Thank you for purchasing LS Variable Frequency Drives!

SAFETY INSTRUCTIONS

- Always follow safety instructions to prevent accidents and potential hazards from occurring.
- In this manual, safety messages are classified as follows:

WARNING Improper operation may result in serious personal injury or death.

1.CAUTION Improper operation may result in slight to medium personal injury or property damage.

- Throughout this manual we use the following two illustrations to make you aware of safety considerations:

Identifies potential hazards under certain conditions.
Read the message and follow the instructions carefully.
Identifies shock hazards under certain conditions.
Particular attention should be directed because dangerous voltage may be present.

■ Keep operating instructions handy for quick reference.

- Read this manual carefully to maximize the performance of SV-iG5A series inverter and ensure its safe use.

WARNING

- Do not remove the cover while power is applied or the unit is in operation.
Otherwise, electric shock could occur.
- Do not run the inverter with the front cover removed.

Otherwise, you may get an electric shock due to high voltage terminals or charged capacitor exposure.

- Do not remove the cover except for periodic inspections or wiring, even if the input power is not applied.
Otherwise, you may access the charged circuits and get an electric shock.

■ Wiring and periodic inspections should be performed at least 10 minutes after disconnecting the input power and after checking the DC link voltage is discharged with a meter (below DC 30V).
Otherwise, you may get an electric shock.

- Operate the switches with dry hands.

Otherwise, you may get an electric shock.

- Do not use the cable when its insulating tube is damaged.

Otherwise, you may get an electric shock.

- Do not subject the cables to scratches, excessive stress, heavy loads or pinching.
Otherwise, you may get an electric shock.

CAUTION

- Install the inverter on a non-flammable surface. Do not place flammable material nearby.
Otherwise, fire could occur.
- Disconnect the input power if the inverter gets damaged.

Otherwise, it could result in a secondary accident and fire.

- After the input power is applied or removed, the inverter will remain hot for a couple of minutes.
Otherwise, you may get bodily injuries such as skin-burn or damage.
- Do not apply power to a damaged inverter or to an inverter with parts missing even if the installation is complete.
Otherwise, electric shock could occur.
- Do not allow lint, paper, wood chips, dust, metallic chips or other foreign matter into the drive.
Otherwise, fire or accident could occur.

[Risk of injury or Electric Shock]

- Read the manual carefully and follow the safety Instructions before installing or using the device.
- Before opening the cover, disconnect all power sources and wait for at least 10 minutes.

[Risque de blessure ou de choc électrique]

- Avant d'installer ou d'utiliser l'appareil, vous devez lire attentivement le manuel et suivre les consignes de sécurité.
- Avant d'ouvrir le capot, débrancher toutes les sources d'alimentation et attendre au moins 10 minutes.

OPERATING PRECAUTIONS

(1) Handling and installation
\square Handle according to the weight of the product.
\square Do not stack the inverter boxes higher than the number recommended.
\square Install according to instructions specified in this manual.
\square Do not open the cover during delivery.
\square Do not place heavy items on the inverter.
$\square \quad$ Check the inverter mounting orientation is correct.
\square Do not drop the inverter, or subject it to impact.
\square Follow your national electrical code for grounding. Recommended Ground impedance for 200 V Class is below 100 ohm and for 400 V class below 10 ohm.
\square iG5A series contains ESD (Electrostatic Discharge) sensitive parts. Take protective measures against ESD before touching the PCB for inspection or installation.
\square Use the inverter under the following environmental conditions:

	Surrounding temperature	- $10 \sim 50{ }^{\circ} \mathrm{C}$ (non-freezing)
	Relative humidity	90\% RH or less (non-condensing)
	Storage temperature	$-20 \sim 65{ }^{\circ} \mathrm{C}$
	Location	Protected from corrosive gas, combustible gas, oil mist or dust
	Altitude, Vibration	Max. 1,000m above sea level, Max. $5.9 \mathrm{~m} / \mathrm{sec}^{2}$ (0.6G) or less
	Atmospheric pressure	$70 \sim 106$ kPa

(2) Wiring
\square Do not connect a power factor correction capacitor, surge suppressor, or RFI filter to the output of the inverter.
$\square \quad$ The connection orientation of the output cables $\mathrm{U}, \mathrm{V}, \mathrm{W}$ to the motor will affect the direction of rotation of the motor.
\square Incorrect terminal wiring could result in the equipment damage.
\square Reversing the polarity (+/-) of the terminals could damage the inverter.
\square Only authorized personnel familiar with LS inverter should perform wiring and inspections.
\square Always install the inverter before wiring. Otherwise, you may get an electric shock or have bodily injury.
(3) Trial run
$\square \quad$ Check all parameters during operation. Changing parameter values might be required depending on the load.
$\square \quad$ Always apply permissible range of voltage to the each terminal as indicated in this manual. Otherwise, it could lead to inverter damage.
(4) Operation precautions
\square When the Auto restart function is selected, stay away from the equipment as a motor will restart suddenly after an alarm stop.

- The Stop key on the keypad is valid only when the appropriate function setting has been made. Prepare an emergency stop switch separately.
\square If an alarm reset is made with the reference signal present, a sudden start will occur. Check that the reference signal is turned off in advance. Otherwise an accident could occur.
- Do not modify or alter anything inside the inverter.
- Motor might not be protected by electronic thermal function of inverter.
\square Do not use a magnetic contactor on the inverter input for frequent starting/stopping of the inverter.
\square Use a noise filter to reduce the effect of electromagnetic interference. Otherwise nearby electronic equipment may be affected.
\square In case of input voltage unbalance, install AC reactor. Power Factor capacitors and generators may become overheated and damaged due to potential high frequency noise transmitted from inverter.
$\square \quad$ Use an insulation-rectified motor or take measures to suppress the micro surge voltage when driving 400 V class motor with inverter. A micro surge voltage attributable to wiring constant is generated at motor terminals, and may deteriorate insulation and damage motor.
\square Before operating unit and prior to user programming, reset user parameters to default settings.
$\square \quad$ Inverter can easily be set to high-speed operations, Verify capability of motor or machinery prior to operating unit.
\square Stopping torque is not produced when using the DC-Break function. Install separate equipment when stopping torque is needed.
(5) Fault prevention precautions
- Provide a safety backup such as an emergency brake which will prevent the machine and equipment from hazardous conditions if the inverter fails.
(6) Maintenance, inspection and parts replacement
\square Do not conduct a megger (insulation resistance) test on the control circuit of the inverter.
\square Refer to Chapter 6 for periodic inspection (parts replacement).
(7) Disposal
\square Handle the inverter as an industrial waste when disposing of it.
(8) General instructions
\square Many of the diagrams and drawings in this instruction manual show the inverter without a circuit breaker, a cover or partially open. Never run the inverter like this. Always place the cover with circuit breakers and follow this instruction manual when operating the inverter.

Important User Information

- The purpose of this manual is to provide the user with the necessary information to install, program, start up and maintain the SV-iG5A series inverter.
- To assure successful installation and operation, the material presented must be thoroughly read and understood before proceeding.
- This manual contains...

Chapter	Title	Description
1	Basic information and precautions	Provides general information and precautions for safe use of the SV-iG5A series inverter.
2	Installation and Wiring	Provides instructions on how to install and wiring for power source and signal terminal of SV-iG5A inverter.
3	Basic configuration	Describes how to connect the optional peripheral devices to the inverter.
4	Programming and keypad Basic operation	Illustrates keypad features and display \& Provides instructions for quick start of the inverter.
5	Function list	Parameter values are listed.
6	Troubleshooting and maintenance	Defines the various inverter faults and the appropriate action to take as well as general troubleshooting information.
7	Specifications and Option	Gives information on Input/Output rating, control type and more details of the SV-iG5A inverter. Explains options including Remote keypad, Conduit, EMC filter, DB resistor, DeviceNet Module.

EAC mark

 EH[The EAC (EurAsian Conformity) mark is applied to the products before they are placed on the market of the Eurasian Customs Union member states.
It indicates the compliance of the products with the following technical regulations and requirements of the Eurasian Customs Union:
Technical Regulations of the Customs Union 004/2011 "On safety of low voltage equipment"
Technical Regulations of the Customs Union 020/2011 "On electromagnetic compatibility of technical products"

Table of Contents

CHAPTER 1 - Basic information AND precautions 1-1
1.1 Important precautions 1-1
1.2 Product Details 1-2
1.3 Product assembling and disassembling 1-2
CHAPTER 2 - Installation AND Wiring 2-1
2.1 Installation precautions 2-1
2.2 Dimensions 2-3
2.3 Terminal wiring (Control I/O) 2-7
2.4 Specifications for power terminal block wiring 2-9
2.5 Control terminal specification 2-12
2.6 PNP/NPN selection and connector for communication option 2-13
2.7 Terminating Resistor selection 2-14
CHAPTER 3 - Basic configuration 3-1
3.1 Connection of peripheral devices to the inverter 3-1
3.2 Recommended MCCB 3-2
3.3 Recommendable Fuse, Reactors 3-3
CHAPTER 4 - Programming Keypad AND Basic operation 4-1
4.1 Keypad features 4-1
4.2 Alpha-numeric view on the LED keypad 4-2
4.3 Moving to other groups 4-3
4.4 How to change the codes in a group 4-5
4.5 Parameter setting 4-7
4.6 Monitoring of operation status 4-10
4.7 Frequency Setting and Basic Operation 4-13
CHAPTER 5 - Function list 5-1
CHAPTER 6-Troubleshooting and Maintenance 6-1
6.1 Protective functions 6-1
6.2 Fault Remedy 6-3
6.3 Precautions for maintenance and inspection 6-5
6.4 Check points. 6-5
6.5 Part replacements 6-6
CHAPTER 7 - Specifications 7-1
7.1 Technical data 7-1
7.2 Temperature Derating Information 7-4
7.3 Remote option 7-4
7.4 Conduit Kit 7-6
7.5 Braking resistor 7-7
7.6 DeviceNet/Ethernet Communication Module 7-8
7.7 RS-485 Common Parameter Code List (Common area) 7-9

DECLARATION OF CONFORMITY

 오류! 책갈피가 정의되어 있지 않습니다.
CHAPTER 1 - BASIC INFORMATION AND PRECAUTIONS

1.1 Important precautions

Unpacking and inspection

- Inspect the inverter for any damage that may have occurred during shipping. To verify the inverter unit is the correct one for the application you need, check the inverter type, output ratings on the nameplate and the inverter is intact.

SV		075	iG5A		2	(N)
	Motor rating		Series Name		Input power	Keypad
	004	0.4 [kW$]$	iG5A	1	Single Phase 200~230[V]	Non-loader I/O Products
	008	$0.75[\mathrm{~kW}]$				
	015	1.5 [kW$]$				
	022	2.2 [kW$]$				
	040	4.0 [kW]			Three Phase	
	055	5.5 [kW]			200~230[V]	
	075	7.5 [kW]				
	110	11.0 [kW$]$				
	150	15.0 [kW]			Three Phase	
	185	18.5 [kW]			380~480[V]	
	220	22.0 [kW]				

- Accessories

If you have found any discrepancy, damage, etc., contact your sales representative.

Preparations of
instruments and parts required for operation

Installation

- Instruments and parts to be prepared depend on how the inverter is operated. Prepare equipment and parts as necessary.

Wiring

- To operate the inverter with high performance for a long time, install the inverter in a proper place in the correct direction and with proper clearances.
- Connect the power supply, motor and operation signals (control signals) to the terminal block. Note that incorrect connection may damage the inverter and peripheral devices.

1.2 Product Details

- Appearance

- Inside view after front cover is removed

Refer to " 1.3 front cover removal" for details.

- To remove the front cover: Press the both indented sides of the cover lightly and pull up.

- To change the inverter fan: Press the both sides of bottom cover lightly and pull out to your side.

CHAPTER 2 - INSTALLATION AND WIRING

2.1 Installation precautions

CAUTION

- Handle the inverter with care to prevent damage to the plastic components. Do not hold the inverter by the front cover. It may fall off.
- Install the inverter in a place where it is immune to vibration $\left(5.9 \mathrm{~m} / \mathrm{s}^{2}\right.$ or less).
- Install in a location where temperature is within the permissible range ($10 \sim 50^{\circ} \mathrm{C}$).

<Ambient Temp Checking Location>

- The inverter will be very hot during operation. Install it on a non-combustible surface.
- Mount the inverter on a flat, vertical and level surface. Inverter orientation must be vertical (top up) for proper heat dissipation. Also leave sufficient clearances around the inverter.

- Protect from moisture and direct sunlight.
- Do not install the inverter in any environment where it is exposed to water drops, oil mist, dust, etc. Install the inverter in a clean place or inside a "totally enclosed" panel any suspended matter is not entered.
- When two or more inverters are installed or a cooling fan is mounted in a panel, the inverters and fan must be installed in proper positions with extreme care to keep the ambient temperature below the permissible range.
- Installed the inverter using screws or bolts to insure the inverter is firmly fastened.
< For installing multiple inverters in a panel>

\backslash CAUTION
Take caution on proper heat ventilation when installing inverters and fans in a panel.

2.2 Dimensions

SV004iG5A-1

SV004iG5A-2 / SV008iG5A-2
SV004iG5A-4 / SV008iG5A-4

SV008iG5A-1
SV015iG5A-2 / SV015iG5A-4

SV015IG5A-1
SV022iG5A-2 / SV037iG5A-2 / SV040iG5A-2 SV055iG5A-2 / SV075iG5A-2 SV022iG5A-4 / SV037iG5A-4 / SV040iG5A-4 SV055iG5A-4 / SV075iG5A-4

SV110iG5A-2 / SV150iG5A-2 SV110iG5A-4 / SV150iG5A-4

SV185iG5A-2 / SV220iG5A-2
SV185iG5A-4 / SV220iG5A-4

CHAPTER 2. INSTALLATION AND WIRING

Inverter	$\mathrm{ckW}]$	W $[\mathrm{mm}]$	W 1 $[\mathrm{~mm}]$	H $[\mathrm{mm}]$	H 1 $[\mathrm{~mm}]$	D $\mathrm{mm}]$	Φ	A $[\mathrm{mm}]$	B $[\mathrm{mm}]$	$[\mathrm{Kg}]$
SV004iG5A-1	0.4	70	65.5	128	119	130	4.0	4.5	4.0	0.76
SV008iG5A-1	0.75	100	95.5	128	120	130	4.5	4.5	4.5	1.12
SV015iG5A-1	1.5	140	132	128	120.5	155	4.5	4.5	4.5	1.84
SV004iG5A-2	0.4	70	65.5	128	119	130	4.0	4.5	4.0	0.76
SV008iG5A-2	0.75	70	65.5	128	119	130	4.0	4.5	4.0	0.77
SV015iG5A-2	1.5	100	95.5	128	120	130	4.5	4.5	4.5	1.12
SV022iG5A-2	2.2	140	132	128	120.5	155	4.5	4.5	4.5	1.84
SV037iG5A-2	3.7	140	132	128	120.5	155	4.5	4.5	4.5	1.89
SV040iG5A-2	4.0	140	132	128	120.5	155	4.5	4.5	4.5	1.89
SV055iG5A-2	5.5	180	170	220	210	170	4.5	5.0	4.5	3.66
SV075iG5A-2	7.5	180	170	220	210	170	4.5	5.0	4.5	3.66
SV110iG5A-2	11.0	235	219	320	304	189.5	7.0	8.0	7.0	9.00
SV150iG5A-2	15.0	235	219	320	304	189.5	7.0	8.0	7.0	9.00
SV185iG5A-2	18.5	260	240	410	392	208.5	10.0	10.0	10.0	13.3
SV220iG5A-2	22.0	260	240	410	392	208.5	10.0	10.0	10.0	13.3
SV004iG5A-4	0.4	70	65.5	128	119	130	4.0	4.5	4.0	0.76
SV008iG5A-4	0.75	70	65.5	128	119	130	4.0	4.5	4.0	0.77
SV015iG5A-4	1.5	100	95.5	128	120	130	4.5	4.5	4.5	1.12
SV022iG5A-4	2.2	140	132	128	120.5	155	4.5	4.5	4.5	1.84
SV037iG5A-4	3.7	140	132	128	120.5	155	4.5	4.5	4.5	1.89
SV040iG5A-4	4.0	140	132	128	120.5	155	4.5	4.5	4.5	1.89
SV055iG5A-4	5.5	180	170	220	210	170	4.5	5.0	4.5	3.66
SV075iG5A-4	7.5	180	170	220	210	170	4.5	5.0	4.5	3.66
SV110iG5A-4	11.0	235	219	320	304	189.5	7.0	8.0	7.0	9.00
SV150iG5A-4	15.0	235	219	320	304	189.5	7.0	8.0	7.0	9.00
SV185iG5A-4	18.5	260	240	410	392	208.5	10.0	10.0	10.0	13.3
SV220iG5A-4	22.0	260	240	410	392	208.5	10.0	10.0	10.0	13.3

2.3 Terminal wiring (Control I/O)

* Power terminal wiring ($0.4 \sim 7.5 \mathrm{~kW}$)

※ AC input of Single Phase Products must be
 applied in R, $\mathrm{T}(0.4 \sim 1.5 \mathrm{~kW})$.

2.4 Specifications for power terminal block wiring

	R,S,T Size		U,V,W Size		Ground Size		Terminal Screw Size	Screw Torque (Kgf.cm)/lb-in
	mm^{2}	AWG	mm^{2}	AWG	mm^{2}	AWG		
SV004iG5A-1	2	14	2	14	3.5	12	M3. 5	10/8.7
SV008iG5A-1								
SV015iG5A-1							M4	15/13
SV004iG5A-2								
SV008iG5A-2							M3.5	10/8.7
SV015iG5A-2								
SV022iG5A-2								
SV037iG5A-2	3.5	12	3.5	12			M4	15/13
SV040iG5A-2								
SV055iG5A-2	5.5	10	5.5	10	5.5	10	M5	32/28
SV075iG5A-2	8	8	8	8				
SV110iG5A-2	14	6	14	6	14	6	M6	30.7/26.6
SV150iG5A-2	22	4	22	4				
SV185iG5A-2	30	2	30	2	22	4	M8	30.6/26.5
SV220iG5A-2	38	2	30	2	22	4	M8	30.6/26.5
SV004iG5A-4	2	14	2	14	2	14	M3. 5	
SV008iG5A-4							M3.5	10/8.7
SV015iG5A-4							M4	15/13
SV022iG5A-4								
SV037iG5A-4								
SV040iG5A-4								
SV055iG5A-4	3.5	12			3.5	12	M5	32/28
SV075iG5A-4			3.5	12				32/28
SV110iG5A-4	5.5	10	5.5	10	8	8		30.7126 .6
SV150iG5A-4	14	6	8	8				30.7/26.6
SV185iG5A-4					14	6	M6	30.6/26.5
SV220iG5A-4	22	4	14	6	14	6	M6	30.6/26.5

*Strip the sheaths of the wire insulation 7 mm when a ring terminal is not used for power connection.

*SV185iG5A-2 and SV220iG5A-2 must use Ring or Fork Terminal certainly approved by UL.

CAUTION

- Apply rated torques to the terminal screws. Loose screws may cause short circuits and malfunctions. Tightening the screw too much may damage the terminals and cause short circuits and malfunctions.
- Use copper wires only with $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ ratings for wiring.
- Make sure the input power is off before wiring.
- When power supply is switched off following operation, wait at least 10 minutes after LED keypad display is off before you start working on it.
- Applying input power supply to the output terminals U, V and W causes internal inverter damage.
- Use ring terminals with insulated caps when wiring the input power and motor wiring.
- Do not leave wire fragments inside the inverter. Wire fragments can cause faults, breakdowns and malfunctions.
- When more than one motor is connected to one inverter, total wire length should be less than 200m (656 ft). Do not use a 3 -wire cable for long distances. Due to increased leakage capacitance between wires, overcurrent protective feature may operate or equipment connected to the output side may malfunction. In case of long wire length, it should be required to lower carrier frequency or use Micro Surge Filter.

Length between Inverter and Motor	Up to 50 m	Up to 100 m	More than 100 m
Allowable Carrier Frequency	Less than 15 kHz	Less than 5 kHz	Less than 2.5 kHz

(For products of less than 3.7 kW , the wire length should be less than $100 \mathrm{~m}(328 \mathrm{ft})$).

- Never short B1 and B2 terminals. Shorting terminals may cause internal inverter damage.
- Do not install a power factor capacitor, surge suppressor or RFI filters in the output side of the inverter. Doing so may damage these components.
- To avoid circuit interruption or damaging connected equipment, do not install magnetic contactors on the output side of the inverter.

[WARNING]

- Power supply wirings must be connected to the R, S, and T terminals. Connecting them to the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ terminals causes internal damages to the inverter. Motor should be connected to the U, V, and W Terminals. Arrangement of the phase sequence is not necessary.
- If the forward command (Fx) is on, the motor should rotate counter clockwise when viewed from the load side of the motor. If the motor rotates in the reverse direction, switch the cables at the U and V terminals.

CHAPTER 2. INSTALLATION AND WIRING

WARNING

- Use the Type 3 grounding method (Ground impedance: Below 100) for 230V class inverters.
- Use the Special Type 3 grounding method (Ground impedance: Below 10Ω) for 460 V class inverters.
- Use the dedicated ground terminal to ground the inverter. Do not use the screw in the case or chassis, etc for grounding.

Opening to access
Ground Terminal

Note

Grounding procedure

1) Remove the front cover.
2) Connect the Grounding wire to the ground terminal through the opening for ground terminal as shown above. Enter the screw driver from vertical to the terminal and secure the screw tightly.
[Grounding work guidance]

Inverter capacity	200V Class			400V Class		
	Wire size	Terminal screw	Ground Spec.	Wire size	Terminal screw	Ground Spec.
$0.4 \sim 4.0 \mathrm{~kW}$	$3.5 \mathrm{~mm}^{2}$	M3	Ground Impedance Below 100Ω	2.0 mm²	M3	Ground Impedance Below 10Ω
$5.5 \sim 7.5 \mathrm{~kW}$	5.5 mm 2	M4		3.5 mm 2	M4	
$11 \sim 15 \mathrm{~kW}$	14.0 mm 2	M5		8.0 mm 2	M5	
18.5~22 kW	22.0 mm2	M6		14.0 mm 2	M5	

2.5 Control terminal specification

									MO	MG
24	P1	P2	CM	P3	P4	S-	S+			

T/M	Terminal Description	Wire size [mm^{2}]		$\begin{aligned} & \text { Screw } \\ & \text { size } \end{aligned}$	Torque [Nm]	Specification
		single wire	$\begin{gathered} \text { Stran- } \\ \text { ded } \end{gathered}$			
$\begin{aligned} & \hline \text { P1~ } \\ & \text { P8 } \end{aligned}$	$\begin{aligned} & \text { Multi-function input T/M } \\ & 1-8 \end{aligned}$	1.0	1.5	M2.6	0.4	-
СМ	Common Terminal					-
VR	Power supply for external potentiometer					Output voltage: 12V Max output current: 100 mA Potentiometer: $1 \sim 5 \mathrm{kohm}$
V1	Input terminal for Voltage operation					Max input voltage: $-10 \mathrm{~V} \sim+10 \mathrm{~V} \text { input }$
1	Input terminal for Current operation					$0 \sim 20 \mathrm{~mA}$ input Internal resistor: 250 ohm
AM	Multi-function analog output terminal					Max output voltage: $11[\mathrm{~V}]$ Max output current: 10 mA
MO	Multi-function terminal for open collector					Below DC 26V,100mA
MG	Ground terminal for external power supply					
24	24V External Power Supply					Max output current: 100 mA
3A	Multi-function relay output A contact					Below AC 250V, 1A
3B	Multi-function relay output B contact					Below DC 30V, 1A
3 C	Common for Multifunction relays					-

Note 1) Tie the control wires more than 15 cm away from the control terminals. Otherwise, it interfere front cover reinstallation
Note 2) Use Copper wires rated $600 \mathrm{~V}, 75{ }^{\circ} \mathrm{C}$ and higher.
Note 3) Use the recommended tightening torque when securing terminal screws.

Note

When you use external power supply (24 V) for multi-function input terminal (P1~P8), terminals will be active above 12 V level. Take caution not to drop the voltage below 12 V .

2.6 PNP/NPN selection and connector for communication option

1. When using DC 24 V inside inverter [NPN]

2. When using external DC 24V [PNP]

CHAPTER 2. INSTALLATION AND WIRING

2.7 Terminating Resistor selection

1. When not using Terminating Resistor

※ Terminating Resistor applies to iG5A made after the latter half of 2013.

2. When using Terminating Resistor

CHAPTER 3 - BASIC CONFIGURATION

3.1 Connection of peripheral devices to the inverter

The following devices are required to operate the inverter. Proper peripheral devices must be selected and correct connections made to ensure proper operation. An incorrectly applied or installed inverter can result in system malfunction or reduction in product life as well as component damage. You must read and understand this manual thoroughly before proceeding.

| Use the power supply within the |
| :--- | :--- |
| Usermissible range of inverter input |
| power rating (Refer to Page 7-1). |

Notice1) Terminal block for DC reactor is composed in the more than 11 kw capacity.

CHAPTER 3. BASIC CONFIGURATION

3.2 Recommended MCCB

Inverter Capacity	MCCB	MC	ELCB
004iG5A-1	ABS33c/5, UTE100/15	MC-6a	EBS33c/5
008iG5A-1	ABS33c/10, UTE100/15	MC-9a, MC-9b	EBS33c/10
015iG5A-1	ABS33c/15, UTE100/15	MC-18a, MC-18b	EBS33c/15
004iG5A-2	ABS33c/5, UTE100/15	MC-6a	EBS33c/5
008iG5A-2	ABS33c/10, UTE100/15	MC-9a, MC-9b	EBS33c/10
015iG5A-2	ABS33c/15, UTE100/15	MC-18a, MC-18b	EBS33c/15
022iG5A-2	ABS33c/20, UTE100/20	MC-22b	EBS33c/20
037iG5A-2	ABS33c/30. UTE100/30	MC-32a	EBS33c/30
040iG5A-2		MC-32a	EBS33c/30
055iG5A-2	ABS53c/50, UTE100/50	MC-50a	EBS53c/50
075iG5A-2	ABS63c/60, UTE100/60	MC-65a	EBS63c/60
110iG5A-2	ABS103c/100, UTE100/90	MC-85a	EBS103c/100
150iG5A-2	ABS103c/125, UTS150/125	MC-130a	EBS103c/125
185iG5A-2	ABS203c/150, UTS150/150	MC-150a	EBS203c/150
220iG5A-2	ABS203c/175, UTS250/175	MC-185a	EBS203c/175
004iG5A-4	ABS33c/3, UTE100/15	MC-6a	EBS33c/5
008iG5A-4	ABS33c/5, UTE100/15	MC-6a	EBS33c/5
015iG5A-4	ABS33c/10, UTE100/15	MC-9a, MC-9b	EBS33c/10
022iG5A-4		MC-12a, MC-12b	EBS33c/10
037iG5A-4	ABS33c/15, UTE100/15	MC-18a, MC-18b	EBS33c/15
040iG5A-4	ABS33c/20, UTE100/20	MC-18a, MC-18b	EBS33c/20
055iG5A-4	ABS33c/30, UTE100/30	MC-22b	EBS33c/30
075iG5A-4	MC-32a	EBS33c/30	
110iG5A-4	ABS53c/50, UTE100/50	MC-50a	EBS53c/50
150iG5A-4	ABS63c/60, UTE100/60	MC-65a	EBS63c/60
185iG5A-4	ABS103c/75, UTE100/80	MC-75a	EBS103c/75
$220 i G 5 A-4 ~$	ABS103c/100, UTE100/90	MC-85a	EBS103c/100

Note

1. The capacity of the MCCB should be 1.5 to 2 times the rated output current of the drive.
2. Use an MCCB keep the drive from faulting out instead of using overheat protection (150% for one minute at the rated output current.)
3. In case magnetic contactor is used on single-phase product, wire R and T phases.

CHAPTER 3. BASIC CONFIGURATION

3.3 Recommendable Fuse, Reactors

Inverter Capacity	AC Input fuse [External Fuse]		AC Reactor	DC Reactor
	Current	Voltage		
004iG5A-1	10 A	600 V	$4.20 \mathrm{mH}, 3.5 \mathrm{~A}$	-
008iG5A-1	10 A		$2.13 \mathrm{mH}, 5.7 \mathrm{~A}$	-
015iG5A-1	15 A		$1.20 \mathrm{mH}, 10 \mathrm{~A}$	-
004iG5A-2	10 A		$4.20 \mathrm{mH}, 3.5 \mathrm{~A}$	-
008iG5A-2	10 A		$2.13 \mathrm{mH}, 5.7 \mathrm{~A}$	-
015iG5A-2	15 A		$1.20 \mathrm{mH}, 10 \mathrm{~A}$	-
022iG5A-2	25 A		$0.88 \mathrm{mH}, 14 \mathrm{~A}$	-
037iG5A-2	30 A		$0.56 \mathrm{mH}, 20 \mathrm{~A}$	-
040iG5A-2	30 A		$0.56 \mathrm{mH}, 20 \mathrm{~A}$	-
055iG5A-2	30 A		$0.39 \mathrm{mH}, 30 \mathrm{~A}$	-
075iG5A-2	50 A		$0.28 \mathrm{mH}, 40 \mathrm{~A}$	-
110iG5A-2	70 A		$0.20 \mathrm{mH}, 59 \mathrm{~A}$	$0.74 \mathrm{mH}, 56 \mathrm{~A}$
150iG5A-2	100 A		$0.15 \mathrm{mH}, 75 \mathrm{~A}$	$0.57 \mathrm{mH}, 71 \mathrm{~A}$
185iG5A-2	100 A		$0.12 \mathrm{mH}, 96 \mathrm{~A}$	$0.49 \mathrm{mH}, 91 \mathrm{~A}$
220iG5A-2	125 A		$0.10 \mathrm{mH}, 112 \mathrm{~A}$	$0.42 \mathrm{mH}, 107 \mathrm{~A}$
004iG5A-4	5 A		$18.0 \mathrm{mH}, 1.3 \mathrm{~A}$	-
008iG5A-4	10 A		$8.63 \mathrm{mH}, 2.8 \mathrm{~A}$	-
015iG5A-4	10 A		$4.81 \mathrm{mH}, 4.8 \mathrm{~A}$	-
022iG5A-4	10 A		$3.23 \mathrm{mH}, 7.5 \mathrm{~A}$	-
037iG5A-4	20 A		$2.34 \mathrm{mH}, 10 \mathrm{~A}$	-
040iG5A-4	20 A		$2.34 \mathrm{mH}, 10 \mathrm{~A}$	-
055iG5A-4	20 A		$1.22 \mathrm{mH}, 15 \mathrm{~A}$	-
075iG5A-4	30 A		$1.14 \mathrm{mH}, 20 \mathrm{~A}$	-
110iG5A-4	35 A		$0.81 \mathrm{mH}, 30 \mathrm{~A}$	$2.76 \mathrm{mH}, 29 \mathrm{~A}$
150iG5A-4	45 A		$0.61 \mathrm{mH}, 38 \mathrm{~A}$	$2.18 \mathrm{mH}, 36 \mathrm{~A}$
185iG5A-4	60 A		$0.45 \mathrm{mH}, 50 \mathrm{~A}$	$1.79 \mathrm{mH}, 48 \mathrm{~A}$
220iG5A-4	70 A		$0.39 \mathrm{mH}, 58 \mathrm{~A}$	$1.54 \mathrm{mH}, 55 \mathrm{~A}$

[Note]

- The drive is suitable for use in a circuit capable of delivering not more than 65 kA RMS at the drive's maximum rated voltage.

[Caution]

- Use Class H or RK5 UL listed Input fuses and UL listed breakers ONLY. See the table above for the voltage and current ratings for the fuses and breakers.

[Remarque]

- L'entraînement convient pour une utilisation dans un circuit capable de délivrer pas plus de 65 kA RMS à la tension nominale maximale de l'entraînement.
- Appliquer des couples de marche aux vis des bornes. Des vis desserrées peuvent provoquer des courts-circuits et des dysfonctionnements. Ne pas trop serrer la vis, car cela risque d'endommager les bornes et de provoquer des courts-circuits et des dysfonctionnements.
- Utiliser uniquement des fils de cuivre avec une valeur nominale de $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ pour le câblage de la borne d'alimentation.

[Attention]

- Utiliser UNIQUEMENT des fusibles d'entrée homologués de Classe H ou RK5 UL et des disjoncteurs UL. Se reporter au tableau ci-dessus pour la tension et le courant nominal des fusibless et des disjoncteurs.
- Les câblages de l'alimentation électrique doivent être connectés aux bornes R, S et T. Leur connexion aux bornes U, V et W provoque des dommages internes à l'onduleur. Le moteur doit être raccordé aux bornes U, V et W . L'arrangement de l'ordre de phase n'est pas nécessaire.
- Si la commande avant (Fx) est activée, le moteur doit tourner dans le sens antihoraire si on le regarde côté charge du moteur. Si le moteur tourne dans le sens inverse, inverser les câbles aux bornes U et V .

CHAPTER 4 - PROGRAMMING KEYPAD AND BASIC OPERATION

4.1 Keypad features

Display		
FWD	Lit during forward run.	
REV	Lit during reverse run.	Blinks when a fault occurs.
RUN	Lit during operation.	
SET	Lit during parameter setting.	
7 segment	Displays operation status and parameter information.	

Keys		
RUN		Run command
STOP/RESET	STOP: Stop command during operation, RESET: Reset command when fault occurs.	
$\boldsymbol{\Delta}$	UP	Used to scroll through codes or increase parameter value
$\boldsymbol{\nabla}$	Down	Used to scroll through codes or decrease parameter value
$\boldsymbol{4}$	Left	Used to jump to other parameter groups or move a cursor to the left to change the parameter value
\boldsymbol{R}	Right	Used to jump to other parameter groups or move cursor to the right to change the parameter value
\bullet	ENT	Used to set the parameter value or save the changed parameter value

4.2 Alpha-numeric view on the LED keypad

19	0	8	A	18	K	11	U
1	1	18	B	1	L	1	V
I	2	E	C	i1	M	11	W
9	3	-18	D	17	N	1	X
4	4	E	E	$\begin{aligned} & 17 \\ & 10 \end{aligned}$	0	4	Y
I	5	E	F	17	P	E	Z
8	6	5	G	8	Q		
7	7	-18	H	-	R		
8	8	1	1	I	S		
9	9	$\underline{1}$	J	$\underline{1}$	T		

4.3 Moving to other groups

- There are 4 different parameter groups in SV- iG5A series as shown below.

Drive group	Basic parameters necessary for the inverter to run. Parameters such as Target frequency, Accel/Decel time settable.
Function group 1	Basic function parameters to adjust output frequency and voltage.
Function group 2	Advanced function parameters to set parameters for such as PID Operation and second motor operation.
I/O (Input/Output) group	Parameters necessary to make up a sequence using Multi-function input/output terminal.

- Moving to other parameter groups is only available in the first code of each group as the figure shown below.

* Target frequency can be set at $\mathbf{0 . 0}$ (the $1^{\text {st }}$ code of drive group). Even though the preset value is 0.0 , it is user-settable. The changed frequency will be displayed after it is changed.
- How to move to other groups at the 1st code of each group

1	$\begin{aligned} & 71717 \\ & 10.11101 \\ & \hline \end{aligned}$	-. The $1^{\text {st }}$ code in Drive group " 0.00 " will be displayed when AC input power is applied. -. Press the right arrow (\downarrow) key once to go to Function group 1.
2	5 17	-. The $1^{\text {st }}$ code in Function group 1 " F 0" will be displayed. -. Press the right arrow $(\boldsymbol{\nabla})$ key once to go to Function group 2.
3	11 11 11	-. The $1^{\text {st }}$ code in Function group 2 "H 0 " will be displayed. -. Press the right arrow $(\$)$ key once to go to I/O group.
4	$\begin{array}{\|c} 1 \\ 1 \end{array}$	- The 1st code in I/O group "I 0 " will be displayed. -. Press the right arrow () key once again to return to Drive group.
5	$\begin{aligned} & 77171 \\ & 10.10110 \end{aligned}$	-. Return to the $1^{\text {st }}$ code in Drive group " 0.00 ".
If the left arrow key (\mathbb{C}) is used, the above will be executed in the reverse order.		

- How to move to other groups from any codes other than the $1^{\text {st }}$ code

- To move from the F 15 to function group 2

-. In F 15, press the Left ($\boldsymbol{\Psi}$) or Right arrow ($\boldsymbol{\nabla}$) key. Pressing the key goes to the first code of the group.

2

-. The $1^{\text {st }}$ code in function group 1 " F 0 " is displayed.
-. Press the right arrow ($>$) key.

-. The $1^{\text {st }}$ code in function group 2 " H 0 " will be displayed.

4.4 How to change the codes in a group

- Code change in Drive group

1	771717 1.16110	-. In the $1^{\text {st }}$ code in Drive group " 0.00 ", press the Up ($\mathbf{(}$) key once.
2	$\begin{array}{lll} \hline 0 & 1 & 1 \\ 1716 & 1 \\ \hline \end{array}$	-. The $2^{\text {nd }}$ code in Drive group "ACC" is displayed. -. Press the Up ($\mathbf{\Delta}$) key once.
3	$\begin{array}{ll} 115 \\ \hline 15 & 1 \\ \hline 15 \end{array}$	-. The $3^{\text {rd }}$ code "dEC" in Drive group is displayed. -. Keep pressing the Up ($\mathbf{\Delta}$) key until the last code appears.
4	-10-1-1	-. The last code in Drive group "drC" is displayed. -. Press the Up ($\mathbf{\Delta}$) key again.
5	$\begin{aligned} & 771717 \\ & 10.1011 \end{aligned}$	-. Return to the first code of Drive group.
\& Use Down ($\boldsymbol{\nabla}$) key for the opposite order.		

- Code jump

When moving from the "F 0" to the "F 15" directly

1	$\begin{array}{ll} 5 & 17 \\ \hline \end{array}$	-. Press the Ent (O) key in "F 0".
2	1	-. 1 (the code number of F 1) is displayed. Use the Up ($\boldsymbol{\Delta}$) key to set to 5 .
3	$\begin{aligned} & 178 \\ & 18 \\ & 10 \end{aligned}$	-. "05" is displayed by pressing the Left (4) key once to move the cursor to the left. The numeral having a cursor is displayed brighter. In this case, $\mathbf{0}$ is active. -. Use the Up (\mathbf{A}) key to set to 1.
4	$\begin{aligned} & 10 \\ & 108 \\ & \hline \end{aligned}$	-. 15 is set. -. Press the Ent (\bullet) key once.
5	$\begin{array}{ll} 5 & 15 \\ \hline \end{array}$	-. Moving to F 15 has been complete.

* Function group 2 and I/O group are settable with the same setting.
- Navigating codes in a group

When moving from F 1 to F 15 in Function group 1

	1	1	-. In F 1, continue pressing the Up ($\mathbf{\Delta}$) key until F15 is displayed.
	2	5 15	-. Moving to F15 has been complete.
	*. The same applies to Function group 2 and I/O group.		

$*$ Note: Some codes will be skipped in the middle of increment ($\boldsymbol{\Delta}$)/decrement $(\boldsymbol{\nabla})$ for code change. That is because it is programmed that some codes are intentionally left blank for future use or the codes user does not use are invisible.
Refer to the Ch. 5 for more specific contents
For example, when F24 [High/low frequency limit select] is set to "O (No) ", F25 [High frequency limit] and F26 [Low frequency limit] are not displayed during code change. But When F24 is set to "1(Yes)", F25 and F26 will appear on the display.

4.5 Parameter setting

- Changing parameter values in Drive Group

When changing ACC time from 5.0 sec to 16.0 sec

1	(17171701	-. In the first code " 0.00 ", press the Up (\mathbf{A}) key once to go to the second code.
2	(915	-. ACC [Accel time] is displayed. -. Press the Ent key (\bullet) once.
3	5071	-. Preset value is 5.0 , and the cursor is in the digit $\mathbf{0}$. -. Press the Left ($\mathbf{4})$ key once to move the cursor to the left.
4	5	-. The digit 5 in 5.0 is active. Then press the Up ($\mathbf{\Delta}$) key once.
5	50.0	-. The value is increased to 6.0 . -. Press the Left ($\mathbb{4}$) key to move the cursor to the left.
6	(100	-.0 .60 is displayed. The first $\mathbf{0}$ in $\mathbf{0 . 6 0}$ is active. -. Press the $\operatorname{Up}(\mathbf{A})$ key once.
7	(150]	-. 16.0 is set. -. Press the Ent (\bullet) key once. -. 16.0 is blinking. -. Press the Ent (\bullet) key once again to return to the parameter name.
8	9170	-. ACC is displayed. Accel time is changed from 5.0 to 16.0 sec.

* In step 7, pressing the Left ($\boldsymbol{\star}$) or Right ($\boldsymbol{\perp}$) key while 16.0 is blinking will disable the setting.

Note 1) Pressing the Left ($\mathbf{4}) / \operatorname{Right}(\boldsymbol{\nabla}) / \mathrm{Up}(\mathbf{\Delta}) /$ Down ($\mathbf{\nabla})$ key while cursor is blinking will cancel the parameter value change. Pressing the Enter key (\bullet) in this status will enter the value into memory.

Frequency setting
When changing run frequency to 30.05 Hz in Drive group

1	$\begin{aligned} & \hline 71717 \\ & 10.101101 \end{aligned}$	-. In "0.00", press the Ent (O) key once.
2	009717 0.00018	-. The second decimal 0 becomes active. -. Press the UP (\mathbf{A}) key until 5 is displayed.
3	(0705	-. Press the Left (\downarrow) key once.
4	P0170	-. The first decimal $\mathbf{0}$ becomes active. -. Press the Left ($\mathbb{4}$) key once.
5	$\begin{array}{llll} \hline 77 & 0 & 0 \\ 10.0 \\ 10.0 & 0 & 0 \\ \hline \end{array}$	-. Press the Left (\langle) key once.
6		-. Set 3 using UP ($\mathbf{\Delta}$) key.
7	$\begin{aligned} & 700100 \\ & 900000 \\ & 90.000 \end{aligned}$	-. Press the Ent (©) key. -. 30.05 is blinking. -. Press the Ent (-) key.
8	(1719	-. 30.05 is entered into memory.

\& SV-iG5A display can be extended to 5 digits using left ($\boldsymbol{4}) /$ right $(\boldsymbol{\nabla})$ keys.

* Parameter setting is disabled when pressing other than Enter Key in step 7.
- Changing parameter value in Input/Output group

When changing the parameter value of F28 from 2 to 5

| 1 | | -. In F0, press the Ent (\bigcirc) key once. |
| :--- | :--- | :--- | :--- | :--- |
| 2 | | -. Check the present code number. |
| -. Increase the value to 8 by pressing the Up (\mathbf{A}) key. | | |

* The above setting is also applied to change parameter values in function group 2 and I/O group.

CHAPTER 4. PROGRAMMING KEYPAD AND BASIC OPERATION

4.6 Monitoring of operation status

- Output current display

Monitoring output current in Drive group

1	$\begin{aligned} & 17177 \\ & 10.10110 \end{aligned}$	-. In [0.0], continue pressing the Up ($\mathbf{\Delta}$) or Down ($\boldsymbol{\nabla}$) key until [CUr] is displayed.
2	$\begin{array}{lll} 5 & 1 \\ 1 & 1 & 1 \\ \hline \end{array}$	-. Monitoring output current is provided in this parameter. -. Press the Enter (\bullet) key once to check the current.
3	5 1717 1.16118	-. Present output current is 5 A . -. Press the Enter (\bullet) key once to return to the parameter name.
4	$\begin{array}{lll} \hline 1 & 1 & 1 \\ 1 & 1 & 11 \\ \hline \end{array}$	-. Return to the output current monitoring code.

* Other parameters in Drive group such as dCL (Inverter DC link voltage) or vOL (Inverter output voltage) can be monitored via the same method.

Fault display
How to monitor fault condition in Drive group

1	$\begin{array}{lll} \hline 71 & 1 \\ 1015 & 1 \\ \hline \end{array}$	-. This message appears when an Overcurrent fault occurs. -. Press the Enter (-) key or UP/Down key once.
2	$\begin{aligned} & 7171717 \\ & 712.1016 \end{aligned}$	-. The run frequency at the time of fault (30.0) is displayed. -. Press the Up ($\mathbf{\Delta}$) key once.
3	[171	-. The output current at the time of fault is displayed. -. Press the Up (\mathbf{A}) key once.
4	910 910	-. Operating status is displayed. A fault occurred during acceleration. -. Press the STOP/RST key once.
5	$\begin{aligned} & \hline 17 \\ & \hline 16110 \\ & \hline \hline \end{aligned}$	-. A fault condition is cleared and "nOn" is displayed.

When more than one fault occurs at the same time

Parameter initialize
How to initialize parameters of all four groups in H93

1	11 17 17	-. In H 0 , press the Enter ($)$ key once.
2	1	-. Code number of H 0 is displayed. -. Increase the value to 3 by pressing the Up ($\mathbf{\Delta}$) key.
3	3	-. In 3, press the Left (4) key once to move the cursor to the left.
4	178 108	-. 03 is displayed. $\mathbf{0}$ in 03 is active. -. Increase the value to 9 by pressing the Up ($\mathbf{\Delta}$) key.
5	9	-.93 is set. -. Press the Enter (©) key once.
6	$\begin{array}{ll} 116 & 97 \\ \hline 19 \end{array}$	-. The parameter number is displayed. -. Press the Enter (\bigcirc) key once.
7	17	-. Present setting is 0 . -. Press the Up (\mathbf{A}) key once to set to 1 to activate parameter initialize.
8	1	-. Press the Enter (\bigcirc) key once.
9	$\begin{array}{ll} 11 & 97 \\ 1 & 9 \\ \hline \end{array}$	-. Return to the parameter number after blinking. Parameter initialize has been complete. -. Press the either Left (\mathbb{C}) or Right $(\boldsymbol{\nabla})$ key.
10	$\begin{array}{ll} 11 & 17 \\ 19 & 16 \end{array}$	-. Return to H0.

4.7 Frequency Setting and Basic Operation

Caution : The following instructions are given based on the fact that all parameters are set to factory defaults. Results could be different if parameter values are changed. In this case, initialize parameter values (see page 10-21) back to factory defaults and follow the instructions below.

- Frequency Setting via keypad and operating via terminals		
1		-. Apply AC input power to the inverter.
2		-. When 0.00 appears, press the Ent ($)^{\text {) key once. }}$
3		-. The second digit in 0.00 is lit as shown right. -. Press the Left ($\mathbb{4}$) key three times.
4		-. $\mathbf{0 0 . 0 0}$ is displayed and the first $\mathbf{0}$ is lit. -. Press the Up ($\mathbf{\Delta}$) key.
5	(17070	-. 10.00 is set. Press the Ent (\bullet) key once. -. 10.00 is blinking. Press the Ent ($\boldsymbol{\bullet}$) key once.
6	(177774	-. Run frequency is set to $\mathbf{1 0 . 0 0 ~ H z}$ when the blinking stops. -. Turn on the switch between P1 (FX) and CM terminals.
7	$\text { - } 11717070^{\circ}$	-. RUN lamp begins to blink with FWD (Forward Run) lit and accelerating frequency is displayed on the LED. -. When target run frequency 10 Hz is reached, $\mathbf{1 0 . 0 0}$ is displayed. -. Turn off the switch between P1 (FX) and CM terminals.
8		-. RUN lamp begins to blink and decelerating frequency is displayed on the LED. -. When run frequency is reached to 0 Hz , Run and FWD lamp turn off and $\mathbf{1 0 . 0 0}$ is displayed.

Wiring

Freq.

$$
\mathrm{P} 1(\mathrm{FX})-\mathrm{CM} \quad \mathrm{ON} \text { OFF }
$$

| Frequency Setting via potentiometer and operating via terminals |
| :--- | :--- | :--- |

1		-. Apply AC input power to the inverter.	
2		-. When 0.00 is displayed, press the Up ($\mathbf{\Delta}$) key three times.	
3		-. "drv" is displayed. Operating method is selectable. -. Press the Ent (O) key.	
4	1	-. Check the present operating method ("1": Run via control terminal). -. Down ($\mathbf{\nabla}$) key once.	
5	17	-. After setting " 0 ", press the Ent (\bullet) key. When 0 is blinking, press the Ent again.	
6		-. "drv" is displayed after " 0 " is blinking. Operation method is set via the Run key on the keypad. -. Press the Up ($\mathbf{\Delta}$) key once.	
7		-. Different frequency setting method is selectable. -. Press the Ent (\bullet) key.	
8		-. Check the present frequency setting method (" 0 " is run via keypad). -. Press the Up (䢸 key three times.	
9		-. After checking " 3 " (frequency setting via potentiometer), press the Ent (\bullet) key.	
10		-. "Frq" is displayed after " 3 " is blinking. Frequency setting is set via the potentiometer on the keypad. -. Press the Down ($\boldsymbol{\nabla}$) key four times. -. Turn the potentiometer to set to 10.0 Hz in either Max or Min direction.	
11		-. Press the Run key on the keypad. -. RUN lamp begins to blink with FWD lamp lit and accelerating frequency is displayed on the LED. -. When run frequency 10 Hz is reached, $\mathbf{1 0 . 0 0}$ is displayed as shown left. -. Press the STOP/RST key.	
12	-	-. RUN lamp begins to blink and decelerating frequency is displayed on the LED. -. When run frequency is reached to 0 Hz , Run and FWD lamp turn off and 10.00 is displayed.	
Wiring			Operating pattern

M E M O

4-16| LSis

CHAPTER 5 - FUNCTION LIST

- DRV Group

${ }^{11}$: This function will be supported when iG5A communication option board is applied.

CHAPTER 5. FUNCTION LIST

CHAPTER 5. FUNCTION LIST

LED display	Address for communication	Parameter name	Min/Max range	Description	Factory defaults	Adj. during run
	feedback amount		PID control. If H58 is 0, it is expressed as a [Hz] unit. If H58 is 1, it is expressed as a [\%] unit.			

1): Only displayed when one of the Multi-function input terminals 1-8 [I17~I24] is set to " 22 ".
${ }^{2)}$: It is indicated when H49(PID control selection) is 1 .

Function Group 1

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communi -cation	Parameter name	Min/Max range	Description	Factory defaults	Adj. during run
F 0	A200	[Jump code]	$0 \sim 71$	Sets the parameter code number to jump.	1	0
F 1	A201	[Forward/ Reverse run disable]	$0 \sim 2$	0 Fwd and rev run enable	0	X
				1 Forward run disable		
				2 Reverse run disable		
F 2	A202	[Accel pattern]	$0 \sim 1$	0 Linear	0	X
F 3	A203	[Decel pattern]		1 S-curve		
F 4	A204	[Stop mode select]	$0 \sim 3$	0 Decelerate to stop	0	X
				1 DC brake to stop		
				2 Free run to stop		
				3 Power Braking stop		
F 8 ${ }^{10}$	A208	[DC Brake start frequency]	$\begin{gathered} 0.1 \sim 60 \\ {[\mathrm{~Hz}]} \end{gathered}$	This parameter sets DC brake start frequency. It cannot be set below F23 - [Start frequency].	5.00	X
F 9	A209	[DC Brake wait time]	$\begin{gathered} 0 \sim 60 \\ {[\mathrm{sec}]} \end{gathered}$	When DC brake frequency is reached, the inverter holds the output for the setting time before starting DC brake.	0.1	X
F10	A20A	[DC Brake voltage]	$\begin{gathered} 0 \sim 200 \\ {[\%]} \end{gathered}$	This parameter sets the amount of DC voltage applied to a motor. It is set in percent of $\mathrm{H} 33-$ [Motor rated current].	50	X
F11	A20B	[DC Brake time]	$\begin{gathered} 0 \sim 60 \\ {[\mathrm{sec}]} \end{gathered}$	This parameter sets the time taken to apply DC current to a motor while motor is at a stop.	1.0	X
F12	A20C	[DC Brake start voltage]	$\begin{gathered} 0 \sim 200 \\ {[\%]} \end{gathered}$	This parameter sets the amount of DC voltage before a motor starts to run. It is set in percent of $\mathrm{H} 33-$ [Motor rated current].	50	X
F13	A20D	[DC Brake start time]	$\begin{gathered} 0 \sim 60 \\ {[\mathrm{sec}]} \end{gathered}$	DC voltage is applied to the motor for DC Brake start time before motor accelerates.	0	X
F14	A20E	[Time for magnetizing a motor]	$\begin{gathered} 0 \sim 60 \\ {[\mathrm{sec}]} \end{gathered}$	This parameter applies the current to a motor for the set time before motor accelerates during Sensorless vector control.	0.1	X
F20	A214	$\begin{aligned} & \text { [Jog } \\ & \text { frequency] } \end{aligned}$	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	This parameter sets the frequency for Jog operation. It cannot be set above F21 - [Max frequency].	10.00	0

: Only displayed when F 4 is set to 1 (DC brake to stop).

LED display	Address for communi -cation	Parameter name	Min/Max range	Description	Factory defaults	Adj. during run
F21 ${ }^{1)}$	A215	[Max frequency]	$\begin{aligned} & 40 \sim \\ & 400 \\ & {[\mathrm{~Hz}]} \end{aligned}$	This parameter sets the highest frequency the inverter can output. It is frequency reference for Accel/Decel (See H70).	60.00	X
				\triangle Caution		
				Any frequency cannot be set above Max frequency except Base frequency.		
F22	A216	[Base frequency]	$\begin{aligned} & 30 \sim \\ & 400 \\ & {[\mathrm{~Hz}]} \end{aligned}$	The inverter outputs its rated voltage to the motor at this frequency (see motor nameplate).	60.00	X
F23	A217	[Start frequency]	$\begin{gathered} 0.1 \sim 10 \\ {[\mathrm{~Hz}]} \end{gathered}$	The inverter starts to output its voltage at this frequency. It is the frequency low limit.	0.50	X
F24	A218	[Frequency high/low limit select]	$0 \sim 1$	This parameter sets high and low limit of run frequency.	0	X
$\underset{\text { 2) }}{\mathbf{F} 25}$	A219	[Frequency high limit]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	This parameter sets high limit of the run frequency. It cannot be set above F21 - [Max frequency].	60.00	X
F26	A21A	[Frequency low limit]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	This parameter sets low limit of the run frequency. It cannot be set above F25- [Frequency high limit] and below F23 - [Start frequency].	0.50	X
F27	A21B	[Torque Boost select]	$0 \sim 1$	0 Manual torque boost	0	X
				1 Auto torque boost		
F28	A21C	[Torque boost in forward direction]	$\begin{gathered} 0 \sim 15 \\ {[\%]} \end{gathered}$	This parameter sets the amount of torque boost applied to a motor during forward run. It is set in percent of Max output voltage.	2	X
F29	A21D	[Torque boost in reverse direction]		This parameter sets the amount of torque boost applied to a motor during reverse run. It is set as a percent of Max output voltage	2	X

1): If H 40 is set to 3 (Sensorless vector), Max. frequency is settable up to 300 Hz .
${ }^{2)}$: Only displayed when F24 (Frequency high/low limit select) is set to 1 .

CHAPTER 5. FUNCTION LIST

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communi -cation	Parameter name	Min/Max range	Description	Factory defaults	Adj. during run
F30	A21E	[V/F pattern]	$0 \sim 2$	0 \{Linear\}	0	X
				1 \{Square\}		
				2 \{User V/F\}		
F31 ${ }^{1 \text { 1 }}$	A21F	[User V/F frequency 1]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	It is used only when V/F pattern is set to 2(User V/F) It cannot be set above F21 [Max frequency]. The value of voltage is set in percent of H70 - [Motor rated voltage]. The values of the lowernumbered parameters cannot be set above those of highernumbered.	15.00	X
F32	A220	[User V/F voltage 1]	$\begin{gathered} 0 \sim 100 \\ {[\%]} \end{gathered}$		25	X
F33	A221	[User V/F frequency 2]	$0 \underset{\substack{\sim \\ \sim \\ \sim \\ \hline}}{ }$		30.00	X
F34	A222	[User V/F voltage 2]	$\begin{gathered} 0 \sim 100 \\ {[\%]} \end{gathered}$		50	X
F35	A223	[User V/F frequency 3]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$		45.00	X
F36	A224	[User V/F voltage 3]	$\begin{gathered} 0 \sim 100 \\ {[\%]} \end{gathered}$		75	X
F37	A225	[User V/F frequency 4]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$		60.00	X
F38	A226	[User V/F voltage 4]	$\begin{gathered} 0 \sim 100 \\ {[\%]} \end{gathered}$		100	X
F39	A227	[Output voltage adjustment]	$40 \sim 110$ [\%]	This parameter adjusts the amount of output voltage. The set value is the percentage of input voltage.	100	X
F40	A228	[Energysaving level]	$\begin{gathered} 0 \sim 30 \\ \text { [\%] } \end{gathered}$	This parameter decreases output voltage according to load status.	0	0
F50	A232	[Electronic thermal select]	$0 \sim 1$	This parameter is activated when the motor is overheated (time-inverse).	0	0

Set F30 to 2(User V/F) to display this parameter.

CHAPTER 5. FUNCTION LIST

LED display	Address for communication	Parameter name	Min/Max range	Description	Factory defaults	Adj. during run
$\begin{aligned} & \text { F51 } \\ & \text { 1) } \end{aligned}$	A233	[Electronic thermal level for 1 minute]	$\begin{gathered} 50 \sim 200 \\ {[\%]} \end{gathered}$	This parameter sets max current capable of flowing to the motor continuously for 1 minute. The set value is the percentage of H33 - [Motor rated current]. It cannot be set below F52 [Electronic thermal level for continuous].	150	0
F52	A234	[Electronic thermal level for continuous]	$\begin{gathered} 50 \sim 150 \\ {[\%]} \end{gathered}$	This parameter sets the amount of current to keep the motor running continuously. It cannot be set higher than F51 [Electronic thermal level for 1 minute].	100	0
F53	A235	[Motor cooling method]	$0 \sim 1$	Standard motor having cooling fan directly connected to the shaft. A motor using a separate motor to power a cooling fan.	0	0
F54	A236	[Overload warning level]	$30 \sim 150$ [\%]	This parameter sets the amount of current to issue an alarm signal at a relay or multi-function output terminal (see I54, I55). The set value is the percentage of H33- [Motor rated current].	150	0
F55	A237	[Overload warning time]	$\begin{gathered} 0 \sim 30 \\ {[\mathrm{Sec}]} \end{gathered}$	This parameter issues an alarm signal when the current greater than F54- [Overload warning level] flows to the motor for F55- [Overload warning time].	10	0
F56	A238	[Overload trip select]	$0 \sim 1$	This parameter turns off the inverter output when motor is overloaded.	1	0
F57	A239	[Overload trip level]	$\begin{gathered} 30 \sim 200 \\ {[\%]} \end{gathered}$	This parameter sets the amount of overload current. The value is the percentage of $\mathrm{H} 33-$ [Motor rated current].	180	0
F58	A23A	[Overload trip time]	$\begin{gathered} 0 \sim 60 \\ {[\mathrm{Sec}]} \end{gathered}$	This parameter turns off the inverter output when the F57- [Overload trip level] of current flows to the motor for F58- [Overload trip time].	60	0

1): Set F50 to 1 to display this parameter.

CHAPTER 5. FUNCTION LIST

Function Group 2

LED display	Address for communication	Parameter name	Min/Max range	Description	Factory defaults	Adj. during run
H 0	A300	[Jump code]	0~95	Sets the code number to jump.	1	0
H 1	A301	[Fault history 1]	-	Stores information on the types of faults, the frequency, the current and the Accel/Decel condition at the time of fault. The latest fault is automatically stored in the H 1- [Fault history 1].	nOn	-
H2	A302	[Fault history 2]	-		nOn	-
H 3	A303	[Fault history 3]	-		nOn	-
H 4	A304	[Fault history 4]]		nOn	-
H 5	A305	[Fault history 5]	-		nOn	-
H 6	A306	[Reset fault history]	0~1	Clears the fault history saved in H 1-5.	0	0
H7	A307	[Dwell frequency]	$\begin{gathered} 0.1 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	When run frequency is issued, motor starts to accelerate after dwell frequency is applied to the motor during H8- [Dwell time]. [Dwell frequency] can be set within the range of F21- [Max frequency] and F23- [Start frequency].	5.00	X
H 8	A308	[Dwell time]	$\begin{aligned} & 0 \sim 10 \\ & {[\mathrm{sec}]} \end{aligned}$	Sets the time for dwell operation.	0.0	X
H10	A30A	[Skip frequency select]	$0 \sim 1$	Sets the frequency range to skip to prevent undesirable resonance and vibration on the structure of the machine.	0	X
H11 ${ }^{1)}$	A30B	[Skip frequency low limit 1]			10.00	X
H12	A30C	[Skip frequency high limit 1]		Run frequency cannot be set within the range of H 11 thru	15.00	X
H13	A30D	[Skip frequency low limit 2]	0.1~400	H16. The frequency values of the low numbered parameters	20.00	X
H14	A30E	[Skip frequency high limit 2]	[Hz]	cannot be set above those of the high numbered ones.	25.00	X
H15	A30F	[Skip frequency low limit 3]		Settable within the range of F21 and F23.	30.00	X
H16	A310	[Skip frequency high limit 3]			35.00	X

only displayed when H10 is set to 1 . \# H17, H18 are used when F2, F3 are set to 1 (Scurve).

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communic -ation	Parameter name	Min/Max range	Description					Factory defaults	Adj. during run
H17	A311	[S-Curve accel/decel start side]	$\begin{gathered} 1 \sim 100 \\ {[\%]} \end{gathered}$	Set the speed reference value to form a curve at the start during accel/decel. If it is set higher, linear zone gets smaller.					40	X
H18	A312	[S-Curve accel/decel end side]	$\begin{gathered} 1 \sim 100 \\ {[\%]} \end{gathered}$	Set the speed reference value to form a curve at the end during accel/decel. If it is set higher, linear zone gets smaller.					40	X
H19	A313	[Input/output phase loss protection select]	$0 \sim 3$		Disabled Input ph protectio	e	Input/output phase protection	ase phase	0	0
H2O	A314	[Power On Start select]	$0 \sim 1$	This parameter is activated when drv is set to 1 or 2 (Run/Stop via Control terminal). Motor starts acceleration after AC power is applied while FX or RX terminal is ON .					0	0
H21	A315	[Restart after fault reset selection]	$0 \sim 1$	This parameter is activated when drv is set to 1 or 2 (Run/Stop via Control terminal). Motor accelerates after the fault condition is reset while the $F X$ or $R X$ terminal is ON.					0	0
$\begin{gathered} \mathrm{H} 22 \end{gathered}$	A316	[Speed Search Select]	$0 \sim 15$	This parameter is active to prevent any possible fault when the inverter outputs its voltage to the running motor.					0	X
					1. H2O- [Power On start]	2. Restart after instant power failure	3. Operation after fault	4. Normal accel.		
					Bit 3	Bit 2	Bit 1	Bit 0		
				0	-	-	-	-		
				1	-	-	-	\checkmark		
				2	-	-	\checkmark	-		
				3	-	-	\checkmark	\checkmark		
				4	-	\checkmark	-	-		

Normal acceleration has first priority. Even though \#4 is selected along with other bits, Inverter performs Speed search \#4.

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communication	Parameter name	Min/Max range	Description					Factory defaults	Adj. durin g run
$\underset{\text { 1) }}{\mathrm{H} 22}$	A316	-	-	-	1. H20- [Power On start]	2 Restart after instant power failure	3. Operation after fault		-	0
			-		Bit 3	Bit 2	Bit 1	Bit 0	-	
				5		\checkmark		\checkmark		
				6		\checkmark	\checkmark			
				7		\checkmark	\checkmark	\checkmark		
				8	\checkmark					
				9	\checkmark			\checkmark		
				10	\checkmark		\checkmark			
				11	\checkmark		\checkmark	\checkmark		
				12	\checkmark	\checkmark				
				13	\checkmark	\checkmark		\checkmark		
				14	\checkmark	\checkmark	\checkmark			
				15	\checkmark	\checkmark	\checkmark	\checkmark		
H23	A317	[Current level during Speed search]	$\begin{gathered} \text { 80~200 } \\ {[\%]} \end{gathered}$	This parameter limits the amount of current during speed search. The set value is the percentage of the H33- [Motor rated current].					100	0
H24	A318	[P gain during Speed search]	0~9999	It is the Proportional gain used for Speed Search PI controller.					100	0
H25	A319	[I gain during speed search]	0~9999	It is the Integral gain used for Speed search PI controller.					200	0
H26	A31A	[Number of Auto Restart try]	$0 \sim 10$	This parameter sets the number of restart tries after a fault occurs. Auto Restart is deactivated if the fault outnumbers the restart tries. This function is active when [drv] is set to 1 or $2\{$ Run/Stop via control terminal\}. Deactivated during active protection function (OHT, LVT, EXT, HWT etc.).					0	O

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communication	Parameter name	Min/Max range		Description	Factory defaults	Adj. during run
H27	A31B	[Auto Restart time]	$\begin{aligned} & 0 \sim 60 \\ & {[\mathrm{sec}]} \end{aligned}$	This parameter sets the time between restart tries.		1.0	0
H30	A31E	[Motor type select]	$\begin{aligned} & 0.2 \sim \\ & 22.0 \end{aligned}$	0.2	0.2kW	7.5 ${ }^{1 /}$	X
				~	\sim		
				22.0	22.0 kW		
H31	A31F	[Number of motor poles]	$2 \sim 12$	This setting is displayed via rPM in drive group.		4	X
H32	A320	[Rated slip frequency]	$\begin{gathered} 0 \sim 10 \\ {[H z]} \end{gathered}$	$\begin{aligned} & f_{s}=f_{r}-\left(\frac{r p m \times P}{120}\right) \\ & \text { Where, } f_{s}=\text { Rated slip } \\ & \text { frequency } \\ & f_{r}=\text { Rated frequency } \\ & r p m=\text { Motor } \\ & \text { nameplate RPM } \\ & P=\text { Number of Motor poles } \end{aligned}$		$2.33{ }^{\text {2) }}$	x
H33	A321	[Motor rated current]	$0.5 \sim 150$ $[\mathrm{A}]$	Enter motor rated current on the nameplate.		26.3	X
H34	A322	[No Load Motor Current]	$\begin{gathered} 0.1 \sim \\ 100[\mathrm{~A}] \end{gathered}$	Enter the current value detected when the motor is rotating in rated rpm after the load connected to the motor shaft is removed. Enter the 50% of the rated current value when it is difficult to measure H34 [No Load Motor Current].		11	X
H36	A324	[Motor efficiency]	$\begin{gathered} \text { 50~100 } \\ {[\%]} \end{gathered}$	Enter	the motor efficiency motor nameplate).	87	X
H37	A325	[Load inertia rate]	$0 \sim 2$	Select one of the following according to motor inertia.		0	X
				0	Less than 10 times		
				1	About 10 times		
					More than 10 times		

11: H 30 is preset based on inverter rating.
${ }^{21}$: $\mathrm{H} 32 \sim$ H36 factory default values are set based on OTIS-LG motor.

CHAPTER 5. FUNCTION LIST

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communication	Parameter name	Min/Max range		Description	Factory defaults	Adj. During run
H39	A327	[Carrier frequency select]	$\begin{aligned} & 1 \sim 15 \\ & {[\mathrm{kHz}]} \end{aligned}$	This parameter affects the audible sound of the motor, noise emission from the inverter, inverter temp, and leakage current. If the set value is higher, the inverter sound is quieter but the noise from the inverter and leakage current will become greater.		3	0
H40	A328	[Control mode select]	$0 \sim 3$	0	\{Volts/frequency Control\}	0	X
					\{Slip compensation control\}		
				3	\{Sensorless vector control\}		
H41	A329	[Auto tuning]	$0 \sim 1$	If this parameter is set to 1 , it automatically measures parameters of the H 42 and H 44 .		0	X
H42	A32A	[Stator resistance (Rs)]	$\begin{gathered} 0 \sim 28 \\ {[\Omega]} \end{gathered}$	This is the value of the motor stator resistance.		-	X
H44	A32C	[Leakage inductance (L σ)]	$\begin{gathered} 0 \sim 300.0 \\ {[\mathrm{mH}]} \end{gathered}$	This is leakage inductance of the stator and rotor of the motor.		-	X
$\underset{\text { 1) }}{\mathrm{H}_{4}}$	A32D	[Sensorless P gain]	$\begin{gathered} 0 \sim \\ 32767 \end{gathered}$	P gain for Sensorless control		1000	0
H46	A32E	[Sensorless I gain]		I gain for Sensorless control		100	0
H47	A32F	[Sensorless torque limit]	$\begin{gathered} \text { 100~220 } \\ {[\%]} \\ \hline \end{gathered}$	Limits output torque in sensorless mode.		180.0	X
H48	A330	PWM mode select	0~1	If you want to limit an inverter leakage current, select 2 phase PWM mode. It has more noise in comparison to Normal PWM mode.		0	X
				0	Normal PWM mode		
					2 phase PWM mode		
H49	A331	PID select	0~1	Selects whether using PID control or not		0	X

1): Set H40 to 3 (Sensorless vector control) to display this parameter.

CHAPTER 5. FUNCTION LIST

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communication	Parameter name	Min/Max range		Description	Factory defaults	Adj. during run
$\underset{\text { 1) }}{\mathrm{H} 50}$	A332	[PID F/B select]	$0 \sim 2$	0 1 2	Terminal I input ($0 \sim 20 \mathrm{~mA}$) Terminal V1 input ($0 \sim 10 \mathrm{~V}$) RS-485 comm. feedback	0	X
H51	A333	[P gain for PID]	$\begin{gathered} 0 \sim 999.9 \\ {[\%]} \end{gathered}$	This parameter sets the gains for the PID controller.		300.0	0
H52	A334	[Integral time for PID	$\begin{gathered} 0.1 ~ 32.0 \\ {[\mathrm{sec}]} \end{gathered}$			1.0	0
H53	A335	[Differential time for PID (D gain)]	$\begin{gathered} 0 \sim 30.0 \\ {[\mathrm{sec}]} \end{gathered}$			0.0	0
H54	A336	[PID control mode select]	0~1	Selects PID control mode		0	X
				0	Normal PID control		
				1	Process PID control		
H55	A337	[PID output frequency high limit]	$\begin{gathered} 0.1 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$		is parameter limits the amount the output frequency through PID control.	60.00	0
H56	A338	[PID output frequency low limit]	$\begin{gathered} 0.1 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$		The value is settable within the nge of F21 - [Max frequency] d F23 - [Start frequency].	0.50	0
H57	A339	[PID standard value select]	0~4		elects PID standard value. andard value is indicated in "E" of Drive group.	0	X
					Loader digital setting 1		
					Loader digital setting 2		
					V1 terminal setting 2: 0~10V		
					I terminal setting: 0~20mA		
					Setting as a RS-485 communication		
H58	A33A	[PID control unit select]	0~1		elects a unit of the standard lue or feedback amount.	0	X
					Frequency[Hz]		
					Percentage[\%]		
H59	A33B	[PID output inverse]]	0~1		lect the output direction of PID ntrol.	0	X
					No		
					Yes		

1): Set H 49 to 1 (PID control) to display this parameter.

CHAPTER 5. FUNCTION LIST

LED display	Address for communication	Parameter name	Min/Max range	Description	Factory defaults	Adj. during run
H60	A33C	[Selfdiagnostic select]	$0 \sim 3$	0 Self-diagnostic disabled	0	X
				1 IGBT fault/Ground fault		
				Output phase short \& open/ Ground fault		
				3 Ground fault (This setting is unable when more than 11 kW)		
H61 ${ }^{1)}$	A33D	[Sleep delay time]	0~2000[s]	Sets a sleep delay time in PID drive.	60.0	X
H62	A33E	[Sleep frequency]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets a sleep frequency when executing a sleep function in PID control drive. You can't set more than Max. frequency(F21)	0.00	0
H63	A33F	[Wake up level]	$\begin{gathered} 0 \sim 100 \\ {[\%]} \end{gathered}$	Sets a wake up level in PID control drive.	35.0	0
H64	A340	[KEB drive select]	0~1	Sets KEB drive.	0	X
H65 ${ }^{\text {2 }}$	A341	[KEB action start level]	$\begin{gathered} \text { 110~140 } \\ {[\%]} \end{gathered}$	Sets KEB action start level according to level.	125.0	X
H66	A342	[KEB action stop level]	$\begin{gathered} \text { 110~145 } \\ {[\%]} \end{gathered}$	Sets KEB action stop level according to level.	130.0	X
H67	A343	[KEB action gain]	1~20000	Sets KEB action gain.	1000	X
H70	A346	[Frequency Reference for Accel / Decel]	$0 \sim 1$	0 Based on Max freq (F21)	0	X
				1 Based on Delta freq.		
H71	A347	[Accel/ Decel time scale]	$0 \sim 2$	0 Settable unit: 0.01 second.	1	0
				1 Settable unit: 0.1 second.		
				2 Settable unit: 1 second.		

1): Set H49 as a 1

2): It is indicated when setting H 64 (KEB drive select) as a 1
(KEB does not operate when cut power after loading ting input (about 10\%).

CHAPTER 5. FUNCTION LIST

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communication	Parameter name	Min/Max range	Description	Factory defaults	Adj. during run
H72	A348	[Power on display]	$0 \sim 17$	This parameter selects the parameter to be displayed on the keypad when the input power is first applied.	0	0
				0 Frequency command		
				1 Accel time		
				2 Decel time		
				3 Drive mode		
				4 Frequency mode		
				5 Multi-Step frequency 1		
				6 Multi-Step frequency 2		
				7 Multi-Step frequency 3		
				8 Output current		
				9 Motor rpm		
				10 Inverter DC link voltage		
				11 User display select (H73)		
				12 Fault display		
				13 Direction of motor rotation select		
				14 Output current 2		
				15 Motor rpm 2		
				16 Inverter DC link voltage 2		
				17 User display select 2		
H73	A349	[Monitoring item select]	$0 \sim 2$	One of the following can be monitored via vOL - [User display select].	0	0
				0 Output voltage [V]		
				1 Output power [kW]		
				2 Torque [kgf $\cdot \mathrm{m}$]		
H74	A34A	[Gain for Motor rpm display]	$\begin{gathered} 1 \sim 1000 \\ {[\%]} \end{gathered}$	This parameter is used to change the motor rotating speed $(\mathrm{r} / \mathrm{min})$ to mechanical speed (m / mi) and display it.	100	0
H75	A34B	[DB resistor operating rate limit select]	$0 \sim 1$	0 Unlimited	1	0
				1 Use DB resistor for the H76 set time.		
H76	A34C	[DB resistor operating rate]	0 ~ 30[\%]	Set the percent of DB resistor operating rate to be activated during one sequence of operation.	10	0

CHAPTER 5. FUNCTION LIST

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communication	Parameter name	Min/Max range		Description	Factory defaults	Adj. during run
H77 ${ }^{1)}$	A34D	[Cooling fan control]	$0 \sim 2$	0	Always ON	0	0
				1	Keeps ON when its temp is higher than inverter protection limit temp. Activated only during operation when its temp is below that of inverter protection limit.		
				2	Regardless of the operation fan is active when its temp is higher than inverter protection limit temp.		
H78	A34E	[Operating method select when cooling fan malfunctions]	$0 \sim 1$	0	Continuous operation when cooling fan malfunctions.	0	0
				1	Operation stopped when cooling fan malfunctions.		
H79	A34F	[S/W version]	x.xx	This softw	parameter displays the inverter ware version.	x.xx	X
H81 ${ }^{2}$	A351	[2 $2^{\text {nd }}$ motor Accel time]	$\begin{gathered} 0 \sim 6000 \\ {[\mathrm{sec}]} \end{gathered}$	This parameter actives when the selected terminal is ON after I17I24 is set to $12\left\{2^{\text {nd }}\right.$ motor select $\}$.		5.0	0
H82	A352	[2 $2^{\text {nd }}$ motor Decel time]				10.0	0
H83	A353	$\begin{aligned} & {\left[2^{\text {nd }}\right. \text { motor }} \\ & \text { base } \\ & \text { frequency] } \end{aligned}$	$\begin{gathered} 30 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$			60.00	X
H84	A354	$\left[2^{\text {nd }}\right. \text { motor V/F }$ pattern]	$0 \sim 2$			0	X
H85	A355	[2 $2^{\text {nd }}$ motor forward torque boost]	0~15 [\%]			5	X
H86	A356	[2 $2^{\text {nd }}$ motor reverse torque boost]				5	X
H87	A357	[2 $2^{\text {nd }}$ motor stall prevention level]	30~150 [\%]		-	150	X
H88	A358	[2nd motor Electronic thermal level for 1 min]	50~200 [\%]	-		150	0
H89	A359	[2nd motor Electronic thermal level for continuous]	50~150 [\%]			100	0
H90	A35A	[2nd motor rated current]	0.1~100 [A]			26.3	X

${ }^{\text {1) }}$) Exception: Since SV004iG5A-2/SV004iG5A-4 is Natural convection type, this code is hidden.
${ }^{2)}$: It is indicated when choosing I17~124 as a 12 ($2^{\text {nd }}$ motor select).

CHAPTER 5. FUNCTION LIST

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communication	Parameter name	Min/Max range	Description		Factory defaults	Adj. during run
H91 ${ }^{1)}$	A35B	[Parameter read]	$0 \sim 1$	Copy the parameters from inverter and save them into remote loader.		0	X
H92	A35C	[Parameter write]	$0 \sim 1$	Copy the parameters from remote loader and save them into inverter.		0	X
H93	A35D	[Parameter initialize]	$0 \sim 5$	This parameter is used to initialize parameters back to the factory default value.		0	X
				0	-		
				All parameter groups are 1 initialized to factory default value.			
				2 Only Dri	e group is initialized.		
				3 Only Fu	ction group 1 is		
				4 Only Fu initialized	ction group 2 is		
				5 Only I/O	group is initialized.		
H94	A35E	[Password register]	0 ~ FFFF	Password for H95-[Parameter lock]. Set as hexadecimal value.		0	0
H95	A35F	[Parameter lock]	$0 \sim$ FFFF	This parameter is able to lock or unlock parameters by typing password registered in H94.		0	0
				UL (Unlock)	Parameter change enable		
				L (Lock)	Parameter change disable		

H91,H92 parameters are displayed when Remote option is installed.
\# The different Main S/W version or the number of parameters may be the cause of error for H91 and H92.

- I/O Group

$\begin{gathered} \text { LED } \\ \text { display } \end{gathered}$	Address for communication	Parameter name	Min/Max range	Description	Factory defaults	Adj. during run
10	A400	[Jump code]	$0 \sim 87$	Sets the code number to jump.	1	0
12	A402	[NV input Min voltage]	$\begin{gathered} 0 \sim-10 \\ {[\mathrm{~V}]} \end{gathered}$	Sets the minimum voltage of the NV (10V~OV) input.	0.00	0
13	A403	[Frequency corresponding to $\mid 2$]	$\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$	Sets the inverter output minimum frequency at minimum voltage of the NV input.	0.00	0
14	A404	[NV input Max voltage]	$\begin{gathered} 0 \sim-10 \\ {[\mathrm{~V}]} \end{gathered}$	Sets the maximum voltage of the NV input.	10.0	0
15	A405	[Frequency corresponding to $\mid 4]$	$\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$	Sets the inverter output maximum frequency at maximum voltage of the NV input.	60.00	0
16	A406	[Filter time constant for V1 input]	$\begin{gathered} 0 \sim \\ 9999 \end{gathered}$	Adjusts the responsiveness of V1 input (0~ +10 V).	10	0
17	A407	[V1 input Min voltage]	$\begin{gathered} 0 \sim 10 \\ {[\mathrm{~V}]} \end{gathered}$	Sets the minimum voltage of the V1 input.	0	0
18	A408	[Frequency corresponding to 17$]$	$\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$	Sets the inverter output minimum frequency at minimum voltage of the V 1 input.	0.00	0
19	A409	[V1 input Max voltage]	$\begin{gathered} 0 \sim 10 \\ {[\mathrm{~V}]} \end{gathered}$	Sets the maximum voltage of the V1 input.	10	0
110	A40A	[Frequency corresponding to $\mid 9$]	$\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$	Sets the inverter output maximum frequency at maximum voltage of the V 1 input.	60.00	0
111	A40B	[Filter time constant for I input]	$\begin{gathered} 0 \sim \\ 9999 \end{gathered}$	Sets the input section's internal filter constant for I input.	10	0
112	A40C	[l input Min current]	$\begin{aligned} & 0 \sim 20 \\ & {[\mathrm{~mA}]} \end{aligned}$	Sets the minimum current of I input.	4.00	0
113	A40D	[Frequency corresponding to $\mid 12]$	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets the inverter output minimum frequency at minimum current of I input.	0.00	0
114	A40E	[l input Max current]	$\begin{gathered} 0 \sim 20 \\ {[\mathrm{~mA}]} \end{gathered}$	Sets the Maximum current of I input.	20.00	0
115	A40F	[Frequency corresponding to $\mid 14]$	$\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$	Sets the inverter output maximum frequency at maximum current of I input.	60.00	0
116	A410	[Criteria for Analog Input Signal loss]	0~2	0 : Disabled 1: activated below half of set value. 2: activated below set value.	0	0
117	A411	[Multi-function input terminal P1 definel	$0 \sim 27$	0 Forward run command	0	0
				1 Reverse run command		
118	A412	[Multi-function input terminal P2 definel		2 Emergency Stop Trip	1	0
				3 Reset when a fault occurs \{RST\}		

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communication	Parameter name	Min/Max range		Description	Factory defaults	Adj. during run
119	A413	[Multi-function input terminal P3 definel		4	Jog operation command	2	0
				5	Multi-Step freq - Low		
120	A414	[Multi-function input terminal P4 definel		6	Multi-Step freq - Mid	3	0
				7	Multi-Step freq - High		
121	A415	[Multi-function input terminal P5 definel		8	Multi Accel/Decel - Low	4	0
				9	Multi Accel/Decel - Mid		
122	A416	[Multi-function input terminal P6 definel		10	Multi Accel/Decel - High	5	0
				11	DC brake during stop		
123	A417	[Multi-function input terminal P7 definel		12	2nd motor select	6	0
				13	-Reserved-		
124	A418	[Multi-function input terminal P8 define]		14	-Reserved-	7	0
				15	Frequency increase (UP) command		
				16	Frequency decrease command (DOWN)		
				17	3-wire operation		
				18	External trip: A Contact (EtA)		
				19	External trip: B Contact (EtB)		
				20	Self-diagnostic function		
				21	Change from PID operation to V/F operation		
				22	$2^{\text {nd }}$ Source		
				23	Analog Hold		
				24	Accel/Decel Disable		
				25	Up/Down Save Freq. Initialization		
				26	JOG-FX		
				27	JOG-RX		

[^0]

CHAPTER 5. FUNCTION LIST

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communi -cation	Parameter name	Min/Max range	Description				Factory default	Adj. during run
144	A42C	[Multi-Accel time 6]						8.0	
145	A42D	[Multi-Decel time 6]						8.0	
146	A42E	[Multi-Accel time 7]						9.0	
147	A42F	[Multi-Decel time 7]						9.0	
150	A432	[Analog output item select]	$0 \sim 3$	Output item		Output to 10[V]		0	0
						200 V	400 V		
				0	Output freq.	Max frequency			
				1	Output current	150 \%			
				2	Output voltage	AC 282V	AC 564V		
				3	Inverter DC link voltage	DC 400V	DC 800V		
151	A433	[Analog output level adjustment]	$\begin{gathered} \text { 10~200 } \\ {[\%]} \end{gathered}$	Based on 10V.				100	0
152	A434	[Frequency detection level]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Used when I54 or I55 is set to 0-4. Cannot be set higher than F21.				30.00	0
153	A435	[Frequency detection bandwidth]						10.00	0
154	A436	[Multifunction output terminal select]	$0 \sim 19$	0	FDT-1			12	0
				1	FDT-2				
				2	FDT-3				
				3	FDT-4			17	
155	A437	[Multifunction relay select]		4	FDT-5				
				5	Overload	d (OLt)			
				6	Inverter	Overload (I	OLt)		
					Motor stall	all (STALL)			
				8	Over volt	tage trip (O			
				9	Low volta	age trip (LV)			
				10	Inverter	Overheat (OHt)		

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communi -cation	Parameter name	Min/Max range	Description	Factory default	Adj. during run
160	A43C	[Inverter number]	$\begin{aligned} & 1 \sim \\ & 250 \end{aligned}$	Set for RS485 communication	1	0
161	A43D	[Baud rate]	$0 \sim 4$	Select the Baud rate of the RS485.	3	0
				0 1200 [bps]		
				12400 [bps]		
				24800 [bps]		
				39600 [bps]		
				419200 [bps]		
162	A43E	[Drive mode select after loss of frequency command]	$0 \sim 3$	It is used when freq command is given via V1 /I terminal or RS485.	0	0
				Continuous operation at the frequency before its command is lost.		
				1 Free Run stop (Output cut-off)		
				2 Decel to stop		
				3 Lost Preset		
163	A43F	[Wait time after loss of frequency command]	$\begin{gathered} 0.1 ~ \\ 120 \\ {[\mathrm{sec}]} \end{gathered}$	This is the time inverter determines whether there is the input frequency command or not. If there is no frequency command input during this time, inverter starts operation via the mode selected at 162 .	1.0	0
164	A440	[Communic ation time setting]	$\begin{gathered} 2 \sim 100 \\ {[\mathrm{~ms}]} \end{gathered}$	Frame communication time	5	O
165	A441	[Parity/ stop bit setting]	0~3	When the protocol is set, the communication format can be set.	0	0
				0 Parity: None, Stop Bit: 1		
				1 Parity: None, Stop Bit: 2		
				2 Parity: Even, Stop Bit: 1		
				3 Parity: Odd, Stop Bit: 1		
166	A442	[Read address register 1]	$\begin{gathered} 0 \sim \\ 42239 \end{gathered}$	The user can register up to 8 discontinuous addresses and read them all with one Read command.	5	0
167	A443	[Read address register 2]			6	
168	A444	[Read address register 3]			7	
169	A445	[Read address register 4]			8	

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communi -cation	Parameter name	Min/Max range	Description	Factory default	Adj. during run
170	A446	[Read address register 5]			9	
171	A447	[Read address register 6]			10	
172	A448	[Read address register 7]			11	-
173	A449	[Read address register 8]			12	-
174	A44A	[Write address register 1]	$\begin{gathered} 0 \sim \\ 42239 \end{gathered}$	The user can register up to 8 discontinuous addresses and write them all with one Write command	5	0
175	A44B	[Write address register 2]			6	
176	A44C	[Write address register 3]			7	
177	A44D	[Write address register 4]			8	
178	A44E	[Write address register 5]			5	
179	A44F	[Write address register 6]			6	
180	A450	[Write address register 7]			7	
181	A451	[Write address register 8]			8	
182 ${ }^{1)}$	A452	[Brake open current]	$\begin{gathered} 0 \sim 180 \\ {[\%]} \end{gathered}$	Sets current level to open the brake. It is set according to H33's (motor rated current) size	50.0	0
183	A453	[Brake open delay time]	$\begin{gathered} 0 \sim 10 \\ {[\mathrm{~s}]} \end{gathered}$	Sets Brake open delay time.	1.00	X
184	A454	[Brake open FX frequency]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets FX frequency to open the brake	1.00	X
185	A455	[Brake open RX frequency]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets RX frequency to open the brake	1.00	X

CHAPTER 5. FUNCTION LIST

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Address for communi -cation	Parameter name	Min/Max range	Description	Factory default	Adj. during run
186	A456	[Brake close delay time]	$\begin{gathered} 0 \sim 19 \\ {[\mathrm{~s}]} \end{gathered}$	Sets delay time to close the brake	1.00	X
187	A457	[Brake close frequency	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets frequency to close the brake	2.00	X
$188^{2)}$	A458	Lost Preset Freq	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	If I62 is set " 3 ", when the drive go into the lost command state, the drive will operate the motor at lost command frequency.	30.00	0

${ }^{1)}$: It is indicated when choosing $154 \sim 155$ as a 19 (Brake signal).
${ }^{2)}$: It is indicated when choosing I62 as a 3 (Lost Preset).

CHAPTER 6 - TROUBLESHOOTING AND MAINTENANCE

6.1 Protective functions

WARNING
When a fault occurs, the cause must be corrected before the fault can be cleared. If protective function keeps active, it could lead to reduction in product life and damage to the equipment.

- Fault Display and information

| Keypad |
| :--- | :--- | :--- |
| display |

Keypad display	Protective functions	Descriptions

6.2 Fault Remedy

Keypad display	Cause	Remedy		
Overcurrent				When an overcurrent fault occurs, operation must be started after the
:---	:---			
cause is removed to avoid damage to IGBT inside the inverter.				

Keypad display	Cause	Remedy

Protective functions and cause		Descriptions
E6\%	H17\% Er,	Contact your local LSIS sales representative
M15		
EEP	: Parameter save error	
HWT	: Hardware fault	
Err	Communication error	
COM	: Keypad error	
NTC	: NTC error	

Overload Protection

IOLT : IOLT(inverter Overload Trip) protection is activated at 150% of the inverter rated current for 1 minute and greater.
OLT : OLT is selected when F56 is set to 1 and activated at 200\% of F57[Motor rated current] for 60 sec in F58. This can be programmable.

iG5A is not provided with "Overspeed Protection."

6.3 Precautions for maintenance and inspection

WARNING
Make sure to remove the input power while performing maintenance.
Make sure to perform maintenance after checking the DC link capacitor has
discharged. The bus capacitors in the inverter main circuit can still be charged
even after the power is turned off. Check the voltage between terminal P or P1
and N using a tester before proceeding.
SV-iG5A series inverter has ESD (Electrostatic Discharge) sensitive components.
Take protective measures against ESD before touching them for inspection or
installation.
Do not change any inner parts and connectors. Never modify the inverter.

6.4 Check points

- Daily inspections
\checkmark Proper installation environment
\checkmark Cooling system fault
\checkmark Unusual vibration and noise
\checkmark Unusual overheating and discoloration
- Periodic inspection
\checkmark Screws and bolts may become loose due to vibration, temperature changes, etc.
\checkmark Check that they are tightened securely and retighten as necessary.
\checkmark Alien substances are clogged in the cooling system.
\checkmark Clean it using the air.
\checkmark Check the rotating condition of the cooling fan, the condition of capacitors and the connections with the magnetic contactor.
\checkmark Replace them if there are any abnormalities.

6.5 Part replacements

The inverter consists of many electronic parts such as semiconductor devices. The following parts may deteriorate with age because of their structures or physical characteristics, leading to reduced performance or failure of the inverter. For preventive maintenance, the parts must be changed periodically. The parts replacement guidelines are indicated in the following table. Lamps and other shortlife parts must also be changed during periodic inspection.

Part name	Change period (unit: Year)	Description
Cooling fan	3	Exchange (as required)
DC link capacitor in main		
circuit		

CHAPTER 7 - SPECIFICATIONS

7.1 Technical data

- Input \& output ratings: Single Phase 200V Class

SV \quad-iG5A -1			004	008	015
Max capacity ${ }^{1}$		[HP]	0.5	1	2
		[kW]	0.4	0.75	1.5
Output ratings	Capacity [kVA] ${ }^{2}$		0.95	1.9	3.0
	FLA [A] ${ }^{3}$		2.5	5	8
	Max Frequency		$400[\mathrm{~Hz}]^{4}$		
	Max Voltage		3Ф 200 ~ 230V ${ }^{5}$		
Input ratings	Rated Voltage		1Ф 200 ~ 230 VAC (+10\%, -15\%)		
	Rated Frequency		$50 \sim 60[\mathrm{~Hz}](\pm 5 \%)$		
Cooling method			Forced cooling		
Weight [kg]			0.77	1.12	1.84

- Input \& output ratings: Three Phase 200V Class

SV \quad-iG5A -2		004	008	015	022	037	040	055	075	110	150	185	220
Maxcapacity	[HP]	0.5	1	2	3	5	5.4	7.5	10	15	20	25	30
	1 [kW]	0.4	0.75	1.5	2.2	3.7	4.0	5.5	7.5	11	15	18.5	22
Output ratings	Capacity [kVA] ${ }^{2}$	0.95	1.9	3.0	4.5	6.1	6.5	9.1	12.2	17.5	22.9	28.2	33.5
	FLA [A] ${ }^{3}$	2.5	5	8	12	16	17	24	32	46	60	74	88
	Max Frequency	$400[\mathrm{~Hz}]^{4}$											
	Max Voltage	$3 \Phi 200 \sim 230 V^{5}$											
Input ratings	Rated Voltage	3Ф $200 \sim 230$ VAC (+10\%, -15\%)											
	Rated Frequency	$50 \sim 60[\mathrm{~Hz}](\pm 5 \%)$											
Cooling method		$\mathrm{N} / \mathrm{C}^{6}$	Forced cooling										
Weight [kg]		0.76	0.77	1.12	1.84	1.89	1.89	3.66	3.66	9.0	9.0	13.3	13.3

1) Indicates the maximum applicable motor capacity when using a 4 -pole standard motor.
2) Rated capacity is based on 220 V for 200 V class and 440 V for 400 V class.
3) Refer to $13-4$ when Carrier frequency setting (H39) is above 3 kHz .
4) Max frequency setting range is extended to 300 Hz when H 40 (Control mode select) is set to 3 (Sensorless vector control).
5) Maximum output voltage cannot be higher than the input voltage. It can be programmable below input voltage.
6) N/C: Natural Convention

- Input \& output ratings: Three Phase 400V Class

SV		004	008	015	022	037	040	055	075	110	150	185	220
Max capacity	[HP]	0.5	1	2	3	5	5.4	7.5	10	15	20	25	30
	[kW]	0.4	0.75	1.5	2.2	3.7	4.0	5.5	7.5	11	15	18.5	22
Output ratings	Capacity [kVA] ${ }^{2}$	0.95	1.9	3.0	4.5	6.1	6.9	9.1	12.2	18.3	22.9	29.7	34.3
	FLA [A] ${ }^{3}$	1.25	2.5	4	6	8	9	12	16	24	30	39	45
	Max Frequency	400 [Hz] ${ }^{4}$											
	Max Voltage	$3 Ф 380 \sim 480 V^{5}$											
Input ratings	Rated Voltage	$3 Ф 380 \sim 480$ VAC (+10\%, -15\%)											
	Rated Frequency	$50 \sim 60[\mathrm{~Hz}](\pm 5 \%)$											
Cooling method		N/C	Forced cooling										
Weight [kg]		0.76	0.77	1.12	1.84	1.89	1.89	3.66	3.66	9.0	9.0	13.3	13.3

1) Indicates the maximum applicable motor capacity when using a 4-pole standard motor.
2) Rated capacity is based on 220 V for 200 V class and 440 V for 400 V class.
3) Refer to '7.2 Temperature Derating Information' when Carrier frequency setting (H39) is above 3 kHz .
4) Max frequency setting range is extended to 300 Hz when H 40 (Control mode select) is set to 3 (Sensorless vector control).
5) Maximum output voltage cannot be higher than the input voltage. It can be programmable below input voltage.
6) N/C: Natural Convention

- Control

Control method	V/F, Sensorless vector control		
Frequency setting resolution	Digital command: 0.01 Hz Analog command: 0.06 Hz (Max freq.: 60 Hz)		
Frequency accuracy	Digital command: 0.01% of Max output frequency Analog command: 0.1% of Max output frequency		
V/F pattern	Linear, Squared, User V/F		
Overload capacity	150% per 1 min.		
Torque boost	Manual/Auto torque boost		
Dynamic Braking	Max braking torque	Time/\%ED	
:---	:---		

1) Means average braking torque during Decel to stop of a motor.
2) Refer to page 7-7 for DB resistor specification.

- Operation

Operation mode		Keypad/ Terminal/ Communication option/ Remote keypad selectable		
Frequency setting		Analog: $0 \sim 10[\mathrm{~V}],-10 \sim 10[\mathrm{~V}], 0 \sim 20[\mathrm{~mA}]$ Digital: Keypad		
Operation features		PID, Up-down, 3-wire		
Input	Multi-function terminal P1~P8	NPN / PNP selectable (See page 2-13) FWD/REV RUN, Emergency stop, Fault reset, Jog operation, Multi-step Frequency-High, Mid, Low Multi-step Accel/Decel-High, Mid, Low, DC braking at stop, $2^{\text {nd }}$ motor select, Frequency UP/Down, 3wire operation, External trip A, B, PID-Inverter (v/f) operation bypass, Option-inverter (v/f) operation bypass, $2^{\text {nd }}$ Source, Analog Hold, Accel/Decel stop, Up/Down Save Freq, Jog FX/RX		
Output	Open collector terminal	Fault output and inverter status output	Less than DC	24V 50mA
	Multi-function relay		(N.O., N.C.)	Less than AC250V 1A, Less than DC 30V 1A
	Analog output	$0 \sim 10 \mathrm{Vdc}$ (less than10mA): Output Freq, Output Current, Output Voltage, DC link selectable		

- Protective function

Trip	Over Voltage, Under Voltage, Over Current, Over Current 2, Ground Fault current detection, Inverter Overheat, Motor Overheat, Output Phase Open, Overload Protection, Communication Error, Loss of Speed Command, Hardware Fault, Fan trip, Brake error.		
Alarm	Stall prevention, overload		
Momentary			
Power			
Bess			Below 15 msec: Continuous operation (should be within rated input
:---			
(oltage, rated output power.)			
Above 15 msec: Auto restart enable			

1) Single Phase products: Continuous operation (should be within rated input voltage, rated output power)

- Environment

Protection Degree	IP20, UL Enclosure(ENC) type1(Ambient Temperature $\left.40^{\circ} \mathrm{C}\right)^{2)}$
Ambient temp	$-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$
Storage temp	$-20^{\circ} \mathrm{C} \sim 65^{\circ} \mathrm{C}$
Humidity	Below $90 \% \mathrm{RH}$ (no condensation)
Altitude/Vibration	Below $1,000 \mathrm{~m}, 5.9 \mathrm{~m} / \mathrm{sec}^{2}(0.6 \mathrm{G})$
Atmospheric pressure	$70 \sim 106 \mathrm{kPa}$
Location	Protected from corrosive gas, combustible gas, oil mist or dust Pollution Degree 2 Environment

2) UL Enclosure(ENC) type1 with top cover and conduit box installed.

7.2 Temperature Derating Information

- Load and ambient temperature classified by the Carrier Frequency

1) The above graph is only applied when the inverter is operated in the allowable temperature. Pay attention to the air cooling when the inverter is installed in a panel box, and the inside temperature should be within an allowable temperature range.
2) This derating curve is based on inverter current rating when rated motor is connected.

7.3 Remote option

- Parts

1) Remote Keypad

2) Remote Cable (1M, 2M, 3M, and 5M)

- Remote Cable Model Number

Model number	Specification
64100022	INV, REMOTE 1M (SV-iG5A)
64100001	INV, REMOTE 2M (SV-iG5A)
64100002	INV, REMOTE 3M (SV-iG5A)
64100003	INV, REMOTE 5M (SV-iG5A)

- Installation

1) Take off the top cover of the I/O board kit (①) and remove the hole cover (2) to connect remote cable on the side.

2) Attach the top cover of the I/O board kit (1) and connect the remote cable (2) as shown below.

3) Connect the other side of the remote cable to the remote keypad (1) as shown below.

CAUTION

- Without Parameter Read(H91), Parameter Write(H92) is not available since the Remote memory is empty when the Remote keypad is first used.
- Do not use the remote cable other than standard LS'. Otherwise, malfunction may occur due to noise input or voltage drop in the keypad.
- Check for disconnection of the communication cable and/or poor cable connection if "----" is displayed on the 7-segment display of the Remote keypad.
- When Parameter Read(H91) is executed, "rd"(Read) and "wr"(Verify) is displayed successively on the 7-segment display of the Remote keypad. On the other hand, when Parameter Write(H92) is executed, "wr"(Write) is displayed only.

7.4 Conduit Kit

- Installation

1) SV004IG5A-1, SV008IG5A-1, SV015IG5A-1, SV004IG5A-2, SV008IG5A-2, SV015IG5A-2, SV022IG5A-2, SV037IG5A-2, SV040IG5A-2, SV004IG5A-4, SV008IG5A-4, SV015IG5A-4, SV022IG5A-4, SV037IG5A-4, SV040IG5A-4

2) SV055IG5A-2, SV055IG5A-4, SV075IG5A-2, SV075IG5A-4, SV110IG5A-2, SV110IG5A-4, SV150IG5A-2, SV150IG5A-4, SV185IG5A-2, SV185IG5A-4, SV220IG5A-2, SV220IG5A-4

- Conduit Kit

Conduit Kit	Model
Inverter Conduit Kit 1	SV004IG5A-2/4, SV008IG5A-2/4, SV004IG5A-1
Inverter Conduit Kit 2	SV015IG5A-2/4, SV008IG5A-1
Inverter Conduit Kit 3	SV022IG5A-2/4, SV037IG5A-2/4, SV040IG5A-2/4,
SV015IG5A-1,	
Inverter Conduit Kit 4	SV055IG5A-2/4, SV075IG5A-2/4
Inverter Conduit Kit 5	SV110IG5A-2/4, SV150IG5A-2/4
Inverter Conduit Kit 6	SV185IG5A-2/4, SV22OIG5A-2/4

7.5 Braking resistor

Input Voltage	Inverter capacity [kW]	100 \% braking		150\% braking	
		[Ω]	[W]*	[Ω]	[W]*
200V	0.4	400	50	300	100
	0.75	200	100	150	150
	1.5	100	200	60	300
	2.2	60	300	50	400
	3.7/4.0	40	500	33	600
	5.5	30	700	20	800
	7.5	20	1000	15	1200
	11.0	15	1400	10	2400
	15.0	11	2000	8	2400
	18.5	9	2400	5	3600
	22.0	8	2800	5	3600
400V	0.4	1800	50	1200	100
	0.75	900	100	600	150
	1.5	450	200	300	300
	2.2	300	300	200	400
	3.7/4.0	200	500	130	600
	5.5	120	700	85	1000
	7.5	90	1000	60	1200
	11.0	60	1400	40	2000
	15.0	45	2000	30	2400
	18.5	35	2400	20	3600
	22.0	30	2800	10	3600

* The wattage is based on Enable duty (\%ED) 5\% with continuous braking time 15 sec .

7.6 DeviceNet/Ethernet Communication Module

- iG5A for Communication type

1) iG5A for communication type has to be used for using DeviceNet and Ethernet communication option modules.
2) Please refer to 'Installation of communication module' in user's manual for installation for iG5A DeviceNet and Ethernet communication.
3) iG5A for communication has been designed to install the communication option module easily.
4) Production name of communication type is as follows.
<Production name of communication type>

SV	xxx	iG5A	$\mathbf{-}$	$\mathbf{2}$	FB
LS Inverter	Capacity Note1)	Type	-	Input Voltage Note2)	iG5A for Communication

Note 1) The capacity range is applied from 0.4 to 22 kW products.
Note 2) In put Voltage is classified as 1 (Single phase 200V class), 2 (Three phase 200 V class) and 4 (Three phase 400V class).

Remark

- To use the communication option module for iG5A, you must be use the iG5A for communication.
- The name of iG5A for communication is indicated as 'FB'.
- DeviceNet function supports above the iG5A for communication's version of software 2.3 (DeviceNet) and 2.4 (DeviceNet, Ethernet).
- DeviceNet /Ethernet communication option

1) Please use the option user's manual contained in package for using option module for iG5A.
2) Communication option code

Product Code	Product Name
64100019	iG5A DeviceNet Module
64100020	iG5A Ethernet Module

7.7 RS-485 Common Parameter Code List (Common area)

<Common area>: Area accessible regardless of inverter models Note 1)

CHAPTER 7. SPECIFICATIONS

Address	Parameter	Scale	Unit	RW	Allotmentfor Bits					
					B9	HW-Diag	B8	OLT	B7	ETH
					B6	OHT	B5	GFT	B4	COL
					B3	EST(BX)	B2	EXT-A	B1	OVT
					B0	OCT				
Oh0010	Inputteminal status	-	-	R	B15,B14, B13, B12, B11, B10, B9, 88 : Reserved					
						P8	B6	P7	B5	P6
						P5	B3	P4	B2	P3
					B1	P2	B0	P1		
Oh0011	Outputteminal staus	-	-	R	B7	3ABC	B4	MO		
					Others: Reserved					
Oh0012	V1	-	-	R	Value corespondingto $0 \sim+10 \mathrm{Vinput}$					
Oh0013	V2	-	-	R	Value corresponding to $0 \sim-10 \mathrm{~V}$ input when setting FreqMode to 2					
Oh0014	1	-	-	R	Value coresponding to 0 ~ 20mAinput					
Oh0015	RPM	-	-	R	SeeFunctionList					
Oh001A	Unitdisplay	-	-	R	NotUsed					
Oh001B	Pole number	-	-	R						
Oh001C	Custom Version	-	-	R						
Oh001D	Trip infomation-B	-	-	R		NBR	B4	0 C 2	B3	REEP
						NTC	B1	FLTL	B0	COM
					Others: Reserved					
Oh001E	PIDFeedback	0.1	\%	RW	Wites feedback amount whenfeedbackis setby communication in PIDdrive.					
Oh001F	Ouputtorque	0.1	kgfm	R	Motoroutputtorque display					
Oh0100	Read address register (Nobe3)			R	0h0100: 166 Oh0103:169 0h0106: 172		Oh0101: 167 Oh0104:170		0h0102:168 Oh0105:171	
~										
Oh0107							Oh010			
	Wite address register (Note3)			W	0h0108: 174 Oh010B: 177 Oh010E:180		0h0109:175 Oh010C: 178 Oh010F: 181		0h010A:176 Oh010D:179	
仡										
Oh010F										

Note 1) The changed value in Common area affects the current setting but returns to the previous setting when power is cycled or Inverter is reset. However, changing value is immediately reflected in other parameter groups even in the case of Reset or Power On/Off. S/W version of Common area is displayed in Hexadecimal, while that of parameter area is displayed in decimal.
Note 3) User can register up to Read address 8 ea/Write address 8 ea of discontinuous addresses and read/write them n data(s) with one Read/Write command. Input/Output group I66 through I73 are registered in the common read addresses 0h0100 through 0h0107 and it can be read the discontinuous n data(s) (less than 8 ea) with a read command. Input/Output group 174 through I 81 are registered in the common write addresses 0h0108 through Oh010F and it can be written discontinuous n data(s) (less than 8 ea) with a write command.

LSIS

EC DECLARATION OF CONFORMITY

We, the undersigned,

Representative:
Address:

Manufacturer:
Address:

LSIS Co., Ltd.
LS Tower, 127, LS-ro, Dongan-gu, Anyang-si, Gyeonggi-do, Korea

LSIS Co., Ltd.
56, Samseong 4-gil, Mokcheon-eup, Dongnam-gu, Cheonan-si, Chungcheongnam-do, Korea

Certify and declare under our sole responsibility that the following apparatus:
Type of Equipment:
Inverter (Power Conversion Equipment)
Model Name:
STARVERT-iG5A series
Trade Mark:
LSIS Co., Ltd.

Conforms with the essential requirements of the directives:
2014/35/EU Directive of the European Parliament and of the Council on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits

2014/30/EU Directive of the European Parliament and of the Council on the harmonisation of the laws of the Member States relating to electromagnetic compatibility

Based on the following specifications applied:
EN 61800-3:2004/A1:2012
EN 61800-5-1:2007
and therefore complies with the essential requirements and provisions of the 2014/35/CE and 2014/30/CE Directives.

Place:
Cheonan, Chungnam,
Korea

Mr. Sang Chun Moon / General Manager
(Full name / Position)

RFI FILTERS

THE LS RANGE OF POWER LINE FILTERS FF (Footprint) - FE (Standard) SERIES, HAVE BEEN SPECIFICALLY DESIGNED WITH HIGH FREQUENCY LS INVERTERS. THE USE OF LS FILTERS, WITH THE INSTALLATION ADVICE OVERLEAF HELP TO ENSURE TROUBLE FREE USE ALONG SIDE SENSITIVE DEVICES AND COMPLIANCE TO CONDUCTED EMISSION AND IMMUNITY STANDARS TO EN 50081 -> EN61000-6-3:02 and EN61000-6-1:02

CAUTION

IN CASE OF A LEAKAGE CURRENT PROTECTIVE DEVICES IS USED ON POWER SUPPLY, IT MAY BE FAULT AT POWER-ON OR OFF. IN AVOID THIS CASE, THE SENSE CURRENT OF PROTECTIVE DEVICE SHOULD BE LARGER THAN VALUE OF LEAKAGE CURRENT AT WORST CASE IN THE BELOW TABLE.

RECOMMENDED INSTALLATION INSTRUCTIONS

To conform to the EMC directive, it is necessary that these instructions be followed as closely as possible. Follow the usual safety procedures when working with electrical equipment. All electrical connections to the filter, inverter and motor must be made by a qualified electrical technician.

1-) Check the filter rating label to ensure that the current, voltage rating and part number are correct.
2-) For best results the filter should be fitted as closely as possible to the incoming mains supply of the wiring enclousure, usually directly after the enclousures circuit breaker or supply switch.
3-) The back panel of the wiring cabinet of board should be prepared for the mounting dimensions of the filter. Care should be taken to remove any paint etc... from the mounting holes and face area of the panel to ensure the best possible earthing of the filter.
$4-)$ Mount the filter securely.
5-) Connect the mains supply to the filter terminals marked LINE, connect any earth cables to the earth stud provided. Connect the filter terminals marked LOAD to the mains input of the inverter using short lengths of appropriate gauge cable.
6 -) Connect the motor and fit the ferrite core (output chokes) as close to the inverter as possible. Armoured or screened cable should be used with the 3 phase conductors only threaded twice through the center of the ferrite core. The earth conductor should be securely earthed at both inverter and motor ends. The screen should be connected to the enclosure body via and earthed cable gland.
7-) Connect any control cables as instructed in the inverter instructions manual.
IT IS IMPORTANT THAT ALL LEAD LENGHTS ARE KEPT AS SHORT AS POSSIBLE AND THAT INCOMING MAINS AND OUTGOING MOTOR CABLES ARE KEPT WELL SEPARATED.

FF SERIES (Footprint)

FE SERIES (Standard)

iG5A series I Footprint Filters											
INVERTER	POWER	CODE	CURRENT	VOLTAGE	LEAKAGE CURRENT		$\begin{array}{\|c\|c\|} \hline \text { MOUNTING } \\ \mathrm{Y} & \mathrm{X} \end{array}$	WEIGHT	MOUNT	FIG.	$\begin{aligned} & \text { OUTPUT } \\ & \text { CHOKES } \end{aligned}$
SINGLE PHASE					(MAX.)						
SV004iG5A-1	0.4kW	FFG5A-M005.(x)	5A	250VAC	3.5 mA	175x76.5x40	161×53	1.2 Kg .	M4	A	FS-1
SV008iG5A-1	0.75kW	FFG5A-M006-(x)	6A	250VAC	3.5 mA	$176.5 \times 107.5 \times 40$	162.5×84	1.3 Kg .	M4	A	FS-1
SV015iG5A-1	1.5kW	FFG5A-M012-(x)	12A	250VAC	3.5 mA	176.5x147.5x45	162.5x124	1.8 kg .	M4	A	FS-1
THREE PHASE											
SVOOAiG5A-2 SV008iG5A-2	$\begin{gathered} 0.4 \mathrm{~kW} \\ 0.75 \mathrm{~kW} \end{gathered}$	FFG5A-T005-(x)	5A	250VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	175x76.5x40	161×53	1.2Kg.	M4	A	FS-1
$\begin{aligned} & \text { SV008iG5A- } \\ & \text { 2NC } \end{aligned}$	0.75kW	FFG5A-T006-(x)	6A	250VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	176.5x107.5×40	162.5×84	1.2Kg.	M4	A	FS-1
SV015iG5A-2	1.5kW	FFG5A-T012-(x)	12A	250VAC	0.5 mA 27 mA	176.5x107.5×40	162.5×84	1.3Kg.	M4	A	FS -2
SV022iG5A-2	2.2kW	FFG5A-T020-(x)	20A	250VAC	0.5 mA 27 mA	176.5x147.5x45	162.5×124	1.8 Kg .	M4	A	FS-2
SV037iG5A-2	3.7kW										
SV040iG5A-2	4.0kW										
SV055iG5A-2	5.5kW	FFG5A-T030-(x)	30A	250VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \\ & \hline \end{aligned}$	266x185.5x60	252x162	2Kg.	M4	B	FS -2
SV075iG5A-2	7.5kW	FFG5A-T050-(x)	50A	250VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \\ & \hline \end{aligned}$	$270 \times 189.5 \times 60$	252×162	2.5 Kg .	M4	B	FS-2
SV110iG5A-2	11kW		100A	250VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$						
SV150iG5A-2	15kW										
SV180iG5A-2	18kW		120A	250VAC	$0.5 \mathrm{~mA}$						
SV220iG5A-2	22kW										
SV004iG5A-4	0.4kW	FFG5A-T005-(x)	5A	380VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	175x76.5x40	161×53	1.2Kg.	M4	A	FS-1
SV008iG5A-4	0.75kW										
SV008iG5A4NC	0.75kW	FFG5A-T006-(x)	6 A	380VAC	0.5 mA 27 mA	176.5x107.5x40	162.5x84	1.2Kg.	M4	A	FS-1
SV015iG5A-4	1.5kW										
SV022iG5A-4	2.2kW	FFG5A-T011-(x)	11A	380VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	176.5x147.5x45	162.5×124	1.5 Kg .	M4	A	FS-2
SV037iG5A-4	3.7 kW										
SV040iG5A-4	4.0kW										
SV055iG5A-4	5.5kW	FFG5A-T030-(x)	30A	380VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	$266 \times 185.5 \times 60$	252x162	2 Kg .	M4	B	FS-2
SV075iG5A-4	7.5kW										
SV110iG5A-4	11kW	FFG5A-T051-(x)	51A	380VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	368x258.5x65	354×217	2.5 Kg .	M6	B	FS-2
SV150iG5A-4	15kW										
SV185iG5A-4	18kW	FFG5A-T060-(x)	60A	380VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	460x288x65	446×246	2.8 Kg .	M8	B	FS-2
SV220iG5A-4	22kW	FFG5A-T070-(x)	70A	380VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \\ & \hline \end{aligned}$	$460 \times 288 \times 65$	446×246	2.8 Kg .	M8	B	FS -2

eries 1 Standard Filters											
INVERTER	POWER	CODE	CURR ENT	$\begin{gathered} \text { VOLTA } \\ \text { GE } \end{gathered}$	LEAKAGE CURRENT	$\begin{gathered} \text { DIMENSION } \\ \mathrm{L} \\ \mathrm{~L} \\ \mathrm{~W} \end{gathered} \mathrm{H}$	$\begin{array}{cc} \text { MOUNTING } \\ \mathrm{Y} & \mathrm{X} \end{array}$	$\begin{gathered} \text { WEIGH } \\ T \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { MOU } \\ \text { NT } \end{array}$		$\begin{gathered} \text { OUTP } \\ \text { UT } \\ \text { CHOK } \\ \text { ES } \end{gathered}$
SINGLE PHASE (MAX.)											
SV004iG5A-1	0.4kW	FE-M010-(x)	10A	250VAC	3.5 mA	$150 \times 55 \times 45$	140×36	0.6 Kg	---		FS-1
SV008iG5A-1	0.75 kW		10 A	250VAC							
SV015iG5A-1	1.5kW	FE-M015-(x)	15A	250VAC							
HREE PHASE		NOM. MAX.									
SV004iG5A-2	0.4kW	FE-T006-(x)	6 A	250VAC	0.5 mA 27 mA	250x110x60	238x76	1.6 Kg .	---		FS-2
SV008iG5A-2	0.75 kW										
SV008iG5A2NC	0.75 kW										
SV015iG5A-2	1.5 kW	FE-T012-(x)	12A	250VAC	0.5 mA 27 mA	$250 \times 110 \times 60$	238x76	1.6 Kg .	---	C	FS - 2
SV022iG5A-2	2.2 kW	FE-T020-(x)	20A	250VAC	0.5 mA 27 mA	$270 \times 140 \times 60$	258×106	2.2 Kg .	---	C	FS-2
SV037iG5A-2	3.7 kW										
SV040iG5A-2	4.0kW										
SV055iG5A-2	5.5kW	FE-T030-(x)	30A	250VAC	0.5 mA 27 mA	$270 \times 140 \times 60$	258×106	2.4 Kg .	---	C	FS -2
SV075iG5A-2	7.5kW	FE-T050-(x)	50A	250VAC	0.5 mA 27 mA	$270 \times 140 \times 90$	258×106	3.2 Kg .	---	C	FS-2
SV110iG5A-2	11 kW	FE-T100-(x)	100A	250VAC	0.5 mA 27 mA	$420 \times 200 \times 130$	408×166	13.8 Kg .	---	C	FS - 3
SV150iG5A-2	15 kW										
SV185iG5A-2	18kW	FE-T120-(x)	120A	250VAC	0.5 mA 27 mA	420x200x130	408×166	13.8 Kg .	---	C	FS - 3
SV220iG5A-2	22kW										
SV004iG5A-4	0.4 kW	FE-T006-(x)	6 A	380VAC	0.5 mA 27 mA	$250 \times 110 \times 60$	238x76	1.6 Kg .	---	C	FS-2
SV008iG5A-4	0.75 kW										
SV008iG5A4NC	0.75 kW										
SV015iG5A-4	1.5kW										
SV022iG5A-4	2.2kW	FE-T012-(x)	12A	380VAC	0.5 mA 27 mA	$250 \times 110 \times 60$	238x76	1.6 Kg .	---	C	FS 2
SV037iG5A-4	3.7 kW										
SV040iG5A-4	4.0kW										
SV055iG5A-4	5.5kW	FE-T030-(x)	30A	380VAC	0.5 mA 27 mA	270x140x60	258×106	2.4 Kg .	--	C	FS - 2
SV075iG5A-4	7.5kW										
SV110iG5A-4	11W	FE-T050-(x)	50A	380VAC	0.5 mA 27 mA	270x140x90	258x106	3.2 Kg .	---	C	FS - 2
SV150iG5A-4	15 kW										
SV185iG5A-4	18kW	FE-T060-(x)	60A	380VAC	0.5 mA 27 mA	270x140x90	258×106	3.2 Kg .	---	C	FS-2
SV220iG5A-4	22kW	FE-T070-(x)	70A	380VAC	0.5 mA 27 mA	$350 \times 180 \times 90$	338×146	7.5 Kg .	---		FS-2

(x) (1) Industrial environment EN50081-2 (A class) \rightarrow EN61000-6-4:02
(3) Domestic and industrial environment EN50081-1 (B class) \rightarrow EN61000-6-3:02

FF SERIES (Footprint)

FIG. A

FIG. B

FE SERIES (Standard)
FIG. C

WWW.PLCE』if

Warranty

Maker	LS Industrial Systems Co., Ltd.	Installation (Start- up) Date	
Model No.	SV-iG5A		Warranty Period

Warranty period is 12 months after installation or 18 months after manufactured when the installation date is unidentified. However, the guarantee term may vary on the sales term.

IN-WARRANTY service information

If the defective part has been identified under normal and proper use within the guarantee term, contact your local authorized LS distributor or LS Service center.

OUT-OF WARRANTY service information

The guarantee will not apply in the following cases, even if the guarantee term has not expired.

- Damage was caused by misuse, negligence or accident.
- Damage was caused by abnormal voltage and peripheral devices' malfunction (failure).
- Damage was caused by an earthquake, fire, flooding, lightning, or other natural calamities.
- When LS nameplate is not attached.
- When the warranty period has expired.

Revision History

No	Date	Edition	Changes
1	2004.2	First Release	Only 5.5, 7.5kW included
2	2004.9	$2^{\text {nd }}$ Edition	$0.4 \sim 4.0 \mathrm{~kW}$ added to first release
3	2005.6	$4^{\text {th }}$ Edition	CI changed
4	2006.5	$5^{\text {th }}$ Edition	S/W Version up (V1.7)
5	2007.11	$6^{\text {th }}$ Edition	S/W Version up (V2.0)
6	2008.4	$7^{\text {th }}$ Edition	S/W Version up (V2.2)
7	2008.11	$8^{\text {th }}$ Edition	Contents of EMI / RFI POWER LINE FILTERS updated
8	2009.7	$9^{\text {th }}$ Edition	S/W Version up (V2.3)

[^0]: * See "Chapter 6 Troubleshooting and maintenance" for External trip A/B contact.
 * Each multi-function input terminal must be set differently.

