curr	0.0 – 1000.0	[Get] Reads the value at BAS-13 Rated Curr. [Set] Set value is reflected to BAS-13 Rated Curr. Scale 0.1
7	Get/Set	Motor Rated Volt	0 – 690	[Get] Reads the value of the BAS-15 Rated Voltage. [Set] Set value is reflected in the BAS-15 Rated Voltage. Scale 1

Service

Service code	Definition	Support for class	Support for instance
0x0E	Get Attribute Single	No	Yes
0x10	Set Attribute Single	No	Yes

③ Control Supervisor Objects (Class 0x29, Instance 1)

Attribute

Γ

Attribute ID	Access	Attribute Name	Range	Definition
	0		0	Stopped
3	Get/Set	Forward Run Cmd.	1	Forward run (Note1)
			0	Stopped
4	Get/Set	Reverse Run Cmd.	1	Reverse run (Note1)
5	N/A	Net Control	-	Configurable only with the inverter parameter.
			0	Vendor Specific
			1	Startup
			2	Not Ready (resetting in progress)
			3	Ready (stopping in progress)
6	Get	Drive State	1	Enabled (running, not applicable to
			4	deceleration stop)
			5	Stopping (decelerating)
			6	Fault Stop
			7	Faulted (trip occurred)
7	Got	Rupping Forward	0	Drive stopped.
1	Gei	Running Forward	1	Running Forward
0	Cat	Dunning Deverse	0	Drive stopped.
0	Gei	Running Reverse	1	Running Reverse
0	Cot	Drive Ready	0	Resetting in progress or trip occurred
9	Gei	Drive Ready	1	Inverter is ready for operation
10	Cot	Drive Foult	0	Trip has not occurred
10	Gei	Drive Fault	1	Trip has occurred
			0	Trip reset to release the trip. Resetting will
12	Get/Set	Drive Fault Reset		begin only when the value changes from
			1	FALSE to TRUE. (Note2)
13	Get	Drive Fault Codes		Refer to the following Drive Fault Code table (Note2)
	0-1	Control From Not	0	Commands are made using sources other than the DeviceNet communication.
14	Get	Control From Net.	1	Commands are made using the DeviceNet communication as the source.

www.PLC1.ir

(Note1) Drive Run Command

Inverter operation using Forward Run Cmd. and Reverse Run Cmd.

Runl	Run2	Trigger Event	Run Type
0	0	Stop	NA
0 -> 1	0	Run	Run1
0	0 -> 1	Run	Run2
0 -> 1	0 -> 1	No Action	NA
1	1	No Action	NA
1->0	1	Run	Run2
1	1->0	Run	Run1

In the table above, Run1 indicates Forward Run Cmd. and Run 2 indicates Reverse Run Cmd. Commands are made by the Ethernet communication board when the value changes from 0 (FALSE) to 1 (TRUE). The Forward Run Cmd. value does not indicate the present operation status of the inverter; it indicates the operation command value on the Ethernet communication board.

(Note2) Drive Fault

The Drive Fault becomes TRUE when the inverter is tripped.

The Drive Fault Codes for the trips are as follows.

Drive Fault Codes

Fault Code Number	Description				
0x0000	None				
	Ethermal	Out Phase Open	InverterOLT		
	InPhaseOpen	ThermalTrip	UnderLoad		
0x1000	ParaWriteTrip	IOBoardTrip	PrePIDFail		
	OptionTrip1	OptionTrip2	OptionTrip3		
	LostCommand	UNDEFINED	LostKeypad		
0x2200	OverLoad				
0x2310	OverCurrent1				
0x2330	GFT				
0x2340	OverCurrent2				
0x3210	OverVoltage				
0x3220	LowVoltage				
0x2330	GroundTrip				

Fault Code	Description		
Number			
0x4000	NTCOpen		
0x4200	OverHeat		
0x5000	FuseOpen	HWDiag	
0x7000	FanTrip		
0x7120	No Motor Trip		
0x7300	EncorderTrip		
0x8401	SpeedDevTrip		
0x8402	OverSpeed		
0x9000	ExternalTrip	BX	

Drive Fault Reset

The Drive Fault Reset gives TRIP RESET reference to the inverter when the setting value changes from 0 to 1 (FALSE to TRUE). Overwriting 1 (TRUE) over 1 (TRUE) does not generate RESET reference for a trip. To allow the Ethernet communication board to send a RESET command to the inverter when the value is 1 (TRUE), write 0 (FAULT) first, then write 1 (TRUE) again.

Service

Γ

Service code	Definition	Support for class	Support for instance
0x0E	Get Attribute Single	No	Yes
0x10	Set Attribute Single	No	Yes

④ Inverter Objects (Class 0x2A, Instance 1)

Attribute

Attribute ID	Access	Attribute Name	Range	Definition
			0	The output frequency has not reached the reference frequency.
3	Get	At Reference	1	The output frequency has reached the reference frequency.
4	N/A	Net Reference	-	
			0	Vendor Specific Mode
			1	Open Loop Speed (Frequency)
6	Get	Drive Mode	2	Closed Loop Speed Control
		(Note I)	3	Torque Control
			4	Process Control (e.g. PI)
7	Get	SpeedActual	0 – 24000	Displays the present output frequency in [rpm].
8	Get/Set	SpeedRef	0 – 24000	Displays the reference frequency in [rpm]. Reflected when DRV-07 (Freq Ref Src) is set to FieldBus.
9	Get	Actual Current	0 – 111.0 A	Monitors the present current in 0.1 A increment/decrement.
00	Oct	Ref.From	0	Command source is not the DeviceNet communication.
29	29 Get	Network	1	Command source is the DeviceNet communication.
100	Get	Actual Hz	0 – 400.00 Hz	Monitors the present operation frequency (Hz).
101	Get/Set	Reference Hz	0 – 400.00 Hz	Speed reference may be given via a network communication if DRV-07 (Freq Ref Src) is set to 8 (FieldBus).
102	Get/Set	Acceleration Time (Note2)	0 – 6000.0 sec	Sets/monitors the acceleration time of the inverter.
103	Get/Set	Deceleration Time (Note3)	0 - 6000.0 sec	Sets/monitors the deceleration time of the inverter.

(Note1) Related to the DRV-10 (Torque Control) and APP-01 (App Mode) settings. When DRV-10 (Torque Control) is set to Yes, the Drive Mode becomes "Torque Control", and when APP-01 (App Mode) is set to Proc PID, MMC, then the Drive Mode becomes "Process Control (e.g. PI)."

(Note2) Value at DRV-03 (Acc Time)

(Note3) Value at DRV-04 (Dec Time)

Service

Γ

Service code	Definition	Support for class	Support for instance
0x0E	Get Attribute Single	No	Yes
0x10	Set Attribute Single	No	Yes

(5) Class 0x64 (Inverter Object) – Manufacture Profile

This object is used to access the Keypad Parameters of the inverter.

Attribute

Instance	Access	Attribute Number	Attribute Name	Attribute Value
1 (DRV Group)		Identical to the iS7 Manual Code number.		
2 (BAS Group)		Identical to the iS7 Manual Code number.		
3 (ADV Group)		Identical to the iS7 Manual Code number.		
4 (CON Group)		Identical to the iS7 Manual Code number.		Parameter
5 (IN Group)		Identical to the iS7 Manual Code number.	iS7 Keypad	setting range
6 (OUT Group)	Get/Set	Identical to the iS7 Manual Code number.	Title (Refer to the	inverter
7 (COM Group)		Identical to the iS7 Manual Code number.	iS7 inverter	(Refer to the
8 (APP Group)		Identical to the iS7 Manual Code number.	user manual)	IS7 inverter
9 (AUT Group)		Identical to the iS7 Manual Code number.		manual)
10 (APO Group)		Identical to the iS7 Manual Code number.		
11 (PRT Group)	1	Identical to the iS7 Manual Code number.]	
12 (M2 Group)		Identical to the iS7 Manual Code number.		

Service

Service code	Definition	Support for class	Support for instance
0x0E	Get Attribute Single	No	Yes
0x10	Set Attribute Single	No	Yes

12.3 Modbus TCP frame

(1) Modbus TCP frame structure

MBAP Header (7 bytes)	PDU (5 bytes or greater)

In general, Ethernet communication uses Ethernet II frames.

MODBUS Application Protocol header (MBAP header)

The following table explains the components of a MBAP header.

Section	Length	Description
Transaction identifier	2 hvte	Unique transmission number, which increases by 1 each
Transaction identifier	2 Dyte	time the client sends data frame to the server.
Protocol identifier	2 byte	Fixed at 0.
	2 byte	Data frame length of the Modbus communication, which
Length		represents the length (in byte unit) from the MBAP header
		to the unit identifier.
		When communications using Modbus TCP and Modbus
Unit identifier	1 byte	RTU are connected via a gateway, the unit identifier
		indicates the slave number. The address is fixed to 0xFF
		when Modbus TCP communication is used alone.

Protocol Data Unit (PDU)

PDU is the actual data in the Modbus TCP communication, which is composed of a function code and data.

Refer to "(2) Function codes" below for detailed information.

(2) Function codes

The Modbus TCP communication involves clients and a server. During communication, clients send commands to the server, and the server responds to the commands. In general, devices such as a PLC, HMI, and PC are used as the client, and the inverter works as a server.

① Read Holding registers

Read Input registers are functions used to read the server (inverter) data.

The following table explains the components of a request data frame from a client to a server.

Request frame	Length	Value
Function code	1 byte	0x03
Comm. address	2 byte	0x0000–0xFFFF
Number of data requests	2 byte	1–16 (LS ELECTRIC inverters)

The following table explains the components of a response data frame from a server to a master.

Response frame	Length	Value
Function code	1 byte	0x03
Comm. address	1 byte	2 x the number of data requests
Number of data requests	Number of data	Data value of the given number
Number of data requests	requests x 2 bytes	from the comm. address

② Read Input registers

Read Input registers are functions used to read the server (inverter) data.

The following table explains the components of a request data frame from a client to a server.

www.PLC1.ir

Request frame	Length	Value
Function code	1 byte	0x04
Comm. address	2 byte	0x0000–0xFFFF
Number of data requests	2 byte	1–16 (LS ELECTRIC inverters)

The following table explains the components of a response data frame from a server to a master.

Response frame	Length	Value
Function code	1 byte	0x03
Comm. address	1 byte	2 x the number of data requests
Number of data requests	Number of data	Data value of the given number
Number of data requests	requests x 2 bytes	from the comm. address

③ Write Single register

Write Single registers are functions used to write a single server (inverter) data.

The following table explains the components of a request data frame from a client to a server.

Request frame	Length	Value	
Function code	1 byte	0x06	
Comm. address	2 byte	0x0000–0xFFFF	
Data value	2 byte	0x0000–0xFFFF	

The following table explains the components of a response data frame from a server to a master.

Response frame	Length	Value
Function code	1 byte	0x06
Comm. address	2 byte 0x0000–0xFFFF	
Data value	2 byte	0x0000–0xFFFF

④ Write Multiple register

Г

Write Multiple registers are functions used to write 1 to 16 consecutive data items on the server (inverter).

The following table explains the components of a request data frame from a client to a server.

Request frame	Length	Value	
Function code	1 byte	0x10	
Comm. address	2 bytes	0x0000–0xFFFF	
Number of data to write	2 bytes	1–16 (LS ELECTRIC inverters)	
Byte Count	1 byte	2 x the number of data	
Number of data to write	Number of data	Data to write	
	x 2 bytes	Data to white	

The following table explains the components of a response data frame from a server to a master.

Response frame	Length	Value	
Function code	1 byte	0x10	
Comm. address	2 byte	0x0000–0xFFFF	
Number of data to write	2 byte	1–16 (LS ELECTRIC inverters)	

(3) Exception (Except) frame

An exception frame is a response frame from a server when an error occurs while responding to the client.

The following table explains the components of an exception frame.

Error frame	Length	Value
Error oodo	1 byto	0x80 + function code requested by
	T byte	the client
Exception code	1 byte	0x0000–0xFFFF

Exception code

Туре	Code	Description
ILLEGAL FUNCTION	0x01	Unsupported function has been requested
		An unused address has been requested or
ILLEGAL DATA ADDRESS	0x02	modification has been requested for the data at an
		unused address.
	0202	A data modification request has been made out of the
	0x03	range of the available value.
		Server error occurred
	0x04	(CAN communication error with the drive,
SLAVE DEVICE FAILORE		communication board initialization error, or data
		communication error with the drive)
		Server is unable to respond because it is executing
	0x06	another process
SLAVE DEVICE BOST		(in the middle of a drive parameter initialization or the
		initial setting of the communication board)
		Unique code for LS ELECTRIC inverters.
WRITE PERMITION ERROR	0x20	An attempt was made to change a write-protected
		parameter

٦

12.4 LED indications and troubleshooting

Γ

	LED Indication	Color	Description	Status	Remarks
		0	Network	ON	Network connection at LINK 1 is
		Green	normal		operating normal
			Check		Check Ethernet settings*1
		Orange	network	ON	When the communication cycle
LEDU	LINKI		settings		stops for longer than one second.
			LINK 1		Trying Ethernet communication,
	-	Not	OFF	network cable not connected to	
			connected		LINK 1
	Green	Network	ON	Network connection at LINK 2 is	
		normal		operating normal	
	LED1 LINK2	Orange	Network	ON	Choold Ethernet cettinget
LED1			fault		Check Einemei seilings
			LINK 1		Trying Ethernet communication,
		-	Not	OFF	network cable not connected to
			connected		LINK 2

www.PLC1.ir

*1: For Ethernet network settings, check keypad parameters COM-10, COM-11, COM-14, COM-15, COM-23, and COM-24, and the settings for the client devices, such as the PLC.

	LED Indication	Color	Description	Status	Remarks			
			Normal	OFF	Communication between the communication board and the inverter is normal.			
LED2	ERROR	Red	Network fault	Flashing Synchronous flashing with LED0 (1 second interval) Flashing (2 second interval)	Communication between the RAPIEnet+ communication board and the inverter is abnormal. The communication board parameters are set differently from the communication parameter settings on the			
							ON	EEPROM failure No network connection to LINK 1 and LINK 2 IP collision occurred
LED3	CPU	Green	Normal	Flashing (1 second interval)	The communication board has been properly installed on the inverter.			

*2: To synchronize the Ethernet communication board settings with the keypad parameter settings, check the

COM Group parameter settings and set COM-94 (Comm. Update) to "1 (yes)."

제품을 사용하기 전에

Γ

먼저 저희 iS7 RAPIEnet+ 옵션 보드를 사용하여 주셔서 감사합니다.

안전상의 주의사항

- 안전상의 주의사항은 사고나 위험을 사전에 예방하여 제품을 안전하고 올바르게 사용하기 위한 것 이므로 반드시 지켜주십시오.
- 주의사항은 '경고'와 '주의'의 두 가지로 구분되어 있으며 '경고'와 '주의'의 의미는 다음과 같습니다.

/!\ 경고 지시사항을 위반할 때 심각한 상해나 사망이 발생할 가능성이 있는 경우

기시사항을 위반할 때 경미한 상해나 제품손상이 발생할 가능성이 있는 경우

• 제품과 사용설명서에 표시된 그림기호의 의미는 다음과 같습니다.

/!\

는 위험이 발생할 우려가 있으므로 주의하라는 기호 입니다.

4

는 감전의 가능성이 있으므로 주의하라는 기호 입니다.

- 사용설명서를 읽고 난 후 사용하는 사람이 언제라도 볼 수 있는 장소에 보관 하십시오.
- SV-iS7 시리즈 인버터의 기능을 안전하게 사용하기 위하여 이 사용 설명서를 잘 읽어 보십시오.

 옵션보드의 CMOS 소자들의 취급에 주의하십시오. 정전기에 의한 고장의 원인이 됩니다. 통신 신호선 등의 변경 접속은 인버터 전원을 내린 상태에서 하십시오. 통신불량 및 고장의 원인이 됩니다. 인버터 본체와 옵션보드 커넥터가 정확히 일치하게 접속되도록 하십시오. 통신불량 및 고장의 원인이 됩니다. ● 파라미터를 설정할 때는 파라미터 unit 을 확인하시기 바랍니다. 통신불량의 원인이 됩니다.

<u>목 차</u>

٦

1. 소개	5
2. RAPIEnet+ Technical Features	5
3. 제품 구성물	5
4. iS7 RAPIEnet+ 통신 옵션 보드 형명	5
5. iS7 RAPIEnet+ 통신 옵션 보드 외관 및 설치	5
(1) 외관	5
(2) iS7 RAPIEnet+ 통신 옵션 보드 설치	7
6. Network 연결	3
(1) 통신선 연결 단자 관련 정보	3
(2) 통신선 연결 단자 부	3
7. Network 케이블 규격	Э
(1) 사용 주파수 대역	Э
(2) Twist Pair 선 종류	Э
8. 인버터 통신 주소1()
9. RAPIEnet+ 통신 옵션 보드와 관련 Keypad 파라미터1	1

www.PLC1.ir

10.	RAPIEnet+ 통신 옵션과 관련 Keypad 파라미터 설명	14
(1)	Keypad 파라미터 설명 간략본	14
(2)	CNF 그룹	16
(3)	DRV 그룹	16
(4)	COM 그룹	16
(5)	PRT 그룹(Lost Command)	20
11.	당사 제품과 연결 시 서비스	21
11.	.1 개요	21
11.	.2 스마트 증설 (당사 마스터 XGL-EFMxB V8.0 이상)	21
(1)	PLC의 XG5000 프로그램, 설정 방법	23
(2)	마스터 설정	24
(3)	통신 디바이스 동작 설정	24
(4)	입력/출력 변수 할당	25
(5)	진단 변수 할당	25
(6)	통신 디바이스 연결 구성	26
(7)	서비스별 상태	26
11.	.3 LED 정보 및 고장 처리	29
		LSELECTRIC 3

www.PLC1.ir

Γ

12. 당	'사 or 타사 제품과 연결 시 서비스	
12.1	개요	
12.2	EtherNet/IP	31
(1)	프로토콜에 대한 기본 구성	31
(2)	Implicit Message	
(3)	Explicit Message	
(4)	지원 Object	
12.3	Modbus TCP Frame	47
(1)	Modbus TCP Frame 구성	47
(2)	Function Code 에 대한 설명	48
(3)	Except Frame	50
12.4 L	LED 정보 및 고장 처리	51

٦

1. 소개

Г

RAPIEnet+ 통신 옵션 보드는 SV-iS7 인버터를 산업통신망 국제규격인 IEC 61158의 Type 21과 IEC 62439의 RRP에 해당하는 RAPIEnet 그리고 Ethernet 네트워크에 연결되도록 합니다. RAPIEnet+ 통신 옵션 보드는 RAPIEnet, EtherNet/IP 그리고 Modbus TCP 3가지의 Protocol 을 지원합니다.

100Mbps Auto Negotiation 방식을 이용하여 충돌 없는 통신으로 통신 상의 실시간성을 확보하며, iS7 인버터의 제어 및 모니터링이 PLC의 시퀀스 프로그램 또는 임의의 Master Module에 의해 제어가 가능해 집니다.

배선이 간단하여 설치 시간을 절감할 수 있고 유지 보수가 쉬워 집니다.

(단, XG5000에서 RAPIEnet v2.0을 사용시에는 당사 통신 마스터 XGL-EFMxB V8.0 이상에서 호환됩니다.)

** 당사 홈페이지 <u>http://www.lselectric.co.kr/</u> 에 접속하여 "사용설명서_XGT_FEnet"을 다운로드 받으실 수 있습니다.

참고) 'RAPIEnet+' 란?

실시간성(Real-time)과 링제어 국제표준 기반의 LS ELECTRIC 산업용 이더넷 RAPIEnet 통신에 범용성이 장점인 Modbus TCP, EtherNet/IP 통신 기술을 하나로 통합한 하이브리드 통신 솔루션이며, 자동화 산업에 필요한 IoT 및 미래 기술도 융합할 수 있는 고성능, 고효율의 LS ELECTRIC 산업용 이더넷 입니다.

2. RAPIEnet+ Technical Features

항목	설명		
통신 프로토콜	RAPIEnet, EtherNet/IP, Modbus TCP		
통신 속도	100Mbps		
통신 방식	Auto Negotiation		
거리	100m (Twisted Pair)		
Service	스마트증설 최대 8WORD		
최대접속국수	64국		
Тороlоду	Line/Ring topology		
거리	100m (Twisted Pair)		
권장 Cable	UTP, F	TP, STP	

*iS7 RAPIEnet+ 옵션 보드는 기존 iS7 Ethernet 옵션 보드의 모든 기능을 포함합니다.

3. 제품 구성물

RAPIEnet+ 통신 옵션 보드 1개, 체결 나사 2개, RAPIEnet+ 통신 옵션 매뉴얼로 구성되어 있습니다.

4. iS7 RAPIEnet+ 통신 옵션 보드 형명

형명: CENT

5. iS7 RAPIEnet+ 통신 옵션 보드 외관 및 설치

(1) 외관

www.PLC1.ir

(2) iS7 RAPIEnet+ 통신 옵션 보드 설치

Γ

- ① iS7 인버터 본체의 Cover를 분리합니다.
- ② iS7 통신옵션 접속 부에 RAPIEnet+ 통신 옵션 보드를 체결한 후, 나사 체결(2개)을 해주십시오.
- ③ iS7 인버터와 RAPIEnet+ 통신 옵션 보드가 체결되었습니다.
- iS7 인버터의 전원이 켜진 상태에서 RAPIEnet+ 통신 옵션 보드를 장착하거나 혹은 제거 하지 마십시오.
 인버터의 콘덴서의 전압이 완전히 방전된 후 RAPIEnet+ 통신 옵션 보드를 장착하거나 제거하여 주십시
 오.

인버터 본체와 옵션 커넥터가 정확히 일치하여 접속되도록 주의하여 주십시오.

6. Network 연결

Pin No.	신호	설명	선 색
1	TX+	송신 데이터 Plus	흰/황색
2	TX-	송신 데이터 Minus	황색
3	RX+	수신 데이터 Plus	흰/녹색
4	NONE	사용 안 함	청색
5	NONE	사용 안 함	흰/청색
6	RX-	수신 데이터 Minus	녹색
7	NONE	사용 안 함	흰/갈색
8	NONE	사용 안 함	갈색

٦

(1) 통신선 연결 단자 관련 정보

(2) 통신선 연결 단자 부

** 1번과 2번 핀에 연결된 선은 반드시 서로 꼬여 있어야 합니다. ** 3번과 6번 핀에 연결된 선도 반드시 서로 꼬여 있어야 합니다.

7. Network 케이블 규격

(1) 사용 주파수 대역

Г

UTP 케이블은 사용주파수에 따라 5가지로 나누어지며, 카테고리1~카테고리5로 분류됩니다. RAPIEnet+ 옵션 보드를 사용하기 위해서는 카테고리 5를 사용 합니다. 카테고리 5는 전송대역이 100MHz, 채널성능 60MHz이며 전송속도는 100Mbps까지 가능합니다.

(2) Twist Pair 선 종류

UTP

00		0
	STP	

분류	상세	용도
	비차폐 고소시ㅎ요 케이브	최대 200MHz
017 (0.017)	비지폐 포국민포장 개의물	음성+정보(Data)+저급영상 신호
	1중 차폐로, 케이블 코어만 차폐된	최대100MHz
	케이블	저자장애(FMI) 및 전기적 안정화 고려
	*차폐재질: AL/Plastic complex foil	
	또는 동편조(Copper Braid)	음성+정보(Data) + 저급 영상 (Video)신호
	2중 차폐로, Pair 차폐	최대 500MHz
STP (S.STP)	및 케이블 코어 차폐된 케이블	음성+정보(Data)+
	*페어(Pair)차폐재질: AL/Plastic complex foil	영산(Video) 시ㅎ
	*코어차폐재질: AL/Plastic complex foil	
	또는 동편조(Copper Braid)	75Ω 동축케이블 대체용

8. 인버터 통신 주소

인버터 통신 주소에 대한 자세한 내용은 "iS7 국문 완전본매뉴얼"의 "11장 통신 기능"을 참고 하여 주십시오.

** 당사 홈페이지 <u>http://www.lselectric.co.kr/</u> 에 접속하여 "iS7 사용설명서"를 다운로드 받으실 수 있습니다.

٦

9. RAPIEnet+ 통신 옵션 보드와 관련 Keypad 파라미터

아래 기능은 RAPIEnet 과 EtherNet/IP 그리고 Modbus TCP 관련 정보를 표시해 주는 인버터 파라미터 입니다. Protocol의 R은 RAPIEnet, E는 EtherNet/IP 그리고 M은 Modbus TCP 일 때 사용하는 파라미터 입니다.

RAPIEnet+ 통신 옵션을 사용하여 iS7 인버터를 운전 시키고 싶은 경우에는 Keypad의 DRV-06 Cmd Source를 [4 Fieldbus]로 설정하여 주십시오.

또한, RAPIEnet+ 통신 옵션을 사용하여 인버터 주파수 지령을 내리고 싶은 경우에는 DRV-07 Freq Ref Src를 [8 Fieldbus]로 설정하여 주십시오.

	iS7 RAPIEnet+ 옵션 관련 Keypad 파라미터					
Code #	파라미터 이름	초기값	범위	설명	Protocol	
CNF-30	Option-1 Type	-	-	인버터에 장착된 통신 옵션 보드 이름을 표 시 합니다. 'RAPIEnet+' (인버터 본체 버전에 따라 RAPIEnet+ 아닌 Reserved-18 로 표시될 수 있습니다.)	R/E/M	
DRV-06	Cmd Source	1	0~5	4: Field Bus로 설정합니다.	R/E/M	
DRV-07	Freq Ref Src	0	0~11	8: Field Bus로 설정합니다.	R/E/M	
COM-06	FBus S/W Ver	-	-	인버터에 장착된 통신 옵션 보드의 버전을 표시 합니다.	R/E/M	
COM-07	FBus ID	1	0~63	RAPIEnet+ 옵션 보드의 국번 설정을 합니 다.	R/E	
СОМ-09	FBus Led			RAPIEnet+ 옵션 보드의 LED ON/OFF 정보 를 표시합니다.	R/E/M	
COM-10	Opt Parameter1	0	0~255	IP Address를 설정합니다.		
COM-11	Opt Parameter2	0	0~255	* com-25를 '2'(: RAPIEnet Enable)인 상태에		
COM-12	Opt Parameter3	0	0~255	서 RAPIEnet 프로토콜로 연결 시, COM-13		
COM-13	Opt Parameter4	0	0~255	설정 값은'100 + COM-07'로 설정합니다.		
COM-14	Opt Parameter5	0	0~255			
COM-15	Opt Parameter6	0	0~255	Subnat Mack를 성정하니다		
COM-16	Opt Parameter7	0	0~255		TV E/ IVI	
COM-17	Opt Parameter8	0	0~255			
COM-18	Opt Parameter9	0	0~255	Gateway Address를 설정합니다.	R/E/M	

Г

COM-19	Opt Parameter 10	0	0~255		
COM-20	Opt Parameter 11	0	0~255		
COM-21	Opt Parameter 12	0	0~255		
COM-22	Opt Parameter 13	0	0	통신 속도 설정.(100Mbps Auto 고정)	R/E/M
COM-23	Opt Parameter 14	0	0~11	CIP Input Instance	R/E
COM-24	Opt Parameter 15	0	0~11	CIP Output Instance	R/E
	Opt Daramator 16	0	0.2	2: RAPIEnet Enable	D /F
COM-25 Opt Parameter 1		0 0~2	0: RAPIEnet Disable	K/E	

T

참고) COM-07, COM-10~25 파라미터 값 변경을 원하는 경우, 반드시 COM-94 Comm-Update 를 통해 업데이트를 해주어야 설정 값이 저장 됩니다. (만약, 파라미터를 변경 시도를 한 상태에서 COM-94 Comm-Update 실행을 하지 않은 경우, Error LED를 통해 RED 2초 간격 점멸을 통해 사용자가 인지 하실 수 있도록 동작 합니다.)

iS7 RAPIEnet+ 옵션 관련 Keypad 파라미터					
Code #	파라미터 이름	초기값	범위	설명 Prote	
COM-30	Para Status Num	8	0~8	CIP Input Instance에 따라 자동 설정됩니다.	R/E
COM 21	Dara Status 1	0004	0x0000	Client가 읽어갈 Inverter Data 주소를 설정	D/E
COIVI-51	Para Status-T	000A	~0xFFFF	합니다. (Hex.)	κ/ c
COM 22	Dara Status 2	0005	0x0000	Client가 읽어갈 Inverter Data 주소를 설정	D/E
COIVI-52	Para Status-2	UUUE	~0xFFFF	합니다. (Hex.)	κ/ c
COM 22	Dara Status 2	0005	0x0000	Client가 읽어갈 Inverter Data 주소를 설정	D/E
COIVI-55	Para Status-S	000F	~0xFFFF	합니다. (Hex.)	κ/ c
COM 34	Dara Status A	-	0x0000	Client가 읽어갈 Inverter Data 주소를 설정	D/E
COM-34 Para Status-4			~0xFFFF	합니다. (Hex.)	N/ E
COM-35 Para Status-5	-	0x0000	Client가 읽어갈 Inverter Data 주소를 설정	D/E	
		~0xFFFF	합니다. (Hex.)	IV L	
COM-36 Para Status-6		_	0x0000	Client가 읽어갈 Inverter Data 주소를 설정	D/E
			~0xFFFF	합니다. (Hex.)	IV L
COM-37 Para Status-7		_	0x0000	Client가 읽어갈 Inverter Data 주소를 설정	D/E
		_	~0xFFFF	합니다. (Hex.)	IV L
			0x0000	Client가 읽어갈 Inverter Data 주소를 설정	D/E
COIVI-50		-	~0xFFFF	합니다. (Hex.)	IV L
COM-50	Para (trl Num	8	08	CIP Output Instance에 따라 자동 설정됩니	D/E
		0	0~0	다.	
COM_{-51}	Para Control-1	0005	0x0000	Client에서 지령 Inverter Data 주소를 설정	R/F
	Para Control-1		~0xFFFF	합니다. (Hex.)	K/E

			1		
COM-52 Para Control-2		0006	0x0000	Client에서 지령 Inverter Data 주소를 설정	R/E
			~0xFFFF	합니다. (Hex.)	,
COM-53	Para Control-3	_	0x0000	Client에서 지령 Inverter Data 주소를 설정	R/F
COM-22			~0xFFFF	합니다. (Hex.)	ΙΥĽ
	Para Control 1		0x0000	Client에서 지령 Inverter Data 주소를 설정	D /E
COIVI-54		_	~0xFFFF	합니다. (Hex.)	ΓΥΕ
	Dara Cantral E		0x0000	Client에서 지령 Inverter Data 주소를 설정	D /F
COM-22	Para Controi-5	-	~0xFFFF	합니다. (Hex.)	K/E
	Dava Cantral C		0x0000	Client에서 지령 Inverter Data 주소를 설정	
COM-20	Para Control-6	-	~0xFFFF	합니다. (Hex.)	R/E
	Dava Cantual 7		0x0000	Client에서 지령 Inverter Data 주소를 설정	
COM-57	COM-57 Para Control-7		~0xFFFF	합니다. (Hex.)	K/E
	Dava Cantual 0		0x0000	Client에서 지령 Inverter Data 주소를 설정	D./F
COM-58 Para Control-8		-	~0xFFFF	합니다. (Hex.)	
		0	0:NO	통신 관련 Keypad 파라미터를 Update 합니	
COM-94	Comm Update	0	1:YES	다.	R/E/M
			0: None		
			2: Dec	Last Command가 반새하여은 겨오 이버티	
PRT-12	Lost Cmd Mode	None			R/E/M
			3: Hold Input	· 동작 결정합니다. (구1)	
			4: Hold Output		
			5: Lost Preset		
DT 10	Lost Cred Time	1.0	0.1 120	Lost Commond 바새 니가 성전	
PK1-13	Lost Cina Time	1.0	0.1~120	Lost Command 결경 시간 결경	K/E/IVI
		0.00	0.05 00.00		
PKI-14	Lost Preset F	0.00	0.05 ~ 60.00	LOST Preset의 폭노들 실성	K/E/M

(주1) Lost Command Mode

설정값	기능
"None"	이전 상태를 유지 합니다.
"Free-Run"	Lost Command Trip이 발생하며 Free Run정지를 합니다.
"Dec"	Lost Command Trip이 발생하며 Trip 감속시간으로 정지 합니다.
"Hold Input"	Lost Command Warning이 발생하며 이전에 받았던 운전 지령으로 동작 합니다.
"Hold Output"	Lost Command Warning이 발생하며 이전의 운전 속도로 동작 합니다.
"Lest Dusset"	Lost Command Warning이 발생하며 PRT-14에 설정되어 있는 속도로 운전 합니
LOSI Preset	다.

Γ

10. RAPIEnet+ 통신 옵션과 관련 Keypad 파라미터 설명

(1) Keypad 파라미터 설명 간략본

키패드 파라미터를 요약하면 아래 표와 같고, 상세 내용은 각 파라미터 그룹에서 설명합니다.

٦

Code	파라미터 이름	기능 설명	
CNF	30 Option-1 Type	옵션 슬롯1의 종류 표시	
	06 Cmd Source	운전 지령 방법	
DRV	07 Freq Ref Src	주파수 설정	
	06 FBus S/W Ver	통신 옵션 S/W 버전	
	07 FBus ID	통신 옵션 국번(통신옵션 ID)	
	09 FBus Led	통신 옵션 LED 정보	
	10 opt para-1	ip 주소 1번째 자리 Decimal 입력	
	11 opt para-2	ip 주소 2번째 자리 Decimal 입력	
	12 opt para-3	ip 주소 3번째 자리 Decimal 입력	
	13 opt para-4	ip 주소 4번째 자리 Decimal 입력	
	14 opt para-5	Sub Net 주소 1번째 자리 Decimal 입력	
	15 opt para-6	Sub Net 주소 2번째 자리 Decimal 입력	
СОМ	16 opt para-7	Sub Net 주소 3번째 자리 Decimal 입력	
	17 opt para-8	Sub Net 주소 4번째 자리 Decimal 입력	
	18 opt para-9	Gateway 주소 1번째 자리 Decimal 입력	
	19 opt para-10	Gateway 주소 2번째 자리 Decimal 입력	
	20 opt para-11	Gateway 주소 3번째 자리 Decimal 입력	
	21 opt para-12	Gateway 주소 4번째 자리 Decimal 입력	
	22 opt para-13	통신 속도(0 고정값.100Mbps로 자동 설정)	
	23 ont nara-14	RAPIEnet: Input Parameter Size 설정	
		EtherNet/IP: Input Instance 설정	
	24 opt para-15	RAPIEnet: Output Parameter Size 설정	
		EtherNet/IP: Output Instance 설정	
	25 opt para-16	RAPIEnet Enable/Disable 설정	
		2: RAPIEnet Enable	

Code	파라미터 이름	기능 설명		
		0: RAPIEnet Disable		
	30 ParaStatus Num	데이터 송신 개수 표시		
	31 Para Status-1	송신 데이터의 저장 주소 설정 1		
	32 Para Status-2	송신 데이터의 저장 주소 설정 2		
	33 Para Status-3	송신 데이터의 저장 주소 설정 3		
	34 Para Status-4	송신 데이터의 저장 주소 설정 4		
	35 Para Status-5	송신 데이터의 저장 주소 설정 5		
	36 Para Status-6	송신 데이터의 저장 주소 설정 6		
	37 Para Status-7	송신 데이터의 저장 주소 설정 7		
38 Para Status-8 송신 데이터의		송신 데이터의 저장 주소 설정 8		
	50 Para Ctrl Num	데이터 수신 개수 표시		
	51 Para Control-1	수신 데이터의 주소 설정1		
	52 Para Control-2	수신 데이터의 주소 설정2		
	53 Para Control-3 수신 데이터의 주소 설정3			
	54 Para Control-4	수신 데이터의 주소 설정4		
	55 Para Control-5	수신 데이터의 주소 설정5		
	56 Para Control-6	수신 데이터의 주소 설정6		
	57 Para Control-7	수신 데이터의 주소 설정7		
	58 Para Control-8	수신 데이터의 주소 설정8		
	94 Comm Update	통신 Parameter 관련 변경 값을 적용		
	12 Lost Cmd Mode	통신 지령 상실 시 동작 모드 선택		
PRT	13 Lost Cmd Time	통신 지령 상실 시 판정 시간 설정		
	14 Lost Preeset F	통신 지령 상실 시 시작 주파수 설정		

Γ

(2) CNF 그룹

① [CNF-30] Option-1 Type: 옵션 슬롯1의 종류 표시

현재 iS7에 장착된 통신 옵션 보드 종류를 자동으로 나타냅니다. iS7 RAPIEnet+ 통신 옵션 보드를 iS7 인버터에 장착 시 자동으로 "RAPIEnet+"로 표시 됩니다. ** 인버터 버전에 따라 RAPIEnet+가 아닌 "Reserved-18"로 표시될 수 있습니다.

(3) DRV 그룹

① [DRV-06] Cmd Source: 운전 지령 방법

iS7 인버터의 운전 지령을 선택할 수 있습니다. RAPIEnet+ 통신 옵션을 사용하여 통신으로 운전지령을 입력하고 싶은 경우에 [4 Field Bus]를 선택하여 주십시오.

② [DRV-07] Freq Ref Src: 주파수 설정

iS7 인버터의 주파수 지령을 선택할 수 있습니다. RAPIEnet+ 통신 옵션을 사용하여 통신으로 주파수 지령을 입력하고 싶은 경우에 [8 Field Bus]를 선택하여 주십시오.

(4) COM 그룹

① [COM-06] FBus S/W Ver: 통신 옵션 S/W 버전

현재 iS7에 장착된 통신 옵션 보드의 버전이 무엇인지 자동으로 나타냅니다.

[COM-07] FBus ID: 통신 옵션 국번(통신옵션 ID)

R: iS7 RAPIEnet+ 통신 옵션의 국번을 설정합니다. 설정 값은 0~63까지 총 64개의 국번이 있습니다.(RAPIEnet Protocol로 통신을 설정할 때 설정이 필요합니다.) PLC System 및 기타 디바이스 장비와 동일한 국번으로 설정되지 않도록 합니다. 설정 값을 변경 후, [COM-94]의 Comm Updata를 반드시 실행하여야 변경된 설정 값으로 동작 합니다.

③ [COM-09] FBus Led: 통신 옵션 LED 정보

iS7 RAPIEnet+ 통신 옵션의 LED 표시 부를 Keypad를 통하여 확인 할 수 있습니다. LED 표시 부에 따른 동작은 "11.3 & 12.4 LED 정보 및 고장 처리"를 참고하여 주십시오.

④ [COM-22] opt para-13: 통신 속도 설정. (100Mbps Auto Negotiation)

통신 속도는 별도의 설정 없이 0으로 고정되며, 100Mbps로 자동 설정 됩니다.

⑤ [COM-23] opt para-14: 송신 Data 설정

iS7 RAPIEnet+ 통신 옵션의 스마트 증설 송신 데이터 중 하나를 모니터링 하는 목적으로 사용하며, 송신 데이터 주소 [COM31]~[COM38]의 주소 중 모니터링을 원하는 값을 설정합니다. "opt para-14"(스마트 증설 송신 Data Index)의 설정 값은 0~11 입니다. "opt para-14"의 설정에 따른 의미는 아래 표를 참고하시기 바랍니다.

opt para-14(스마트 증설 송신 Data Index)은 인버터 동작 중에는 쓰기 금지된 파라미터이므로, 인버터의 동작을 멈춘 후 설정하여 주십시오.

EtherNet/IP 프로토콜로 서비스 시에도 필요한 파라미터로 CIP(Common Industrial Protocol)의 I/O통신 중 인버터가 Client(Originator)에 보내는 인버터 상태 Data Format에 대한 설정을 합니다. EtherNet/IP의 Assembly Object부분을 참고 바랍니다.

설정 값	Input Instance 값(E)	Data Size(R/E)	Parameter 개수(R/E)
0	70	4	Х
1	71	4	Х
2	110	4	Х
3	111	4	Х
4	141	2	1
5	142	4	2

Г

6	143	6	3
7	144	8	4
8	145	10	5
9	146	12	6
10	147	14	7
11	148	16	8

⑥ [COM-24] opt para-15: 수신 Data 설정

iS7 RAPIEnet+ 통신 옵션의 스마트 증설 수신 데이터 중 하나를 모니터링 하는 목적으로 사용하며, 수신 데이터 주소 [COM51]~[COM58]의 주소 중 모니터링을 원하는 값을 설정합니다. "opt para-15"(스마트 증설 수신 Data Index)의 설정 값은 0~11 입니다. "opt para-15"의 설정에 따른 의미는 다음과 같습니다.

opt para-15(스마트 증설 수신 Data Index)는 인버터 동작 중에는 쓰기 금지된 파라미터로, 인버터의 동작을 멈춘 후 설정하여 주십시오.

EtherNet/IP 프로토콜로 서비스 시에도 필요한 파라미터로 CIP(Common Industrial Protocol)의 I/O통신 중 Client(Originator)가 인버터를 제어 하기 위해 보내는 인버터 지령 Data Format에 대한 설정을 합니다. EtherNet/IP의 Assembly Object부분을 참고 바랍니다.

설정 값	Output Instance 값(E)	Data Size(R/E)	Parameter 개수(R/E)
0	20	4	Х
1	21	4	Х
2	100	4	Х
3	101	4	Х
4	121	2	1
5	122	4	2
6	123	6	3
7	124	8	4
8	125	10	5
9	126	12	6
10	127	14	7
11	128	16	8

⑦ [COM-25] RAPIEnet Enable/Disable 설정

RAPIEnet+ 통신 옵션은 RAPIEnet Enable/Diable 설정 가능하며, 당사 제품(XGL-EFMxB V8.0

이상) 과 RAPIEnet v2 스마트증설 서비스 등의 호환이 가능합니다.

(2: RAPIEnet v2 Enable / 0: RAPIEnet v2 Disable)

** 당사 홈페이지 <u>http://www.lselectric.co.kr/</u>에 접속하여 "사용설명서_XGT_FEnet"을 다운로드 받으실 수 있습니다. 만약, 타사 제품과 iS7 RAPIEnet+ 통신 옵션 보드를 연결하는 경우,(당사 iS7 Ethernet 옵션카드 기능으로 사용하는 경우) 해당 파라미터 설정 값을 '0'으로 Comm Update 후, RAPIEnet Disable 상태에서 사용을 권장합니다.

⑧ [COM-30] ParaStatus Num: 데이터 송신 개수

[COM-23] opt para-14의 설정값을 통해 변경할 수 있으며 설정 표시 값은 0~8 입니다. RAPIEnet+ 통신 옵션은 최대 8개의 데이터를 송신할 수 있습니다. 송신 데이터로 보내고자 하는 데이터 주소는 [COM-31]~[COM-38]을 통하여 설정합니다.

⑨ [COM-31] Para Status1 ~ [COM38] Para Status8: 송신 데이터 주소 설정

[COM-30]을 통해서 송신 데이터 개수를 설정한 후, 설정한 개수만큼 Client (Originator)에 보낼 인버터 Data의 주소를 [COM-31]~[COM-38]에 입력합니다. Modbus TCP일 경우에는 사용하지 않는 파라미터 입니다.

(1) [COM-50] Para Ctrl Num: 데이터 수신 개수

[COM-23] opt para-14의 설정값을 통해 변경할 수 있으며 설정 표시 값은 0~8 입니다. RAPIEnet+ 통신 옵션은 최대 8개의 데이터를 수신할 수 있습니다. 수신 데이터를 저장할 주소는 [COM-51]~[COM-58]를 통하여 설정합니다.

[COM-51] Para Control1 ~ [COM58] Para Control8: 수신 데이터 주소 설정 [COM-50]을 통해서 수신 데이터 개수를 설정한 후, 설정한 개수만큼 Client(Originator)의 지령 Data를 사용할 인버터 Data의 주소를 [COM-51]~[COM-58]에 입력합니다. Modbus TCP일 경우에는 사용하지 않는 파라미터 입니다.

(1) [COM-94] Comm Update: 통신 옵션 보드로 변경된 설정 값 적용

COM 그룹의 옵션 파라미터는 RAPIEnet+ 통신 옵션 보드와 체결된 인버터에 설정되어 있는 값들이 표현되며, Keypad로 변경한 값들이 RAPIEnet+통신 옵션 보드로 바로 반영되지 않습니다. Comm Update를 Yes로 했을 경우에 RAPIEnet+ 통신 옵션 보드에 변경된 설정 값이 반영되어 동작합니다. (Comm Update가 필요한 파라미터는 COM 7, COM 10~25 입니다.)
(5) PRT 그룹(Lost Command)

① [PRT-12] Lost Cmd Mode: 통신 지령 상실 시 동작 모드

통신으로 인버터가 동작되고 있지만, 운전 중 통신 이상이 발생하거나 Keypad와 iS7 본체와의 연결에 문제가 발생하였을 경우의 인버터의 동작 모드를 선택할 수 있습니다.

② [PRT-13] Lost Cmd Time: 통신 지령 상실 판정 시간

통신 지령 상실이 발생 후, [PRT-12]의 설정 모드를 적용할 시간을 설정합니다. 설정 값은 0.1~120s 입니다.

③ [PRT-14] Lost Preset F: 통신 지령 상실 시 운전 주파수 설정

통신 지령 상실이 발생하였을 때, 보호 기능이 동작하여 통신 지령을 상실하였을 경우에도 [PRT-14]로 설정한 주파수로 운전하게 됩니다. 설정 값은 시작 주파수~ 최대주파수[Hz]입니다.

④ 프로토콜 별 Lost Command 조건

- RAPIEnet

RAPIEnet 마스터(XGL-EFMxB V8.0이상)에서 워치독 설정 시간 동안 Data가 오지 않을 경우 통신 옵션 모듈은 Lost Command 상태가 되고, PRT-13에 설정된 시간이 지나면 PRT-12 설정에 따라 인버터는 동작하게 됩니다.

마스터에서 워치독 타이머를 설정하는 방법은 11.(2)를 참고하시기 바랍니다.

- EtherNet/IP

Originator(PLC 혹은 Client)와 Target(Inverter)사이에 Implicit Message Connection (Class1 Connection)이 1초 동안 맺어 있지 않으면 통신 옵션 모듈은 Lost Command 상태가 되고 PRT-13에 설정된 시간이 지나면 PRT-12 설정에 따라 인버터는 동작하게 됩니다.

- Modbus TCP

Modbus TCP는 5초 동안 Client로부터 Data가 오지 않을 경우 통신 옵션 모듈은 Lost Command 상태가 되고 PRT-13에 설정된 시간이 지나면 PRT-12 설정에 따라 인버터는 동작하게 됩니다.

11. 당사품과 연결 시 서비스

11.1 개요

Γ

해당 장에서는 당사 제품과 연결 시, RAPIEnet 프로토콜을 이용한 서비스에 대해 설명합니다. RAPIEnet 서비스를 사용하기 위해서는 아래 표와 같이 키패드 설정이 필요합니다.

RAPIEnet+ 옵션보드 PAR -> COM 25 [Opt Parameter-16]	RAPIEnet v2 사용 가능 여부	EtherNet/IP 사용 가능 여부	Modbus TCP 사용 가능 여부
설정 값: '2' RAPIEnet v2 Enable	0	0	0
설정 값: '0' RAPIEnet v2 Disable	Х	0	0

11.2 스마트 증설 (당사 마스터 XGL-EFMxB V8.0 이상)

스마트 증설 서비스는 Automation 제품군 간의 통신 서비스로, 복잡한 통신 파라미터 및 프로그래밍 없이 간단한 설정을 통해 여러 대의 PLC/Inverter 를 증설하여 사용할 수 있도록 해주는 서비스 입니다. 또한 EtherNet/IP 클라이언트 서비스도 통합되어 있습니다.

iS7 RAPIEnet+ 통신 옵션 보드는 송신 데이터 개수[COM-30], 수신 데이터 개수[COM-50], 송신 데이터 주소[COM-31]~[COM-38], 수신 데이터 주소[COM-51]~[COM-58]을 설정하여 당사 마스터를 통해 간단히 8word 입/출력 데이터 송수신이 가능합니다. 그 외에도 진단 변수 모니터링, 라피넷 오토스캔, 시스템 진단 등의 기능을 제공합니다.

** 당사 홈페이지 <u>http://www.lselectric.co.kr/</u> 에 접속하여 "사용설명서_XGT_FEnet_V3.00"을 다운로드 받으실 수 있습니다.

아래는 당사 통신 마스터(XGL-EFMxB 8.0 이상), XG5000 프로그램 설정 참고 화면 입니다.

22 | LSELECTRIC

www.PLC1.ir

참고) '스마트 증설 메모리 영역 설정': iS7 RAPlEnet+ 옵션 보드는 64Byte (32Word) 영역이 고정 할당됩니다. 프로그램에서 사용하는 주소와 충돌이 나지 않도록 설정합니다. 단, 사용자가 특정 목적으로 메모리 영역을 겹치도록 설정하는 경우가 있으므로 별도의 경고를 띄우거나 설정을 막지 않습니다.

(1) PLC의 XG5000 프로그램, 설정 방법

Γ

RAPIEnet+ 옵션의 경우, iS7 RAPIEnet+ 통신 옵션을 사용하여 PLC System과 통신하기 위해서는 XGL-EFMxB(RAPIEnet I/F 모듈)을 사용하여야 합니다. 스마트 증설 서비스를 사용하기 위해서는 스마트 증설 디바이스의 국번(EB)과 IP주소(ex> [PAR->COM] 07 FBUS ID: '05', [PAR->COM] 13 Opt Parameter4: '100+ FBUS ID = 105')를 먼저 설정해야 합니다. 인버터 옵션 보드 간의 IP 주소 충돌을 막기 위함입니다.) XGL-EFMxB 제품에 대한 사용설명서를 참고하여 사용법을 숙지하여 주시기 바랍니다.

또한, PLC 시스템을 사용하여 통신 설정을 하기 위해서는 XG5000 프로그램을 설치하여야 합니다. XG5000 프로그램은 당사 홈페이지를 통해 다운받으실 수 있습니다.

** 당사 홈페이지 http://www.lselectric.co.kr/ 에 접속하여 다운로드 받으실 수 있습니다.

통신 디바이스 추가 창의 연결 탭에서 연결 정보를 지정한 후 '확인'을 선택하여 스마트 증설 서비스의 통신 디바이스 [CENT](RAPIEnet+ 옵션 보드)를 추가할 수 있습니다.

(2) 마스터 설정

XGL-EFMxB (V8.0 이상) 마스터의 경우, '워치독 타이머' 설정이 가능합니다. 인버터 키패드 PAR-PRT 12 Lost Cmd Mode 를 활성화 하는 경우, PAR-PRT 13의 Lost Cmd Time 을 설정할 때, 마스터의 워치독 타이머 설정 값이 더해지므로, 해당 사항을 고려하여 인버터의 PAR-PRT 13의 Lost Cmd Time 값을 설정합니다. 워치독 타이머: 통신 디바이스(iS7 RAPIEnet+ 옵션 보드)가 마스터와 연결 유지를 감시하는 시간.

프로젝트 🔻 무 🗙	DC8A_for_DC4H × NewPLC [B0S1 EB09 - CENT] × NewPLC [BOS1 EB10 - CENT] 🗡 NewPLC [BOS1 스마트 증설] × NewPLC ×
 ♥ IPD_Daughter_Bd_test00 * ♥ IPD_Daughter_IPD_test00 * ♥ IPD_DEst00 *<td> □ - 아프트 증설 □ 마스터 설정 - 통신 디바이스 등작 설정 - 통신 디바이스 연결 구성 - 동신 디바이스 연결 구성 - 로인 성세 설정 목록 - EIP 상세 설정 목록 - PLC 영역 설 - PLC 영역 설 - PLC 영역 설 - · · · · · · · · · · · · · · · · · · ·</td><td>MasterName00 : 0 :: 0 :: XGL-EFMT(B) FEnet_XGL.bmp FEnet_XGL.bmp :: 3 ms 위치독 타이대: 50 ms :: 3 ms 위치독 타이대: 50 ms :: 0 250 ms 100 :: 0 1536 100 :: 0 1536 100 :: 0 100 1536 :: 00 1536 100 :: :: : : : :: :: : : : :: :: : : : :: :: : : : :: : : : : :: : : : : :: : : : : :: : : : : : :: : : : : : ::</td>	 □ - 아프트 증설 □ 마스터 설정 - 통신 디바이스 등작 설정 - 통신 디바이스 연결 구성 - 동신 디바이스 연결 구성 - 로인 성세 설정 목록 - EIP 상세 설정 목록 - PLC 영역 설 - PLC 영역 설 - PLC 영역 설 - · · · · · · · · · · · · · · · · · · ·	MasterName00 : 0 :: 0 :: XGL-EFMT(B) FEnet_XGL.bmp FEnet_XGL.bmp :: 3 ms 위치독 타이대: 50 ms :: 3 ms 위치독 타이대: 50 ms :: 0 250 ms 100 :: 0 1536 100 :: 0 1536 100 :: 0 100 1536 :: 00 1536 100 :: :: : : : :: :: : : : :: :: : : : :: :: : : : :: : : : : :: : : : : :: : : : : :: : : : : : :: : : : : : ::

(3) 통신 디바이스 동작 설정

핫스왑 설정을 선택합니다. 선택하지 않으면 통신에 참여 중인 EB 중 1개만 탈락되어도 전체가 스톱하게 됩 니다

□· 스마트 증설 □· 마스터 설정 □· 특신 디바이스 동작 설정	통신 디바이스 동작 설정 //이 파라미터 일괄 적용(P)		표준 입력필터(<u>F</u>): 3 v ms
입덕/쑬덕 변수 알낭	설정 항목	설정	상세 설명
····진단 변수 할당 ····통신 디바이스 연결 구성	CPU 런->스톱 전환 시 출력 유지		설정: 스톱 전환 시 출력 유지 비설정: 스톱 전환 시 출력 클리머
EIP 상세 설정 목록	CPU 또는 통신 디바이스 에러 발생 시 출력 유지		설정:에러 발생 시 출력 유지 비설정:에러 발생 시 출력 클리어
	동작 중 EB 또는 모듈 교환(핫 스왑)*		설정: 고장 발생 시 운전 속행, 고장 복원 시 정상동작 비설정: 고장 발생 시 에러
	전원 이중화 베이스 사용**		철정: 전원 이중화 베이스 사용 비설정: 전원 단일 베이스 사용
	★ EB 핫 스왑은 모두 지원, 5 ★★ 증설 드라이버 디바이스민	2 듈 핫 스 ! 지원	·왑은 증설 드라이버 디바이스만 지원

(4) 입력/출력 변수 할당

Γ

아래와 같이 자동으로 입/출력 변수 8word/8word 통신이 가능합니다.

 - 아르 중설 - 마스터 설정 	모니	터 값 표시 !	방식(⊻): [10전	\$ V	변수 등록			
- 통신 디바이스 동작 설정		EB 변호		국변/IP	슬롯 번호	변수	EIS	디바이스	모니터값
입력/움력 변수 할당	1	EB01	G 1		술롯 00 🖂				
- 진단 변수 할당	2		1.		1	_0000_EB01_StatusInputNum	WORD	D001000	16
- 통신 디바이스 연결 구성	3	1				_0000_EB01_ControlOutputNun	WORD	D001001	16
_ EIP 상세 설정 목록	4	1				_0000_EB01_StatusInput1	WORD	D001002	0
	5	1				_0000_EB01_StatusInput2	WORD	D001003	8193
	6	1				_0000_EB01_StatusInput3	WORD	D001004	0
	7	1				_0000_EB01_StatusInput4	WORD	D001005	16
	8	1				_0000_EB01_StatusInput5	WORD	D001006	16
	9	1				_0000_EB01_StatusInput6	WORD	D001007	16
	10	1				_0000_EB01_StatusInput7	WORD	D001008	16
	11	1				_0000_EB01_StatusInput8	WORD	D001009	16
	12	1				_0000_EB01_ControlOutput1	WORD	D001010	1000
	13	1				_0000_EB01_ControlOutput2	WORD	D001011	0
	14	1				_0000_EB01_ControlOutput3	WORD	D001012	8
	15	1				_0000_EB01_ControlOutput4	WORD	D001013	5
	16	1				_0000_EB01_ControlOutput5	WORD	D001014	0
	17	1				_0000_EB01_ControlOutput6	WORD	D001015	0
	18	1				_0000_EB01_ControlOutput7	WORD	D001016	0
	19	1				0000 EB01 ControlOutput8	WORD	D001017	0

(5) 진단 변수 할당

(6) 통신 디바이스 연결 구성

(7) 서비스별 상태

서비스별 상태에서 스마트 증설 서비스의 운영 상태, 서비스 카운트, 에러 카운트 등을 확인 할 수 있습니다. (서비스별 상태는 온라인 상태에서만 확인이 가능합니다.)

① [온라인] -> [통신 모듈 설정 및 진단] -> [시스템 진단] 을 선택합니다.

26 | LSELECTRIC

www.PLC1.ir

② [시스템 진단] 윈도우에서 '마스터 모듈(XGL-EFMxB) 그림 영역'을 마우스 오른쪽 버튼으로 선택한 후 서비스별 상태를 선택합니다.

NewPLC ×			
	P-xxxx XGK - XGL- U	ЕМТВ	
	XGT RUN STOP REM ERR P.S. BAT CHK 100 BASE/T	통신 모듈 정보(I) 서비스별 상태(S) 미디어 정보(M) 오토스캔(A) 로그 보기(L) Ping Test 라피넷 미디어 정보 라피넷 오토스캔 통신 모듈 이력 보기(H) 통신 모듈 이력 저장 리모트 OS 다운로드(R) 루프백 테스트 시스템 동기화(Y)	

③ [서비스별 상태] -> [스마트 증설] 탭을 선택하면 스마트 증설 서비스의 상태를 확인할 수 있습니다.

	보		서비스 정보	2					
베이스	번호:	0	서비스 상	E#: Enable					
슬롯 빈	변호: [0	SCAN MA	ax: 9.0 ms	SCAN MIN:	0.2 ms	SCAN CURR:	0.4 ms	
	EB번호	프로토콜	국변/IP	서비스	EB상태	서비스 카운트	에러 카운트	EB탈락 카운트	
۲	1	RAPIEnet	1	입출력 서비스	WORKING	15126	0	0	
۲	2	RAPIEnet	2	입출력 서비스	WORKING	15126	0	0	
۲	3	RAPIEnet	3	입출력 서비스	WORKING	15126	0	0	
۲	4	RAPIEnet	4	입물력 서비스	WORKING	15126	0	0	
					파일 저장	친 클리어 플래	그 클리어 전	속 읽기 다시 :	하2
					파일 저장 스	친 물리어 물래	그 물리여 _ 연	속 읽기 다시	하 ⁷ 닫

Γ

④ ② 항목의 [오토스캔] 탭을 선택하면 RAPIEnet 연결 상태를 확인할 수 있습니다.

11.3 LED 정보 및 고장 처리

Γ

	LED 의미	Color	동작 의미	동작	의미
		Croop	Network		LINK 1에 Network가 연결되어 정상
		Green	정상 동작	ON	동작하고 있음
	1 101/21	0	Network		RAPIEnet 통신 설정 확인 *1
LEDU	LINKI	Orange	설정 확인	ON	주기 통신이 1초 이상 없는 경우
			LINK 1	OFF	RAPIEnet 통신 중이나 LINK 1에
		-	미연결	OFF	Network가 체결되어 있지 않음
		Croop	Network		LINK 2에 Network가 연결되어 정상
		Green	정상 동작	ON	동작하고 있음
		Orango	Network		RAPIEnet 통신 설정 확인 *1
LEDI	LINKZ	Orange	통신 불량	ON	주기 통신이 1초 이상 없는 경우
			LINK 1	OFF	RAPIEnet 통신 중이나 LINK 2에
		-	미연결	Urr	Network가 체결되어 있지 않음

*¹: RAPIEnet 통신 설정 확인의 경우 [COM-7], [COM-13] 그리고 [COM-30], [COM-50] Keypad 설정 값과 PLC의 설정을 확인하여 주십시오.(RAPIEnet+ 옵션 보드가 RAPIEnet Enable 상태에서 당사 마스터와 통신 시에, COM-7 국번, COM-13 IP 주소가 통신에 참여 중인 다른 RAPIEnet+ 옵션 보드와 충돌되지 않도록 설정해야 합니다.)

	LED 의미	Color	동작 의미	동작	의미
			정상 동작	OFF	통신 보드와 인버터가 정상적인 통신 을 하고 있음
		Ded		Flashing LEDO과 동기 점멸 (1초 주기)	RAPIEnet+ 통신 옵션 보드와 인버터 사이에 통신 불량
LED2	EKKOK	Red	통신 불량	Flashing (2초 주기)	Keypad로 설정한 통신 파라미터와 통신 모듈에 설정되어 있는 파라미터 정보가 다른 경우* ²
				ON	EEPROM 파손 시 2개의 링크 모두 연결이 없는 경우 국번 또는 IP address 충돌하는 경우
LED3	CPU	Green	정상 동작	Flashing (1초 주기)	통신 보드가 인버터와 정상적으로 설 치 되었음을 의미

٦

*²: Keypad 설정 파라미터와 통신 모듈 설정을 동일하게 하기 위해서는 COM그룹의 설정을 확인한 후 [COM-94] Comm Update를 1 yes 로 설정하여 주시면 설정 값이 통신 모듈에 적용됩니다.

12. 당사 or 타사 제품과 연결 시 서비스

12.1 개요

Γ

해당 장에서는 당사 또는 타사 제품과 연결 시, EtherNet/IP 및 Modbus TCP 프로토콜을 이용한 서비스에 대해 설명을 합니다.

RAPIEnet 서비스를 사용하지 않는 경우, 아래 표와 같이 키패드 설정이 필요합니다.

RAPIEnet+ 옵션보드 PAR -> COM 25 [Opt Parameter-16]	RAPIEnet v2 사용 가능 여부	EtherNet/IP 사용 가능 여부	Modbus TCP 사용 가능 여부
설정 값: '2' RAPIEnet v2 Enable	0	0	0
설정 값: '0' RAPIEnet v2 Disable	х	0	0

12.2 EtherNet/IP

(1) 프로토콜에 대한 기본 구성

www.PLC1.ir

EtherNet/IP는 ODVA협회에서 규정한 CIP(Common Industrial Protocol)를 TCP와 UDP를 이용하여 구현한 Protocol입니다.

Originator: Connection을 요청하는 입장의 기기입니다. Client라고도 합니다. 기기는 PLC 혹은 Scanner가 여기에 해당합니다.

Target: Connection을 응하는 입장의 기기입니다. Server라고도 합니다.

기기는 Inverter가 여기에 해당합니다.

(2) Implicit Message

Implicit Message는 I/O Message라고도 합니다. Input Instance와 Output Instance에 의해 Client(Originator)와 Server(Target)사이에 설정된 주기에 의해 주고 받는 Data를 말합니다.

Class 1 Connection으로 연결이 됩니다.

① 지원 범위

Transport Type Originator->Target: Point to Point Target->Originator: Multicast Transport Trigger: Cyclic Configuration Connection: 1 Connection Tag: 지원 하지 않음 Priority Originator->Target: Scheduled

Target->Originator: Scheduled

Configuration Data: 지원 하지 않음

② Input Instance

인버터에서 PLC혹은 Client기기에 인버터 상태를 주기적으로 보내는 Data입니다.

Instance	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
							Running		
	0						1		Faulted
70							(Fwd)		
70	1								
	2		Spee	ed Actual (L	ow Byte) – RPM unit	(note 1)		
	3			Speed Act	ual (Higł	n Byte) – RPN	ባ unit		
71	0	At	Ref From	Ctrl From	Deedu	Running 2	Running	Warnin	Foultod
/1		Reference	Net	Net	Reduy	(Rev)	1 (Fwd)	g	rauited

Instance	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	1				Drive	State					
	2			Speed Act	tual (Low	v Byte) – RPN	1 unit				
	3			Speed Act	ual (High	n Byte) – RPI	M unit				
							Running				
	0						1		Faulted		
							(Fwd)				
110	1		1	1	I		I				
	2		Spe	eed Actual (Low Byte	e) – Hz unit	(note 1)				
	3	Speed Actua	al (High Byt	e) – Hz uni	t						
	_	At	Ref From	Ctrl From		Running 2	Running	Warnin			
	0	Reference	Net	Net	Ready	(Rev)	1 (Fwd)	g	Faulted		
111	1		1	I	Drive	State	I	1	1		
	2			Speed Ac	tual (Lo	w Byte) – Hz	unit				
	3			Speed Ac	tual (Hig	ıh Byte) – Hz	z unit				
	0			Status Par	ameter -	1 data (Low	Byte)				
141	1			Status Pa	rameter	- 1 data (Hi	Byte)				
	0		Status Parameter - 1 data (Low Byte)								
142	1			Status Pa	rameter	- 1 data (Hi	Byte)				
142	2			Status Par	ameter -	2 data (Low	Byte)				
	3			Status Pa	rameter	- 2 data (Hi	Byte)				
	0			Status Par	ameter -	1 data (Low	Byte)				
	1			Status Pa	rameter	- 1 data (Hi	Byte)				
143	2			Status Par	ameter -	2 data (Low	Byte)				
115	3			Status Pa	rameter	- 2 data (Hi	Byte)				
	4			Status Par	ameter -	3 data (Low	Byte)				
	5			Status Pa	rameter	- 3 data (Hi	Byte)				
	0			Status Par	ameter -	1 data (Low	Byte)				
	1			Status Pa	rameter	- 1 data (Hi	Byte)				
	2			Status Par	ameter -	2 data (Low	Byte)				
144	3			Status Pa	rameter	- 2 data (Hi	Byte)				
L	4			Status Par	ameter -	3 data (Low	Byte)				
	5			Status Pa	rameter	- 3 data (Hi	Byte)				
	6			Status Par	ameter -	4 data (Low	Byte)				
	7			Status Pa	rameter	- 4 data (Hi	Byte)				
145	0			Status Par	ameter -	1 data (Low	Byte)				

Γ

Instance	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	1			Status Pa	rameter	- 1 data (Hi	Byte)	I				
	2			Status Par	ameter -	2 data (Low	Byte)					
	3			Status Pa	rameter	- 2 data (Hi	Byte)					
	4			Status Par	ameter -	3 data (Low	Byte)					
	5			Status Pa	rameter	- 3 data (Hi	Byte)					
	6			Status Par	ameter -	4 data (Low	Byte)					
	7			Status Pa	rameter	- 4 data (Hi	Byte)					
	8			Status Par	ameter -	5 data (Low	Byte)					
	9		Status Parameter - 5 data (Hi Byte)									
	0			Status Par	ameter -	1 data (Low	Byte)					
	1			Status Pa	rameter	- 1 data (Hi	Byte)					
	2			Status Par	ameter -	2 data (Low	Byte)					
	3			Status Pa	rameter	- 2 data (Hi	Byte)					
	4			Status Par	ameter -	3 data (Low	Byte)					
146	5			Status Pa	rameter	- 3 data (Hi	Byte)					
140	6			Status Par	ameter -	4 data (Low	Byte)					
	7			Status Pa	rameter	- 4 data (Hi	Byte)					
	8			Status Par	ameter -	5 data (Low	Byte)					
	9			Status Pa	rameter	- 5 data (Hi	Byte)					
	10			Status Par	ameter -	6 data (Low	Byte)					
	11			Status Pa	rameter	- 6 data (Hi	Byte)					
	0			Status Par	ameter -	1 data (Low	Byte)					
	1			Status Pa	rameter	- 1 data (Hi	Byte)					
	2			Status Par	ameter -	2 data (Low	Byte)					
	3			Status Pa	rameter	- 2 data (Hi	Byte)					
	4			Status Par	ameter -	3 data (Low	Byte)					
	5			Status Pa	rameter	- 3 data (Hi	Byte)					
147	6			Status Par	ameter -	4 data (Low	Byte)					
147	7			Status Pa	rameter	- 4 data (Hi	Byte)					
	8			Status Par	ameter -	5 data (Low	Byte)					
	9			Status Pa	rameter	- 5 data (Hi	Byte)					
	10			Status Par	ameter -	6 data (Low	Byte)					
	11			Status Pa	rameter	- 6 data (Hi	Byte)					
	12			Status Par	ameter -	7 data (Low	Byte)					
	13			Status Pa	rameter	- 7 data (Hi	Byte)					

٦

Instance	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	0			Status Par	ameter -	1 data (Low	Byte)		
	1			Status Pa	rameter	- 1 data (Hi	Byte)		
	2			Status Par	ameter -	2 data (Low	Byte)		
	3			Status Pa	rameter	- 2 data (Hi I	Byte)		
	4			Status Par	ameter -	3 data (Low	Byte)		
	5			Status Pa	rameter	- 3 data (Hi I	Byte)		
	6			Status Par	ameter -	4 data (Low	Byte)		
140	7			Status Pa	rameter	- 4 data (Hi I	Byte)		
140	8			Status Par	ameter -	5 data (Low	Byte)		
	9		Status Parameter - 5 data (Hi Byte)						
	10	Status Parameter - 6 data (Low Byte)							
	11 Status Parameter - 6 data (Hi								
	12			Status Par	ameter -	7 data (Low	Byte)		
	13			Status Pa	rameter	- 7 data (Hi I	Byte)		
	14			Status Par	ameter -	8 data (Low	Byte)		
	15			Status Pa	rameter	- 8 data (Hi	Byte)		

70,71,110,111의 0,1Byte의 비트에 대한 Data 설명입니다.

Namo	Description	Related Attribute		
Name	Description	Class	Attr. ID	
Faulted	Inverter Error	0x29	10	
Warning	Not Supported	0x29	11	
Running1	Motor is running Forward	0x29	7	
Running2	Motor is running Reverse	0x29	8	
Ready	Motor is ready to running	0x29	9	
Ctrl From Net	Run/Stop control	0x29	15	
Ref From Net	Speed control	0x2A	29	
At Reference	Reach at reference Speed	0x2A	3	
Drive State	Current Motor State	0x29	6	
Speed Actual	Speed Command	0x2A	7	

www.PLC1.ir

Γ

③ Output Instance

PLC혹은 Client기기가 인버터에 지령을 주기적으로 보내는 Data입니다.

٦

Instance	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	0						Fault Reset		Run Fwd
20	1			I	0		I	I	1
	2		Sp	eed Refere	ence (Lov	w Byte)	– RPM u	init	
	3		Sp	eed Refere	ence (Hig	h Byte)) – RPM ι	unit	
	0		NetRef (note 2)	NetCtrl (note2)			Fault Reset	Run Rev	Run Fwd
21	1				0				
	2		Sp	eed Refere	ence (Lov	w Byte)	– RPM u	init	
	3		Sp	eed Refere	ence (Hig	h Byte)) – RPM ι	unit	
	0						Fault Reset		Run Fwd
100	1	0							
100	2			Speed Re	ference	(Low By	/te) – Hz	unit	
	3		Sp	beed Refer	ence (Hi	gh Byte	e) – Hz u	nit	
	0		NetRef	NetCtrl			Fault Reset	Run Rev	Run Fwd
101	1	0							1
	2	Speed Reference (Low Byte) – Hz unit							
	3		Sp	beed Refer	ence (Hi	gh Byte	e) – Hz u	nit	
101	0		С	ontrol Para	meter -	1 data	(Low Byt	e)	
121	1		(Control Par	ameter -	· 1 data	(Hi Byte	e)	
	0		С	ontrol Para	meter -	1 data	(Low Byt	e)	
100	1		(Control Par	ameter -	1 data	(Hi Byte	e)	
122	2		C	ontrol Para	meter -	2 data	(Low Byt	e)	
	3		(Control Par	ameter -	· 2 data	(Hi Byte	e)	
123	0		C	ontrol Para	meter -	1 data	(Low Byt	e)	

36 SELECTRIC

Instance	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	1		(Control Par	ameter -	1 data	(Hi Byte	e)	1
	2		C	ontrol Para	meter -	2 data	(Low Byt	e)	
	3		(Control Par	ameter -	2 data	(Hi Byte	e)	
	4		C	ontrol Para	meter -	3 data	(Low Byt	e)	
	5		(Control Par	ameter -	3 data	(Hi Byte	2)	
	0		C	ontrol Para	meter -	1 data ((Low Byt	e)	
	1		(Control Par	ameter -	1 data	(Hi Byte	e)	
	2		C	ontrol Para	meter -	2 data	(Low Byt	e)	
124	3		(Control Par	ameter -	2 data	(Hi Byte	e)	
124	4		C	ontrol Para	meter -	3 data	(Low Byt	e)	
	5		(Control Par	ameter -	3 data	(Hi Byte	e)	
	6		C	ontrol Para	meter -	4 data	(Low Byt	e)	
	7		(Control Par	ameter -	4 data	(Hi Byte	e)	
	0		C	ontrol Para	meter -	1 data ((Low Byt	e)	
	1		(Control Par	ameter -	1 data	(Hi Byte	e)	
	2		C	ontrol Para	meter -	2 data	(Low Byt	e)	
	3		(Control Par	ameter -	2 data	(Hi Byte	e)	
105	4		C	ontrol Para	meter -	3 data	(Low Byt	e)	
125	5		Control Parameter - 3 data (Hi Byte)						
	6	Control Parameter - 4 data (Low Byte)							
	7	Control Parameter - 4 data (Hi Byte)							
	8		C	ontrol Para	meter -	5 data	(Low Byt	e)	
	9		(Control Par	ameter -	5 data	(Hi Byte	e)	
	0		C	ontrol Para	meter -	1 data ((Low Byt	e)	
	1		(Control Par	ameter -	1 data	(Hi Byte	e)	
	2		C	ontrol Para	meter -	2 data	(Low Byt	e)	
	3		(Control Par	ameter -	2 data	(Hi Byte	e)	
	4		C	ontrol Para	meter -	3 data	(Low Byt	e)	
126	5		(Control Par	ameter -	3 data	(Hi Byte	e)	
120	6		C	ontrol Para	meter -	4 data	(Low Byt	e)	
	7		C	Control Par	ameter -	4 data	(Hi Byte	e)	
	8		C	ontrol Para	meter -	5 data ((Low Byt	e)	
	9		(Control Par	ameter -	5 data	(Hi Byte	e)	
	10		C	ontrol Para	meter -	6 data	(Low Byt	e)	
	11		(Control Par	ameter -	6 data	(Hi Byte	e)	

www.PLC1.ir

Γ

Instance	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	0		С	ontrol Para	meter -	1 data	(Low Byt	e)	
	1		(Control Par	ameter -	1 data	(Hi Byte)	
	2		С	ontrol Para	meter -	2 data	(Low Byt	e)	
	3		(Control Par	ameter -	2 data	(Hi Byte)	
	4		С	ontrol Para	meter -	3 data	(Low Byt	e)	
	5		(Control Par	ameter -	3 data	(Hi Byte)	
107	6		C	ontrol Para	meter -	4 data	(Low Byt	e)	
127	7		(Control Par	ameter -	4 data	(Hi Byte)	
	8		C	ontrol Para	meter -	5 data	(Low Byt	e)	
	9		(Control Par	ameter -	5 data	(Hi Byte)	
	10		C	ontrol Para	meter -	6 data	(Low Byt	e)	
	11		(Control Par	ameter -	6 data	(Hi Byte)	
	12		C	ontrol Para	meter -	7 data	(Low Byt	e)	
	13		(Control Par	ameter -	7 data	(Hi Byte)	
	0		С	ontrol Para	meter -	1 data	(Low Byt	e)	
	1		(Control Par	ameter -	1 data	(Hi Byte)	
	2		С	ontrol Para	meter -	2 data	(Low Byt	e)	
	3	Control Parameter - 2 data (Hi Byte) Control Parameter - 3 data (Low Byte)							
	4								
5 Control Parameter - 3 data (Hi Byte)									
	6		С	ontrol Para	meter -	4 data	(Low Byt	e)	
170	7		(Control Par	ameter -	4 data	(Hi Byte)	
120	8		Control Parameter - 5 data (Low Byte)						
	9		(Control Par	ameter -	5 data	(Hi Byte)	
	10		С	ontrol Para	meter -	6 data ((Low Byt	e)	
	11		(Control Par	ameter -	6 data	(Hi Byte)	
	12		С	ontrol Para	meter -	7 data	(Low Byt	e)	
	13		(Control Par	ameter -	7 data	(Hi Byte)	
	14		С	ontrol Para	meter -	8 data	(Low Byt	e)	
	15		(Control Par	ameter -	8 data	(Hi Byte)	
20,21,	0,21,100,101의 OBvte의 비트에 대한 Data 설명입니다.								

٦

Namo	Description	Related Attribute	
Name	Description	Class	Attr. ID
Run Fwd(주1)	Forward Run Command	0x29	3
Run Rev(주1)	Reverse Run Command	0x29	4

Nama	Description	Related Attribute		
Name	Description	Class	Attr. ID	
Fault reset(주1)	Fault Reset Command	0x29	12	
NetRef(주2)	Not used	0x2A	4	
NetCtrl(주2)	Not used	0x29	5	
Speed Reference	Speed Command	0x2A	8	

(주1) Control Supervisor Object (Class 0x29)의 Drive Run부분과 Fault부분을 참 조하기 바랍니다.

(주2) Reference Control 과 Run/Strop Control 의 설정은 LCD Control Pannel을 통해서만 가능하게 되어 있습니다. 따라서 Instance 21 과 101에서 (NetRef, NetCtrl)은 사용되지 않습니다.

(3) Explicit Message

Γ

비 주기 통신으로 인버터 혹인 EtherNet/IP의 Attribute의 값을 읽거나 쓸 때 사용 하는 통신 방법입니다.

Originator와 Target사이에 Connection을 하지 않고 Data를 주고 받는 UCMM방법 과 Class 3 Connection을 맺고 Data를 주기적으로 주고 받는 방법이 있습니다.

(4) 지원 Object

① Identity Object (Class 0x01, Instance 1)

Attribute

Attribute ID	Access	Attribute Name	Data Length	Attribute Value
1	Get	Vendor ID (LS Industrial System)	Word	259
2	Get	Device Type (AC Drive)	Word	2
3	Get	Product Code	Word	100 (주1)
4	Get	Revision High Byte - Major Revision Low Byte - Minor Revision	Word	(주2)0x0101
5	Get	Status	Word	(주3)
6	Get	Serial Number	Double Word	(주4)

www.PLC1.ir

	7	Get	Product Name	4 Byte	CENT	
--	---	-----	--------------	--------	------	--

(주1) Product Code 100은 iS7 인버터를 의미합니다.

(주2) Revision은 Ethernet 통신 옵션 보드 Version과 일치 합니다. High Byte가 Major Revision, Low Byte가 Minor Revision을 의미합니다. 예를 들면 0x0102은 1.02를 의미합니다.

Ethernet 통신 옵션 보드 버전은 Keypad COM-6 FBus S/W Ver에 표시됩니다.

(주3) Status Bit별 정의

Bit	의 미
0	0 : Master에 Device가 연결되지 않음
0	1 : Master에 Device가 연결됨
1	Reserved
2	Configured (LS ELECTRIC EtherNet/IP는 지원하지 않으므로 항시 0)
3	Reserved
4	0 : Unknown
5	2 : IO연결이 잘못되었을 경우
6	3:IO연결이 한번도 되지 않았을 경우
_	5 : Major Fault
/	6:IO연결이 되어 있는중
8	Minor Recoverable Fault (인버터가 Warning 상태인 경우)
9	Minor Unrecoverable Fault (해당사항 없음)
10	Major Recoverable Fault (인버터가 H/W Trip상태인 경우)
11	Major Unrecoverable Fault (인버터가 H/W 외의 Trip상태인 경우)

(주4) Serial 번호는 MAC ID의 뒷자리 4개를 이용합니다.

예) MAC ID가 00:0B:29:00:00:22 이면 Serial 번호는 0x29000022가 됩니다.

Service

Service	Definition	Support for	Support for
Code	Deminition	Class	Instance
0x0E	Get Attribute Single	No	Yes
0x05	Reset	No	Yes
0x01	Get Attribute All	No	Yes

2 Motor	Data	Object	(Class	0x28,	Instance	1)

Attribute ID	Access	Attribute Name	Range	Definition
3	Get	Motor Type	0~10	 0 : Non-standard motor 1 : PM DC Motor 2 : FC DC Motor 3 : PM Synchronous Motor 4 : FC Synchronous Motor 5 : Switched Reluctance Motor 6 : Wound Rotor Induction Motor 7 : Squirrel Cage Induction Motor 8 : Stepper Motor 9 : Sinusoidal PM BL Motor 10 : Trapezoidal PM BL Motor
6	Get/Set	Motor Rated Curr	0.0~1 000.0	[Get] BAS-13 Rated Curr값을 읽어 옵니다. [Set] Set 한 값이 BAS-13 Rated Curr에 반영 됩니다. Scale 0.1
7	Get/Set	Motor Rated Volt	0~ 690	[Get] BAS-15 Rated Voltage값을 읽어 옵니다. [Set] Set 한 값이 BAS-15 Rated Voltage에 반영 됩니다. Scale 1

Attribute

Γ

Service

Service	Definition	Support for	Support for
Code	Deminion	Class	Instance
0x0E	Get Attribute Single	No	Yes
0x10	Set Attribute Single	No	Yes

③ Control Supervisor Object (Class 0x29, Instance 1)

www.PLC1.ir

Attribute

Attribute ID	Access	Attribute Name	Range	Definition
2	Cot / Sot	Forward Run Cmd	0	정지
5	Gel / Sel		1	정 방향 운전 (주1)
1	Cat / Sat	Poverse Pup Cmd	0	정지
4	Gel / Sel	Reverse Ruit Ciliu.	1	역 방향 운전 (주1)
5	지원 안함	Net Control	-	Inverter 파라미터로만 설정 가능합니다.
			0	Vendor Specific
			1	Startup
			2	Not Ready (reset 중)
6	Cot	Drivo Stato	3	Ready (정지 중)
0	Gel	Drive State	4	Enabled (Run 중 단 감속 정지 중 제외)
			5	Stopping (정지 감속 중)
			6	Fault Stop
			7	Faulted (Trip 발생)
7	Cat	Dupping Forward	0	정지 중
/	Gel	Running Forward	1	정 방향 운전 중
0	Cat	Durania a Daviana	0	정지 중
ŏ	Gel	Running Reverse	1	역 방향 운전 중
0	Cat	Drive Beady	0	Reset 중이거나 Trip이 발생한 경우
9	Get		1	인버터가 운전할 수 있는 정상 상태
10	Cat	Data Data		현재 Trip 발생이 발생 하지 않음
10	Get		1	현재 Trip 발생한 상황임.
			0	Trip 발생 후 Trip 해제하기 위한 Trip
12	Get / Set	Drive Fault Reset		Reset. FALSE상태에서 TRUE값을 입력하
			1	였을 때만 RESET이 됩니다. (주2)
13	Get	Drive Fault Code		아래 Drive Fault Code 표 참조 (주2)
			0	DeviceNet 통신 이외의 Source로
14	Get	Control From Net	U	운전 지령을 줍니다.
14	Gel	Control From Net.	1	DeviceNet 통신 Source로 운전 지령을
			T	줍니다.

٦

(주1) Drive Run Command

Forward Run Cmd.와 Reverse Run Cmd.를 이용한 인버터 운전

Runl	Run2	Trigger Event	Run Type
0	0	Stop	NA
0 -> 1	0	Run	Run1
0	0 -> 1	Run	Run2
0 -> 1	0 -> 1	No Action	NA
1	1	No Action	NA
1->0	1	Run	Run2
1	1->0	Run	Run1

위에 표에서 Run1은 Forward Run Cmd.를 나타내는 것이며 Run 2는 Reverse Run Cmd.를 나타냅니다. 즉 0(FALSE)->1(TRUE)로 변하는 순간에 옵션이 인버터에 운 전 지령을 내리게 됩니다. Forward Run Cmd.의 값을 읽었을 때 에는 현재 인버터의 운전 상태를 나타내는 것이 아니라 옵션의 운전 명령 값에 대한 것을 나타냅니다.

(주2) Drive Fault

Γ

인버터에 Trip이 발생하였을 때 Drive Fault 은 TRUE가 된다.

이때 Drive Fault Code는 아래와 같다.

Drive Fault Code

Fault					
Code	Description				
Number					
0x0000	None				
	Ethermal	Out Phase Open	InverterOLT		
	InPhaseOpen	ThermalTrip	UnderLoad		
0x1000	ParaWriteTrip	IOBoardTrip	PrePIDFail		
	OptionTrip1	OptionTrip2	OptionTrip3		
	LostCommand	UNDEFINED	LostKeypad		
0x2200	OverLoad				
0x2310	OverCurrent1				
0x2330	GFT				
0x2340	OverCurrent2				
0x3210	OverVoltage				
0x3220	LowVoltage				
0x2330	GroundTrip				
0x4000	NTCOpen				
0x4200	OverHeat				
0x5000	FuseOpen	HWDiag			
0x7000	FanTrip				
0x7120	No Motor Trip				
0x7300	EncorderTrip				

Fault		
Code		Description
Number		
0x8401	SpeedDevTrip	
0x8402	OverSpeed	
0x9000	ExternalTrip	ВХ

Drive Fault Reset

Drive Fault Reset은 0->1 즉 FALSE->TRUE로 갈 때 인버터에 TRIP RESET 지령 을 내리게 됩니다. 1(TRUE)인 상태에서 한번 더 1(TRUE)을 쓴다고 해서 인버터의 TRIP에 RESET지령을 내리지는 않습니다. 1(TRUE)인 상태에서는 다시 0(FAULT)으 로 쓰고 다시 한번 더 1(TRUE)을 쓰셔야 RESET지령이 옵션에서 인버터로 지령이 내리게 됩니다.

Service

Service	Definition	Support for	Support for
Code	Demilition	Class	Instance
0x0E	Get Attribute Single	No	Yes
0x10	Set Attribute Single	No	Yes

④ AC Drive Object (Class 0x2A, Instance 1)

Attribute

Attribute ID	Access	Attribute Name	Range	Definition
				출력 주파수가 설정 주파수에 도달 하지
2	Cat	At Deference	0	않음을 나타냅니다.
3	Get	At Reference	1	출력 주파수가 설정 주파수에 도달 했음을
			L	나타냅니다.
1	지위 아하	Net		
4	시선 한참	Reference	-	
		Drive Mode (주1)	0	Vendor Specific Mode
			1	Open Loop Speed(Frequency)
6	Get		2	Closed Loop Speed Control
			3	Torque Control
			4	Process Control(e.g.PI)
7	Cat		0~	현재 출력 주파수를 [rpm]으로 환산해서
/	Get	SpeeuActual	24000	표시해줍니다.

Attribute ID	Access	Attribute Name	Range	Definition	
			0	목표 주파수를 [rpm]으로 환산해서 지령	
8	Get / Set	SpeedRef	24000	을 줍니다. DRV-07 Freq Ref Src가	
			24000	FieldBus로 설정이 되어야 반영이 됩니다.	
0	Cot	Actual	0~111.0	0.1 A 단위로 현재 전류를 모니터링 합니	
9	Gel	Current	А	다.	
			0	주파수 지령 Source가 DeviceNet 통신이	
29	Get	Ref.From	0	아닙니다.	
		Network	1	주파수 지령 Source가 DeviceNet 통신입	
				니다.	
100	Cot	Actual Hz	0~400.00	현재 운전중인 주파수(Hz단위)를 모니터링	
100	Gel	Actual Hz	Hz	합니다.	
			0400.00	DRV-07 Freq Ref Src가 8.FieldBus로 설	
101	Get / Set	Reference Hz	0~400.00	정 시 지령 주파수를 통신으로 설정 가능	
			ΠZ	합니다.	
102	Cat / Sat	Acceleration	0~6000.0	이버던 가소 시가은 성정/머니터리 하니다.	
102	Get / Set	Time (주2)	sec	근미니 가득 시간을 굴러/エ니니칭 빕니다.	
103	Cat /Sat	Deceleration	0~6000.0	이비디 가소 시가은 성정/미니디린 하니다	
	Get /Set	Time (주3)	sec	신마니 접속 시간을 열정/포니다당 입니다.	

(주1) DRV-10 Torque Control, APP-01 App Mode와 관련 있습니다. DRV-10 Torque Control을 Yes로 설정하면 Drive Mode가 "Torque Control"가 되고 APP-01 App Mode를 Proc PID, MMC로 설정을 하면 Drive Mode가 "Process Control(e.g.PI)"가 됩니다.

(주2) DRV-03 Acc Time 값입니다.

(주3) DRV-04 Dec Time 값입니다.

Service

Service	Definition	Support for	Support for
Code	Demilition	Class	Instance
0x0E	Get Attribute Single	No	Yes
0x10	Set Attribute Single	No	Yes

(5) Class 0x64 (Inverter Object) – Manufacture Profile

Inverter의 Keypad Parameter를 Access하기 위한 Object입니다.

Γ

Attribute

Instance	Acc	Attribute Number	Attribute	Attribute
Instance	ess	Attribute Number	Name	Value
1 (DRV Group)		iS7 Manual Code 번호와 동일		
2 (BAS Group)		iS7 Manual Code 번호와 동일		
3 (ADV Group)		iS7 Manual Code 번호와 동일		
4 (CON Group)		iS7 Manual Code 번호와 동일		iS7
5 (IN Group)		iS7 Manual Code 번호와 동일	iS7 Keypad	Parameter
6 (OUT Group)	Get/	iS7 Manual Code 번호와 동일	Title	의 실정 범
7 (COM Group)	Set	iS7 Manual Code 번호와 동일	(iS7 Manual	۲ (:C7
8 (APP Group)		iS7 Manual Code 번호와 동일	참조)	(IS7 Manual 차
9 (AUT Group)		iS7 Manual Code 번호와 동일		Manual 점 조)
10 (APO Group)		iS7 Manual Code 번호와 동일)
11 (PRT Group)		iS7 Manual Code 번호와 동일		
12 (M2 Group)		iS7 Manual Code 번호와 동일		

٦

Service

Service	Definition	Support for	Support for
Code	Demicion	Class	Instance
0x0E	Get Attribute Single	No	Yes
0x10	Set Attribute Single	No	Yes

12.3 Modbus TCP Frame

Г

(1) Modbus TCP Frame 구성

MBAP Header(7 bytes) PDU (5 bytes ~)

일반적으로 Ethernet은 Ethernet II Frame을 사용합니다.

MODBUS Application Protocol Header (MBAP Header)

MBAP Header의 구성 입니다.

구역	길이	설명			
Transsetion Identifier	2 Bytes	고유의 전송 번호로 Client에서 Server로 Data			
		Frame을 보낼 때 마다 1 씩 증가합니다.			
Protocol Identifier	2 Bytes	0으로 고정입니다.			
	2 Bytes	Modbus의 Data Frame길이로 MBAP Header에서			
Length		Unit Identifier부터의 Byte단위의 길이를 나타냅니			
		다.			
		Modbus TCP와 Modbus RTU가 게이트를 통해 연결			
Unit Identifier	1 Bytes	되어 있을 경우 Slave번호가 적혀 있게 됩니다.			
		Modbus TCP만 사용할 경우에는 0xFF로 고정입니다.			

Protocol Data Unit (PDU)

실질적인 Modbus TCP의 Data로 Function Code와 Data로 이루어 져 있습니다. 자세한 설명은 아래 "(2) Function Code에 대한 설명"에서 하겠습니다.

(2) Function Code 에 대한 설명

Modbus TCP는 Client와 Server로 나누어 집니다. Client는 명령을 내리는 입장이며 Server는 명령에 대한 응답을 하는 입자입니다. 일반적으로 Client는 PLC, HMI, PC 등이 있으며 Server는 인버터를 말합니다.

① Read Holding Registers

인버터(Server)에 있는 Data를 읽을 때 사용하는 함수 입니다.

Client에서 Server로 요구하는 Frame 구성

요구 Frame	길이	값	
Function Code	1 Bytes	0x03	
통신주소	2 Bytes	0x0000 ~ 0xFFFF	
Data 요구 개수	2 Bytes	1~16 (LS ELECTRIC 인버터	
		기준)	

Server에서 Master로 응답하는 프레임 구성

응답 Frame	길이	값	
Function Code	1 Bytes	0x03	
통신주소	1 Bytes	2 x Data 요구 개수	
Data 요구 개수	Data 요구 개	통신 주소로부터 개수 만큼의	
	수 x 2 Bytes	Data 값	

② Read Input Registers

인버터(Server)에 있는 Data를 읽을 때 사용하는 함수 입니다.

Client에서 Server로 요구하는 Frame 구성

요구 Frame	길이	값	
Function Code	1 Bytes	0x04	
통신주소	2 Bytes	0x0000 ~ 0xFFFF	
Data 요구 개수	2 Bytes	1~16 (LS ELECTRIC 인버터	
		기준)	

응답 Frame	길이	값	
Function Code	1 Bytes	0x03	
통신주소	1 Bytes	2 x Data 요구 개수	
Data 요구 개수	Data 요구 개	통신 주소로부터 개수 만큼의	
	수 x 2 Bytes	Data 값	

Server에서 Master로 응답하는 프레임 구성

③ Write Single Register

Γ

인버터(Server)에 Data를 1개 수정할 때 사용하는 함수 입니다.

Client에서 Server로 요구하는 프레임 구성

요구 Frame	길이	값
Function Code	1 Bytes	0x06
통신주소	2 Bytes	0x0000 ~ 0xFFFF
Data 값	2 Bytes	0x0000 ~ 0xFFFF

Server에서 Master로 응답하는 프레임 구성

응답 Frame	길이	값	
Function Code	1 Bytes	0x06	
통신주소	2 Bytes	0x0000 ~ 0xFFFF	
Data 값	2 Bytes	0x0000 ~ 0xFFFF	

④ Write Multiple Register

인버터(Server)에 Data를 1개에서 16개까지 연속적인 Data에 한하여 수정할 때 사용하는 함수 입니다.

Client에서 Server로 요구하는 프레임 구성

요구 Frame	길이	값	
Function Code	1bytes	0×10	
통신주소	2bytes	0x0000 ~ 0xFFFF	
수정하는 Data 개	2byte	1~16 (LS ELECTRIC 인버터	
수		기준)	
Byte Count	1byte	2 X Data 개수	
수정할 Data 값	Data 개수	수정할 Data들	
	x 2 bytes		

응답 Frame	길이	값	
Function Code	1 Bytes	0x10	
통신주소	2 Bytes	0x0000 ~ 0xFFFF	
수정하는 Data 개	2 Bytes	1~16 (LS ELECTRIC 인버터	
수		기준)	

Server에서 Master로 응답하는 프레임 구성

(3) Except Frame

Except Frame은 Client에서 Server로 요구하는 Frame을 보냈을 때 요구 Frame을 수행 하면서 Error가 발생하였을 경우 Server에서 응답 하는 프레임 입니다.

Exception Frame 구성

Error Frame	길이	값		
Error Code	1bytes	0x80 + Client 가 요구한		
		Function Code		
Exception Code	1bytes	0x0000 ~ 0xFFFF		

Exception Code 종류

종류	Code	설명
	0.01	지원하지 않는 Function에 대해서
ILLEGAL FUNCTION	0X01	요구가 있을 경우
	0.402	사용하지 않는 어드레스의 Data를
ILLEGAL DATA ADDRESS	0X02	요구하거나 수정하려는 경우
	0202	Data 수정을 할 때 Data 허용 범위
ILLEGAL DATA VALUE	0203	를 밖에 값으로 수정하려는 경우
		Server에 오류가 있을 경우
	0.04	(인버터와 CAN 통신 ERROR, 옵션
SLAVE DEVICE FAILURE	0x04	초기화 ERROR 경우, 인버터와의
		DATA통신을 실패한 경우)
	0x06	Server가 다른 처리 중이라 응답을
		할 수 없을 때
SLAVE DEVICE BUST		(인버터 파라미터 초기화, 옵션의 초
		기 설정 중일 경우)
		LS 인버터에만 존재하는 Code로
WRITE PERMITION ERROR	0x20	수정 금지 파라미터에 값을 수정하려
		고 할 때

12.4 LED 정보 및 고장 처리

Γ

	LED 의미	Color	동작 의미	동작	의미
		Green	Network		LINK 1에 Network가 연결되어 정상
			정상 동작	ON	동작하고 있음
		Orango	Network		Ethernet 통신 설정 확인 *1
LEDU	LIINKI	Orange	설정 확인	UN	주기 통신이 1초 이상 없는 경우
			LINK 1		Ethernet 통신 중이나 LINK 1에
		-	미연결	OFF	Network가 체결되어 있지 않음
	LINK2	Green	Network	ON	LINK 2에 Network가 연결되어 정상
			정상 동작		동작하고 있음
			Network	ON	「thornot 토시 서저 하이 *1
LEUT		Orange	통신 불량		Ethemet 중선 결정 확인 ···
			LINK 1		Ethernet 통신 중이나 LINK 2에
		-	미연결	OFF	Network가 체결되어 있지 않음

*¹: Ethernet 통신 설정 확인의 경우 [COM-10], [COM-11], [COM-14], [COM-15] 그리고 [COM-23], [COM-24] Keypad 설정 값 과 클라이언트 (PLC 등)의 설정을 확인하여 주십시오.

	LED 의미	Color	동작 의미	동작	의미
			정상 동작	OFF	통신 옵션 보드와 인버터가 정상적 인 통신을 하고 있음
				Flashing LEDO과 동기 점멸 (1초 주기)	RAPIEnet+ 통신 옵션 보드와 인버 터 사이에 통신 불량
LED2	ERROR	Red	통신 불량	Flashing (2초 주기)	Keypad로 설정한 통신 파라미터와 통신 모듈에 설정되어 있는 파라미 터 정보가 다른 경우* ²
				ON	EEPROM 파손 시 2개의 링크 모두 연결이 없는 경우 IP 충돌 시
LED3	CPU	Green	정상 동작	Flashing (1초 주기)	통신 옵션 보드가 인버터와 정상적 으로 설치 되었음을 의미

٦

*²: Keypad 설정 파라미터와 통신 모듈 설정을 동일하게 하기 위해서는 COM그룹의 설정을 확인한 후 [COM-94] Comm Update를 1 yes 로 설정하여주시면 설정 값이 통신 모듈에 적용됩니다.

Headquarter		Overseas Branches				
LS-ro 127(Hogye-dong) [ongan-gu, Anyang-si, Gyeonggi-Do, 14119, Korea	LS ELECTRIC Tokyo Office (Japan)				
Seoul Office		Tel: 81-3-6268-8241	E-Mail: jschuna@lselectric.biz			
LS Yongsan Tower, 92, Ha	angang-daero, Yongsan-gu, Seoul, 04386, Korea	LS ELECTRIC Beijing Office (China)				
Tel: 82-2-2034-4033, 488	3, 4703 Fax: 82-2-2034-4588	Tel: 86-10-5095-1631	E-Mail: khpaek@lselectric.com.cn			
E-mail: automation@lsele	ctric.co.kr	LS ELECTRIC Shanghai Office (China)				
		Tel: 86-21-5237-9977	E-Mail: tsjun@lselectric.com.cn			
Overseas Subsidiaries		LS ELECTRIC Guangzhou Office (China)				
LS ELECTRIC Japan Co., Lt	td. (Tokyo, Japan)	Tel: 86-20-3818-2883	E-Mail: chenxs@lselectric.com.cn			
Tel: 81-3-6268-8241	E-Mail: jschuna@lselectric.biz	LS ELECTRIC Chengdu Office (China)				
• LS ELECTRIC (Dalian) Co.,	Ltd. (Dalian, China)	Tel: 86-28-8670-3201	E-Mail: yangcf@lselectric.com.cn			
Tel: 86-411-8730-6495	E-Mail: jiheo@lselectric.com.cn	• LS ELECTRIC Qingdao Office (China)				
•LS ELECTRIC (Wuxi) Co., Lt	d. (Wuxi, China)	Tel: 86-532-8501-2065	E-Mail: wangzy@lselectric.com.cn			
Tel: 86-510-6851-6666	: 86-510-6851-6666 E-Mail: sblee@lselectric.co.kr		• LS ELECTRIC Nanjing Office (China)			
•LS ELECTRIC Vietnam Co.,	Ltd.	Tel:86-25-8467-0005	E-Mail: ylong@lselectric.com.cn			
Tel: 84-93-631-4099	E-Mail: jhchoi4@Iselectric.biz (Hanoi)	• LS ELECTRIC Bangkok O	LS ELECTRIC Bangkok Office (Thailand)			
Tel: 84-28-3823-7890	E-Mail: sjbaik@lselectric.biz (Hochiminh)	Tel: 66-90-950-9683	E-Mail: sjleet@lselectric.biz			
• LS ELECTRIC Middle East	FZE (Dubai, U.A.E.)	LS ELECTRIC Jakarta Office (Indonesia)				
Tel: 971-4-886-5360	E-Mail: salesme@lselectric.biz	Tel: 62-21-2933-7614	E-Mail: dioh@lselectric.biz			
• LS ELECTRIC Europe B.V.	(Hoofddorf, Netherlands)	LS ELECTRIC Moscow Of	LS ELECTRIC Moscow Office (Russia)			
Tel: 31-20-654-1424	E-Mail: europartner@lselectric.biz	Tel: 7-499-682-6130	E-Mail: jdpark1@lselectric.biz			

- LS ELECTRIC America Inc. (Chicago, USA)
- Tel: 1-800-891-2941 E-Mail: sales.us@lselectricamerica.com
- LS ELECTRIC America Western Office (Irvine, USA)

Tel: 1-949-333-3140 E-Mail: ywyun@lselectricamerica.com

www.lselectric.co.kr

LS ELECTRIC Co., Ltd.

문의 및 A/S 고객센터 - 신속한 서비스, 든든한 기술지원 전화. **1544 - 2080 |** 홈페이지. www.lselectric.co.kr

사용설명서의 사양은 지속적인 제품 개발 및 개선으로 인해 예고없이 변경될 수 있습니다.

■ 본사 : 서울특별시 용산구 한강대로 92 LS용산타워 14층		■ 서비스 지정점			
■ 구입문의	명 산전	(서울)	TEL: (02)462-3053	FAX: (02)462-3054	
서울영업 TEL: (02)2034-4623~38	FAX: (02)2034-4057	TPI시스템	(서울)	TEL: (02)895-4803~4	FAX: (02)6264-3545
부산영업 TEL: (051)310-6855~60	FAX: (051)310-6851	우진산전	(의정부)	TEL: (031)877-8273	FAX: (031)878-8279
대구영업 TEL: (053)603-7741~8	FAX: (053)603-7788	신진시스템	(안산)	TEL: (031)494-9607	FAX: (031)494-9608
서부영업 (광주) TEL: (062)510-1891~92	FAX: (062)526-3262	드림시스템	(평택)	TEL: (031)665-7520	FAX: (031)667-7520
서부영업 (대전) TEL: (042)820-4240~42	FAX: (042)820-4298	스마트산전	(안양)	TEL: (031)430-4629	FAX: (031)430-4630
■ A/S 문의		세아산전	(안양)	TEL: (031)340-5228	FAX: (031)340-5229
기술상담센터 TEL: (전국)1544-2080	FAX: (031)689-7290	성원M&S	(인천)	TEL: (032)588-3750	FAX: (032)588-3751
서울/경기 Global 지원팀 TEL: (031)689-7112	FAX: (031)689-7113	파란자동화	(천안)	TEL: (041)554-8308	FAX: (041)554-8310
천안 Global 지원팀 TEL: (041)550-8308~9	FAX: (041)554-3949	태영시스템	(대전)	TEL: (042)670-7363	FAX: (042)670-7364
부산 Global 지원팀 TEL: (051)310-6922~3	FAX: (051)310-6851	디에스산전	(청주)	TEL: (043)237-4816	FAX: (043)237-4817
대구 Global 지원팀 TEL: (053)603-7751~4	FAX: (053)603-7788	조은시스템	(부산)	TEL: (051)319-3923	FAX: (051)319-3924
광주 Global 지원팀 TEL: (062)510-1885~6	FAX: (062)526-3262	산전테크	(부산)	TEL: (051)319-1025	FAX: (051)319-1026
■ 교육 문의		서진산전	(울산)	TEL: (052)227-0335	FAX: (052)227-0337
연수원 TEL: (043)268-2631~2	FAX: (043)268-4384	대명시스템	(대구)	TEL: (053)564-4370	FAX: (053)564-4371
서울/경기교육장 TEL: (031)689-7107	FAX: (031)689-7113	제이엠산전	(포항)	TEL: (054)284-6050	FAX: (054)284-6051
부산교육장 TEL: (051)310-6860	FAX: (051)310-6851	지이티시스템	(구미)	TEL: (054)465-2304	FAX: (054)465-2315
대구교육장 TEL: (053)603-7744	FAX: (053)603-7788	제일시스템	(창원)	TEL: (055)273-6778	FAX: (050)4005-6778
■ 기술 문의		지유시스템	(광주)	TEL: (062)714-1765	FAX: (062)714-1766
기술상담센터 TEL: (전국)1544-2080	FAX: (031)689-7290	코리아FA	(익산)	TEL: (063)838-8002	FAX: (063)838-8001
동현 산전 (안양) TEL: (031)479-4785~6	FAX: (031)479-4784	SJ주식회사	(전주)	TEL: (063)213-6900~1	FAX: (063)213-6902
나노오토메이션 (대전) TEL: (042)336-7797 FAX: (042)636-8016		■ 해외 서비스센터 - 중국사무소			
신광 ENG (부산) TEL: (051)319-1051	FAX: (051)319-1052	Shanghai	(상해)	TEL: (8621)5237-9977	FAX: (8621)5237-7192
에이엔디시스템 (부산) TEL: (051)319-0668	FAX: (051)319-0669	Beijing	(북경)	TEL: (8610)5095-1617	FAX: (8610)5095-1620
		Guangzhou	(광주)	TEL: (8620)3818-2885	FAX: (8620)3818-2886
■ LS ELECTRIC은 전 세계 주요 국가에 현지 서비스 파트	Chengdu	(성도)	TEL: (8628)8670-3201	FAX: (8628)8670-3203	
[홈페이지 (www.lselectric.co.kr) 서비스센터 안내]를 침	Qingdao	(청도)	TEL: (86532)8501-206	5 FAX: (86532)8501-6057	

•지속적인 제품 개선으로 본 매뉴얼의 내용과 제품 기능에 일부 차이가 있을 수 있습니다.

 LS ELECTRIC은 이로 인한 손해, 배상에 책임을 지지 않으므로 제품을 사용 하시기 전에 반드시 매뉴얼과 제품의 버전을 확인 하시기 바랍니다.
 ⑥
 ⑥
 LS ELECTRIC Co., Ltd 2020 All Right Reserved.
 SV-iS7 / 2020.06

www.PLC1.ir