Anelta

PLC1.ir

0 aelta

DELTA ELECTRONICS, INC.

www.delta.com.tw/industrialautomation

IABU Headquarters

Delta Electronics, Inc.
Taoyuan 1
31-1, Xingbang Road, Guishan Industrial Zone, Taoyuan County 33370, Taiwan, R.O.C.
TEL: 886-3-362-6301 / FAX: 886-3-362-7267

Asia

Delta Electronics (Jiang Su) Ltd.
Wujiang Plant3
1688 Jiangxing East Road,
Wujiang Economy Development Zone,
Wujiang City, Jiang Su Province,
People's Republic of China (Post code: 215200)
TEL: 86-512-6340-3008 / FAX: 86-512-6340-7290
Delta Greentech (China) Co., Ltd.
238 Min-Xia Road, Cao-Lu Industry Zone, Pudong, Shanghai,
People's Republic of China
Post code : 201209
TEL: 021-58635678 / FAX: 021-58630003
Delta Electronics (Japan), Inc.
Tokyo Office
Delta Shibadaimon Building, 2-1-14
Shibadaimon, Minato-Ku, Tokyo, 105-0012,
Japan
TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211
Delta Electronics (Korea), Inc.
234-9, Duck Soo Building 7F, Nonhyun-Dong,
Kangnam-Gu, Seoul, Korea 135-010
TEL: 82-2-515-5305 / FAX: 82-2-515-5302

Delta Electronics (Singapore) Pte. Ltd
8 Kaki Bukit Road 2, \#04-18 Ruby Warehouse Complex,
Singapore 417841
TEL: 65-6747-5155 / FAX: 65-6744-9228
Delta Power Solutions (India) Pte. Ltd.
Plot No. 28, Sector-34, EHTP
Gurgaon-122001 Haryana, India
TEL: 91-124-416-9040 / FAX: 91-124-403-6045

AMERICA

Delta Products Corporation (USA)
Raleigh Office
P.O. Box 12173,5101 Davis Drive,

Research Triangle Park, NC 27709, U.S.A.
TEL: 1-919-767-3813 / FAX: 1-919-767-3969
Delta Products Corporation (Brazil)
Sao Paulo Office
Rua Jardim Ivone, 17 Cjs 13/14-Paraiso
04105-020-Sao Paulo-SP-Brazil
TEL: 55-11-3568-3875 / FAX: 55-11-3568-3865

EUROPE

Deltronics (The Netherlands) B.V.
Eindhoven Office
De Witbogt 15, 5652 AG Eindhoven, The Netherlands
TEL: 31-40-2592850 / FAX: 31-40-2592851

Preface

Thank you for choosing DELTA's high-performance VFD-B-P Series. The VFD-B-P Series is manufactured with high-quality components and materials and incorporates the latest microprocessor technology available.

This manual is to be used for the installation, parameter setting, troubleshooting, and daily maintenance of the AC motor drive. To guarantee safe operation of the equipment, read the following safety guidelines before connecting power to the AC motor drive. Keep this operating manual at hand and distribute to all users for reference.

To ensure the safety of operators and equipment, only qualified personnel familiar with AC motor drive are to do installation, start-up and maintenance. Always read this manual thoroughly before using VFD-B-P series AC Motor Drive, especially the WARNING, DANGER and CAUTION notes. Failure to comply may result in personal injury and equipment damage. If you have any questions, please contact your dealer.

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

DANGER!

1. AC input power must be disconnected before any wiring to the AC motor drive is made.
2. A charge may still remain in the DC-link capacitors with hazardous voltages, even if the power has been turned off. To prevent personal injury, please ensure that power has been turned off before opening the AC motor drive and wait ten minutes for the capacitors to discharge to safe voltage levels.
3. Never reassemble internal components or wiring.
4. The AC motor drive may be destroyed beyond repair if incorrect cables are connected to the input/output terminals. Never connect the AC motor drive output terminals U/T1, V/T2, and W/T3 directly to the AC mains circuit power supply.
5. Ground the VFD-B-P using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed. Refer to the Basic Wiring Diagram.
6. VFD-B-P series is used only to control variable speed of 3-phase induction motors, NOT for 1phase motors or other purpose.
7. VFD-B-P series shall NOT be used for life support equipment or any life safety situation.
8. DO NOT use Hi-pot test for internal components. The semi-conductor used in the AC motor drive is easily damaged by high-pressure.
9. There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. To prevent damage to these components, do not touch these components or the circuit boards with metal objects or your bare hands.
10. Only qualified persons are allowed to install, wire and maintain AC motor drives.

CAUTION!

1. Some parameter settings will cause the motor to run immediately after applying power.
2. DO NOT install the AC motor drive in a place subjected to high temperature, direct sunlight, high humidity, excessive vibration, corrosive gases or liquids, or airborne dust or metallic particles.
3. Only use AC motor drives within specification. Failure to comply may result in fire, explosion or electric shock.
4. To prevent personal injury, please keep children and unqualified people away from the equipment.
5. When the motor cable between the AC motor drive and motor is too long, the layer insulation of the motor may be damaged. Please use a frequency inverter duty motor or add an AC output reactor to prevent damage to the motor. Refer to appendix B Reactor for details.
6. The rated voltage for the AC motor drive must be $\leq 240 \mathrm{~V}$ ($\leq 480 \mathrm{~V}$ for 460 V models, $\leq 600 \mathrm{~V}$ for 575 V models) and the mains supply current capacity must be $\leq 5000 \mathrm{~A}$ RMS ($\leq 10000 \mathrm{~A}$ RMS for the $\geq 40 \mathrm{hp}$ (30 kW) models).

Table of Contents

Preface i
Table of Contents iii
Chapter 1 Introduction 1-1
1.1 Receiving and Inspection 1-1
1.1.1 Nameplate Information 1-1
1.1.2 Model Explanation 1-2
1.1.3 Serial Number Explanation 1-3
1.1.4 Capacity Modules 1-4
1.1.4.1 Side Label 1-4
1.1.4.2 Model Explanation 1-4
1.1.4.3 Serial Number Explanation 1-4
1.2 Appearances 1-5
1.3 Preparation for Installation and Wiring 1-7
1.3.1 Remove Keypad 1-8
1.3.2 Remove Front Cover. 1-9
1.4 Storage 1-10
Chapter 2 Installation and Wiring 2-1
2.1 Ambient Conditions 2-1
2.2 Installation 2-1
2.2.1 Minimum mounting clearances 2-2
2.2.2 Optional Heatsink 2-4
2.2.2.1 Thermal Grease 2-4
2.2.2.2 Heatsink Installation and Cutout Dimensions 2-7
2.3 Dimensions 2-10
2.4 Wiring 2-19
2.4.1 Basic Wiring 2-19
2.4.2 External Wiring 2-25
2.4.3 Main Terminals Connections 2-26
2.4.4 Control Terminals 2-28
2.4.5 Main Circuit Terminals 2-32
Chapter 3 Start Up 3-1
3.1 Preparations before Start-up 3-1
3.2 Operation Method 3-2
3.3 Trial Run 3-2
Chapter 4 Digital Keypad Operation 4-1
4.1 Description of the Digital Keypad VFD-PU01 4-1
4.2 How to Operate the Digital Keypad VFD-PU01 4-3
Chapter 5 Parameters 5-1
5.1 Summary of Parameter Settings 5-2
5.2 Parameter Settings for Applications 5-18
5.3 Description of Parameter Settings 5-23
Chapter 6 Fault Code Information 6-1
6.1 Common Problems and Solutions 6-1
6.2 Reset 6-4
Chapter 7 Troubleshooting 7-1
7.1 Over Current (OC) 7-1
7.2 Ground Fault 7-2
7.3 Over Voltage (OV) 7-2
7.4 Low Voltage (Lv) 7-3
7.5 Over Heat (OH) 7-4
7.6 Overload 7-4
7.7 Display of PU01 is Abnormal 7-5
7.8 Phase Loss (PHL) 7-5
7.9 Motor cannot Run 7-6
7.10 Motor Speed cannot be Changed 7-7
7.11 Motor Stalls during Acceleration 7-8
7.12 The Motor does not Run as Expected 7-8
Chapter 8 Maintenance and Inspections 8-1
Appendix A Specifications A-1
Appendix B Accessories B-1
B. 1 Dimensions for Heatsinks B-1
B. 2 All Brake Resistors \& Brake Units Used in AC Motor Drives B-5
B.1.1 Dimensions and Weights for Brake Resistors B-7
B.1.2 Specifications for Brake Unit B-8
B.1.3 Dimensions for Brake Unit B-9
B. 2 AMD - EMI Filter Cross Reference B-10
B.2.1 Dimensions B-13
B. 3 PG Card (for Encoder) B-17
B.3.1 PG02 Installation B-17
B.3.1.1 PG Card and Pulse Generator (Encoder) B-18
B.3.1.2 PG-02 Terminal Descriptions B-19
B.3.2 PG03 B-21
B.3.2.1 Installation B-21
B.3.2.2 PG Card and Pulse Generator (Encoder). B-23
B.3.2.3 PG-03 Terminal Descriptions B-24
B. 4 Remote Controller RC-01 B-27
B. 5 Remote Panel Adapter (RPA 01) B-28
B. 6 AC Reactor B-29
B.6.1 AC Input Reactor Recommended Value B-29
B.6.2 AC Output Reactor Recommended Value B-29
B.6.3 Applications for AC Reactor B-29
B. 7 Zero Phase Reactor (RF220X00A) B-32
B. 8 DC Choke Recommended Values B-36
B. 9 No-fuse Circuit Breaker Chart B-36
B. 10 Fuse Specification Chart B-37
B. 11 PU06 B-37
B.11.1 Description of the Digital keypad VFD-PU06 B-37
B.11.2 Explanation of Display Message B-37
B.11.3 Operation Flow Chart B-38
Appendix C How to Select the Right AC Motor Drive C-1
C. 1 Capacity Formulas C-2
C. 2 General Precaution C-4
C. 3 How to Choose a Suitable Motor. C-5
C. 4 Malfunction Reasons and Solutions for the AC Motor Drive C-8
C.4.1 Solutions for Electromagnetic/Induction Noise C-8
C.4.2 Environmental Condition C-8
C.4.3 Affecting Other Machines C-9

Chapter 1 Introduction

1.1 Receiving and Inspection

This VFD-B-P AC motor drive has gone through rigorous quality control tests at the factory before shipment. After receiving the AC motor drive, please check for the following:

- Inspect the unit to assure it was not damaged during shipment.

■ Make sure that the part number indicated on the nameplate corresponds with the part number of your order.

1.1.1 Nameplate Information

1. For standard plate drives (models VFD055B43P~VFD300B43P (7.5~40HP))

Example for $7.5 \mathrm{HP} / 5.5 \mathrm{~kW}$ 3-phase 460 V AC motor drive

2. For standard plate drives (models VFD370B43W-P~ VFD450B43W-P (50~60HP))

Example for 50HP/37kW 3-phase 460V AC motor drive

3. For models with heatsink (models VFD022B43P-X~ VFD450B43P-X (3~60HP))

Example for $7.5 \mathrm{HP} / 5.5 \mathrm{~kW} 3$-phase 460 V AC motor drive with heatsink type C0

NOTE

The models with heatsink (models VFD022B43P-X~ VFD450B43P-X (3~60HP)) are only for China market.

Chapter 1 Introduction | VFD-B-P Series

1.1.2 Model Explanation

1. For standard plate drives (models VFD055B43P~VFD300B43P (7.5~40HP))

Example for $7.5 \mathrm{HP} / 5.5 \mathrm{~kW}$ 3-phase 460V AC motor drive

2. For standard plate drives (models VFD370B43W-P~ VFD450B43W-P (50~60HP))

Example for 50HP/37kW 3-phase 460V AC motor drive

3. For models with heatsink (models VFD022B43P-X~ VFD450B43P-X (3~60HP))

Example for $7.5 \mathrm{HP} / 5.5 \mathrm{~kW}$ 3-phase 460 V AC motor drive with heatsink type C0

NOTE

VFDXXXB43P-A: frame A with heatsink type A0.
VFDXXXB43P-B: frame B with heatsink type B0.
VFDXXXB43P-C: frame C with heatsink type $C 0$ (this type is only for China market).
VFDXXXB43P-D: frame D with heatsink type D0 (this type is only for China market).
VFDXXXB43P-C1: frame C with heatsink type C 1 (this type is only for China market).
VFDXXXB43P-D1: frame D with heatsink type D 1 (this type is only for China market).

1.1.3 Serial Number Explanation

1. For standard plate drives (models VFD055B43P~VFD300B43P (7.5~40HP))

Example for $7.5 \mathrm{HP} / 5.5 \mathrm{~kW}$ 3-phase 460 V AC motor drive

2. For standard plate drives (models VFD370B43W-P~ VFD450B43W-P (50~60HP))

Example for $50 \mathrm{HP} / 37 \mathrm{~kW} 3$-phase 460 V AC motor drive

3. For models with heatsink (models VFD022B43P-X~ VFD450B43P-X (3~60HP))

Example for $7.5 \mathrm{HP} / 5.5 \mathrm{~kW} 3$-phase 460 V AC motor drive with heatsink type C0

NOTE

0 : heatsink type for each frame $\mathrm{X0}$ (X means frame $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D , such as $\mathrm{A} 0, \mathrm{BO}, \mathrm{C} 0$ and DO (see following for details)
1: heatsink type for each frame X 1 (X means frame C or D , such C 1 or D 1 . see following for details.)
VFDXXXB43P-A: frame A with heatsink type A0.
VFDXXXB43P-B: frame B with heatsink type B0.
VFDXXXB43P-C: frame C with heatsink type $C 0$ (this type is only for China market).
VFDXXXB43P-D: frame D with heatsink type D0 (this type is only for China market).
VFDXXXB43P-C1: frame C with heatsink type $C 1$ (this type is only for China market).
VFDXXXB43P-D1: frame D with heatsink type D1 (this type is only for China market).
If the nameplate information does not correspond to your purchase order or if there are any problems, please contact your distributor.

Chapter 1 Introduction | VFD-B-P Series

1.1.4 Capacity Modules

1.1.4.1 Side Label

Example for $7.5 \mathrm{HP} / 5.5 \mathrm{~kW}$ 3-phase 460 V AC motor drive

1.1.4.2 Model Explanation

1.1.4.3 Serial Number Explanation

The AC motor drive should be used with the corresponding capacity module. Please check if the applicable model shown on the label of capacity module corresponds to the AC motor drive. If the nameplate information does not correspond to the AC motor drive or if there are any problems, please contact your distributor.

1.2 Appearances

(Refer to chapter 2.3 for exact dimensions)

7.5-20HP/5.5-15kW (standard plate drive)

25-50HP/18.5-37kW (standard plate drive)

NOTE

The capacity module can be installed in parallel or vertical at the two sides of the AC motor drive.
7.5HP-20HP/5.5kW-15kW optional heatsink (MKB-PHC) VFDXXXB43P-C

25HP-50HP/18.5kW-37kW optional heatsink (MKB-PHD) VFDXXXB43P-D

7.5-20HP/5.5-15kW optional heatsink (MKBPHC1) VFDXXXB43P-C1

25-40HP/18.5-30kW optional heatsink (MKBPHD1) VFDXXXB43P-D1

NOTE

The capacity module can be installed in parallel or vertical at the two sides of the AC motor drive as shown above.

\Rightarrow NOTE

VFDXXXB43P-C: frame C with heatsink type C0 (this type is only for China market).
VFDXXXB43P-D: frame D with heatsink type D0 (this type is only for China market).
VFDXXXB43P-C1: frame C with heatsink type C1 (this type is only for China market).
VFDXXXB43P-D1: frame D with heatsink type D1 (this type is only for China market).

1.3 Preparation for Installation and Wiring

1.3.1 Remove Keypad

7.5-20HP/5.5-15kW

1.3.2 Remove Front Cover

7.5-20HP/5.5-15kW

25-60HP/18.5-45kW

Chapter 1 Introduction | VFD-B-P Series

1.4 Storage

The AC motor drive should be kept in the shipping carton or crate before installation. In order to retain the warranty coverage, the AC motor drive should be stored properly when it is not to be used for an extended period of time. Storage conditions are:

Store in a clean and dry location free from direct sunlight or corrosive fumes.
Store within an ambient temperature range of $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Store within a relative humidity range of 0% to 90% and non-condensing environment.
Store within an air pressure range of 86 kPA to 106 kPA .

CAUTION!

7. DO NOT store in an area with rapid changes in temperature. It may cause condensation and frost.
8. DO NOT place on the ground directly. It should be stored properly. Moreover, if the surrounding environment is humid, you should put exsiccator in the package.
9. If the AC motor drive is stored for more than 3 months, the temperature should not be higher than $30^{\circ} \mathrm{C}$. Storage longer than one year is not recommended, it could result in the degradation of the electrolytic capacitors.
10. When the AC motor drive is not used for a long time after installation on building sites or places with humidity and dust, it's best to move the AC motor drive to an environment as stated above.

Chapter 2 Installation and Wiring

2.1 Ambient Conditions

Install the AC motor drive in an environment with the following conditions:

Operation	Air Temperature: Relative Humidity: Atmosphere pressure: Installation Site Altitude: Vibration:	$-10 \sim+40^{\circ} \mathrm{C}\left(14 \sim 104^{\circ} \mathrm{F}\right)$ <90\%, no condensation allowed $86 \sim 106 \mathrm{kPa}$ <1000m <20Hz: $9.80 \mathrm{~m} / \mathrm{s}^{2}$ (1G) max $20 \sim 50 \mathrm{~Hz}: 5.88 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G})$ max
Storage	Temperature:	$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \sim 140^{\circ} \mathrm{F}\right)$
Transportation	Relative Humidity:	<90\%, no condensation allowed
	Atmosphere pressure:	$86 \sim 106 \mathrm{kPa}$
	Vibration:	$<20 \mathrm{~Hz}$: $9.80 \mathrm{~m} / \mathrm{s}^{2}$ (1G) max
		$20 \sim 50 \mathrm{~Hz}: 5.88 \mathrm{~m} / \mathrm{s}^{2}$ (0.6G) max

Pollution Degree \quad 2: good for a factory type environment.

1. Operating, storing or transporting the AC motor drive outside these conditions may cause damage to the AC motor drive.
2. Failure to observe these precautions may void the warranty!

2.2 Installation

1. Mount the AC motor drive vertically on a flat vertical surface by using bolts or screws. Other directions are not allowed.
2. The AC motor drive will generate heat during operation. Allow sufficient space around the unit for heat dissipation.
3. The heat sink temperature may rise to $90^{\circ} \mathrm{C}$ when running. The material on which the AC motor drive is mounted must be noncombustible and be able to withstand this high temperature.
4. When the $A C$ motor drive is installed in a confined space (e.g. cabinet), the surrounding temperature must be within $10 \sim 40^{\circ} \mathrm{C}$ with good ventilation. DO NOT install the AC motor drive in a space with bad ventilation.

Chapter 2 Installation and Wiring | VFD-B-P Series

5. When installing multiple AC motor drives in the same cabinet, they should be adjacent in a row with enough space in-between. When installing one AC motor drive below another one, use a metal separation barrier between the AC motor drives to prevent mutual heating.
6. Prevent fiber particles, scraps of paper, saw dust, metal particles, etc. from adhering to the heatsink.

2.2.1 Minimum mounting clearances

3HP/2.2kW

7.5-20HP/5.5-15kW and figure for capacity installed in parallel

5HP/3.7kW
UNIT:mm(inch)

7/17/1/1/1/11/1
$\mathbf{2 5 - 6 0 H P} / 18.5-45 \mathrm{~kW}$ and figure for capacity installed in vertical position

60HP/45kW and figure for capacity installed in parallel

Refer to the following figure for heat sink system

\#nOTE

Please note that the AC motor drive will generate the heat during operation. Due to the surrounding temperature, the temperature of the AC motor drive for models $3-20 \mathrm{HP}$ should be within $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$ and models $25-60 \mathrm{HP}$ should be within $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$. It can use Pr.00-04 (set to 14) to monitor the temperature.

Chapter 2 Installation and Wiring | VFD-B-P Series

2.2.2 Optional Heatsink

2.2.2.1 Thermal Grease

Please note the applying area and thickness of thermal grease for installation. Heatsink (MKB-PHC/MKB-PHC1) for models VFD055B43P, VFD075B43P, VFD110B43P and VFD150B43P

Areafor thermal grease

Thickness $=0.125 \mathrm{~mm} \sim 0.15 \mathrm{~mm}$
Left 10 mm from edge

Screw type: M6*p1.0
8 pieces with screw torque: $35 \sim 40 \mathrm{Kgf-cm}$

Heatsink (MKB-PHD/MKB-PHD1) for models VFD185B43P, VFD220B43P and VFD300B43P

Screw type: M5*p0.8
Screw numbers: 6PCE

Screw torque: $20 \sim 25 \mathrm{Kgf-cm}$

Chapter 2 Installation and Wiring | VFD-B-P Series

Heatsink (MKB-PHD) for models VFD370B43W-P and VFD450B43W-P
Area for thermal grease
Thickness: $0.125 \mathrm{~mm} \sim 0.15 \mathrm{~mm}$
Left 10 mm (top and bottom) and
12.5 mm (right and left) from edge

Screw type: M5*p0.8
Screw numbers: 6PCE
Screw torque: $20 \sim 25 \mathrm{Kgf-cm}$

2.2.2.2 Heatsink Installation and Cutout Dimensions

Applicable model: VFD022B43P-A

Installation

Cutout dimension

Screw type: M5*p0.8(4 PCE), screw length: 8mm(max.), max. spacer outer diameter: $\phi \mathrm{D}=18 \mathrm{~mm}$ (max), Torque: $20 \mathrm{kgf-cm}$

Applicable model: VFD037B43P-B

Installation

Cutout dimension

<<Unitmm[inch]>>
Screw type: M5*p0.8(6 PCE), screw length: 8 mm (max.), max. spacer outer diameter: $\phi \mathrm{D}=18 \mathrm{~mm}$ (max), Torque: 20kgf-cm

Applicable model: VFD055B43P, VFD075B43P, VFD110B43P and VFD150B43/ heatsink (MKB-PHC/MKB-PHC1)

Installation (capacity module installed in parallel)

Cutout dimension (capacity module installed in parallel)

For heatsink: Screw type: M6*p1.0(8 PCE), screw length: 10 mm (max.), max. spacer outer diameter: $\phi \mathrm{D}=18 \mathrm{~mm}$ (max), Torque: $30 \mathrm{kgf-cm}$
For capacity module: Screw type: M5*p0.8(4 PCE), screw length: 10 mm (max.),
max. spacer outer diameter: $\phi \mathrm{D}=18 \mathrm{~mm}$ (max), Torque: 20kgf-cm
Applicable model: VFD185B43P, VFD220B43P, VFD300B43P / Heatsink(MKB-PHD/MKBPHD1)

Installation (capacity module installed in vertical position)

Cutout dimension (capacity module installed in vertical position)

Screw type: M6*p1.0(11PCE), screw length: 10mm(max.), max. spacer outer diameter: $\phi \mathrm{D}=18 \mathrm{~mm}$ (max), Torque: $30 \mathrm{kgf-cm}$

Applicable model: VFD370B43W-P/ Heatsink(MKB-PHD)

Installation (capacity module installed in vertical position)

Cutout dimension (capacity module installed in vertical position)

Screw type: M6*p1.0(11PCE), screw length: 10 mm (max.), max. spacer outer diameter: $\phi \mathrm{D}=18 \mathrm{~mm}$ (max), Torque: $30 \mathrm{kgf-cm}$

Applicable model: VFD450B43W-P / Heatsink (MKB-PHD)

Installation (capacity module installed in parallel)

Cutout dimension (capacity module installed in parallel)

Screw type: M6*p1.0(11PCE), screw length: 10mm(max.), max. spacer outer diameter: $\phi \mathrm{D}=18 \mathrm{~mm}$ (max), Torque: $30 \mathrm{kgf-cm}$

Chapter 2 Installation and Wiring | VFD-B-P Series

2.3 Dimensions

(Dimensions are in millimeter and [inch]) VFD022B43P-A

UNIT: mm(inch)

Chapter 2 Installation and Wiring | VFD-B-P Series

VFD055B43P, VFD075B43P, VFD110B43P, VFD150B43P

7.1 [0.28]

NOTE

This is only the dimension of the AC motor drive and it needs to be used with a capacity module to be a complete product.

AC motor drive with heatsink MKB-PHC
VFD055B43P-C
VFD075B43P-C
VFD110B43P-C
VFD150B43P-C

AC motor drive with heatsink MKB-PHC1 VFD055B43P-C1 VFD075B43P-C1 VFD110B43P-C1 VFD150B43P-C1

NOTE

1. This is only the dimension for the AC motor drive with heatsink, it needs to be used with a capacity module to be a complete product.
2. VFDXXXB43P-C: frame C with heatsink type $C 0$ (this type is only for China market).

VFDXXXB43P-D: frame D with heatsink type D0 (this type is only for China market). VFDXXXB43P-C1: frame C with heatsink type C 1 (this type is only for China market). VFDXXXB43P-D1: frame D with heatsink type D1 (this type is only for China market).

Chapter 2 Installation and Wiring | VFD-B-P Series

Capacity modules
VFD055B43P; VFD055B43P-C/-C1
VFD075B43P; VFD075B43P-C/-C1
VFD110B43P; VFD110B43P-C/-C1
VFD150B43P; VFD150B43P-C/-C1

UNIT : mm(inch)

NOTE

1. This is only the dimension for the capacity module, it needs to be used with an AC motor drive to be a complete product.
2. VFDXXXB43P-C: frame C with heatsink type $C 0$ (this type is only for China market).

VFDXXXB43P-D: frame D with heatsink type $D 0$ (this type is only for China market).
VFDXXXB43P-C1: frame C with heatsink type $C 1$ (this type is only for China market).
VFDXXXB43P-D1: frame D with heatsink type D1 (this type is only for China market).

The AC motor drives: VFD185B43P, VFD220B43P, VFD300B43P, VFD370B43W-P and VFD450B43W-P

\square NOTE

This is only the dimension of the AC motor drive and it needs to be used with a capacity module to be a complete product.

Chapter 2 Installation and Wiring | VFD-B-P Series

AC motor drive with heatsink MKB-PHD
VFD185B43P-D
VFD220B43P-D
VFD300B43P-D
VFD370B43P-D
VFD450B43P-D

AC motor drive with heatsink MKB-PHD1 VFD185B43P-D1
VFD220B43P-D1
VFD300B43P-D1

NOTE

1. This is only the dimension for the AC motor drive with heatsink, it needs to be used with a capacity module to be a complete product.
2. VFDXXXB43P-C: frame C with heatsink type $C 0$ (this type is only for China market).

VFDXXXB43P-D: frame D with heatsink type D 0 (this type is only for China market).
VFDXXXB43P-C1: frame C with heatsink type C1 (this type is only for China market).
VFDXXXB43P-D1: frame D with heatsink type D1 (this type is only for China market).

Capacity modules
VFD185B43P; VFD185B43P-D/-D1
VFD220B43P; VFD220B43P-D/-D1 VFD300B43P; VFD300B43P-D/-D1 VFD370B43W-P; VFD370B43P-D

Chapter 2 Installation and Wiring | VFD-B-P Series

Capacity modules
VFD450B43W-P; VFD450B43P-D

UNIT : mm(inch)

NOTE

1. This is only the dimension for the capacity module, it needs to be used with an AC motor drive to be a complete product.
2. VFDXXXB43P-C: frame C with heatsink type $C 0$ (this type is only for China market). VFDXXXB43P-D: frame D with heatsink type D0 (this type is only for China market). VFDXXXB43P-C1: frame C with heatsink type C1 (this type is only for China market). VFDXXXB43P-D1: frame D with heatsink type D1 (this type is only for China market).

\square

2.4 Wiring

After removing the front cover, check if the power and control terminals are clear of debris. Be sure to observe the following precautions when wiring.

2.4.1 Basic Wiring

- Make sure that power is only applied to the R/L1, S/L2, T/L3 terminals. Failure to comply may result in damage to the equipment. The voltage and current should lie within the range as indicated on the nameplate.
- Check the following items after completing the wiring:

1. Are all connections correct?
2. No loose wires?
3. No short-circuits between terminals or to ground?

A charge may still remain in the DC bus capacitors with hazardous voltages even if the power has been turned off. To prevent personal injury, please ensure that the power is turned off and wait ten minutes for the capacitors to discharge to safe voltage levels before opening the AC motor drive.

Chapter 2 Installation and Wiring | VFD-B-P Series

DANGER!

1. All the units must be grounded directly to a common ground terminal to prevent electric shock, fire and interference.
2. Only qualified personnel familiar with AC motor drives are allowed to perform installation, wiring and commissioning.
3. Make sure that the power is off before doing any wiring to prevent electric shocks.

Basic Wiring Diagrams

Users must connect wires according to the circuit diagrams on the following pages. Do not plug a modem or telephone line to the RS-485 communication port or permanent damage may result. The pins $1 \& 2$ are the power supply for the optional copy keypad PU06 only and should not be used for RS-485 communication.

Figure 1 for models of VFD-B-P Series VFD022B43P-A

Figure 2 for models of VFD-B-P Series

VFD037B43P-B, VFD055B43P, VFD075B43P, VFD110B43P, VFD150B43P

* Three phase input power may apply to single phase drives.
* For the single phase drives, the AC input line can
be connected to any two of the three input terminals R,S,T

Brake resistor (optional)
Refer to Appendix B for the use of special brake resistor

Figure 3 for models of VFD-B-P Series VFD185B43P, VFD220B43P, VFD300B43P, VFD370B43W-P, VFD450B43W-P

Chapter 2 Installation and Wiring | VFD-B-P Series

Figure 4 Wiring for SINK mode and SOURCE mode

2.4.2 External Wiring

Items	Explanations
Power supply	Please follow the specific power supply requirements shown in Appendix A.
(Optional)	There may be an inrush current during power up. Please check the chart of Appendix B and select the correct fuse with rated current. Use of an NFB is optional.
Magnetic	Please do not use a Magnetic contactor as the I/O switch of the AC contactor motor drive, as it will reduce the operating life cycle of the AC drive.
Optional)	Used to improve the input power factor, to reduce harmonics and provide protection from AC line disturbances (surges, switching spikes, short interruptions, etc.). AC
Input AC Line Reactor should be installed when the power supply capacity is 500kVA or more or advanced capacity is activated .The wiring distance should be $\leq 10 m . ~ R e f e r ~ t o ~ a p p e n d i x ~ B ~ f o r ~$	
details.	

Chapter 2 Installation and Wiring | VFD-B-P Series

2.4.3 Main Terminals Connections

Terminal Symbol		Explanation of Terminal Function
R, S, T	R/L1, S/L2, T/L3	AC line input terminals (1-phase/3-phase)
U, V, W	U/T1, V/T2, W/T3	AC drive output terminals for connecting 3-phase induction motor
P1, P2	$+1,+2$	Connections for DC Choke (optional)
P-B, P2/B1~B2	$+2 / B 1 \sim$ B2	Connections for Brake Resistor (optional)
P2~N, P2/B1~N	$+2 \sim(-),+2 / B 1 \sim(-)$	Connections for External Brake Unit (VFDB series)
		(

Mains power terminals (R/L1, S/L2, T/L3)

- Connect these terminals (R/L1, S/L2, T/L3) via a no-fuse breaker or earth leakage breaker to 3-phase AC power (some models to 1-phase AC power) for circuit protection. It is unnecessary to consider phase-sequence.
- It is recommended to add a magnetic contactor (MC) in the power input wiring to cut off power quickly and reduce malfunction when activating the protection function of AC motor drives. Both ends of the MC should have an R-C surge absorber.
■ Do NOT run/stop AC motor drives by turning the power ON/OFF. Run/stop AC motor drives by RUN/STOP command via control terminals or keypad. If you still need to run/stop AC drives by turning power ON/OFF, it is recommended to do so only ONCE per hour.
■ Do NOT connect 3-phase models to a 1-phase power source.

Control circuit terminals (U, V, W)

■ When the AC drive output terminals $\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2$, and $\mathrm{W} / \mathrm{T} 3$ are connected to the motor terminals U/T1, V/T2, and W/T3, respectively, the motor will rotate counterclockwise (as viewed on the shaft end of the motor) when a forward operation command is received. To permanently reverse the direction of motor rotation, switch over any of the two motor leads.

Forward running

■ DO NOT connect phase-compensation capacitors or surge absorbers at the output terminals of AC motor drives.

- With long motor cables, high capacitive switching current peaks can cause over-current, high leakage current or lower current readout accuracy. To prevent this, the motor cable should be less than 20 m for 3.7 kW models and below. And the cable should be less than 50 m for 5.5 kW models and above. For longer motor cables use an AC output reactor.

■ Use a well-insulated motor, suitable for inverter operation.

Terminals [$\mathbf{+ 1}, \mathbf{+ 2}$] for connecting DC reactor

- To improve the power factor and reduce harmonics, connect a DC reactor between terminals $[+1,+2]$. Please remove the jumper before connecting the DC reactor.

NOTE Models of 45 kW and above have a built-in DC reactor.

Terminals [+2/B1, B2] for connecting brake resistor and terminals [+1, +2/B1] for connecting external brake unit

- Connect a brake resistor or brake unit in applications with frequent deceleration ramps, short deceleration time, too low brake torque or requiring increased brake torque.
- If the AC motor drive has a built-in brake chopper (all models of 11 kW and below), connect the external brake resistor to the terminals [$+2 / \mathrm{B} 1, \mathrm{~B} 2$].
■ Models of 15 kW and above don't have a built-in brake chopper. Please connect an external optional brake unit (VFDB-series) and brake resistor. Refer to VFDB series user manual for details.
- Connect the terminals $[+(\mathrm{P}),-(\mathrm{N})$] of the brake unit to the AC motor drive terminals $[+2(+2 / B 1),(-)]$. The length of wiring should be less than $5 m$ with twisted cable.
- When not used, please leave the terminals [+2/B1, -] open.

WARNING!

1. Short-circuiting $[\mathrm{B} 2]$ or $[-]$ to $[+2 / \mathrm{B} 1]$ can damage the AC motor drive.

Chapter 2 Installation and Wiring | VFD-B-P Series

Grounding terminals ($\left.{ }^{(}\right)$)

- Make sure that the leads are connected correctly and the AC drive is properly grounded. (Ground resistance should not exceed 0.1Ω.)

■ Use ground leads that comply with local regulations and keep them as short as possible.
■ Multiple VFD-B-P units can be installed in one location. All the units should be grounded directly to a common ground terminal, as shown in the figure below. Ensure there are no ground loops.

2.4.4 Control Terminals

Circuit diagram for digital inputs (SINK current 16mA.)

Terminal symbols and functions

Terminal Symbol	Terminal Function		Factory Settings (SINK) ON: Connect to DCM
FWD	Forward-Stop command	ON: OFF:	Run in FWD direction Stop acc. to Stop Method
REV	Reverse-Stop command	ON: OFF:	Run in REV direction Stop acc. to Stop Method
JOG	Jog command	ON: OFF:	JOG operation Stop acc. to Stop Method
EF	External fault	ON:	External Fault. Display "EF" and stop acc. To Stop Method. No fault

Chapter 2 Installation and Wiring | VFD-B-P Series

Terminal Symbol	Terminal Function	Factory Settings (SINK) ON: Connect to DCM	
TRG	External counter input	ON: $\begin{aligned} & \text { At } \\ & \\ & \text { by }\end{aligned}$	se counter is
MI1	Multi-function Input 1	Refer to Pr.04-04 to Pr.04-09 for programming the Multi-function Inputs.	
MI2	Multi-function Input 2		
MI3	Multi-function Input 3		
M14	Multi-function Input 4		
M15	Multi-function Input 5		
MI6	Multi-function Input 6		
DFM	Digital Frequency Meter (Open Collector Output)	Pulse voltage output monitor signal, proportional to output frequency	
+24V	DC Voltage Source	$+24 \mathrm{VDC}, 20 \mathrm{~mA}$ used for SOURCE mode.	
DCM	Digital Signal Common	Common for digital inputs and used for SINK mode.	
RA	Multi-function Relay output (N.O.) a	Resistive Load: $\begin{aligned} & \text { 5A(N.O.)/3A(N.C.) 240VAC } \\ & \text { 5A(N.O.)/3A(N.C.) 24VDC } \end{aligned}$ Inductive Load: $\begin{aligned} & \text { 1.5A(N.O.)/0.5A(N.C.) 240VAC } \\ & \text { 1.5A(N.O.)/0.5A(N.C.) 24VDC } \end{aligned}$ Refer to Pr.03-00~03-03 for programming	
RB	Multi-function Relay output $\text { (N.C.) } \mathrm{b}$		
RC	Multi-function Relay common		
MO1	Multi-function Output 1 (Photocoupler)	Maximum 48VDC, 50 mA Refer to Pr.03-00 to Pr.03-03 for programming	
MO2	Multi-function Output 2 (Photocoupler)		
MO3	Multi-function Output 3 (Photocoupler)		

Chapter 2 Installation and Wiring | VFD-B-P Series

Terminal Symbol	Terminal Function		Factory Settings (SINK) ON: Connect to DCM
MCM	Multi-function output common	Common for Multi-function Outputs	

Control signal wiring size: 18 AWG ($0.75 \mathrm{~mm}^{2}$) with shielded wire.

Analog input terminals (AVI, ACI, AUI, ACM)

- Analog input signals are easily affected by external noise. Use shielded wiring and keep it as short as possible (<20m) with proper grounding. If the noise is inductive, connecting the shield to terminal ACM can bring improvement.
- If the analog input signals are affected by noise from the AC motor drive, please connect a capacitor and ferrite core as indicated in the following diagrams:

wind each wires 3 times or more around the core Digital inputs (FWD, REV, JOG, EF, TRG, MI1~MI6, DCM)
- When using contacts or switches to control the digital inputs, please use high quality components to avoid contact bounce.

Digital outputs (MO1, MO2, MO3, MCM)

■ Make sure to connect the digital outputs to the right polarity, see wiring diagrams.
■ When connecting a relay to the digital outputs, connect a surge absorber or fly-back diode across the coil and check the polarity.

General

- Keep control wiring as far away as possible from the power wiring and in separate conduits to avoid interference. If necessary let them cross only at 90° angle.
- The AC motor drive control wiring should be properly installed and not touch any live power wiring or terminals.

NOTE

■ If a filter is required for reducing EMI (Electro Magnetic Interference), install it as close as possible to AC drive. EMI can also be reduced by lowering the Carrier Frequency.

- When using a GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity of 200 mA , and not less than 0.1 -second detection time to avoid nuisance tripping. For the specific GFCI of the AC motor drive, please select a current sensor with sensitivity of 30 mA or above.

DANGER!

Damaged insulation of wiring may cause personal injury or damage to circuits/equipment if it comes in contact with high voltage.

Chapter 2 Installation and Wiring | VFD-B-P Series

2.4.5 Main Circuit Terminals

3HP (2.2kW): VFD022B43P-A

Control Terminal
Torque: $4 \mathrm{Kgf-cm}$ ($3 \mathrm{in}-\mathrm{lbf}$)
Wire: 12-24 AWG (3.3-0.2 mm^{2})

Power Terminal
Torque: $18 \mathrm{kgf-cm}$ ($15.6 \mathrm{in}-\mathrm{lbf}$)
Wire Gauge: 10-18 AWG (5.3-0.8 mm^{2}) stranded wire, 12-18 AWG (3.3-0.8 mm^{2}) solid wire Wire Type: Copper only, $75^{\circ} \mathrm{C}$

5HP (3.7kW): VFD037B43P-B

Control Terminal
Torque: 4Kgf-cm (3 in-lbf)
Wire: 12-24 AWG (3.3-0.2 mm^{2})

Power Terminal
Torque: $18 \mathrm{kgf-cm}$ ($15.6 \mathrm{in}-\mathrm{lbf}$)
Wire Gauge: 10-18 AWG (5.3-0.8 mm^{2})
Wire Type: Stranded copper only, $75^{\circ} \mathrm{C}$
7.5HP to 20HP ($5.5-15 \mathrm{~kW}$)

VFD055B43P, VFD075B43P, VFD110B43P, VFD150B43P

Control Terminal
Torque: 4Kgf-cm (3 in-lbf)
Wire: 12-24 AWG (3.3-0.2 mm^{2})

Power Terminal
Torque: 30Kgf-cm (26 in-lbf)
Wire: 8-12 AWG (8.4-3.3 mm^{2})
Wire Type: Stranded Copper only, $75^{\circ} \mathrm{C}$

NOTE To connect 6 AWG ($13.3 \mathrm{~mm}^{2}$) wires, use Recognized Ring Terminals

VFD185B43P, VFD220B43P, VFD300B43P, VFD370B43W-P

Control Terminal
Torque: $4 \mathrm{Kgf-cm}$ ($3 \mathrm{in}-\mathrm{lbf}$)
Wire: 12-24 AWG (3.3-0.2 mm^{2})

Power Terminal
Torque: 30Kgf-cm (26 in-lbf)
Wire: 2-8 AWG (33.6-8.4 mm ${ }^{2}$)

Chapter 2 Installation and Wiring | VFD-B-P Series

$60 \mathrm{HP}(45 \mathrm{~kW})$
VFD450B43W-P

Control Terminal
Torque: 4Kgf-cm (3 in-lbf)
Wire: 12-24 AWG (3.3-0.2 mm^{2})

Power Terminal
Torque: 30kgf-cm (26 in-lbf)
Wire Gauge: 1-4 AWG (42.41-21.15 mm ${ }^{2}$)

Chapter 3 Start Up

3.1 Preparations before Start-up

Carefully check the following items before proceeding.

- Make sure that the wiring is correct. In particular, check that the output terminals U, V, W. are NOT connected to power and that the drive is well grounded.
- Verify that there are no short-circuits between terminals and from terminals to ground or mains power.
■ Check for loose terminals, connectors or screws.
- Verify that no other equipment is connected to the AC motor
- Make sure that all switches are OFF before applying power to ensure that the AC motor drive doesn't start running and there is no abnormal operation after applying power.
- Make sure that the front cover is correctly installed before applying power.

■ Do NOT operate the AC motor drive with humid hands.

- Check the following items after applying power:
- The keypad should light up as follows (normal status with no error)

When power is ON, LEDs " F ", "STOP" and "FWD" should light up. The display will show " 60.00 " with the least signification " 0 " flashing.

3.2 Operation Method

Refer to 4.2 How to operate the digital keypad VFD-PU01 and chapter 5 parameters for setting. Please choose a suitable method depending on application and operation rule. The operation is usually used as shown in the following table.

Operation Method	Frequency Source	Operation Command Source
PU01 keypad		RUN Operate from external signal
		STOP RESET
	AVI, ACI, AUI	Parameter setting: $04-04=11$ $04-05=12$
External terminals input: FWD-DCM REV-DCM		

3.3 Trial Run

After finishing checking the items in "3.1 preparation before start-up", you can perform a trial run. The factory setting of the operation source is from the keypad (Pr.02-01=00).

1. After applying power, verify that LED " F " is on and the display shows 60.00 Hz .
2. Setting frequency to about 5 Hz by using ∇ key.
3. Pressing RUN key for forward running. And if you want to change to reverse running, you should press ∇ key in $-\mathrm{Frg}^{-}$page. And if you want to decelerate to stop, please press $\frac{\text { STOP }}{\text { RESET }}$ key.
4. Check following items:

- Check if the motor direction of rotation is correct.
- Check if the motor runs steadily without abnormal noise and vibration.

■ Check if acceleration and deceleration are smooth.

If the results of trial run are normal, please start the formal run.

NOTE

1. Stop running immediately if any fault occurs and refer to the troubleshooting guide for solving the problem.
2. Do NOT touch output terminals U, V, W when power is still applied to $L 1 / R, L 2 / S, L 3 / T$ even when the AC motor drive has stopped. The DC-link capacitors may still be charged to hazardous voltage levels, even if the power has been turned off.
3. To avoid damage to components, do not touch them or the circuit boards with metal objects or your bare hands.

Chapter 3 Start Up | VFD-B-P Series

This page intentionally left blank.

Chapter 4 Digital Keypad Operation

4.1 Description of the Digital Keypad VFD-PU01

Display Message	Descriptions
F Einiol	Displays the AC drive Master Frequency.
+ Eilioid	Displays the actual output frequency present at terminals U/T1, V/T2, and W/T3.
u inginio	User defined unit (where U = F x Pr.00-05)
	Displays the output current present at terminals U/T1, V/T2, and W/T3.
$-E \sim E$	Displays the AC motor drive forward run status.

Display Message	Descriptions
$-E_{1-1}$	Displays the AC motor drive reverse run status.
E Eil	The counter value (C).
1it -ini	Displays the selected parameter.
118	Displays the actual stored value of the selected parameter.
$E E$	External Fault.
Eni-	Display "End" for approximately 1 second if input has been accepted by PROG pressing \qquad key. After a parameter value has been set, the new value is automatically stored in memory. To modify an entry, use the \square \square and keys.
ErF-	Display "Err", if the input is invalid.

4.2 How to Operate the Digital Keypad VFD-PU01

To set parameters

NOTE: In the parameter setting mode, you can press $\sqrt{5}$ MODE to return to the selection mode.

To set direction

- Frd $-\Rightarrow-r E_{u} \Rightarrow-$ Frd

Δ or ∇ था Δ or ∇ था

Chapter 4 Digital Keypad Operation|VFD-B-P Series

This page intentionally left blank.

Chapter 5 Parameters

The VFD-B-P parameters are divided into 12 groups by property for easy setting. In most applications, the user can finish all parameter settings before start-up without the need for readjustment during operation.

The 12 groups are as follows:

Group 0: User Parameters
Group 1: Basic Parameters
Group 2: Operation Method Parameters
Group 3: Output Function Parameters
Group 4: Input Function Parameters
Group 5: Multi-Step Speed and PLC Parameters
Group 6: Protection Parameters
Group 7: Motor Parameters
Group 8: Special Parameters
Group 9: Communication Parameters
Group 10: PID Control Parameters
Group 11: Fan \& Pump Control Parameters

5.1 Summary of Parameter Settings

N : The parameter can be set during operation.
Group 0 User Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
00-00	Identity Code of the AC motor drive	Read-only	\#\#	
00-01	Rated Current Display of the AC motor drive	Read-only	\#.\#	
00-02	Parameter Reset	08: Keypad lock 09: All parameters are reset to factory settings ($50 \mathrm{~Hz}, 380 \mathrm{~V}$) 10: All parameters are reset to factory settings ($60 \mathrm{~Hz}, 440 \mathrm{~V}$)	00	
N00-03	Start-up Display Selection	00: Display the frequency command value (LED F) 01: Display the actual output frequency (LED H) 02: Display the content of user-defined unit (LED U) 03: Multifunction display, see Pr.00-04 04: FWD/REV command	00	
N00-04	Content of Multi Function Display	00: Display output current (A) 01: Display counter value (C) 02: Display process operation (1.tt) 03: Display DC-BUS voltage (\bar{u}) 04: Display output voltage (E) 05: Output power factor angle (n) 06: Display output power (P) 07: Display actual motor speed (HU) 08: Display the estimated value of torque as it relates to current (t) 09: Display PG numbers/10ms (G) 10: Display analog feedback signal value (b)(\%) 11: Display AVI (U1.) (\%) 12: Display ACI (U2.) (\%) 13: Display AUI (U3.) (\%) 14: Display the temperature of heat sink (${ }^{\circ} \mathrm{C}$)	00	
N 00-05	User-Defined Coefficient K	0.01 to 160.00	1.00	
00-06	Software Version	Read-only	\#.\#\#	
00-07	Password Input	00 to 65535	00	
00-08	Password Set	00 to 65535	00	
00-09	Control Method	00: V / f Control 01: $\mathrm{V} / \mathrm{f}+\mathrm{PG}$ Control 02: Vector Control 03: Vector + PG Control	00	

Parameter	Explanation	Settings	Factory Setting	Customer
$00-10$	Reserved			

Group 1 Basic Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
01-00	Maximum Output Frequency (Fmax)	50.00 to 400.00 Hz	60.00	
01-01	Maximum Voltage Frequency (Fbase)	0.10 to 400.00 Hz	60.00	
01-02	Maximum Output Voltage (Vmax)	460V series: 0.1 V to 510.0 V	440.0	
01-03	Mid-Point Frequency (Fmid)	0.10 to 400.00 Hz	0.50	
01-04	Mid-Point Voltage (Vmid)	460V series: 0.1 V to 510.0 V	3.4	
01-05	Minimum Output Frequency (Fmin)	0.10 to 400.00 Hz	0.50	
01-06	Minimum Output Voltage (Vmin)	460 V series: 0.1 V to 510.0 V	3.4	
01-07	Output Frequency Upper Limit	1 to 120\%	100	
01-08	Output Frequency Lower Limit	0 to100 \%	0	
N01-09	Accel Time 1	0.01 to 3600.0 sec	10.0	
N 01-10	Decel Time 1	0.01 to 3600.0 sec	10.0	
N01-11	Accel Time 2	0.01 to 3600.0 sec	10.0	
N01-12	Decel Time 2	0.01 to 3600.0 sec	10.0	
01-09 ~ 01-12: Factory setting for models of 30hp (22kW) and above is 60 sec .				
N01-13	Jog Acceleration Time	0.1 to 3600.0 sec	1.0	
N 01-14	Jog Frequency	0.10 Hz to 400.00 Hz	6.00	
N 01-15	Auto acceleration / deceleration (refer to Accel/Decel time setting)	00: Linear Accel/Decel 01: Auto Accel, Linear Decel 02: Linear Accel, Auto Decel 03: Auto Accel/Decel (Set by load) 04: Auto Accel/Decel (set by Accel/Decel Time setting)	00	
01-16	Acceleration SCurve	00 to 07	00	
01-17	Deceleration SCurve	00 to 07	00	
N01-18	Accel Time 3	0.01 to 3600.0 sec	10.0	
N01-19	Decel Time 3	0.01 to 3600.0 sec	10.0	
N01-20	Accel Time 4	0.01 to 3600.0 sec	10.0	
N01-21	Decel Time 4	0.01 to 3600.0 sec	10.0	
01-18 ~ 01-21: Factory setting for models of 30hp (22kW) and above is 60sec.				
N 01-22	Jog Deceleration Time	0.1 to 3600.0 sec	1.0	
01-23	Accel/Decel Time	00: Unit: 1 sec	01	

Chapter 5 Parameters ${ }^{\text {VFD }}$ VFD-P Series

Parameter	Explanation	Settings	Factory Setting	Customer
	Unit	$01:$ Unit: 0.1 sec 02: Unit: 0.01 sec		

Group 2 Operation Method Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
N 02-00	Source of First Master Frequency Command	00: Digital keypad (PU01) 01: 0 to +10 V from AVI 02: 4 to 20 mA from ACI 03: -10 to +10 Vdc from AUI 04: RS-485 serial communication (RJ-11). Last used frequency saved. 05: RS-485 serial communication (RJ-11). Last used frequency not saved. 06: Combined use of master and auxiliary frequency command (See Pr. 02-10 to 02-12)	00	
N 02-01	Source of First Operation Command	00: Digital keypad (PU01) 01: External terminals. Keypad STOP/RESET enabled. 02: External terminals. Keypad STOP/RESET disabled. 03: RS-485 serial communication (RJ-11). Keypad STOP/RESET enabled. 04: RS-485 serial communication (RJ-11). Keypad STOP/RESET disabled.	00	
02-02	Stop Method	00: STOP: ramp to stop; E.F.: coast to stop 01: STOP: coast to stop; E.F.: coast to stop 02: STOP: ramp to stop; E.F.: ramp to stop 03: STOP: coast to stop; E.F.: ramp to stop	00	
02-03	PWM Carrier Frequency Selections	V/f control: $3-7.5 \mathrm{hp} / 2.2-5.5 \mathrm{~kW}: 01-15 \mathrm{kHz}$ $10-30 \mathrm{hp} / 7.5-22 \mathrm{~kW}: 01-09 \mathrm{kHz}$ $40-60 \mathrm{hp} / 30-45 \mathrm{~kW}: 01-06 \mathrm{kHz}$ Vector control: $3-25 \mathrm{hp} / 2.2-18.5 \mathrm{~kW}: 01-15 \mathrm{kHz}$ $30-60 \mathrm{hp} / 22-45 \mathrm{~kW}: 01-09 \mathrm{kHz}$	$\begin{aligned} & 10 \\ & 06 \\ & 04 \\ & 10 \\ & 06 \end{aligned}$	
02-04	Motor Direction Control	00: Enable forward/reverse operation 01: Disable reverse operation 02: Disabled forward operation	00	
02-05	2-wire/3-wire Operation Control Modes	00: 2-wire: FWD/STOP, REV/STOP 01: 2-wire: FWD/REV, RUN/STOP 02: 3 -wire operation	00	
02-06	Line Start Lockout	00: Disable. Operation status is not changed even if operation command source Pr.0201 and/or Pr.02-14 is changed.	00	

Parameter	Explanation	Settings	Factory Setting	Customer
		01: Enable. Operation status is not changed even if operation command source Pr.0201 and/or Pr.02-14 is changed. 02: Disable. Operation status will change if operation command source Pr.02-01 and/or Pr.02-14 is changed. 03: Enable. Operation status will change if operation command source Pr.02-01 and/or Pr.02-14 is changed.		
02-07	Loss of ACI Signal $(4-20 \mathrm{~mA})$ (4-20mA)	00: Decelerate to 0 Hz 01: Coast to stop and display "EF" 02: Continue operation by last frequency command	00	
N 02-08	Up/Down Mode	00: Based on accel/decel time 01: Constant speed (Pr.02-09) 02: Based on accel/decel time, but frequency command will be 0 when stopped. Only used when the frequency command source is PU01	00	
N 02-09	Accel/Decel Rate of Change of UP/DOWN Operation with Constant Speed	$0.01 \sim 1.00 \mathrm{~Hz} / \mathrm{msec}$	0.01	
N 02-10	Source of the Master Frequency Command	```00: Digital keypad (PU01) 01: 0 to +10V from AVI 02: 4 to 20 mA from ACI 03: -10 to +10 Vdc from AUI 04: RS-485 serial communication (RJ-11)```	00	
N 02-11	Source of the Auxiliary Frequency Command	00: Digital keypad (PU01) 01: 0 to +10V from AVI 02: 4 to 20 mA from ACI 03: -10 to +10 Vdc from AUI 04: RS-485 serial communication (RJ-11)	00	
N 02-12	Combination of the Master and Auxiliary Frequency Command	00: Master frequency + auxiliary frequency 01: Master frequency - auxiliary frequency	00	
N 02-13	Source of Second Frequency Command	00: Digital keypad (PU01) 01: 0 to +10V from AVI 02: 4 to 20 mA from ACI 03: -10 to +10 Vdc from AUI 04: RS-485 serial communication (RJ-11). Last used frequency saved 05: RS-485 serial communication (RJ-11). Last used frequency not saved. 06: Combined use of master and auxiliary frequency command (See Pr. 02-10 to 0212)	00	

Parameter	Explanation	Settings	Factory Setting	Customer
N 02-14	Source of Second Operation Command	00: Digital keypad (PU01) 01: External terminals. Keypad STOP/RESET enabled. 02: External terminals. Keypad STOP/RESET disabled. 03: RS-485 serial communication (RJ-11). Keypad STOP/RESET enabled. 04: RS-485 serial communication (RJ-11). Keypad STOP/RESET disabled.	00	
N 02-15	$\begin{aligned} & \hline \text { Keypad Frequency } \\ & \text { Command } \\ & \hline \end{aligned}$	0.00~400.00Hz	60.00	

Group 3 Output Function Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
03-00	Multi-Function Output Relay (RA1, RB1, RC1)	00: No function 01: AC drive operational 02: Master frequency attained 03: Zero speed	08	
03-01	Multi-Function Output Terminal MO1	04: Over torque detection 05: Base-Block (B.B.) indication 06: Low-voltage indication 07: Operation mode indication	01	
03-02	Multi-Function Output Terminal MO2	08: Fault indication 09: Desired frequency attained 1 10: PLC program running 11: PLC program step completed	02	
03-03	Multi-Function Output Terminal MO3	12: PLC program completed 13: PLC program operation paused 14: Terminal count value attained 15: Preliminary count value attained 16: Auxiliary motor No. 1 17: Auxiliary motor No. 2 18: Auxiliary motor No. 3 19: Heat sink overheat warning 20: AC motor drive ready 21: Emergency stop indication 22: Desired frequency attained 2 23: Software brake signal 24: Zero speed output signal 25: Under-current detection 26: Operation indication ($\mathrm{H}>=\mathrm{F}$ min) 27: Feedback signal error 28: User-defined low-voltage detection 29: Brake control (Desired frequency attained 3)	20	

Chapter 5 Parameters ${ }^{2}$ VFD-B-P Series

Parameter	Explanation	Settings	Factory Setting	Customer
03-04	Desired Frequency Attained 1	0.00 to 400.00 Hz	0.00	
03-05	Analog Output Signal	00: Analog frequency meter 01: Analog current meter 02: Output voltage 03: Output frequency command 04: Output motor speed 05: Load power factor $\left(\cos 90^{\circ}\right.$ to $\left.\operatorname{Cos} 0^{\circ}\right)$	00	
N 03-06	Analog Output Gain	01 to 200\%	100	
N 03-07	Digital Output Multiplying Factor	01 to 20	01	
N03-08	Terminal Count Value	00 to 65500	00	
N 03-09	Preliminary Count Value	00 to 65500	00	
03-10	Desired Frequency Attained 2	0.00 to 400.00 Hz	0.00	
03-11	EF Active When Preliminary Count Value Attained	00: Preliminary count value attained, no EF display 01: Preliminary count value attained, EF active	00	
03-12	Reserved			
03-13	Brake Release Frequency	0.00 to 400.00 Hz	0.00	
03-14	Brake Engage Frequency	0.00 to 400.00 Hz	0.00	

Group 4 Input Function Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
N 04-00	AVI Analog Input Bias	0.00~200.00 \%	0.00	
04-01	AVI Bias Polarity	00: Positive bias 01: Negative bias	00	
N 04-02	AVI Input Gain	1 to 200 \%	100	
04-03	AVI Negative Bias, Reverse Motion Enable/Disable	00: No AVI negative bias command 01: Negative bias: REV motion enabled 02: Negative bias: REV motion disabled	00	
04-04	Multi-Function Input Terminal 1 (MI1)	00: No function 01: Multi-Step speed command 1 02: Multi-Step speed command 2	01	
04-05	Multi-Function Input Terminal 2 (MI2)	03: Multi-Step speed command 3 04: Multi-Step speed command 4 05: External reset (N.O.) 06: Accel/Decel inhibit	02	

Parameter	Explanation	Settings	Factory Setting	Customer
		07: Accel/Decel time selection command 1 08: Accel/Decel time selection command 2		
04-06	Multi-Function Input Terminal 3 (MI3)	09: External base block (N.O.) 10: External base block (N.C.)	03	
04-07	Multi-Function Input Terminal 4 (MI4)	12: Down: Decrement master frequency 13: Counter reset 14: Run PLC program 15: Pause PLC program	04	
04-08	Multi-Function Input Terminal 5 (MI5)	16: Auxiliary motor No. 1 output disable 17: Auxiliary motor No. 2 output disable 18: Auxiliary motor No. 3 output disable 19: Emergency stop (N.O.)	05	
04-09	Multi-Function Input Terminal 6 (MI6)	20: Emergency stop (N.C.) 21: Master frequency selection $\mathrm{AVI} / \mathrm{ACI}$ 22: Master frequency selection AVI/AUI 23: Operation command selection (keypad/external terminals) 24: Auto accel/decel mode disable 25: Forced stop (N.C.) 26: Forced stop (N.O.) 27: Parameter lock enable (N.O.) 28: PID function disabled 29: Jog FWD/REV command 30: External reset (N.C.) 31: Source of second frequency command enabled 32: Source of second operation command enabled 33: One shot PLC 34: Proximity sensor input for simple Index function 35: Output shutoff stop (NO) 36: Output shutoff stop (NC)	06	
04-10	Digital Terminal Input Debouncing Time	1 to 20 (*2ms)	01	
N04-11	ACI Analog Input Bias	0.00~200.00 \%	0.00	
04-12	ACI Bias Polarity	00: Positive bias 01: Negative bias	00	
N04-13	ACI Input Gain	01 to 200 \%	100	

Chapter 5 Parameters ${ }^{2}$ VFD-B-P Series

Parameter	Explanation	Settings	Factory Setting	Customer
04-14	ACI Negative Bias, Reverse Motion Enable/Disable	00: No ACI negative bias command 01: Negative bias: REV motion enabled 02: Negative bias: REV motion disabled	00	
N 04-15	AUI Analog Input Bias	0.00~200.00 \%	0.00	
04-16	AUI Bias Polarity	00: Positive bias 01: Negative bias	00	
N 04-17	AUI Input Gain	01 to 200 \%	100	
04-18	AUI Negative Bias Reverse Motion Enable/Disable	00: No AUI negative bias command 01: Negative bias: REV motion enabled 02: Negative bias: REV motion disabled	00	
04-19	AVI Analog Input Delay	0.00 to 10.00 sec	0.05	
04-20	ACl Analog Input Delay	0.00 to 10.00 sec	0.05	
04-21	AUI Analog Input Delay	0.00 to 10.00 sec	0.05	
04-22	Analog Input Frequency Resolution	$\begin{aligned} & 00: 0.01 \mathrm{~Hz} \\ & 01: 0.1 \mathrm{~Hz} \end{aligned}$	01	
04-23	Gear Ratio for Simple Index Function	4 ~ 1000	200	
04-24	Index Angle for Simple Index Function	$0.0 \sim 360.0^{\circ}$	180.0	
N 04-25	Deceleration Time for Simple Index Function	$0.00 \sim 100.00 \mathrm{sec}$	0.00	

Group 5 Multi-Step Speed and PLC Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
N05-00	$1^{\text {st }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	
N 05-01	$2^{\text {nd }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	
N 05-02	$3^{\text {rd }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	
N 05-03	$4^{\text {th }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	
N05-04	$5^{\text {th }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	
N05-05	$6^{\text {th }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	
N05-06	$7^{\text {th }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	

Chapter 5 Parameters | VFD-B-P Series

Parameter	Explanation	Settings	Factory Setting	Customer
N 05-07	$8^{\text {th }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	
N05-08	$9^{\text {th }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	
N05-09	$10^{\text {th }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	
N05-10	$11^{\text {th }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	
N05-11	$12^{\text {th }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	
N05-12	$13^{\text {th }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	
N05-13	$14^{\text {th }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	
N05-14	$15^{\text {th }}$ Step Speed Frequency	0.00 to 400.00 Hz	0.00	
05-15	PLC Mode	00: Disable PLC operation 01: Execute one program cycle 02: Continuously execute program cycles 03: Execute one program cycle step by step 04: Continuously execute program cycles step by step	00	
05-16	PLC Forward/ Reverse Motion	00 to 32767 (00: FWD, 01: REV)	00	
05-17	Time Duration of 1st Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	
05-18	Time Duration of 2nd Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	
05-19	Time Duration of 3rd Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	
05-20	Time Duration of 4th Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	
05-21	Time Duration of 5th Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	
05-22	Time Duration of 6th Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	
05-23	Time Duration of 7th Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	
05-24	Time Duration of 8th Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	
05-25	Time Duration of 9th Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	
05-26	Time Duration of 10th Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	
05-27	Time Duration of 11th Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	
05-28	Time Duration of 12th Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	
05-29	Time Duration of 13th Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	

Chapter 5 Parameters VFD-B-P Series

Parameter	Explanation	Settings	Factory Setting	Customer
$05-30$	Time Duration of 14th Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	
$05-31$	Time Duration of 15th Step Speed	00 to 65500 sec or 00 to 6550.0 sec	00	
$05-32$	Time Unit Settings	$00: 1 \mathrm{sec}$ $01: 0.1 \mathrm{sec}$	00	
$05-33$	The Amplitude of Wobble Vibration	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	
$05-34$	Wobble Skip Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	

Group 6 Protection Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
06-00	Over-Voltage Stall Prevention	460 V series: 660.0 V to 820.0 V	780.0 V	
		00: Disable over-voltage stall prevention		
06-01	Over-Current Stall Prevention during Accel	V/f control: 20 to 150\%	120	
		Vector control: 20 to 250\%	170	
06-02	Over-Current Stall Prevention during Operation	V/f control: 20 to 150\%	120	
		Vector control: 20 to 250\%	170	
06-03	Over-Torque Detection Mode (OL2)	00: Disabled 01: Enabled during constant speed operation. After the over-torque is detected, keep running until OL2 occurs. 02: Enabled during constant speed operation. After the over-torque is detected, stop running. 03: Enabled during accel. After the overtorque is detected, keep running until OL2 occurs. 04: Enabled during accel. After the overtorque is detected, stop running.	00	
06-04	Over-Torque Detection Level	V/f control: 30 to 150\%	110	
		Vector control: 10 to 200\%	150	
06-05	Over-Torque Detection Time	0.1 to 60.0 sec	0.1	
06-06	Electronic Thermal Overload Relay Selection	00: Standard motor (self cooled by fan) 01: Special motor (forced external cooling) 02: Disabled	02	
06-07	Electronic Thermal Characteristic	30 to 600 sec	60	
06-08	Present Fault Record	00: No fault 01: Over current (oc) 02: Over voltage (ov)	00	

Parameter	Explanation	Settings	Factory Setting	Customer
		03: Over heat (oH) 04: Over load (oL) 05: Over load (oL1) 06: External fault (EF) 07: IGBT protection (occ)		
06-09	Second Most Recent Fault Record	08: CPU failure (cF3) 09: Hardware protection failure (HPF) 10: Excess current during acceleration (ocA) 11: Excess current during deceleration (ocd) 12: Excess current during steady state (ocn) 13: Ground fault (GFF) 14: Reserved		
06-10	Third Most Recent Fault Record	15: CF1 16: CF2 17: Reserved 18: Motor over-load (oL2) 19: Auto Acel/Decel failure (CFA) 20: SW/Password protection (codE)		
06-11	Fourth Most Recent Fault Record	21: External Emergency Stop (EF1) 22: Phase-Loss (PHL) 23: Preliminary count value attained, EF active (cEF) 24: Under-current (Lc) 25: Analog feedback signal error (AnLEr) 26: PG feedback signal error (PGErr)		
06-12	Under-Current Detection Level	00~100\% (00: Disabled)	00	
06-13	Under-Current Detection Time	$0.1 \sim 3600.0 \mathrm{sec}$	10.0	
06-14	Under-Current Detection Mode	00: Warn and keep operating 01: Warn and ramp to stop 02: Warn and coast to stop 03: Warn, after coast to stop, restart (delay 06-15 setting time)	00	
06-15	Under-Current Detection Restart Delay Time (Lv)	1~600 Min.	10	
06-16	User-Defined LowVoltage Detection Level	00: Disabled 460V: 440 to 600VDC	00	

Chapter 5 Parameters ${ }^{\text {VFD-B-P Series }}$

Parameter	Explanation	Settings	Factory Setting	Customer
$06-17$	User-Defined Low- Voltage Detection Time	$0.1 \sim 3600.0 \mathrm{sec}$	0.5	
$06-18$	Reserved			

Group 7 Motor Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
N 07-00	Motor Rated Current	30 to 120\%	100	
N 07-01	Motor No-Load Current	01 to 90\%	40	
N07-02	Torque Compensation	0.0 to 10.0	0.0	
N07-03	Slip Compensation (Used without PG)	0.00 to 3.00	0.00	
07-04	Number of Motor Poles	02 to 10	04	
07-05	Motor Parameters Auto Tuning	00: Disable 01: Auto tuning R1 02: Auto tuning R1 + no-load test	00	
07-06	Motor Line-to-line Resistance R1	00~65535 m	00	
07-07	Reserved			
07-08	Motor Rated Slip	0.00 to 20.00 Hz	3.00	
07-09	$\operatorname{Slip}_{\text {Limit }}$ Compensation	0 to 250\%	200	
07-10	Reserved			
07-11	Reserved			
07-12	Torque Compensation Time Constant	0.01~10.00 Sec	0.05	
07-13	Slip Compensation Time Constant	$0.05 \sim 10.00 \mathrm{sec}$	0.10	
07-14	Accumulative Motor Operation Time (Min.)	00 to 1439 Min.	00	
07-15	Accumulative Motor Operation Time (Day)	00 to 65535 Day	00	

Group 8 Special Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
$08-00$	DC Brake Current Level	00 to 100%	00	
$08-01$	DC Brake Time during Start-Up	0.0 to 60.0 sec	0.0	

Chapter 5 Parameters ${ }^{2}$ VFD-B-P Series

Parameter	Explanation	Settings	$\begin{array}{c}\text { Factory } \\ \text { Setting }\end{array}$	Customer
$08-02$	$\begin{array}{l}\text { DC Brake Time } \\ \text { during Stopping }\end{array}$	0.0 to 60.0 sec	0.0	
$08-03$	$\begin{array}{l}\text { Start-Point for DC } \\ \text { Brake }\end{array}$	0.00 to 400.00 Hz	0.00	
$08-04$	$\begin{array}{l}\text { Momentary Power } \\ \text { Loss Operation } \\ \text { Selection }\end{array}$	$\begin{array}{l}\text { 00: Operation stops after momentary power } \\ \text { loss }\end{array}$	$\begin{array}{l}\text { 01: Operation continues after momentary } \\ \text { power loss, speed search starts with the } \\ \text { Master Frequency reference value }\end{array}$	00
02: Operation continues after momentary				
power loss, speed search starts with the				
minimum frequency				

Parameter	Explanation	Settings	Factory Setting	Customer
$08-22$	Compensation Coefficient for Motor Instability	$00 \sim 1000$	00	

Group 9 Communication Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
N 09-00	Communication Address	01 to 254	01	
N 09-01	Transmission Speed	00: Baud rate 4800bps 01: Baud rate 9600bps 02: Baud rate 19200bps 03: Baud rate 38400bps	01	
N 09-02	Transmission Fault Treatment	00: Warn and keep operating 01: Warn and ramp to stop 02: Warn and coast to stop 03: No warning and keep operating	03	
N 09-03	Time-out Detection	$\begin{aligned} & \hline 0.0 \sim 60.0 \text { seconds } \\ & 0.0: \text { Disable } \end{aligned}$	0.0	
N 09-04	Communication Protocol	00: 7,N,2 (Modbus, ASCII) 01: 7,E,1 (Modbus, ASCII) 02: 7,0,1 (Modbus, ASCII) 03: 8,N,2 (Modbus, RTU) 04: 8,E,1 (Modbus, RTU) 05: 8,0,1 (Modbus, RTU)	00	
N 09-05	HMI Register 1	00~65535	00	
N 09-06	HMI Register 2	00~65535	00	
N 09-07	Response Delay Time	$00 \sim 200 \mathrm{msec}$	00	

Group 10 PID Control Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
10-00	Input terminal for PID Feedback	00: Inhibit PID operation	00	
		01: Negative PID feedback from external terminal (AVI) 0 to +10 V		
		02: Negative PID feedback from external terminal (ACI) 4 to 20 mA		
		03: Positive PID feedback from external terminal (AVI) 0 to +10 V		
		04: Positive PID feedback from external terminal (ACl) 4 to 20 mA		

Chapter 5 Parameters VFD-B-P Series

Parameter	Explanation	Settings	Factory Setting	Customer
10-01	Gain over PID Detection value	0.00 to 10.00	1.00	
N 10-02	Proportional Gain (P)	0.0 to 10.0	1.0	
N 10-03	Integral Gain (I)	0.00 to 100.00 sec (0.00=disable)	1.00	
N10-04	Derivative Control (D)	0.00 to 1.00 sec	0.00	
10-05	Upper Bound for Integral Control	00 to 100\%	100	
10-06	Primary Delay Filter Time	0.0 to 2.5 sec	0.0	
10-07	PID Output Freq Limit	0 to 110\%	100	
10-08	Feedback Signal Detection Time	0.0 to 3600.0 sec	60.0	
N 10-09	Treatment of the Erroneous Feedback Signals	00: Warn and keep operation 01: Warn and RAMP to stop 02: Warn and COAST to stop	00	
10-10	PG Pulse Range	1 to 40000	600	
10-11	PG Input	00: Disable PG 01: Single phase 02: Forward / Counterclockwise rotation 03: Reverse / Clockwise rotation	00	
N 10-12	ASR (Auto Speed Regulation) control (with PG only) (P)	0.0 to 10.0	1.0	
N 10-13	ASR (Auto Speed Regulation) control (with PG only) (I)	0.00 to 100.00 (0.00 disable)	1.00	
10-14	Speed Control Output Frequency Limit	0.00 to 10.00 Hz	10.00	
10-15	Sample time for refreshing the content of 210DH and 210EH	0.01~1.00 seconds	0.10	
10-16	Deviation Range of PID Feedback Signal Error	0.00~100.00\%	100.00	

Group 11 Fan \& Pump Control Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
$11-00$	V/f Curve Selection	00: V/f curve determined by Pr.01-00 to Pr.01-06	00	

Chapter 5 Parameters ${ }^{2}$ VFD-B-P Series

Parameter	Explanation	Settings	Factory Setting	Customer
		01: 1.5 power curve 02: 1.7 power curve 03: Square curve 04: Cube curve		
$11-01$	Start-Up Frequency of the Auxiliary Motor	0.00 to 400.00 Hz	0.00	0.00
$11-02$	Stop Frequency of the Auxiliary Motor	0.00 to 400.00 Hz	0.0	0.0
$11-03$	Time Delay before Starting the Auxiliary Motor	0.0 to 3600.0 sec	0.0	
$11-04$	Time Delay before Stopping the Auxiliary Motor	0.0 to 3600.0 sec	0.00	
$11-05$	Sleep/Wake Up Detection Time	$0.0 \sim 6550.0$ sec	0.00	
$11-06$	Sleep Frequency	$0.00 \sim$ Fmax		
$11-07$	Wakeup Frequency	$0.00 \sim$ Fmax		

5.2 Parameter Settings for Applications

- Speed Search

Applications	Purpose	Functions	Related Parameters
Windmill, winding machine, fan and all inertia load	Restart free- running motor	Before the free-running motor is completely stopped, it can be restarted without detecting motor speed. The AC	$08-06$
		motor drive will auto search motor speed and will accelerate when its speed is the same as the motor speed.	$08-19$
			$08-20$

- DC Brake before Running

Applications	Purpose	Functions	Related Parameters
When e.g. windmills, fans and pumps rotate freely by wind or flow without applying power	Keep the free- running motor at standstill.	If the running direction of the free- running motor is not steady, please execute DC brake before start-up.	$08-00$
$08-01$			

■ Motor power switch-over between AC motor drive and commercial power

Applications	Purpose	Functions	Related Parameters
Windmills, pumps,	Switching motor eower between AC extruders	When switching motor power between motor drive and commercial power motor drive and commercial	$03-00$ power, it is unnecessary to stop the motor or start by commercial power with heavy duty before switching to by AC motor drive control

- Energy Saving

Applications	Purpose	Functions	Related Parameters
Punching machines and precision machinery	Energy saving and less vibrations	Energy saving when the AC motor drive runs at constant speed, yet full power acceleration and deceleration For precision machinery it also helps to lower vibrations.	$08-15$

- Multi-step Operation

Applications	Purpose	Functions	Related Parameters
Conveying machinery	Cyclic operation by multi-step speeds.	To control 15-step speeds and duration by simple contact signal.	$04-04 \sim 04-09$ $05-00 \sim 05-14$

- Switching acceleration and deceleration times

Applications	Purpose	Functions	Related Parameters
Auto turntable for conveying machinery	Switching acceleration and deceleration times by external signal	Switching the multi-step acceleration/deceleration by external signals. When an AC motor drive drives two or more motors, it can reach high-speed but still start and stop smoothly.	$\begin{aligned} & \hline 01-09 \sim 01-12 \\ & 01-18 \sim 01-21 \\ & 04-04 \sim 04-09 \end{aligned}$

- Overheat Warning

Applications	Purpose	Functions	Related Parameters
Air conditioner	Safety measure	When the AC motor drive overheats, it uses a thermal sensor to generate a overheat warning.	$03-00 \sim 03-03$ $04-04 \sim 04-09$

Two-wire/three-wire

Applications	Purpose	Functions	Related Parameters
General application	To run, stop, forward and reverse by external terminals		$\begin{gathered} 02-05 \\ 04-04 \sim 04-09 \end{gathered}$

Operation Command

Applications	Purpose	Functions	Related Parameters
General application	Selecting the source of control signal	Selection of AC motor drive control by external terminals, digital keypad or RS485.	$02-01$
$04-04 \sim 04-09$			

- Frequency Hold

Applications	Purpose	Functions	Related Parameters
General application	Acceleration/ deceleration pause	Hold output frequency during Acceleration/deceleration	$04-04 \sim 04-09$

■ Auto Restart after Fault

Applications	Purpose	Functions	Related Parameters
Air conditioners, remote pumps	For continuous and reliable operation without operator intervention	The AC motor drive can be restarted/reset automatically up to 10 times after a fault occurs.	$08-14 \sim 08-21$

- Emergency Stop by DC Brake

Applications	Purpose	Functions	Related Parameters
High-speed rotors	Emergency stop without brake resistor	AC motor drive can use DC brake for emergency stop when a quick stop is needed without brake resistor. When used often, take motor cooling into consideration.	$08-00$
$08-02$			
$08-03$			

- Over-torque Setting

Applications	Purpose	Functions	Related Parameters
Pumps, fans and extruders	To protect machines and to have continuous/ reliable operation	The over-torque detection level can be set. Once OC stall, OV stall and over- torque occurs, the output frequency will be adjusted automatically. It is suitable for machines like fans and pumps that require continuous operation.	$06-00 \sim 06-05$

- Upper/Lower Limit Frequency

Applications	Purpose	Functions	Related Parameters
Pump and fan	Control the motor speed within upper/lower limit	When user cannot provide upper/lower limit, gain or bias from external signal, it can be set individually in AC motor drive.	$01-07$
$01-08$			

Skip Frequency Setting

Applications	Purpose	Functions	Related Parameters
Pumps and fans	To prevent machine vibrations	The AC motor drive cannot run at constant speed in the skip frequency range. Three skip frequency ranges can be set. It is used to smooth vibration at certain frequencies.	$08-00 \sim 08-13$

- Carrier Frequency Setting

Applications	Purpose	Functions	Related Parameters
General application	Low noise	The carrier frequency can be increased when required to reduce motor noise.	$02-03$

Keep Running when Frequency Command is Lost

Applications	Purpose	Functions	Related Parameters
Air conditioners	For continuous operation	When the frequency command is lost by a system malfunction, the AC motor drive can still run. Suitable for intelligent air conditioners.	$02-07$

Display the Speed of Load

Applications	Purpose	Functions	Related Parameters
General application	Display running status	Display motor speed(rpm) and machine speed(rpm) on keypad.	$00-04$

- Output Signal during Running

Applications	Purpose	Functions	Related Parameters
General application	Provide a signal for running status	Signal available to stop braking when the AC motor drive is running. (This signal will disappear when the AC motor drive is free-running.)	$03-00 \sim 03-03$

Output Signal in Zero Speed

Applications	Purpose	Functions	Related Parameters
General application	Provide a signal for running status	When the output frequency is lower than the min. output frequency, a signal is given for external system or control wiring.	$03-00 \sim 03-03$

Output Signal at Setting Frequency

Applications	Purpose	Functions	Related Parameters
General application	Provide a signal for running status	When the output frequency is at the setting frequency, a signal is sent by an external system or control wiring.	$03-00 \sim 03-03$

■ Output Signal at Over-torque Signal

Applications	Purpose	Functions	Related Parameters
General application, pumps for fans and extruders	To protect machines and to have reliable operation	When the torque exceeds the over- torque level, a signal is sent to prevent the machines from damage.	$03-00 \sim 03-03$ $06-04$ $06-05$

- Output Signal at Low Voltage

Applications	Purpose	Functions	Related Parameters
General application	Provide a signal for running status	When the voltage between P-N is lower than the voltage level, a signal is sent by an external system or control wiring.	$03-00 \sim 03-03$

- Output Signal at Desired Frequency

Applications	Purpose	Functions	Related Parameters
General application	Provide a signal for running status	When the output frequency is at the desired frequency (by frequency command), a signal is sent by an external system or control wiring.	$03-00 \sim 03-03$ $03-04$ $03-10$

Output Signal for Base Block

Applications	Purpose	Functions	Related Parameters
General application	Provide a signal for running status	When executing Base Block, a signal is sent by an external system or control wiring.	$03-00 \sim 03-03$

- Overheat Warning for Heat Sink

Applications	Purpose	Functions	Related Parameters
General application	For safety	When heat sink is overheated, it will send a signal by an external system or control wiring.	$03-00 \sim 03-03$

- Multi-function Analog Output

Applications	Purpose	Functions	Related Parameters
General application	Display running status	The value of frequency, output current/voltage can be read by adding a frequency meter or voltage/current meter.	$03-05$

5.3 Description of Parameter Settings

Group 0: User Parameters $\quad \mathbb{N}$: This parameter can be set during operation.
00-00 Identity Code of the AC motor drive
Settings Read Only
Factory setting: \#\#
00-01 Rated Current Display of the AC motor drive
Settings Read Only
Factory setting: \#.\#
[1] Pr. 00-00 displays the identity code of the AC motor drive. The capacity, rated current, rated voltage and the max. carrier frequency relate to the identity code. Users can use the following table to check how the rated current, rated voltage and max. carrier frequency of the AC motor drive correspond to the identity code.
[10] Pr.00-01 displays the rated current of the AC motor drive. By reading this parameter the user can check if the AC motor drive is correct.

		460V Series										
kW		2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45
HP		3.0	5.0	7.5	10	15	20	25	30	40	50	60
Pr.00-00		09	11	13	15	17	19	21	23	25	27	29
Rated Output Current (A)		4.2	5.5	13	18	24	32	38	45	60	73	91
Max. Carrier Frequency	V/f Control	15kHz			9kHz					6kHz		
	Vector Control	15 kHz							9kHz			

00-02 Parameter Reset
Factory Setting: 00
Settings 08 Keypad Lock
09 All parameters are reset to factory settings $(50 \mathrm{~Hz}, 380 \mathrm{~V})$
10 All parameters are reset to factory settings $(60 \mathrm{~Hz}, 440 \mathrm{~V})$
[1] This parameter allows the user to reset all parameters to the factory settings except the fault records (Pr.06-08 ~ Pr.06-11).

We When Pr.00-02=08, the VFD-PU01 keypad is locked. To unlock the keypad, set Pr.00-02=00.

00-03 N Start-up Display Selection

Settings 00 Display the frequency command value. (LED F)

Chapter 5 Parameters | VFD-B-P Series

01 Display the actual output frequency (LED H)
02 Display the content of user-defined unit (LED U)
03 Multifunction display, see Pr.00-04
04 FWD/REV command
[a] This parameter determines the start-up display page after power is applied to the drive.

00-04 \sim Content of Multi-Function Display
Factory Setting: 00

Settings	00	Display the output current in A supplied to the motor	$\square \mathrm{B}$
	01	Display the counter value which counts the number of pulses on TRG terminal	
	02	When the PLC function is active, the current step and its remaining operation time in s are shown.	6. 23
	03	Display the actual DC BUS voltage in VDC of the AC motor drive	い3 in3
	04	Display the output voltage in VAC of terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$ to the motor.	E2373
	05	Display the power factor angle in ${ }^{\circ}$ of terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$ to the motor.	$\bigcirc \mathrm{HC}$
	06	Display the output power in kW of terminals U, V and W to the motor.	9 Firim
	07	Display the actual motor speed in rpm (enabled in vector control mode or PG (Encoder) feedback control) (LED H and LED U).	H10
	08	Display the estimated value of torque in Nm as it relates to current.	170
	09	Display PG encoder feedback pulses/10ms. Display value $=(r p m * P P R) / 6000$ (see note)	Cor
	10	Display analog feedback signal value in \%.	6 7\%
	11	Display the signal of AVI analog input terminal in \%. Range 0~10V corresponds to 0~100\%. (LED U)	1 H
	12	Display the signal of ACl analog input terminal in \%. Range 4~20mA corresponds to 0~100\%. (LED U)	42
	13	Display the signal of $A U I$ analog input terminal in \%. Range -10V~10V corresponds to $0 \sim 100 \%$. (LED U)	3.
	14	Display the temperature of heat sink in ${ }^{\circ} \mathrm{C}$.	1 B

[1] Pr.00-04=09. The display value is (((rpm/60)*PPR)/1000ms)* 10 ms with $\mathrm{rpm}=$ motor speed in revs/min and PPR=encoder pulse per revolution
[1] When the display shows the multi-function display (Pr.00-03=03), the user also can view other information by pressing the "LEFT" key \measuredangle on the VFD-PU01 keypad.

00-05 N User Defined Coefficient K
Unit: 0.01
Settings
0.01 to d 160.00

Factory Setting: 1.00
1 The coefficient K determines the multiplying factor for the user-defined unit.
The display value is calculated as follows:
U (User-defined unit) = Frequency Command * K (Pr.00-05)
H (actual output) = Actual output frequency * K (Pr.00-05)
Example:
A conveyor belt runs at $13.6 \mathrm{~m} / \mathrm{s}$ at motor speed 60 Hz .
$K=13.6 / 60=0.23$ (0.226667 rounded to 2 decimals), therefore Pr. $00-05=0.23$
With Frequency command 35 Hz , display shows LED U and $35^{*} 0.23=8.05 \mathrm{~m} / \mathrm{s}$.
(To increase accuracy, use $\mathrm{K}=2.27$ or $\mathrm{K}=22.67$ and disregard decimal point.)

00-06 Software Version

Settings	Read Only
Display	$\# . \# \#$

00-07 Password Input

Unit: 1
Settings 00 to 65535
Factory Setting: 00
Display $\quad 00 \sim 02$ (times of wrong password)
$\mathbb{C l}$ The function of this parameter is to input the password that is set in Pr.00-08. Input the correct password here to enable changing parameters. You are limited to a maximum of 3 attempts.

After 3 consecutive failed attempts, a blinking "PcodE" will show up to force the user to restart the AC motor drive in order to try again to input the correct password.

Display $00 \quad$ No password set or successful input in Pr. 00-07
01 Password has been set

Chapter 5 Parameters | VFD-B-P Series

[a] To set a password to protect your parameter settings.
If the display shows 00, no password is set or password has been correctly entered in Pr.00-
07. All parameters can then be changed, including Pr.00-08.

The first time you can set a password directly. After successful setting of password the display will show 01.

Be sure to record the password for later use.
To cancel the parameter lock, set the parameter to 00 after inputting correct password into Pr. 00-07.

The password consists of min. 2 digits and max. 5 digits.
[1 How to make the password valid again after decoding by Pr.00-07:
Method 1: Re-input original password into Pr.00-08 (Or you can enter a new password if you want to use a changed or new one).

Method 2: After rebooting, password function will be recovered.
Password Decode Flow Chart

00-09 Control method
Factory Setting: 00

Settings	00	V/f control
	01	V/f + PG Control
	02	Vector Control
	03	Vector + PG Control

[1] This parameter determines the control method of the AC motor drive.
[1 PG is encoder (Pulse Generator) feedback for which an option PG card is required.
[1] Setting 00 and 01 are for V/f control mode. Setting 02 and 03 are for vector control mode. When the control model is changed, the settings of Pr.02-03(PWM Carrier Frequency Selections), Pr.06-01(Over-Current Stall Prevention during Accel), Pr.06-02(Over-Current Stall Prevention during Operation), Pr.06-04(Over-Torque Detection Level) and Pr.08-07(Current Limit for Speed Search) will be reset to the factory setting of the setting model.

00-10 Reserved

Chapter 5 Parameters | VFD-B-P Series

Group 1: Basic Parameters

01-00 \quad Maximum Output Frequency (Fmax)
Unit: 0.01
Settings $\quad 50.00$ to 400.00 Hz
Factory Setting: 60.00
[1] This parameter determines the AC motor drive's Maximum Output Frequency. All the AC motor drive frequency command sources (analog inputs 0 to +10 V and 4 to 20 mA) are scaled to correspond to the output frequency range.

01-01 Maximum Voltage Frequency (Fbase)
Unit: 0.01
Settings $\quad 0.10$ to 400.00 Hz
Factory Setting: 60.00
[a] This value should be set according to the rated frequency of the motor as indicated on the motor nameplate.

01-02 Maximum Output Voltage (Vmax)
Unit: 0.1
Settings
0.1 to 510.0 V

Factory Setting: 440.0
[a] This parameter determines the Maximum Output Voltage of the AC motor drive. The Maximum Output Voltage setting must be smaller than or equal to the rated voltage of the motor as indicated on the motor nameplate.

01-03 Mid-Point Frequency (Fmid)
Unit: 0.01
Settings
0.10 to 400.00 Hz

Factory Setting: 0.50
(1) This parameter sets the Mid-Point Frequency of the V/f curve. With this setting, the V/f ratio between Minimum Frequency and Mid-Point frequency can be determined.
[1] If Pr.11-00 is NOT set to 0 , this parameter is invalid.
Id When it is vector control mode, the settings of Pr.01-03, Pr.01-04 and Pr.01-06 are invalid.

01-04 Mid-Point Voltage (Vmid)
Unit: 0.1
Settings
0.1 to 510.0 V

Factory Setting: 3.4
[1] This parameter sets the Mid-Point Voltage of any V/f curve. With this setting, the V/f ratio between Minimum Frequency and Mid-Point Frequency can be determined.

Ial If Pr.11-00 is NOT set to 0 , this parameter is invalid.

01-05 Minimum Output Frequency (Fmin)
Unit: 0.01
Settings 0.10 to 400.00 Hz
Factory Setting: 0.50
[1] This parameter sets the Minimum Output Frequency of the AC motor drive.

01-06 Minimum Output Voltage (Vmin)
Unit: 0.1
Settings $\quad 0.1$ to 510.0 V
Factory Setting: 3.4
[1] This parameter sets the Minimum Output Voltage of the AC motor drive.
[d The settings of Pr.01-01 to Pr.01-06 have to meet the condition of Pr.01-02 $\geq \operatorname{Pr} .01-04 \geq \operatorname{Pr} .01-$ 06 and Pr.01-01 \geq Pr.01-03 \geq Pr.01-05.
[1] When it is vector control mode, the settings of Pr.01-03, Pr.01-04 and Pr.01-06 are invalid. Pr.01-05 is still the minimum output frequency.

01-07 Output Frequency Upper Limit

Unit: 1
Settings 1 to 120%
Factory Setting: 100
(1) This parameter must be equal to or greater than the Output Frequency Lower Limit (Pr.01-08). The Maximum Output Frequency (Pr.01-00) is regarded as 100%.
© Output Frequency Upper Limit value $=($ Pr.01-00 * Pr.01-07)/100.

[1] The Output Frequency Lower Limit value $=($ Pr.01-00 * Pr.01-08) $/ 100$.
[1] The Upper/Lower Limits are to prevent operation errors and machine damage.
©d If the Output Frequency Upper Limit is 50 Hz and the Maximum Output Frequency is 60 Hz , the Output Frequency will be limited to 50 Hz .

Chapter 5 Parameters | VFD-B-P Series

[]. If the Output Frequency Lower Limit is 10 Hz , and the Minimum Output Frequency (Pr.01-05) is set to 1.5 Hz , the drive will run with 10 Hz .
[a] The upper limit of output frequency will be limited to 60 Hz even after slip compensation when the max. output frequency is set to 60 Hz and the setting frequency is also 60 Hz . To make the output frequency exceeds 60 Hz , it just only needs to increase the upper limit of output frequency or max. output frequency.

01-09	N Acceleration Time 1 (Taccel 1)	Unit: 0.1/0.01
01-10	N Deceleration Time 1 (Tdecel 1)	Unit: 0.1/0.01
01-11	^Acceleration Time 2 (Taccel 2)	Unit: 0.1/0.01
01-12	N Deceleration Time 2 (Tdecel 2)	Unit: 0.1/0.01
01-18	N Acceleration Time 3 (Taccel 3)	Unit: 0.1/0.01
01-19	N Deceleration Time 3 (Tdecel 3)	Unit: 0.1/0.01
01-20	N Acceleration Time 4 (Taccel 4)	Unit: 0.1/0.01
01-21	N Deceleration Time 4 (Tdecel 4)	Unit: 0.1/0.01
	Settings $\quad 0.01$ to 3600.0 sec	Factory Setting: 10.0

[d Factory setting for models of $30 \mathrm{hp}(22 \mathrm{~kW})$ and above is 60 sec .

01-23 Accel/Decel Time Unit
Factory Setting: 01
Settings 00 Unit: 1 sec
01 Unit: 0.1 sec
02 Unit: 0.01 sec
[1] The Acceleration Time is used to determine the time required for the AC motor drive to ramp from 0 Hz to Maximum Output Frequency (Pr.01-00). The Deceleration Time is used to determine the time required for the AC motor drive to decelerate from the Maximum Output Frequency (Pr.01-00) down to 0 Hz .
[1] The Acceleration/Deceleration Time 1, 2, 3, 4 are selected according to the Multi-Function Input Terminals Settings. See Pr.04-04 to Pr.04-09 for more details.
(1) Pr.01-23 setting can change the accel./decel. time unit of Pr.01-09~01-12, Pr.01-18~01-21, Pr.01-13 and Pr.01-22 and also affect the setting of accel./decel. time.

01-13 \quad Jog Acceleration Time
Settings $\quad 0.1$ to 3600.0 sec
Factory Setting: 1.0
01-22 N Jog Deceleration Time
Unit: 0.1
Settings $\quad 0.1$ to 3600.0 sec
Factory Setting: 1.0
01-14 \cline { 16 - 16 }
Unit: 0.1
Settings
0.10 to 400.00 Hz

Factory Setting: 1.0
[1] Both external terminal JOG and key "JOG" on the keypad can be used. When the Jog command is "ON", the AC motor drive will accelerate from Minimum Output Frequency (Pr.0105) to Jog Frequency (Pr.01-14). When the Jog command is "OFF", the AC motor drive will decelerate from Jog Frequency to zero. The used Accel/Decel time is set by the Jog Accel/Decel time (Pr.01-13, Pr.01-22).
[1] Before using the JOG command, the drive must be stopped first. And during Jog operation, other operation commands cannot be accepted, except command via the FORWARD, REVERSE and STOP keys on the digital keypad.

Chapter 5 Parameters | VFD-B-P Series

The definition of JOG Accel./Decel. Time

01-15 \sim Auto-Acceleration / Deceleration

Factory Setting: 00

Settings	00	Linear acceleration / deceleration
	01	Auto acceleration, linear Deceleration.
02	Linear acceleration, auto Deceleration.	
	03	Auto acceleration / deceleration (set by load)
	04	Auto acceleration / deceleration (set by Accel/Decel Time setting)

With Auto acceleration / deceleration it is possible to reduce vibration and shocks during starting/stopping the load.

During Auto acceleration the torque is automatically measured and the drive will accelerate to the set frequency with the fastest acceleration time and the smoothest start current.

During Auto deceleration, regenerative energy is measured and the motor is smoothly stopped with the fastest deceleration time.

But when this parameter is set to 04, the actual accel/decel time will be equal to or more than parameter Pr.01-09 ~Pr.01-12 and Pr.01-18 to Pr.01-21.
[a] Auto acceleration/deceleration makes the complicated processes of tuning unnecessary. It makes operation efficient and saves energy by acceleration without stall and deceleration without brake resistor.
[a] In applications with brake resistor or brake unit, Auto deceleration shall not be used.

01-16 Acceleration S-Curve
01-17 Deceleration S-Curve
Factory Setting: 00

Settings	00	S-curve disabled
	01 to 07	S-curve enabled (07 is the smoothest)

[1] This parameter is used to ensure smooth acceleration and deceleration via S-curve.
The S-curve is disabled when set to 00 and enabled when set to 01 to 07 .
Setting 01 gives the quickest and setting 07 the longest and smoothest S-curve.
[1] The diagram below shows that the original setting of the Accel/Decel Time is only for reference when the S-curve is enabled. The actual Accel/Decel Time depends on the selected S-curve (01 to 07).

Acceleration/deceleration Characteristics

Chapter 5 Parameters | VFD-B-P Series

Group 2: Operation Method Parameters

02-00 N Source of First Master Frequency Command
Factory Setting: 00

Settings	00	Digital keypad (PU01)
	01	AVI $0 \sim+10 \mathrm{VDC}$
02	ACI $4 \sim 20 \mathrm{~mA}$	
03	AUI -10~+10VDC	
04	RS-485 serial communication (RJ-11). Last used frequency saved.	
05	RS-485 serial communication (RJ-11). Last used frequency not saved. 06	Combined use of master and auxiliary frequency command See Pr. 02-10 to 02-12

02-13 N Source of Second Master Frequency Command
Factory Setting: 00
Settings 00 Digital keypad (PU01)
01 AVI 0~+10VDC
02 ACI 4~20mA
03 AUI -10~+10VDC
04 RS-485 serial communication (RJ-11). Last used frequency saved.
05 RS-485 serial communication (RJ-11). Last used frequency not saved.

06 Combined use of master and auxiliary frequency command See Pr. 02-10 to 02-12
[d These parameters set the Master Frequency Command Source of the AC motor drive.

02-01 N Source of First Operation Command
Factory Setting: 00
Settings 00 Digital keypad (PU01)
01 External terminals. Keypad STOP/RESET enabled.
02 External terminals. Keypad STOP/RESET disabled.
03 RS-485 serial communication (RJ-11). Keypad STOP/RESET enabled.

04 RS-485 serial communication (RJ-11). Keypad STOP/RESET disabled.

02-14 N Source of Second Operation Command
Factory Setting: 00
Settings 00 Digital keypad (PU01)
01 External terminals. Keypad STOP/RESET enabled.
02 External terminals. Keypad STOP/RESET disabled.
03 RS-485 serial communication (RJ-11). Keypad STOP/RESET enabled.

04 RS-485 serial communication (RJ-11). Keypad STOP/RESET disabled.
[d These parameters are used to set the source of operation command.
[1] The first/second frequency/operation command is enabled/disabled by Multi Function Input Terminals. Please refer to of Pr.04-04~04-09(setting 31 and 32). When one of Pr.04-04~0409 is set to 31 or 32 , the frequency and source of operation command will be according to the setting of Pr.02-13 and Pr.02-14. The first frequency/operation and the second frequecny/operation command can't be enabled at the same time.

02-10 N Source of the Master Frequency Command
Factory Setting: 00
Settings 00 Digital keypad (PU01)
01 AVI 0~+10VDC
02 ACI 4~20mA
03 AUI -10~+10VDC
04 RS-485 serial communication (RJ-11)
02-11 N Source of the Auxiliary Frequency Command
Factory Setting: 00
Settings 00 Digital keypad (PU01)
01 AVI 0~+10VDC
02 ACI $4 \sim 20 \mathrm{~mA}$
03 AUI -10~+10VDC
04 RS-485 serial communication (RJ-11)
02-12 Combination of the Master and Auxiliary Frequency Command

Factory Setting: 00
Settings 00 Master frequency + Auxiliary frequency
01 Master frequency - Auxiliary frequency

Chapter 5 Parameters | VFD-B-P Series

[1] These three parameters (Pr.02-10~02-12) are enabled when Pr.02-00 or Pr.02-13 are set to 06. If they are enabled, the frequency command will be determined by these parameters.

02-02 Stop Method

		Factory Setting: 00	
Settings	00	STOP: ramp to stop	E.F.: coast to stop
	01	STOP: coast to stop	E.F.: coast to stop
	02	STOP: ramp to stop	E.F.: ramp to stop
	03	STOP: coast to stop	E.F.: ramp to stop

[d] The parameter determines how the motor is stopped when the AC motor drive receives a valid stop command or detects External Fault.

1. Ramp: the AC motor drive decelerates to Minimum Output Frequency (Pr.01-05) according to the deceleration time and then stops.
2. Coast: the AC motor drive stops the output instantly upon command, and the motor free runs until it comes to a complete standstill.
3. The motor stop method is usually determined by the characteristics of the motor load and how frequently it is stopped.
(1) It is recommended to use "ramp to stop" for safety of personnel or to prevent material from being wasted in applications where the motor has to stop after the drive is stopped. The deceleration time has to be set accordingly.
(2) If the motor free running is allowed or the load inertia is large, it is recommended to select "coast to stop".

For example: blowers, pumps and stirring machines.

ramp to stop and free run to stop

V/f Control				
Power	$3-7.5 \mathrm{hp}$	$10-30 \mathrm{hp}$	$40-60 \mathrm{hp}$	
	$2.2-5.5 \mathrm{~kW}$	$7.5-22 \mathrm{~kW}$	$30-45 \mathrm{~kW}$	
Setting Range	$01-15 \mathrm{kHz}$	$01-09 \mathrm{kHz}$	$01-06 \mathrm{kHz}$	
Factory Setting	10	06	04	

Vector Control		
Power	$3-25 \mathrm{hp}$	$30-60 \mathrm{hp}$
	$2.2-18.5 \mathrm{~kW}$	$22-45 \mathrm{~kW}$
Setting Range	$01-15 \mathrm{kHz}$	$01-09 \mathrm{kHz}$
Factory Setting	10	06

1 This parameter determines the PWM carrier frequency of the AC motor drive.

Carrier Frequency	Acoustic Noise	Electromagnetic Noise or leakage current	Heat Dissipation	Current Wave
1 kHz		Significant		
9 kHz				
15 kHz				

[1] From the table, we see that the PWM carrier frequency has a significant influence on the electromagnetic noise, $A C$ motor drive heat dissipation, and motor acoustic noise.

02-04 Motor Direction Control

Factory Setting: 00
Settings 00 Enable Forward/Reverse operation
01 Disable Reverse operation
02 Disabled Forward operation

Chapter 5 Parameters | VFD-B-P Series

[a] The parameter determines the AC motor drive direction of rotation. See Chapter 2 for definition of direction of rotation.

02-05 2-wire/ 3-wire Operation Control Modes
Factory Setting: 00
Settings 00 2-wire: FWD/STOP, REV/STOP
01 2-wire: FWD/REV, RUN/STOP
02 3-wire Operation
[a] There are three different types of control modes:

02-06 Line Start Lockout
Factory Setting: 00
Settings 00 Disable. Operation status is not changed even if operation command source Pr.02-01 and/or Pr.02-14 is changed.
01 Enable. Operation status is not changed even if operation command source Pr.02-01 and/or Pr.02-14 is changed.
02 Disable. Operation status will change if operation command source Pr.02-01 and/or Pr.02-14 is changed.
03 Enable. Operation status will change if operation command source Pr.02-01 and/or Pr.02-14 is changed.
[1] This parameter determines the response of the drive when power is on and the operation command source is changed.

Pr.02-06	Start lockout (Run when power is ON)	Operation status when operation command source is changed
00	Disable (AC motor drive will run)	Keep previous status
01	Enable (AC motor drive won't run)	Keep previous status
02	Disable (AC motor drive will run)	Change according to the new operation command source
03	Enable (AC motor drive won't run)	Change according to the new operation command source

[1] When the operation command source is from an external terminal and operation command is ON (FWD/REV-DCM=close), the AC motor drive will operate according to Pr.02-06 after power is applied. <For terminals FWD and REV only>

1. When Pr.02-06 is set to 00 or $02, \mathrm{AC}$ motor drive will run immediately.
2. When Pr.02-06 is set to 01 or $03, \mathrm{AC}$ motor drive will remain stopped until operation command is received after previous operation command is cancelled.

[1] When the operation command source isn't from the external terminals, independently from whether the AC motor drive runs or stops, the AC motor drive will operate according to Pr.0206 if the two conditions below are both met.
3. When operation command source is changed to external terminal (Pr.02-14=1 or 2)
4. The status of terminal and $A C$ motor drive is different.

Chapter 5 Parameters | VFD-B-P Series

And the operation of the AC motor drive will be:

1. When setting 00 or 01 , the status of $A C$ motor drive is not changed by the terminal status.
2. When setting 02 or 03 , the status of $A C$ motor drive is changed by the terminal status.

The Line Start Lockout feature does not guarantee that the motor will never start under this condition. It is possible the motor may be set in motion by a malfunctioning switch.

02-07 Loss of ACI Signal (4-20mA)
Factory Setting: 00
Settings 00 Decelerate to 0 Hz
01 Coast to stop and display "EF"
02 Continue operation by the last frequency command
[] This parameter determines the behavior when ACI is lost.
[1] When set to 00 or 02 , it will display warning message "AnLEr" on the keypad in case of loss of ACI signal and execute the setting. When ACI signal is recovered, the warning message usually disappears automatically. If the warning message is still displayed, please press "MODE" key to make it disappear.

02-08 N Up/Down Mode

Factory Setting: 00
Settings $00 \quad$ Based on Accel/Decel time acc. to Pr.01-09 to 01-12 and Pr.01-18 to 01-21

01 Constant speed (acc. to Pr. 02-09)
02 Based on Accel/Decel time acc. to Pr.01-09 to 01-12 and Pr.01-18 to 01-21, but frequency command will be 0 when stopped. Only used when the frequency command source is PU01
02-09
N Accel/Decel Rate of Change of UP/DOWN Operation with
Unit: 0.01 Constant Speed Settings $\quad 0.01 \sim 1.00 \mathrm{~Hz} / \mathrm{ms}$ Factory Setting: 0.01
[1] These parameters determine the increase/decrease of the master frequency when operated via the Multi-Function Inputs when Pr.04-04~Pr.04-09 are set to 11 (Up command) or 12 (Down command).

Pr.02-08 is set to 00: to increase/decrease frequency command according to the setting of accel./decel.. (only valid when the AC motor drive is in operation)

Pr.02-08 is set to 01: to increase/decrease frequency command according to Pr.02-09.

02-15	NKeypad Frequency Command	Unit: 0.01
Settings	$0.00 \sim 400.00 \mathrm{~Hz}$	Factory Setting: 60.00

[1] This parameter can be used to set frequency command or read keypad frequency command.

Group 3: Output Function Parameters

03-00 Multi-function Output Relay (RA1, RB1, RC1)
Factory Setting: 08
03-01 Multi-function Output Terminal MO1
Factory Setting: 01
03-02 Multi-function Output Terminal MO2
Factory Setting: 02
03-03 Multi-function Output Terminal MO3
Factory Setting: 20

Settings	Function	Description
00	No Function	
01	AC Drive Operational	Active when there is an output from the drive or RUN command is "ON".
02	Master Frequency Attained	Active when the AC motor drive reaches the output frequency setting.
03	Zero Speed	Active when Command Frequency is lower than the Minimum Output Frequency.
04	Over-Torque Detection	Active as long as over-torque is detected. (Refer to Pr.06-03 ~Pr.06-05)
05	Baseblock (B.B.) Indication	Active when the output of the AC motor drive is shut off during baseblock. Base block can be forced by Multi-function input (setting 9 or 10).
06	Low-Voltage Indication	Active when low voltage(Lv) is detected.
07	Operation Mode Indication	Active when operation command is controlled by external terminal.
08	Fault Indication	Active when faults occur (oc, ov, oH, oL, oL1, EF, cF3, HPF, ocA, ocd, ocn, GFF).
09	Desired Frequency Attained 1	Active when the desired frequency (Pr.03-04) is attained.
10	PLC Program Running	Active when PLC Program is running.
11	PLC Program Step Completed	Active for 0.5 sec each time the multi-step speed is attained.
12	PLC Program Completed	Active for 0.5 sec when the PLC program cycle has completed

Settings	Function	Description
13	PLC Operation Paused	Active when PLC operation is paused.
14	Terminal Count Value Attained	Active when the counter reaches Terminal Count Value.
15	Preliminary Count Value Attained	Active when the counter reaches Preliminary Count Value.
$\begin{aligned} & 16 \\ & 17 \\ & 18 \end{aligned}$	Auxiliary Motor 1, 2 and 3	For the fan \& pump control applications, one can use the Multi-function Output Terminals (1-3) to define the auxiliary motor. When using with group 10 PID Controls and group 11 Fan and Pump Control, it can control flow of many motors.
19	Heat Sink Overheat Warning (OH1)	When the heatsink overheats, it will signal to prevent OH from turning off the drive. When it is higher than $85^{\circ} \mathrm{C}$ $\left(185^{\circ} \mathrm{F}\right)$, it will be ON. If not, it will be OFF.
20	AC Motor Drive Ready	Active when the drive is on and no abnormality detected.
21	Emergency Stop Indication	Active once the drive's emergency stop function is activated.
22	Desired Frequency Attained 2	Active when the desired frequency (Pr.03-10) is attained.
23	Software Brake Signal	This function is used in conjunction with a VFDB Brake Unit. The output will be activated when the drive needs help braking the load. A smooth deceleration is achieved by using this function.
24	Zero Speed Output Signal	Active unless there is an output frequency present at terminals U/T1, V/T2, and W/T3.
25	Under-current Detection	Active once the drive's current has fallen below its minimum allowable value. (Refer to Pr.06-12, 06-13)
26	Operation Indication $(\mathrm{H}>=\mathrm{Fmin})$	Active when there is output voltage from $\mathrm{U}, \mathrm{V}, \mathrm{W}$.
27	Feedback Signal Error	Active when the feedback signal is abnormal. (Refer to Pr.10-08, Pr.10-16)
28	User-defined Lowvoltage Detection	Active once the DC Bus voltage is too low. (Refer to Pr.06- 16, Pr.06-17)
29	Brake Control (Desired Frequency Attained 3)	Active when output frequency $\geq \operatorname{Pr} .03-13$. Deactivated when output frequency \leq Pr.03-14 after STOP command.

Settings $\quad 0.00$ to 400.00 Hz
Factory Setting: 0.00
03-10 Desired Frequency Attained 2
Unit: 0.01
Settings $\quad 0.00$ to 400.00 Hz
Factory Setting: 0.00
[a] If a multi-function output terminal is set to function as Desired Frequency Attained 1 or 2 (Pr.03-00 to Pr.03-03 = 09 or 22), then the output will be activated when the programmed frequency is attained.

> output timing chart of multiple function terminals when setting to frequency attained or zero speed indication

03-05 Analog Output Signal (AFM)
Factory Setting: 00
Settings 00 Analog Frequency Meter (0 to Maximum Output Frequency)
01 Analog Current Meter (0 to 250% of rated AC motor drive current)
02 Output voltage (0 to Pr.01-02)
03 Output frequency command (0 to Maximum Frequency)
04 Output motor speed (0 to the Maximum Frequency)
05 Load power factor $\left(\cos 90^{\circ}\right.$ to $\left.0^{\circ}\right)$
$\mathbb{C d}$ This parameter sets the function of the AFM output $0 \sim+10 \mathrm{VDC}$ (ACM is common).

03-06 Analog Output Gain Unit: 1
Settings 01 to 200%
Factory Setting: 100
[1] This parameter sets the voltage range of the analog output signal.
[a] When Pr.03-05 is set to 0 , the analog output voltage is directly proportional to the output frequency of the AC motor drive. With Pr.03-06 set to 100\%, the Maximum Output Frequency (Pr.01-00) of the AC motor drive corresponds to +10VDC on the AFM output.
[0] Similarly, if Pr.03-05 is set to 1, the analog output voltage is directly proportional to the output current of the AC drive. With Pr.03-06 set to 100\%, then 2.5 times the rated current corresponds to +10VDC on the AFM output.

NOTE

Any type of voltmeter can be used. If the meter reads full scale at a voltage less than 10 volts, the parameter 03-06 should be set using the following formula:

Pr. 03-06 = ((meter full scale voltage)/10) $\times 100 \%$
For Example: When using the meter with full scale of 5 volts, adjust Pr.03-06 to 50\%. If Pr.03-05 is set to 0 , then 5VDC will correspond to Maximum Output Frequency.

03-07 \sim Digital Output Multiplying Factor
Unit: 1
Settings 01 to 20 times Factory Setting: 01
[1] This parameter determines the multiplying factor for the AC drives digital output frequency at the digital output terminals (DFM-DCM). The pulse frequency is equal to the AC motor drive output frequency multiplied by Pr.03-07. (Pulse frequency $=$ actual output frequency \times Pr.03-07)

03-08 N Terminal Count Value
Unit: 1
Settings 00 to 65500
Factory Setting: 00
[1] This parameter sets the count value of the internal counter. The external terminal TRG increases the internal counter. Upon completion of counting, the specified output terminal will be activated. (Pr.03-00 to Pr.03-03 set to 14).
[1] When the display shows c5555, the drive has counted 5,555 times. If display shows c5555•, it means that real counter value is between 55,550 to 55,559 .

03-09 N Preliminary Count Value

Unit: 1
Settings 00 to 65500
Factory Setting: 00
[1] When the counter value reaches this value, the corresponding multi-function output terminal will be activated, provided one of Pr.03-00 to Pr.03-03 set to 15 (Preliminary Count Value

Chapter 5 Parameters | VFD-B-P Series

Setting). This multi-function output terminal will be deactivated upon completion of Terminal Count Value Attained.
[a] The timing diagram:

03-11 EF Active when Preliminary Count Value Attained
Factory Setting: 00
Settings 00 Preliminary count value attained, no EF display
01 Preliminary count value attained, EF active
[]. If this parameter is set to 01 and the desired value of counter is attained, the AC drive will treat it as a fault. The drive will stop and show the "cEF" message on the display.

03-12 Reserved

03-13 Brake Release Frequency Unit: 0.01
Settings $\quad 0.00$ to 400.00 Hz
Factory Setting: 0.00
03-14 Brake Engage Frequency Unit: 0.01
Settings $\quad 0.00$ to 400.00 Hz
Factory Setting: 0.00
[1] These two parameters are used to set control of mechanical brake via the output terminals (MO1~MO3) when Pr.03-00~03-03 is set to 29. Refer to the following example for details. Example:

1. Case 1: Pr.03-14 \geq Pr.03-13
2. Case 2: Pr.03-14 $\leq \operatorname{Pr} .03-13$

Note: MOX: setting value of Pr.03-00~Pr.03-03
[1] When one of Pr.03-00~Pr.03-03 is set to 29(Brake Control): If the output frequency reaches the setting of Pr.03-13, the multi-function output terminal will be ON. If the output frequency reaches the setting of Pr.03-14, the multi-function output terminal will be OFF.

Chapter 5 Parameters | VFD-B-P Series

Group 4: Input Function Parameters

04-18 AUI Negative Bias, Reverse Motion Enable/Disable
Factory Setting: 00
Settings 00 No AUI Negative Bias Command

01 Negative Bias: REV Motion Enabled
02 Negative Bias: REV Motion Disabled
[1] In a noisy environment, it is advantageous to use negative bias to provide a noise margin. It is recommended NOT to use the signal under 1 V to set the operation frequency of the AC motor drive in the bad application environment.
(1) Pr.04-00 ~04-03, Pr.04-11 ~04-18 are used when the source of frequency command is the analog signal. Refer to the following examples.

Example 1: Standard application

This is the most used setting. The user only needs to set Pr.02-00 to 01 or 02 (setting 01 and 02 are used with the external terminals to set the frequency by the potentiometer on the keypad or potentiometer/current signal of the external terminal.

Example 2: Use of bias

This example shows the influence of changing the bias. When the input is $0 \mathrm{~V}(4 \mathrm{~mA})$, the output frequency is 10 Hz . At mid-point a potentiometer will give 40 Hz . Once the Maximum Output Frequency is reached, any further increase of the potentiometer or signal will not increase the output frequency. (To use the full potentiometer range, please refer to Example 3.) The value of external input voltage/current $0-8.33 \mathrm{~V}(4-17.33 \mathrm{~mA})$ corresponds to the setting frequency $10-60 \mathrm{~Hz}$.

Chapter 5 Parameters | VFD-B-P Series

Example 3: Use of bias and gain for use of full range

This example also shows a popular method. The whole scale of the potentiometer can be used as desired. In addition to signals of 0 to 10 V and 4 to 20 mA , the popular voltage signals also include signals of 0 to $5 \mathrm{~V}, 4$ to 20 mA or any value under 10 V . Regarding the setting, please refer to the following examples.

Factory Settings
Pr. 01-00 $=60 \mathrm{~Hz}--$ Max. output Freq.
Pr. 04-11 $=20.0 \%$-- bias adjustment
Pr. 04-12 = 0-- bias polarity
Pr. 04-13 = 83.3\%-- pot. Freq. gain
Pr. 04-14 = 0-- REV motion disable in negative bias
Pr. $04-13=\frac{10 \mathrm{~V}}{12 \mathrm{~V}} \times 100 \%=83.3 \%$
Negative bias:
$\frac{60-10 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{10-0 \mathrm{~Hz}}{\mathrm{XV}}$
$X V=\frac{100}{50}=2 V \quad \therefore$ Pr.04-11 $=\frac{2}{10} \times 100 \%$

Example 4: Use of 0-5V potentiometer range via gain adjustment

This example shows a potentiometer range of 0 to 5 Volts. Instead of adjusting gain as shown in the example below, you can set Pr. 01-00 to 120 Hz to achieve the same results.

Factory Settings
Pr.01-00 $=60 \mathrm{~Hz}--$ Max. output Freq.
Pr.04-11=0.0\% bias adjustment
Pr.04-12=0 -- bias polarity
Pr.04-13=200\% -- pot. freq. gain
Pr.04-14=0 -- REV motion disable in negative bias
Calculation of gain
Pr. $04-13=\left(\frac{10 \mathrm{~V}}{5 \mathrm{~V}}\right) \mathrm{X} 100 \%=200 \%$

Example 5: Use of negative bias in noisy environment

In this example, a 1 V negative bias is used. In noisy environments it is advantageous to use negative bias to provide a noise margin (1 V in this example).

Factory Settings
Pr.01-00 $=60 \mathrm{~Hz}--$ Max. output Freq.
Pr.04-11=10.0\% -- bias adjustment
Pr.04-12=1 -- bias polarity
Pr.04-13=100\% -- pot. freq. gain
Pr.04-14=0 -- Rev. motion disable in negative bias

Example 6: Use of negative bias in noisy environment and gain adjustment to use full

 potentiometer rangeIn this example, a negative bias is used to provide a noise margin. Also a potentiometer frequency gain is used to allow the Maximum Output Frequency to be reached.

Example 7: Use of 0-10V potentiometer signal to run motor in FWD and REV direction

In this example, the input is programmed to run a motor in both forward and reverse direction. The motor will be idle when the potentiometer position is at mid-point of its scale. Using this example will disable the external FWD and REV controls.

Pr.01-00 Max. Output Freq.

Factory Settings
Pr.01-00 $=60 \mathrm{~Hz}--$ Max. output Freq.
Pr.04-11=50\%--bias adjustment
Pr.04-12=1 -- bias polarity
Pr.04-13=200\% -- pot. freq. gain
Pr.04-14=1 -- REV motion enable in negative bias

Chapter 5 Parameters | VFD-B-P Series Example 8: Use negative slope

In this example, the use of negative slope is shown. Negative slopes are used in applications for control of pressure, temperature or flow. The sensor that is connected to the input generates a large signal (10 V or 20 mA) at high pressure or flow. With negative slope settings, the AC motor drive will slow stop the motor. With these settings the AC motor drive will always run in only one direction (reverse). This can only be changed by exchanging 2 wires to the motor.
Pr.01-00 Max. Output Freq.
Factory Settings

04-19 AVI Analog Input Delay
Unit: 0.01
Settings $\quad 0.00$ to $10.00 \mathrm{sec} \quad$ Factory Setting: 0.05
04-20 ACI Analog Input Delay Unit: 0.01
Settings 0.00 to $10.00 \mathrm{sec} \quad$ Factory Setting: 0.05
04-21 AUI Analog Input Delay Unit: 0.01
Settings $\quad 0.00$ to 10.00 sec
Factory Setting: 0.05
[a] These input delays can be used to filter noisy analog signals.

04-22 Analog Input Frequency Resolution
Factory Setting: 01
Settings $00 \quad 0.01 \mathrm{~Hz}$
010.1 Hz
[1] It is used to set the unit of the resolution of frequency command when the input source is an analog signal.

04-04 Multi-function Input Terminal (MI1)
Factory Setting: 01
04-05 Multi-function Input Terminal (MI2)
Factory Setting: 02
04-06 Multi-function Input Terminal (MI3)
Factory Setting: 03
04-07 Multi-function Input Terminal (MI4)
Factory Setting: 04
04-08 Multi-function Input Terminal (MI5)
Factory Setting: 05
04-09 Multi-function Input Terminal (MI6)
Factory Setting: 06

Settings	Function	Description
00	No Function	Any unused terminals should be programmed to 0 to insure they have no effect on operation.
01	Multi-Step Speed Command 1	These four inputs select the multi-speed defined by Pr.05-00 to Pr.05-14 as shown in the diagram at the end of this table.
02	Multi-Step Speed Command 2	NOTE: Pr.05-00 to Pr.05-14 can also be used to control output speed by programming the AC motor drive's internal PLC function. There are 17 step speed frequencies (including Master Frequency and
Jog Frequency) to select for application.		

Settings	Function	$\begin{array}{l}\text { Description }\end{array}$		
09	$\begin{array}{l}\text { External Base Block (N.O.) } \\ \text { (Refer to Pr. 08-06) }\end{array}$	$\begin{array}{l}\text { Parameter values 9, 10 program Multi-Function Input } \\ \text { Terminals for external Base Block control. } \\ \text { NOTE: When a Base-Block signal is received, the } \\ \text { AC motor drive will block all output and the motor } \\ \text { will free run. When base block control is } \\ \text { deactivated, the AC drive will start its speed search } \\ \text { function and synchronize with the motor speed, and } \\ \text { then accelerate to Master Frequency. }\end{array}$		
10	$\begin{array}{l}\text { External Base Block (N.C.) } \\ \text { (Refer to Pr. 08-06) }\end{array}$			
11	$\begin{array}{l}\text { UP: Increment Master } \\ \text { Frequency }\end{array}$	$\begin{array}{l}\text { Increment/decrement the Master Frequency each time } \\ \text { an input is received or continuously when the input } \\ \text { stays active. When both inputs are active at the same } \\ \text { time, the Master Frequency increment/decrement is } \\ \text { halted. Please refer to Pr.02-08, 02-09. This function is } \\ \text { also called "motor potentiometer". }\end{array}$		
12	$\begin{array}{l}\text { DOWN: Decrement Master } \\ \text { Frequency }\end{array}$	$\begin{array}{l}\text { Counter Reset }\end{array}$		
13	$\begin{array}{l}\text { When active, the counter is reset and inhibited. To } \\ \text { enable counting the input should be OFF. Refer to } \\ \text { Pr.03-08 and 03-09. }\end{array}$			
14	Run PLC Program	$\begin{array}{l}\text { To run the AC motor drive internal PLC program. } \\ \text { NOTE: Pr.05-00 to Pr.05-16 define the PLC program. }\end{array}$		
15	Pause PLC Program	$\begin{array}{l}\text { When the PLC program runs, a Multi-Function Input } \\ \text { Terminal, when set to 15, can be used to pause the } \\ \text { PLC program. }\end{array}$		
16	$\begin{array}{l}\text { Auxiliary Motor No.1 output } \\ \text { disable }\end{array}$	$\begin{array}{l}\text { Parameter value 16 to 18 program Multi-Function Input } \\ \text { Terminal to disable the corresponding auxiliary motor } \\ \text { }\end{array}$		
17	$\begin{array}{l}\text { Auxiliary Motor No.2 output } \\ \text { disable }\end{array}$			
disable the AC motor drive Multi-function Output Terminals				
Pr.03-00 to 3-03 (Relay and MO1 to MO3) when set to				
PU01/external terminals)			$\}$	16-18.
:---				

Settings	Function	Description
25	Forced Stop (N.C.)	These two parameters have the same function as the "STOP" command with stop method acc. to Pr.02-02. No error message is displayed. When parameter value 25 or 26 is enabled, a new RUN command is needed.
26	Forced Stop (N.O.)	
27	Parameter lock enable (N.O.)	When this setting is enabled, all parameters will be locked and write parameters are disabled.
28	PID function disabled	When the input is ON for this setting, the PID function will be disabled.
29	Jog FWD/REV command	ON: REV OFF: FWD This command will be effective only when external terminal JOG is active.
30	External Reset (N.C.)	The function is the same as setting 05 but for use with normally close contact.
31	Source of second frequency command enabled	Used to select the first/second frequency command source. Refer to Pr.02-00 and 02-13. ON: $2^{\text {nd }}$ Frequency command source OFF: $1^{\text {st }}$ Frequency command source
32	Source of second operation command enabled	Used to select the first/second operation command source. Refer to Pr.02-01 and 02-14. ON: $2^{\text {nd }}$ Operation command source OFF: $1^{\text {st }}$ Operation command source
33	One shot PLC	The function is the same as setting 14 but the trigger signal is a one shot pulse, for example: a push button input. It can be cancelled by a "STOP" command.
34	Proximity sensor input for simple Index function	This function should be used with Pr.04-23 ~ Pr.04-25.
35	Output Shutoff Stop (N.O.)	AC motor drive will stop output and the motor free run if one of these settings is enabled. If the status of terminal is changed, AC motor drive will restart from 0 Hz .
36	Output Shutoff Stop (N.C.)	

[1] N.O. = Normally Open.
N.C. $=$ Normally Closed.
@】 When parameter value 21 and 22 are set and these two terminals are ON, the priority of analog input signals are AVI > ACI > AUI.

Chapter 5 Parameters | VFD-B-P Series

	MI2=08	MI1=07
Accel/decel time 1	OFF	OFF
Accel/decel time 2	OFF	ON
Accel/decel time 3	ON	OFF
Accel/decel time 4	ON	ON

	M14=4	MI3=3	MI2=2	MI1=1
Master frequency	OFF	OFF	OFF	OFF
$1^{\text {st }}$ speed	OFF	OFF	OFF	ON
$2^{\text {nd }}$ speed	OFF	OFF	ON	OFF
$3^{\text {rd }}$ speed	OFF	OFF	ON	ON
$4^{\text {th }}$ speed	OFF	ON	OFF	OFF
$5^{\text {th }}$ speed	OFF	ON	OFF	ON
$6^{\text {th }}$ speed	OFF	ON	ON	OFF
$7^{\text {th }}$ speed	OFF	ON	ON	ON
$8^{\text {th }}$ speed	ON	OFF	OFF	OFF
$9^{\text {th }}$ speed	ON	OFF	OFF	ON
$10^{\text {th }}$ speed	ON	OFF	ON	OFF
$11^{\text {th }}$ speed	ON	OFF	ON	ON
$12^{\text {th }}$ speed	ON	ON	OFF	OFF
$13^{\text {th }}$ speed	ON	ON	OFF	ON
$14^{\text {th }}$ $p e e d ~$	ON	ON	ON	OFF
$15^{\text {th }}$ speed	ON	ON	ON	ON

04-10 Digital Terminal Input Debouncing Time
Unit: 2
Settings 1 to 20 Factory Setting: 1
[1] This parameter is to delay the signals on digital input terminals. 1 unit is $2 \mathrm{msec}, 2$ units are 4 msec , etc. The delay time is used to debounce noisy signals that could cause the digital terminals to malfunction.

04-23 Gear Ratio for Simple Index Function
Unit: 1
Settings
4 ~ 1000
Factory Setting: 200
04-24 Index Angle for Simple Index Function
Unit: 0.1
Settings
$0.0 \sim 360.0^{\circ}$
Factory Setting: 180.0

04-25 Deceleration Time for Simple Index Function
Unit: 0.01
Settings $\quad 0.00 \sim 100.00 \mathrm{sec}$
Factory Setting: 0.00
[1] The simple index function is used to position the machine/motor at the same position when it stops. The function should be used with setting 34 for Multi-Function Input Terminals (04-04 to 04-09).
[1] The function diagram is shown below. The machine is driven by a gear motor or other reduction gearbox. The trigger position of the proximity sensor is used as the starting point of

Chapter 5 Parameters | VFD-B-P Series

the index angle. When the stop command is initiated, the AC motor drive will not decelerate until the proximity sensor is triggered. After that the AC motor drive begins to decelerate and stop according to the Pr.04-24 and Pr.04-25.

Group 5: Multi-step speeds and PLC (Process Logic Control) parameters

05-00	N 1st Step Speed Frequency	Unit: 0.01
05-01	N 2nd Step Speed Frequency	Unit: 0.01
05-02	N 3rd Step Speed Frequency	Unit: 0.01
05-03	N 4th Step Speed Frequency	Unit: 0.01
05-04	N 5th Step Speed Frequency	Unit: 0.01
05-05	N 6th Step Speed Frequency	Unit: 0.01
05-06	N7th Step Speed Frequency	Unit: 0.01
05-07	N8th Step Speed Frequency	Unit: 0.01
05-08	N 9th Step Speed Frequency	Unit: 0.01
05-09	\wedge 10th Step Speed Frequency	Unit: 0.01
05-10	N11th Step Speed Frequency	Unit: 0.01
05-11	^12th Step Speed Frequency	Unit: 0.01
05-12	\wedge 13th Step Speed Frequency	Unit: 0.01
05-13	~ 14 th Step Speed Frequency	Unit: 0.01
05-14	^15th Step Speed Frequency	Unit: 0.01

Factory Setting: 0.00
Settings $\quad 0.00$ to 400.00 Hz
[1] The Multi-Function Input Terminals (refer to Pr.04-04 to 04-09) are used to select one of the AC motor drive Multi-step speeds. The speeds (frequencies) are determined by Pr.05-00 to $05-14$ as shown above. They are also used in conjunction with Pr.05-15 to 05-31 for PLC programs.

05-15 PLC Mode
Factory Setting: 00
Settings 00 Disable PLC operation
01 Execute one program cycle
02 Continuously execute program cycles
03 Execute one program cycle step by step
04 Continuously execute program cycles step by step
$\mathbb{\square}$ This parameter selects the mode of PLC operation for the AC motor drive. The AC motor drive will change speeds and directions according to the desired user programming.
[a] This parameter can be applied in the PLC operation of general small machines, food processing machines and washing equipment.

Chapter 5 Parameters | VFD-B-P Series

Example 1 (Pr.05-15 = 1): Execute one cycle of the PLC program. The parameter settings are:

1. Pr. $05-00$ to $05-14: 1^{\text {st }}$ to $15^{\text {th }}$ speed (sets the frequency of each speed)
2. Pr.04-04 to 04-09: Multi-Function Input Terminals (set one multi-function terminal as 14 - PLC auto-operation).
3. Pr.03-00 to 03-03: Multi-Function Output Terminals (set a Multi-Function Terminal as 10-PLC running indication, 11-PLC step completed and/or 12-PLC program completed).
4. Pr.05-15: PLC mode setting.
5. Pr.05-16: Direction of operation for the $1^{\text {st }}$ to $15^{\text {th }}$ speed.
6. Pr.05-17 to 05-31: Operation time setting of the $1^{\text {st }}$ to $15^{\text {th }}$ speed.

NOTE

The above diagram shows one complete PLC cycle. To restart the cycle, turn the PLC program off and on again.

Example 2 (Pr.05-15 = 2): Continuously execute program cycles:

The diagram above shows the PLC program stepping through each speed. Setting Pr.05-15 to 2 continuously executes the program. To stop the PLC program, one must either pause the program or turn it off. (Refer to Pr.04-04 to 04-09 values 14 and 15).

Example 3 (Pr.05-15 = 3) Execute one cycle step by step:

The example below shows how the PLC can perform one cycle at a time, within a complete cycle. Each step will use the accel/decel times in Pr.01-09 to Pr.01-12. Note that the actual time each step stays at its intended frequency is reduced, due to the time for accel/decel.

05-16 PLC Forward/Reverse Motion
Unit: 1
Settings 00 to 32767
Factory Setting: 00
[1] This parameter controls the direction of motion for the Multi-Step Speeds Pr.05-00 to Pr.05-14 during PLC mode. All other direction commands are invalid during the PLC mode.

\Rightarrow NOTE

The equivalent 15-bit number is used to program the forward/reverse motion for each of the 15 speed steps. The binary notation for the 15-bit number must be translated into decimal notation and then entered.

Chapter 5 Parameters | VFD-B-P Series

Weights $2^{14} 2^{13} 2^{12} 2^{11} 2^{10} 2^{9} \quad 2^{8} \quad 2^{7} \quad 2^{6} \quad 2^{5} \quad 2^{4} \quad 2^{3} \quad 2^{2} \quad 2^{1} \quad 2^{0} \quad 0=$ Forward

Weights $2^{14} 2^{13} 2^{12} 2^{11} 2^{10} 2^{9} \quad 2^{8} \quad 2^{7} 2^{6} \quad 2^{5} \quad 2^{4} \quad 2^{3} \quad 2^{2} \quad 2^{1} \quad 2^{0} \quad 0=$ Forward
Bit

The setting value
$=$ bit $14 \times 2^{14}+$ bit $13 \times 2^{13}+\ldots+$ bit $2 \times 2^{2}+$ bit $1 \times 2^{1}+$ bit 0×2^{0}
$=1 \times 2^{14}+1 \times 2^{11}+1 \times 2^{10}+1 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{1}$
$=16384+2048+1024+64+32+16+2=19570$
Setting 05-16

NOTE:				
$2^{14}=16384$	$2^{13}=8192$	$2^{12}=4096$	$2^{11}=2048$	$2^{10}=1024$
$2^{9}=512$	$2^{8}=256$	$2^{7}=128$	$2^{6}=64$	$2^{5}=32$
$2^{4}=16$	$2^{3}=8$	$2^{2}=4$	$2^{1}=2$	$2^{0}=1$

NOTE:
$2^{14}=16384 \quad 2^{13}=8192 \quad 2^{12}=4096 \quad 2^{11}=2048 \quad 2^{10}=1024$
$2=512 \quad 2^{8}=256 \quad 2^{7}=128 \quad 2^{6}=64 \quad 2^{5}=32$
$=16 \quad 2^{3}=8 \quad 2^{2}=4 \quad 2^{1}=2 \quad 2^{0}=1$

[1] This parameter sets the time unit for Pr.05-17~Pr.05-31.

05-33 The Amplitude of Wobble Vibration
Settings $\quad 0.00$ to 400.00 Hz
Factory Setting: 0.00
05-34 Wobble Skip Frequency
Settings $\quad 0.00$ to 400.00 Hz
Factory Setting: 0.00
[1] The frequency change will be as shown in the following diagram. These two parameters are specific for textile machinery.

Chapter 5 Parameters | VFD-B-P Series

[a] Frequency of Δ top point $\mathrm{F}_{\text {up }}=$ master frequency $\mathrm{F}+\operatorname{Pr} .05-33+\operatorname{Pr} .05-34$.
[a] Frequency of Δ down point $\mathrm{F}_{\text {down }}=$ master frequency F - Pr.05-33 - Pr.05-34.

Group 6: Protection Parameters
06-00 Over-Voltage Stall Prevention
Unit: 0.1
Settings
660.0 to 820.0 V

Factory Setting: 780.0
$00 \quad$ Disable Over-voltage Stall Prevention (with brake unit or brake resistor)
[1] During deceleration, the DC bus voltage may exceed its Maximum Allowable Value due to motor regeneration. When this function is enabled, the AC motor drive will not decelerate further and keep the output frequency constant until the voltage drops below the preset value again.
[] Over-Voltage Stall Prevention must be disabled (Pr.06-00=00) when a brake unit or brake resistor is used.

F) Note

With moderate inertia load, over-voltage stall prevention will not occur and the real deceleration time will be equal to the setting of deceleration time. The AC drive will automatically extend the deceleration time with high inertia loads. If the deceleration time is critical for the application, a brake resistor or brake unit should be used.

06-01 Over-Current Stall Prevention during Acceleration
Unit: 1

V/f control	Settings	20 to 150%	Factory Setting: 120
Vector control	Settings	20 to 250%	Factory Setting: 170

Chapter 5 Parameters | VFD-B-P Series

[1] A setting of 100% is equal to the Rated Output Current of the drive.
[a] During acceleration, the AC drive output current may increase abruptly and exceed the value specified by Pr.06-01 due to rapid acceleration or excessive load on the motor. When this function is enabled, the AC drive will stop accelerating and keep the output frequency constant until the current drops below the maximum value.
[a] The control model is set by Pr.00-09.

06-02 Over-current Stall Prevention during Operation Unit: 1

V/f control	Settings	20 to 150%	Factory Setting: 120
Vector control	Settings	20 to 250%	Factory Setting: 170

[1] If the output current exceeds the setting specified in Pr.06-02 when the drive is operating, the drive will decrease its output frequency to prevent the motor stall. If the output current is lower than the setting specified in Pr.06-02, the drive will accelerate again to catch up with the set frequency command value.
[ad The control model is set by Pr.00-09.
Over-Current
Detection Level
Over-Current Stall Prevention during
Operation, output frequency decrease
Output Current

> over-current stall prevention during operation

06-03 Over-Torque Detection Mode (OL2)
Factory Setting: 00
Settings 00 Over-Torque detection disabled.
01 Over-Torque detection enabled during constant speed operation. After over-torque is detected, keep running until OL2 occurs.

02 Over-Torque detection enabled during constant speed operation. After over-torque is detected, stop running.

03 Over-Torque detection enabled during acceleration. After overtorque is detected, keep running until OL2 occurs.
04 Over-Torque detection enabled during acceleration. After overtorque is detected, stop running.
[1] This parameter determines the operation mode of the drive after the over-torque (OL2) is detected via the following method: if the output current exceeds the over-torque detection level (Pr.06-04) longer than the setting of Pr.06-05 Over-Torque Detection Time, the warning message "OL2" is displayed. If a Multi-Functional Output Terminal is set to over-torque detection (Pr.03-00~03-03=04), the output is on. Please refer to Pr.03-00~03-03 for details.

06-04 Over-Torque Detection Level (OL2)

V/f Control	Settings	30 to 150%	Factory Setting: 110
Vector Control	Settings	10 to 200%	Factory Setting: 150

[1 The control mode is set by Pr.00-09.

06-05 Over-Torque Detection Time (OL2)
Unit: 0.1
Settings $\quad 0.1$ to 60.0 sec
Factory Setting: 0.1
© This parameter sets the time for how long over-torque must be detected before "OL2" is displayed.

06-06 Electronic Thermal Overload Relay Selection (OL1)
Factory Setting: 02
Settings 00 Operate with a Standard Motor (self-cooled by fan)
01 Operate with a Special Motor (forced external cooling)
02 Operation disabled
\mathbb{d} This function is used to protect the motor from overloading or overheating.

06-07 Electronic Thermal Characteristic
Unit: 1
Settings 30 to 600 sec
Factory Setting: 60

Chapter 5 Parameters | VFD-B-P Series

[1] The parameter determines the time required for activating the I^{2} t electronic thermal protection function. The graph below shows I^{2} t curves for 150% output power for 1 minute.

06-08 Present Fault Record
06-09 Second Most Recent Fault Record
06-10 Third Most Recent Fault Record
06-11 Fourth Recent Fault Record
Factory Setting: 00

Readings	00	No fault
01	Over-current (oc)	
02	Over-voltage (ov)	
03	Overheat (oH)	
04	Overload (oL)	
05	Overload1 (oL1)	
06	External fault (EF)	
07	IGBT protection (occ)	
08	CPU failure (cF3)	
09	Hardware protection failure (HPF)	
10	Current exceeds 2 times rated current during accel.(ocA)	
11	Current exceeds 2 times rated current during decel.(ocd)	
12	Current exceeds 2 times rated current during steady state operation	
	(ocn)	
13	Ground fault (GFF)	
14	Reserved	
15	CPU READ failure (CF1)	

Chapter 5 Parameters | VFD-B-P Series

(1) When the DC BUS voltage is lower than the setting of Pr.06-16 for a time exceeding the setting of Pr.06-17, the AC motor drive will output a signal when Pr.03-00 ~ Pr.03-03 is set to 28.

06-18 Reserved

Group 7: Motor Parameters

07-00 \sim Motor Rated Current
Unit: 1
Settings 30 to 120%
Factory Setting: 100
(1) Use the following formula to calculate the percentage value entered into this parameter: (Motor Current / AC Drive Current) x 100\% with Motor Current=Motor rated current in A shown to motor nameplate AC Drive Current=Rated current of AC drive in A (see Pr.00-01)
[1] Pr.07-00 and Pr.07-01 must be set if the drive is programmed to operate in Vector Control mode (Pr.0-09 = 2 or 3). They also must be set if the "Electronic Thermal Overload Relay" (Pr.06-06) or "Slip Compensation" functions are selected.

07-01 \sim Motor No-load Current
Unit: 1
Settings 01 to 90%
Factory Setting: 40
[1] The rated current of the AC drive is regarded as 100%. The setting of the Motor no-load current will affect the slip compensation.
[] The setting value must be less than Pr.07-00 (Motor Rated Current).

07-02 \sim Torque Compensation
Unit: 0.1
Settings $\quad 0.0$ to 10.0
Factory Setting: 0.0
[1] This parameter may be set so that the AC drive will increase its voltage output to obtain a higher torque. Only to be used for V/f control mode.
[1] Too high torque compensation can overheat the motor.

07-03 ~Slip Compensation (Used without PG)
Unit: 0.01
Settings
0.00 to 3.00

Factory Setting: 0.00
[a] While driving an asynchronous motor, increasing the load on the AC motor drive will cause an increase in slip and decrease in speed. This parameter may be used to compensate the slip by increasing the output frequency. When the output current of the AC motor drive is bigger than the motor no-load current (Pr.07-01), the AC drive will adjust its output frequency according to this parameter.
[1] When the control mode is changed from V/f mode to vector mode, this parameter will be auto reset to 1.00 .
[a] This parameter sets the number of motor poles (must be an even number).

07-05 Motor Parameters Auto Tuning Unit: 1
Factory Setting: 00
Settings 00 Disable
01 Auto Tuning R1 (motor doesn't run)
02 Auto Tuning R1 + No-load Test (with running motor)
[1] Start Auto Tuning by pressing RUN key after this parameter is set to 01 or 02.
When set to 01, it will only auto detect R1 value and Pr.07-01 must be input manually. When set to 02 , the AC motor drive should be unloaded and the values of Pr.07-01 and Pr.07-06 will be set automatically.
[a] The steps to AUTO-Tuning are:

1. Make sure that all the parameters are set to factory settings and the motor wiring is correct.
2. Make sure the motor has no-load before executing auto-tuning and the shaft is not connected to any belt or gear motor.
3. Fill in Pr.01-01, Pr.01-02, Pr.07-00, Pr.07-04 and Pr.07-08 with correct values.
4. After Pr.07-05 is set to 2 , the AC motor drive will execute auto-tuning immediately after receiving a "RUN" command. (Note: The motor will run!). The total auto tune time will be 15 seconds + Pr.01-09 + Pr.01-10. Higher power drives need longer Accel/|Decel time (factory setting is recommended). After executing, Pr.07-05 is set to 0 .
5. After successful execution, the drive will set Pr.07-01 and Pr.07-06 accordingly. If not, repeat steps 3 and 4.
6. Then you can set Pr.00-09 to 02/03 and set other parameters according to your application requirement.

NOTE

1. In vector control mode it is not recommended to have motors run in parallel.
2. It is not recommended to use vector control mode if motor rated power exceeds the rated power of the $A C$ motor drive.

07-06 Motor Line-to-line Resistance R1
Settings 00 to $65535 \mathrm{~m} \Omega$
Factory Setting: 00
[1] The motor auto tune procedure will set this parameter. The user may also set this parameter without using Pr.07-05.

07-07 Reserved
07-08 Motor Rated Slip
Unit: 0.01
Settings $\quad 0.00$ to 20.00 Hz
Factory Setting: 3.00
[ad Refer to the rated rpm and the number of poles on the nameplate of the motor and use the following equation to calculate the rated slip.

Rated Slip (Hz) $=\mathrm{F}_{\text {base }}($ Pr.01-01 base frequency) $-($ rated rpm \times motor pole/120 $)$
[1] This parameter is valid only in vector mode.

07-09 Slip Compensation Limit
Unit: 1
Settings
00 to 250\%
Factory Setting: 200
[al This parameter sets the upper limit of the compensation frequency (the percentage of Pr.0708).

07-10 Reserved
07-11 Reserved

07-12 Torque Compensation Time Constant Unit: 0.01
Settings $\quad 0.01 \sim 10.00 \mathrm{sec}$
Factory Setting: 0.05
07-13 Slip Compensation Time Constant Unit: 0.01
Settings $\quad 0.05 \sim 10.00 \mathrm{sec}$
Factory Setting: 0.10
[l] Setting Pr.07-12 and Pr.07-13 changes the response time for the compensation.
[l] When Pr.07-12 and Pr.07-13 are set to 10.00 sec , its response time for the compensation will be the longest. But if the settings are too short, unstable system may occur.

07-14 Accumulative Motor Operation Time (Min.)
Unit: 1
Settings $00 \sim 1439$
Factory Setting: 00
07-15 Accumulative Motor Operation Time (Day)
Unit: 1
Settings
$00 ~ 65535$
Factory Setting: 00

Chapter 5 Parameters | VFD-B-P Series

[a] Pr.07-14 and Pr.07-15 are used to record the motor operation time. They can be cleared by setting to 00 and time is less than 60 seconds is not recorded.

Group 8: Special Parameters

08-00 DC Brake Current Level
Unit: 1
Settings 00 to 100%
Factory Setting: 00
[a] This parameter sets the level of DC Brake Current output to the motor during start-up and stopping. When setting DC Brake Current, the Rated Current (Pr.00-01) is regarded as 100\%. It is recommended to start with a low DC Brake Current Level and then increase until proper holding torque has been attained.

08-01 DC Brake Time during Start-up
Unit: 0.1
Settings 0.0 to 60.0 sec
Factory Setting: 0.0
[1] This parameter determines the duration of the DC Brake current after a RUN command.

08-02 DC Brake Time during Stopping
Unit: 0.1
Settings $\quad 0.0$ to 60.0 sec
Factory Setting: 0.0
[1] This parameter determines the duration of the DC Brake current during stopping. If stopping with DC Brake is desired, Pr.02-02 Stop Method must be set to 00 RAMP stop.

08-03 Start-Point for DC Brake
Unit: 0.01
Settings $\quad 0.00$ to 400.00 Hz
Factory Setting: 0.00
[ad This parameter determines start frequency of DC brake before the AC motor drive decelerates to stop. When this parameter is less than Pr.01-05, the start frequency of DC brake starts from the min. output frequency.

Run/Stop

DC Brake Time

[1] DC Brake during Start-up is used for loads that may move before the AC drive starts, such as fans and pumps. Under such circumstances, DC Brake can be used to hold the load in position before setting it in motion.

Chapter 5 Parameters | VFD-B-P Series

[a] DC Brake during stopping is used to shorten the stopping time and also to hold a stopped load in position. For high inertia loads, a dynamic brake resistor or brake unit may also be needed for fast decelerations.

08-04 Momentary Power Loss Operation Selection
Factory Setting: 00
Settings 00 Operation stops after momentary power loss.
01 Operation continues after momentary power loss, speed search starts with the Master Frequency reference value.
02 Operation continues after momentary power loss, speed search starts with the minimum frequency.
[a] This parameter determines the operation mode when the AC motor drive restarts from a momentary power loss.
[a] When using a PG card with PG (encoder), speed search will begin at the actual PG (encoder) feedback speed and settings 01 and 02 will be invalid.

08-05 Maximum Allowable Power Loss Time
Unit: 0.1
Settings $\quad 0.1$ to 5.0 sec
Factory Setting: 2.0
[1] If the duration of a power loss is less than this parameter setting, the AC motor drive will resume operation. If it exceeds the Maximum Allowable Power Loss Time, the AC motor drive output is then turned off (coast stop).
[1] The selected operation after power loss in Pr.08-04 is only executed when the maximum allowable power loss time is ≤ 5 seconds and the AC motor drive displays "Lu".

But if the AC motor drive is powered off due to overload, even if the maximum allowable power loss time is ≤ 5 seconds, the operation mode as set in Pr.08-04 is not executed. In that case it starts up normally.

08-06 Baseblock Time for Speed Search (BB)
Unit: 0.1
Settings
0.1 to 5.0 sec

Factory Setting: 0.5
[a] When momentary power loss is detected, the AC drive will block its output and then wait for a specified period of time (determined by Pr.08-06, called Base-Block Time) before resuming operation. This parameter should be set at a value to ensure that any residual regeneration voltage from the motors on the output has disappeared before the drive is activated again.
[1] This parameter also determines the waiting time before resuming operation after External Baseblock and after Auto Restart after Fault (Pr.08-14).
(1) When using a PG card with PG (encoder), speed search will begin at the actual PG (encoder) feedback speed and accelerate to the setting frequency.

08-07 Current Limit for Speed Search Unit: 1

V/f Control	Settings	30 to 150%	Factory Setting: 110
Vector Control	Settings	30 to 200%	Factory Setting: 150

[a] This parameter is used to set the max. output current of the AC motor drive for speed search.
凹】 When executing speed search, the V/f curve will use the group 1 settings as the basic value.
[a] The control method is set by parameter 00-09.

Momentary Power Loss Operation

08-08	Skip Frequency 1 Upper Limit	Unit: 0.01
08-09	Skip Frequency 1 Lower Limit	Unit: 0.01
$\mathbf{0 8 - 1 0}$	Skip Frequency 2 Upper Limit	Unit: 0.01
$\mathbf{0 8 - 1 1}$	Skip Frequency 2 Lower Limit	Unit: 0.01
$\mathbf{0 8 - 1 2}$	Skip Frequency 3 Upper Limit	Unit: 0.01
08-13	Skip Frequency 3 Lower Limit	Unit: 0.01

Settings $\quad 0.00$ to 400.00 Hz
Factory Setting: 0.00
[1] These parameters set the Skip Frequencies. It will cause the AC motor drive to never remain within these frequency ranges with continuous frequency output.
[1] These six parameters should be set as follows Pr.08-08 $\geq \operatorname{Pr} .08-09 \geq \operatorname{Pr} .08-10 \geq \operatorname{Pr} .08-11 \geq$ Pr.08-12 \geq Pr.08-13.

Chapter 5 Parameters | VFD-B-P Series

08-14 Auto Restart After Fault Unit: 1
Settings 00 to 10
Factory Setting: 00
00 Disable
08-21 Auto Reset Time at Restart after Fault
Unit: 1
Settings 00 to 60000 sec
Factory Setting: 600
[] Only after an over-current OC or over-voltage OV fault occurs, the AC motor drive can be reset/restarted automatically up to 10 times.
[1] Setting this parameter to 00 will disable the reset/restart operation after any fault has occurred. When enabled, the AC motor drive will restart with speed search, which starts at the frequency before the fault.
[1] This parameter should be used in conjunction with Pr.08-14.
For example: If Pr.08-14 is set to 10 and Pr.08-21 is set to 600 s (10 min), and if there is no fault for over 600 seconds from the restart for the previous fault, the Auto Reset Time for restart after fault will be reset to 10 .

08-15 Automatic Energy-saving
Factory Setting: 00
Settings 00 Energy-saving operation disabled
01 Energy-saving operation enabled
[ad When automatic energy-saving function is enabled, it will operate with full voltage during acceleration/deceleration. For the constant speed, it will give the best voltage which is auto calculated by the load power to load.

08-16 Automatic Voltage Regulation (AVR)
Factory Setting: 00
Settings 00 AVR function enabled
01 AVR function disabled
02 AVR function disabled for deceleration
[1] The rated voltage of the motor is usually $440 \mathrm{~V} / 400 \mathrm{VAC} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ and the input voltage of the AC motor drive may vary between 342 V to 528 VAC $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$. Therefore, when the AC motor drive is used without AVR function, the output voltage will be the same as the input voltage. When the motor runs at voltages exceeding the rated voltage with $12 \%-20 \%$, its lifetime will be shorter and it can be damaged due to higher temperature, failing insulation and unstable torque output.
[1] AVR function automatically regulates the AC motor drive output voltage to the Maximum Output Voltage (Pr.01-02). For instance, if V/f curve is set at $400 \mathrm{VAC} / 50 \mathrm{~Hz}$ and the input voltage is at 400 V to 528 VAC , then the output voltage to motor will be less than $400 \mathrm{VAC} / 50 \mathrm{~Hz}$. If the input power varies between 342 V to 400 VAC , the output voltage to the motor and the input voltage will be in direct proportion.
[1] When motor stops with deceleration, it will shorten deceleration time. When setting this parameter to 02 with auto acceleration/deceleration, it will offer a quicker deceleration.

08-17

Chapter 5 Parameters | VFD-B-P Series

[a] This parameter sets the DC-bus voltage at which the brake chopper is activated.
[al This parameter will be invalid for models above 15kW/20hp for which VFDB brake unit must be used.

08-18 Base Block Speed Search

Factory Setting: 00
Settings 00 Speed search starts with last frequency command
01 Speed search starts with minimum output frequency (Pr.01-05)
[a This parameter determines the AC motor drive restart method after External Base Block is enabled.

Fig. 1: B.B. speed search with last output frequency downward timing chart

Fig. 2: B.B. speed search with min. output frequency upward timing chart

Fig. 3: B.B. speed search with min. output frequency upward timing chart

08-19 Speed Search during Start-up
Factory Setting: 00
Settings 00 Speed search disable
01 Speed search enable
(1) This parameter is used for starting and stopping a motor with high inertia. A motor with high inertia will take a long time to stop completely. By setting this parameter, the user does not need to wait for the motor to come to a complete stop before restarting the AC motor drive. If a PG card and encoder is used on the drive and motor, then the speed search will start from the speed that is detected by the encoder and accelerate quickly to the setting frequency.
[1] To enable the speed search function of PG, it only needs to set Pr.10-10 and Pr.10-11. It doesn't need to use with Pr.00-09. Pr.08-04 and Pr.08-18 will be disabled when using this parameter with PG feedback control.

CAUTION!

Please make sure Pr.07-04, Pr.10-10, and Pr.10-11 are set correctly. An incorrect setting may cause the motor to exceed its speed limit and permanent damage to the motor and machine can occur.

08-20 N Speed Search Frequency during Start-up
Factory Setting: 00
Settings 00 Setting Frequency
01 Maximum Operation Frequency (01-00)
[1 This parameter determines the start value of the speed search frequency.

Chapter 5 Parameters | VFD-B-P Series

08-22 N Compensation Coefficient for Motor Instability Unit: 1
Settings 00~1000
Factory Setting: 00
[a] The drift current will occur in a specific zone of the motor and instability. By using this parameter, greatly improves motor instability.
[a] The drift current zone of the larger horsepower motor is usually in the low frequency range.
[] A setting of more than 500 is recommended.

Group 9: Communication Parameters

1: EV
2: GND
3: SG-
4: SG+
5: Reserved
6: Reserved

09-00 \times Communication Address
Settings 01 to 254
Factory Setting: 01
[1] If the AC motor drive is controlled by RS-485 serial communication, the communication address for this drive must be set via this parameter. And the communication address for each AC motor drive must be different and unique.

09-01 N Transmission Speed
Factory Setting: 01
Settings 00 Baud rate 4800 bps (bits / second)
01 Baud rate 9600 bps
02 Baud rate 19200 bps
03 Baud rate 38400 bps
[1] This parameter is used to set the transmission speed between the RS485 master (PLC, PC, etc.) and AC motor drive.

09-02 N Transmission Fault Treatment
Factory Setting: 03
Settings 00 Warn and keep operating
01 Warn and RAMP to stop
02 Warn and COAST to stop
03 No warning and keep operating
[1] This parameter is set to how to react if transmission errors occur.

09-03 \sim Time-out Detection
Unit: 0.1
Settings $\quad 0.0 \sim 60.0 \mathrm{sec}$ 0.0 Disable
[1] If Pr.09-03 is not equal to 0.0 , Pr.09-02=00~02, and there is no communication on the bus during the Time Out detection period (set by Pr.09-03), "cE10" will be shown on the keypad.

09-04 N Communication Protocol
Factory Setting: 00
Settings 00 Modbus ASCII mode, protocol <7,N,2>
01 Modbus ASCII mode, protocol <7,E,1>
02 Modbus ASCII mode, protocol <7,0,1>
03 Modbus RTU mode, protocol <8,N,2>
04 Modbus RTU mode, protocol <8,E,1>
05 Modbus RTU mode, protocol <8,0,1>
d 1. Control by PC or PLC
\star When using RS-485 communication, it needs to set the communication address (Pr.09-00) in each VFD-B-P. So the computer can control by the communication address.
\star A VFD-B-P can be set up to communicate on Modbus networks using one of the following modes: ASCII (American Standard Code for Information Interchange) or RTU (Remote Terminal Unit). Users can select the desired mode along with the serial port communication protocol in Pr.09-04.
\star Code Description:

ASCII mode:

Each 8-bit data is the combination of two ASCII characters. For example, an 1-byte data:
64 Hex , shown as ' 64 ' in ASCII, consists of ' 6 ' (36 Hex) and ' 4 ' (34 Hex).

Character	$' 0 \prime$	$' 1 '$	$' 2 '$	$' 3 '$	${ }^{\prime} 4 '$	$' 5 '$	$' 6 '$	$' 7$
ASCII code	30 H	31 H	32 H	33 H	34 H	35 H	36 H	37 H

Character	' 8 '	'9'	'A'	'B'	'C'	'D'	'E'	'F'
ASCII code	38 H	39 H	41 H	42 H	43 H	44 H	45 H	46 H

RTU mode:

Each 8-bit data is the combination of two 4-bit hexadecimal characters. For example, 64 Hex.
(1) 2. Data Format

For ASCII mode:
(7.N.2)

(7.0.1)

For RTU mode:

Id 3. Communication Protocol
3.1 Communication Data Frame:

ASCII mode:

STX	Start character ':' (3AH)
Address Hi	Communication address:
Address Lo	8-bit address consists of 2 ASCII codes
Function Hi	Command code:
Function Lo	8-bit command consists of 2 ASCII codes

DATA ($\mathrm{n}-1$)	
to	Contents of data: N $\times 8$-bit data consist of 2n ASCII codes
DATA 0	$\mathrm{n}<=20$, maximum of 40 ASCII codes

RTU mode:

START	A silent interval of more than 10 ms
Address	Communication address: 8-bit address
Function	Command code: 8-bit command
DATA $(\mathrm{n}-1)$ to DATA 0	Contents of data: $\mathrm{n} \times 8$-bit data, $\mathrm{n}<=40(20 \times 16$-bit data $)$
CRC CHK Low	CRC check sum: 16-bit check sum consists of 28 -bit characters
CRC CHK High	A silent interval of more than 10 ms
END	

3.2 Address (Communication Address)

Valid communication addresses are in the range of 0 to 254 . A communication address equal to 0 , means broadcast to all AC drives (AMD). In this case, the AMD will not reply any message to the master device.

00 H : broadcast to all AC drives
01 H : AC drive of address 01
OFH: AC drive of address 15
10H: AC drive of address 16

FEH: AC drive of address 254
For example, communication to AMD with address 16 decimal (10H):
ASCII mode: Address=' 1 ','0' => ' 1 ' $=31 \mathrm{H}, ~ ' 0$ ' $=30 \mathrm{H}$
RTU mode: Address=10H
3.3 Function (Function code) and DATA (data characters)

The format of data characters depends on the function code.
03 H : read data from register
06H: write single register
08H: loop detection
10 H : write multiple registers
The available function codes and examples for VFD-B-P are described as follows:
(1) 03H: multi read, read data from registers.

Example: reading continuous 2 data from register address 2102 H , AMD address is 01 H .

ASCII mode:

Command message:

STX	'
Address	'0'
	'1'
Function	'0'
	'3'
Starting data address	'2'
	'1'
	'0'
	'2'
Number of data (count by word)	'0'
	'0'
	'0'
	'2'
LRC Check	'D'
	'7'
END	CR
	LF

Response message:

STX	‘'
Address	'0'
	'1'
Function	'0'
	'3'
Number of data (Count by byte)	'0'
	'4'
$\begin{aligned} & \text { Content of starting } \\ & \text { address } \\ & 2102 \mathrm{H} \end{aligned}$	'1'
	'7'
	'7'
	'0'
Content of address$2103 \mathrm{H}$	'0'
	'0'
	'0'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

Response message:

Address	01 H
Function	03 H
Number of data (count by byte)	04 H
Content of address 2102 H	17 H
	70 H
Content of address 2103 H	00 H
	00 H
CRC CHK Low	FEH
CRC CHK High	5 CH

(2) 06 H : single write, write single data to register.

Example: writing data $6000(1770 \mathrm{H})$ to register 0100 H . AMD address is 01 H .

Chapter 5 Parameters | VFD-B-P Series

ASCII mode:

Command message:	
STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'6'
Data address	'0'
	'1'
	'0'
	'0'
Data content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

Response message:	
STX	':'
Address	'0'
	'1'
Function	'0'
	'6'
Data address	'0'
	'1'
	'0'
	'0'
Data content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

RTU mode:

Command message:

Address	01 H
Function	06 H
Data address	01 H
	00 H
Data content	17 H
	70 H
CRC CHK Low	86 H
CRC CHK High	22 H

Response message:

Address	01 H
Function	06 H
Data address	01 H
	00 H
Data content	17 H
	70 H
CRC CHK Low	86 H
	22 H

(3) 08 H : loop detection

This command is used to detect if the communication between master device (PC or PLC) and AC motor drive is normal. The AC motor drive will send the received message to the master device. ASCII mode:

Command message:

STX	','
Address	'0'
	'1'
Function	'0'
	'8'
Data address	'0'
	'0'
	'0'
	'0'
Data content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'

Response message:	
STX	','
Address	'0'
	'1'
Function	'0'
	'8'
Data address	'0'
	'0'
	'0'
	'0'
Data content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'

Chapter 5 Parameters | VFD-B-P Series
Command message:

	'0'
END	CR
	LF

RTU mode:
Command message:

Address	01 H
Function	08 H
Data address	00 H
	00 H
Data content	17 H
	70 H
CRC CHK Low	FEH
CRC CHK High	1 FH

Response message:

Address	01 H
Function	08 H
Data address	00 H
	00 H
Data content	17 H
	70 H
CRC CHK Low	FEH
CRC CHK High	1 FH

(4) 10 H : write multiple registers (write multiple data to registers)

Example: Set the multi-step speed,
Pr. $05-00=50.00$ (1388H), Pr.05-01=40.00 (0FAOH). AC drive address is 01 H .
ASCII Mode:

Command message:	
STX	' ${ }^{\prime}$
Address 1	'0'
Address 0	'1'
Function 1	'1'
Function 0	'0'
Starting data address	'0'
	'5'
	'0'
	'0'
Number of data (count by word)	'0'
	'0'
	'0'
	'2'
Number of data (count by byte)	'0'
	'4'
The first data content	'1'
	'3'
	'8'
	'8'
The second data content	'0'
	'F'
	'A'
	'0'
LRC Check	'9'
	'A'
END	CR
	LF

STX	' ${ }^{\prime}$
Address 1	'0'
Address 0	'1'
Function 1	'1'
Function 0	'0'
Starting data address	'0'
	'5'
	'0'
	'0'
Number of data (count by word)	'0'
	'0'
	'0'
	'2'
LRC Check	'E'
	'8'
END	CR
	LF

Chapter 5 Parameters | VFD-B-P Series

RTU mode:

Command message:	
Address Function Starting data address	01H
	10H
	05H
	00H
Number of data (count by word)	00H'
	02H
Number of data (count by byte)	04
The first data content	13H
	88H
The second data content	0FH
	AOH
CRC Check Low	'4D'
CRC Check High	'D9'

Response message:

Address	01 H
Function	10 H
Starting data address	05 H
	00 H
Number of data	00 H
(count by word)	02 H
CRC Check Low	41 H
CRC Check High	04 H

3.4 Check sum

ASCII mode:
LRC (Longitudinal Redundancy Check) is calculated by summing up, module 256, the values of the bytes from address to data content then calculating the hexadecimal representation of the 2'scomplement negation of the sum.

For example, from above table, the calculation should be $01 \mathrm{H}+03 \mathrm{H}+21 \mathrm{H}+02 \mathrm{H}+00 \mathrm{H}+02 \mathrm{H}=29 \mathrm{H}$.
The 2's complement negation of 29H is D7H.

RTU mode:
CRC (Cyclical Redundancy Check) is calculated by the following steps:
Step 1: Load a 16-bit register (called CRC register) with FFFFH.
Step 2: Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.
Step 3: Examine the LSB of CRC register.
Step 4: If the LSB of CRC register is 0 , shift the CRC register one bit to the right with MSB zero filling, then repeat step 3. If the LSB of CRC register is 1 , shift the CRC register one bit to the right with MSB zero filling, Exclusive OR the CRC register with the polynomial value A 001 H , then repeat step 3.
Step 5: Repeat step 3 and 4 until eight shifts have been performed. When this is done, a complete 8-bit byte will have been processed.
Step 6: Repeat step 2 to 5 for the next 8 -bit byte of the command message. Continue doing this until all bytes have been processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, i.e. the lower order byte will be transmitted first.

The following is an example of CRC generation using C language. The function takes two arguments:

Unsigned char* data \leftarrow a pointer to the message buffer
Unsigned char length \leftarrow the quantity of bytes in the message buffer
The function returns the CRC value as a type of unsigned integer.
Unsigned int crc_chk(unsigned char* data, unsigned char length)\{
int j;
unsigned int reg_crc=0xFFFF;
while(length--)\{
reg_crc ${ }^{\wedge=}$ *data++;
for(j=0;j<8;j++)\{
if(reg_crc \& 0x01)\{ /* LSB(b0)=1 */
reg_crc=(reg_crc>>1) ^ 0xA001;
\}else\{
reg_crc=reg_crc >>1;
\}
\}
\}
return reg_crc;
\}

3.5 Address list

The contents of available addresses are shown as below:

Content	Address	Function	
AC drive Parameters	$\begin{aligned} & \text { GGnn } \\ & \text { H } \end{aligned}$	GG means parameter group, nn means parameter number, for example, the address of $\operatorname{Pr} 4-01$ is 0401 H . Referencing to chapter 5 for the function of each parameter. When reading parameter by command code 03 H , only one parameter can be read at one time.	
Command Write only	2000H	Bit 0-1	00B: No function 01B: Stop 10B: Run 11B: Jog + Run
		Bit 2-3	Reserved
		Bit 4-5	00B: No function 01B: FWD 10B: REV 11B: Change direction

Content	Address	Function	
	2000H	Bit 6-7	00B: Comm. forced 1st accel/decel 01B: Comm. forced 2nd accel/decel 10B: Comm. forced 3rd accel/decel 11B: Comm. forced 4th accel/decel
		Bit 8-11	Represented 16 step speeds.
		Bit 12	0 : No comm. multi step speed or accel/decel time 1: Comm. multi step speed or accel/decel time
		Bit 13-15	Reserved
	2001H	Frequency command	
	2002H	Bit 0	1: EF (external fault) on
		Bit 1	1: Reset
		Bit 2	1: B.B. on
		Bit 2	0: B.B. off
Status monitor Read only	2100 H	Error code:	
		00: No error occurred	
		01: Over-current (oc)	
		02: Over-voltage (ov)	
		03: Overheat (oH)	
		04: Overload (oL)	
		05: Overload1 (oL1)	
		06: External fault (EF)	
		07: IGBT short circuit protection (occ)	
		08: CPU failure (cF3)	
		09: Hardware protection failure (HPF)	
		10: Current exceeds 2 times rated current during accel (ocA)	
		11: Current exceeds 2 times rated current during decel (ocd)	
		12: Current exceeds 2 times rated current during steady state operation (ocn)	
		13: Ground Fault (GFF)	
		14: Low voltage (Lv)	
		15: CPU failure 1 (cF1)	
		16: CPU failure 2 (cF2)	
		17: Base Block	
		18: Overload (oL2)	
		19: Auto accel/decel failure (cFA)	
		20: Software protection enabled (codE)	
		21: EF1 Emergency stop	
		22: PHL (Phase-Loss)	
		23: cEF (Preliminary count value attained, EF active)	
		24: Lc (Under-current)	
		25: AnLEr (Analog feedback signal error)	
		26: PGErr (PG feedback signal error)	
	2101H	Status of AC drive	
			LED: 0: light off, 1: light up
			00: RUN LED
			01: STOP LED
		Bit 0-4	02: JOG LED
			03: FWD LED
			04: REV LED
		Bit 5	0: F light off, 1: F light on

Content	Address	Function	
		Bit 6	0: H light off, 1: H light on
		Bit 7	0 : "u" light off, 1: "u" light on
		Bit 8	1: Master frequency Controlled by communication interface
		Bit 9	1: Master frequency controlled by analog signal
		Bit 10	1: Operation command controlled by communication interface
		Bit 11	1: Parameters have been locked
		Bit 12	0 : AC drive stops, 1: AC drive operates
		Bit 13	1: Jog command
		Bit 14-15	Reserved
	2102H	Frequency command (F)	
	2103H	Output frequency (H)	
	2104H	Output current (AXXX.X)	
Status monitor Read only	2105H	DC-BUS Voltage (UXXX.X)	
	2106H	Output voltage (EXXX.X)	
	2107H	Step number of Multi-Step Speed Operation	
	2108H	Step number of PLC operation	
	2109H	Content of external TRIGGER	
	210AH	Power factor angle	
	210BH	Estimated torque ratio (XXX.X)	
	210 CH	Motor speed (rpm)	
	210DH	PG pulse (low word) /unit time (Pr.10-15)	
	210EH	PG pulse (high word) /unit time (Pr.10-15)	
	210FH	Output power (KW)	
	2110H	Reserved	
	2200H	Feedback Signal (XXX.XX \%)	
	2201H	User-defined (Low word)	
	2202H	User-defined (High word)	
	2203H	AVI analog input (XXX. XX \%)	
	2204H	ACl analog input (XXX. XX \%)	
	2205H	AUI analog input (XXX. XX \%)	
	2206H	Display temperature of heatsink (${ }^{\circ} \mathrm{C}$)	

3.6 Exception response:

The AC motor drive is expected to return a normal response after receiving command messages from the master device. The following depicts the conditions when no normal response is replied to the master device.

The AC motor drive does not receive the messages due to a communication error; thus, the AC motor drive has no response. The master device will eventually process a timeout condition. The AC motor drive receives the messages without a communication error, but cannot handle them. An exception response will be returned to the master device and an error message "CExx" will be displayed on the keypad of AC motor drive. The xx of "CExx" is a decimal code equal to the exception code that is described below.

In the exception response, the most significant bit of the original command code is set to 1 , and an exception code which explains the condition that caused the exception is returned.

Example of an exception response of command code 06 H and exception code 02 H :

ASCII mode:

STX	''
Address Low Address High	'0'
	'1'
Function Low Function High	'8'
	'6'
Exception code	'0'
	'2'
LRC CHK Low LRC CHK High	'7’
	'7’
$\begin{aligned} & \text { END } 1 \\ & \text { END } 0 \end{aligned}$	CR
	LF

RTU mode:

Address	01 H
Function	86 H
Exception code	02 H
CRC CHK Low	C3H
CRC CHK High	A1H

The explanation of exception codes:

Exception code	Explanation
01	Illegal function code: The function code received in the command message is not available for the AC motor drive.
02	Illegal data address: The data address received in the command message is not available for the AC motor drive.
03	Illegal data value: The data value received in the command message is not available for the AC drive.
04	Slave device failure: The AC motor drive is unable to perform the requested action.
10	Communication time-out: If Pr.09-03 is not equal to 0.0, Pr.09-02=00~02, and there is no communication on the bus during the Time Out detection period (set by Pr.09-03), "cE10" will be shown on the keypad.

3.7 Communication program of PC:

The following is a simple example of how to write a communication program for Modbus ASCII mode on a PC by C language.
\#include<stdio.h>
\#include<dos.h>
\#include<conio.h>
\#include<process.h>
\#define PORT 0x03F8 /* the address of COM1 */
/* the address offset value relative to COM1 */
\#define THR 0x0000
\#define RDR 0x0000
\#define BRDL 0x0000
\#define IER 0x0001
\#define BRDH 0x0001
\#define LCR 0x0003
\#define MCR 0x0004
\#define LSR 0x0005
\#define MSR 0x0006
unsigned char rdat[60];
/* read 2 data from address 2102 H of AC drive with address 1 */
unsigned char tdat[60]=\{':','0','1','0','3','2','1','0','2', '0','0','0','2','D','7','Ir','In'\};
void main()\{
int i;
outportb(PORT+MCR,0x08); /* interrupt enable */
outportb(PORT+IER,0x01); /* interrupt as data in */
outportb(PORT+LCR,(inportb(PORT+LCR) | 0x80));
/* the BRDL/BRDH can be access as LCR.b7==1 */
outportb(PORT+BRDL,12); /* set baudrate=9600, 12=115200/9600*/
outportb(PORT+BRDH,0x00);
outportb(PORT+LCR,0x06); /* set protocol, <7,N,2>=06H, <7,E,1>=1AH, <7,O,1>=0AH,
$<8, \mathrm{~N}, 2>=07 \mathrm{H},<8, \mathrm{E}, 1>=1 \mathrm{BH},<8, \mathrm{O}, 1>=0 \mathrm{BH}$ */
for (i=0;i<=16;i++) \{
while(!(inportb(PORT+LSR) \& 0x20)); /* wait until THR empty */
outportb(PORT+THR,tdat[i]); /* send data to THR */ \}
$\mathrm{i}=0$;
while(!kbhit())\{
if(inportb(PORT+LSR) \& 0x01)\{ /* b0==1, read data ready */
rdat[i++]=inportb(PORT+RDR); /* read data form RDR */
\} \} \}

09-05 \sim HMI Register 1
09-06 NHMI Register 2
Settings $00 \sim 65535$
Factory Setting: 00
[1 It offers two registers for HMI or PLC.

09-07 N Response Delay Time
Unit: 0.5
Settings $\quad 00 \sim 200 \mathrm{msec}$
Factory Setting: 00
[a] This parameter is the response delay time after AC drive receives communication command as shown in the following.

Chapter 5 Parameters | VFD-B-P Series

* This parameter is only for firmware version 4.01 and higher.

Group 10: PID Control

10-00 Input Terminal for PID Feedback
Factory Setting: 00
Settings 00 Inhibit PID operation: external terminals AVI, ACI may be used for frequency command if required (Pr.02-00).

01 Negative PID feedback from external terminal AVI (0~+10VDC).
02 Negative PID feedback from external terminal ACI (4~20mA).
03 Positive PID feedback from external terminal AVI (0~+10VDC).
04 Positive PID feedback from external terminal ACI (4~20mA).
[d Note that the measured variable (feedback) controls the output frequency (Hz). Select input terminal accordingly. Make sure this parameter setting does not conflict with the setting for Pr.02-00 (Master Frequency).
[1] When Pr.02-00 is set to 01 or 02, the set point (Master Frequency) for PID control is obtained from the AVI/ACl external terminal (0 to +10 V or $4-20 \mathrm{~mA}$) or from multi-step speed. When Pr.02-00 is set to 00, the set point is obtained from the keypad.
] Negative feedback means: +target value - feedback
Positive feedback means: -target value + feedback.

10-01 Gain Over the PID Detection Value
Unit: 0.01
Settings $\quad 0.00$ to 10.00
Factory Setting: 1.00
[ld This is the gain adjustment over the feedback detection value.

10-02 N Proportional Gain (P)
Unit: 0.01
Settings $\quad 0.0$ to 10.0
Factory Setting: 1.0
[1] This parameter specifies proportional control and associated gain (P). If the other two gains (I and D) are set to zero, proportional control is the only one effective.

10-03 N Integral Gain (1)
Unit: 0.01
Settings
0.00 to 100.00 sec

Factory Setting: 1.00

$$
0.00 \text { Disable }
$$

[1] This parameter specifies integral control (continual sum of the deviation) and associated gain (I). When the integral gain is set to 1 and the deviation is fixed, the output is equal to the input (deviation) once the integral time setting is attained.

10-04 \sim Derivative Control (D)
Unit: 0.01
Settings $\quad 0.00$ to 1.00 sec
Factory Setting: 0.00
[1] This parameter specifies derivative control (rate of change of the input) and associated gain (D). With this parameter set to 1 , the PID output is equal to differential time x (present deviation - previous deviation). It increases the response speed but it may cause overcompensation.

10-05 Upper Bound for Integral Control
Unit: 1
Settings 00 to 100 \%
Factory Setting: 100
[a] This parameter defines an upper bound or limit for the integral gain (I) and therefore limits the Master Frequency.
$\mathbb{1}$ The formula is: Integral upper bound = Maximum Output Frequency (Pr.01-00) x (Pr.10-05)\%. This parameter can limit the Maximum Output Frequency.

10-06 Primary Delay Filter Time
Unit: 0.1
Settings $\quad 0.0$ to 2.5 sec
Factory Setting: 0.0
[a] To avoid amplification of measurement noise in the controller output, a derivative digital filter is inserted. This filter helps to dampen oscillations.

The complete PID diagram is shown on the following page:

10-07 PID Output Frequency Limit
Unit: 1
Settings 00 to 110 \%
Factory Setting: 100
[1] This parameter defines the percentage of output frequency limit during the PID control. The formula is Output Frequency Limit $=$ Maximum Output Frequency $(\operatorname{Pr} .01-00) \times$ Pr.10-07 \%.

10-08 Feedback Signal Detection Time
Settings $\quad 0.0$ to d 3600.0 sec
Factory Setting: 60.0
[1] This parameter defines the time during which the PID feedback must be abnormal before a warning (see Pr.10-09) is given. It also can be modified according to the system feedback signal time.
[a] If this parameter is set to 0.0 , the system would not detect any abnormality signal.

10-09 N Treatment of the Erroneous Feedback Signals (for PID and PG feedback error)
Factory Setting: 00
Settings 00 Warning and keep operating
01 Warning and RAMP to stop
02 Warning and COAST to stop
[1] AC motor drive action when the feedback signals (analog PID feedback or PG (encoder) feedback) are abnormal according to Pr.10-16.

10-16 Deviation Range of PID Feedback Signal Error
Unit: 0.01
Settings $\quad 0.00 \sim 100.00 \%$
Factory Setting: 100.00
[al The base is Pr.01-00. When in PID feedback control, if | Source of PID reference target feedback | > Pr.10-16 and exceeds Pr.10-08 detection time, the AC drive will operate according to Pr.10-09.

10-10 PG Pulse Range
Unit: 1
Settings $\quad 1 \sim 40000$ (Max=20000 for 2-pole motor)
Factory Setting: 600
[d] A Pulse Generator (PG) or encoder is used as a sensor that provides a feedback signal of the motor speed. This parameter defines the number of pulses for each cycle of the PG control.
[1 For PG or encoder feedback an option PG-card is needed.

10-11 PG Input

Factory Setting: 00

Settings	00	Disable PG
	01	Single phase
	02	Forward / Counterclockwise rotation
	03	Reverse / Clockwise rotation

[a] The relationship between the motor rotation and PG input is illustrated below:

Chapter 5 Parameters | VFD-B-P Series

10-12 \sim ASR (Auto Speed Regulation) control (with PG only) (P)
Unit: 0.1
Settings
0.0 to 10.0

Factory Setting: 1.0
[d This parameter specifies Proportional control and associated gain (P), and is used for speed control with PG (encoder) feedback.

10-13 \wedge ASR (Auto Speed Regulation) control (with PG only) (I)
Unit: 0.01
Settings
0.00 to 100.00

Factory Setting: 1.00
0.00 disable
[1] This parameter specifies Integral control and associated gain (I), and is used for closed-loop speed control with PG (encoder) feedback.

10-14 Speed Control Output Frequency Limit
Unit: 0.01
Settings
0.00 to 10.00 Hz

Factory Setting: 10.00
[a] This parameter limits the amount of correction by the PI control on the output frequency when controlling speed via PG (encoder) feedback. It can limit the maximum output frequency.

10-15 Sample time for refreshing the content of 210DH and 210EH
Settings
$0.01 ~ 1.00$ seconds
Factory Setting: 0.10
[1] When the signal source of feedback control is PG (encoder) and it needs to read the pulse numbers from communication, this parameter can be used to set the refresh time of two communication addresses (210D and 210E).

Chapter 5 Parameters | VFD-B-P Series

Group 11: Fan and Pump Control Parameters
11-00 V/f Curve Selection
Factory Setting: 00
Settings $00 \quad$ V/f curve determined by Pr.01-00 to Pr.01-06.
$01 \quad 1.5$ power curve
021.7 power curve

03 Square curve
04 Cube curve
[1] Confirm the load curve and select the proper V/f curve before use.
[d The available V/f curves are shown below:

11-01 Start-up Frequency of the Auxiliary Motor
Unit: 0.01
Settings $\quad 0.00$ to 400.00 Hz
Factory Setting: 0.00
[a] This parameter serves as a reference for the startup value of the auxiliary motor. If the setting is 0.00 , the auxiliary motor cannot be activated.

11-02 Stop Frequency of the Auxiliary Motor
Unit: 0.01
Settings $\quad 0.00$ to 400.00 Hz
Factory Setting: 0.00
[a] When the output frequency reaches this parameter value, the auxiliary motor will be stopped. There must be a minimum of 5 Hz difference between the start frequency and stop frequency of auxiliary motor. (Pr.11-01-Pr.11-02) > 5 Hz .

11-04 Time Delay before Stopping the Auxiliary Motor
[d The number of Multi-function Output terminals set to 16, 17, 18 decides the number of auxiliary motors. The maximum is three.
$\mathbb{C l}$ The start/stop delay time can prevent the AC motor drive from overloaded during starting/stopping.
\square These parameters determine the starting sequence of auxiliary motors.
The auxiliary motor started first will be stopped first.
Example: Start sequence: motor 1 -> motor 2 -> motor 3
Stop sequence: motor 1 -> motor 2 -> motor 3
[1] The flowchart of auxiliary motor start/stop sequence:
Pr.11-01 Start-up frequency $=50 \mathrm{~Hz}$, Pr.11-02 Stop frequency $=20 \mathrm{~Hz}$
Pr.11-03 Time delay before start up $=10 \mathrm{sec}$, Pr.11-04 Time delay before stopping $=5 \mathrm{sec}$

11-07 Wakeup Frequency
Factory Setting: 0.00
[1] When the actual output frequency < Pr.11-06 and the time exceeds the setting of Pr.11-05, the AC motor drive will be in sleep mode.
[a] When the actual frequency command > Pr.11-07, the AC motor drive will restart.
[a] When the AC motor drive is in sleep mode, frequency command is still calculated by PID. When frequency reaches wake up frequency, AC motor drive will accelerate from Pr.01-05 min. frequency by V/f curve.
[a] The wake up frequency must be higher than sleep frequency.

(1) When output frequency < sleep frequency and time > detection time, it will go into sleep mode.

When min. output frequency \leqq lower bound of frequency, PID frequency \geqq min. output frequency and sleep function is enabled (output frequency < sleep frequency and time >
detection time), frequency will be 0 (in sleep mode). If output frequency < sleep frequency and time < detection time, the frequency command = lower bound frequency.

When PID frequency < min. output frequency and sleep function is enabled (output frequency < sleep frequency and time > detection time), output frequency $=0$ (in sleep mode).

If output frequency < sleep frequency but time < detection time, frequency command = lower frequency. If sleep function is disabled, output frequency $=0$.

Chapter 5 Parameters | VFD-B-P Series

This page intentionally left blank.

Chapter 6 Fault Code Information

The AC motor drive has a comprehensive fault diagnostic system that includes several different alarms and fault messages. Once a fault is detected, the corresponding protective functions will be activated. The following faults are displayed as shown on the AC motor drive digital keypad display. The four most recent faults can be read from the digital keypad or communication.

NOTE

Wait 5 seconds after a fault has been cleared before performing reset via keypad of input terminal.

6.1 Common Problems and Solutions

Fault Name	Fault Descriptions		Corrective Actions

Fault Name	Fault Descriptions	Corrective Actions
oí	Overload The AC motor drive detects excessive drive output current. NOTE: The AC motor drive can withstand up to 150% of the rated current for a maximum of 60 seconds.	1. Check whether the motor is overloaded. 2. Reduce torque compensation setting in Pr.702. 3. Use the next higher power AC motor drive model.
OL 1	Overload 1 Internal electronic overload trip	1. Check for possible motor overload. 2. Reduce the current level so that the drive output current does not exceed the value set by the Motor Rated Current Pr.7-00. 3. Check electronic thermal overload setting. 4. Use a higher power motor.
OL2	Overload 2 Motor overload.	1. Reduce the motor load. 2. Adjust the over-torque detection setting to an appropriate setting (Pr.06-03 to Pr.06-05).
HPG.i	GFF hardware error	Return to the factory.
HPF.E	CC (current clamp)	
HPF. 3	OC hardware error	
HPF.4	OV hardware error	
bo	External Base Block. (Refer to Pr. 08-06)	1. When the external input terminal (B.B) is active, the AC motor drive output will be turned off. 2. Deactivate the external input terminal (B.B) to operate the AC motor drive again.
0.8	Over-current during acceleration	1. Check for loose contacts between the AC motor drive and motor 2. Short-circuit at motor output: Check for possible poor insulation at the output lines. 3. Acceleration Time too short: Increase the Acceleration Time. 4. Torque boost too high: Decrease the torque compensation setting in Pr.7-02. 5. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
ocd	Over-current during deceleration	1. Short-circuit at motor output: Check for possible poor insulation at the output line. 2. Deceleration Time too short: Increase the Deceleration Time. 3. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.

Fault Name	Fault Descriptions	Corrective Actions
ocn	Over-current during constant speed operation	1. Short-circuit at motor output: Check for possible poor insulation at the output line. 2. Sudden increase in motor loading: Check for possible motor stall. 3. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
$E F$	External Fault	1. Input EF (N.O.) on external terminal is closed to GND. Output U, V, W will be turned off. 2. Give RESET command after fault has been cleared.
EF:	Emergency stop	1. When the multi-function input terminals MI1 to MI6 are set to emergency stop (setting 19 or 20), the AC motor drive stops output U, V, W and the motor coasts to stop. 2. Press RESET after fault has been cleared.
cF :	Internal EEPROM can not be programmed.	Return to the factory.
${ }_{6} \mathrm{~F}^{2}$	Internal EEPROM can not be read.	1. Press RESET to reset all settings to the factory setting 2. Return to the factory.
693.3	U-phase error	Return to the factory.
cF3.4	V-phase error	
cF3.5	W-phase error	
cF3.6	OV or LV	
cF3. 7	Current sensor error	
cF 3.8	OH error	
EFF	Ground fault	When (one of) the output terminal(s) is grounded, short circuit current is more than 50% of $A C$ motor drive rated current, the AC motor drive power module may be damaged. NOTE: The short circuit protection is provided for AC motor drive protection, not for protection of the user. 1. Check whether the IGBT power module is damaged. 2. Check for possible poor insulation at the output line.
${ }_{6} 98$	Auto accel/decel failure	1. Check if the motor is suitable for operation by AC motor drive. 2. Check if the regenerative energy is too large. 3. Load may have changed suddenly.
c^{E-}	Communication Error	1. Check the RS485 connection between the AC motor drive and RS485 master for loose wires and wiring to correct pins. 2. Check if the communication protocol, address, transmission speed, etc. are properly set. 3. Use the correct checksum calculation. 4. Please refer to group 9 in the chapter 5 for detail information.
Ccodt	Software protection failure	Return to the factory.

Fault Name	Fault Descriptions	Corrective Actions
$P \operatorname{cod} E$	Password is locked.	Keypad will be locked. Turn the power ON after power OFF to re-enter the correct password. See Pr.00-07 and 00-08.
Roiler	Analog feedback error or ACI open circuit	1. Check parameter settings and wiring of Analog feedback (Pr.10-00). 2. Check for possible fault between system response time and the feedback signal detection time (Pr. 10-08).
PEER	PG feedback signal error	1. Check parameter settings and signal type of PG feedback (Pr. 10-10 and Pr.10-11). 2. Check if the wiring of PG card is correct.
PHL	Phase Loss	Check input phase wiring for loose contacts.
cEF	EF when preliminary count value attained	1. Check counter trigger signal 2. Check Pr.03-09, Pr.03-11setting
RUE	Auto Tuning Error	1. Check cabling between drive and motor 2. Check Pr.07-05
Le	Under Current	1. Check Load current 2. Check Pr.06-12 to Pr.06-15 setting

6.2 Reset

There are three methods to reset the AC motor drive after solving the fault:

1. Press $\frac{\text { STOP }}{\text { RESET }}$ key on PU01.
2. Set external terminal to "RESET" (set one of Pr.04-04~Pr.04-09 to 05) and then set to be ON.
3. Send "RESET" command by communication.

\square Note

Make sure that RUN command or signal is OFF before executing RESET to prevent damage or personal injury due to immediate operation.

Chapter 7 Troubleshooting

7.1 Over Current (OC)

OCA
Over-current
dur ing acceleration

O Cd
Over-current
during decele ration

OC
Over current

7.2 Ground Fault

7.3 Over Voltage (OV)

7.4 Low Voltage (Lv)

Chapter 7 Troubleshooting | VFD-B-P Series

7.5 Over Heat (OH)

7.6 Overload

7.7 Display of PU01 is Abnormal

7.8 Phase Loss (PHL)

Chapter 7 Troubleshooting | VFD-B-P Series

7.9 Motor cannot Run

7.10 Motor Speed cannot be Changed

Chapter 7 Troubleshooting | VFD-B-P Series

7.11 Motor Stalls during Acceleration

7.12 The Motor does not Run as Expected

Chapter 8 Maintenance and Inspections

Modern AC motor drives are based on solid state electronics technology. Preventive maintenance is required to operate this AC motor drive in its optimal condition, and to ensure a long life. It is recommended to have a check-up of the AC motor drive performed by a qualified technician.

Daily Inspection:

Basic check-up items to detect if there were any abnormalities during operation are:

1. Whether the motors are operating as expected.
2. Whether the installation environment is abnormal.
3. Whether the cooling system is operating as expected.
4. Whether any irregular vibration or sound occurred during operation.
5. Whether the motors are overheating during operation.
6. Always check the input voltage of the AC drive with a Voltmeter.

Periodic Inspection:

Before the check-up, always turn off the AC input power and remove the cover. Wait at least 10 minutes after all display lamps have gone out, and then confirm that the capacitors have fully discharged by measuring the voltage between $+1 /+2$ and - . The voltage between $+1 /+2$ and should be less than 25VDC.

DANGER!

1. Disconnect AC power before processing!
2. Only qualified personnel can install, wire and maintain AC motor drives. Please take off any metal objects, such as watches and rings, before operation. And only insulated tools are allowed.
3. Never reassemble internal components or wiring.
4. Prevent electric shocks.

Chapter 8 Maintenance and Inspections | VFD-B-P Series

Periodical Maintenance

Ambient environment

Check Items	Methods and Criterion		Maintenance Period	
		Daily	Half Year	One Year
Check the ambient temperature, humidity, vibration and see if there is any dust, gas, oil or water drops	Visual inspection and measurement with equipment with standard specification	\circ		
Check for any dangerous objects near drive and motor	Visual inspection	\circ		

Voltage

Check Items	Methods and Criterion		Maintenance Period	
		Daily	Half Year	One Year
Check if the voltage of main circuit and control circuit is correct	Measure with multimeter with standard specification	\bigcirc		

Keypad

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
Is the display clear for reading	Visual inspection	0		
Any missing characters	Visual inspection	\bigcirc		

Mechanical parts

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there is any abnormal sound or vibration	Visual and aural inspection		\bigcirc	
If there are any loose screws	Tighten the screws		\bigcirc	

Chapter 8 Maintenance and Inspections ${ }^{\text {VFD-B-P Series }}$

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
Check parts for deformity or damaged	Visual inspection		0	
If there is any color change caused by overheating	Visual inspection		0	
Check for dust and dirt	Visual inspection		0	

- Main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there are any loose or missing screws	Tighten the screw	0		
If machine or insulator is deformed, cracked, damaged or with color change due to overheating or ageing	Visual inspection NOTE: Please ignore the color change of copper plate		0	
Check for dust and dirt	Visual inspection		\bigcirc	

- Terminals and wiring of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If the wiring is color change or deformation due to overheat	Visual inspection		O	
If the insulator of wiring is damaged or color change	Visual inspection		O	
If there is any damage	Visual inspection		0	

- DC capacity of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there is any leak of liquid, color change, crack or deformation	Visual inspection	0		
Measure static capacity when required		0		

- Resistor of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there is any peculiar smell or insulator cracks due to overheat	Visual inspection, smell	\bigcirc		
If there is any disconnection	Visual inspection or measure with multimeter after removing wiring between +1/+2 ~ - Resistor value should be within $\pm 10 \%$	0		

- Transformer and reactor of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there is any abnormal vibration or peculiar smell	Visual, aural inspection and smell	0		

- Magnetic contactor and relay of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there are any loose screws	Visual and aural inspection	0		
Check to see if contacts work correctly	Visual inspection	\bigcirc		

- Printed circuit board and connector of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there are any loose screws and connectors	Tighten the screws and press the connectors firmly in place.		0	
If there is any peculiar smell and color change	Visual inspection and smell		0	0
If there is any crack, damage, deformation or corrosion	Visual inspection		0	
If there is any liquid is leaked or deformation in capacity	Visual inspection			

- Ventilation channel of cooling system

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there is any obstruction in the heat sink, air intake or air outlet	Visual inspection		\bigcirc	

Chapter 8 Maintenance and Inspections | VFD-B-P Series

This page intentionally left blank.

Appendix A Specifications

Voltage Class			460 V Class										
Model Number VFD-XXXBXP			022	037	055	075	110	150	185	220	300	370	450
Max. Applicable Motor Output (kW)			2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45
Max. Applicable Motor Output (hp)			3.0	5.0	7.5	10	15	20	25	30	40	50	60
	Rated Output	apacity (kVA)	4.2	6.5	10	14	18	25	29	34	46	56	69
	Rated Output Current (A)		5.5	8.5	13	18	24	32	38	45	60	73	91
	Maximum Output Voltage (V)		3-phase Proportional to Input Voltage										
	Output Frequency (Hz)		$0.1 \sim 400 \mathrm{~Hz}$										
	Carrier Frequency (kHz)		1-15			1-9					1-6		
	Rated Output	apacity (kVA)	4.2	6.5	10	14	18	25	29	34	46	56	69
	Rated Output	urrent (A)	5.5	8.5	8.5	13	18	24	32	38	45	60	73
	Maximum Output Voltage (V)		3 -phase Proportional to Input Voltage										
	Output Frequency (Hz)		$0.1 \sim 400 \mathrm{~Hz}$										
	Carrier Frequ	cy (kHz)	1-15							1-9			
	Rated Input Current (A)	V/f control	5.9	11.2	14	19	25	32	39	49	60	73	90
		Vector control	5.9	11.2	11.2	14	19	25	32	39	49	60	73
	Rated Voltage		3 -phase 380 to 480 V										
	Voltage Tolerance		$\pm 10 \%(342 \sim 528 \mathrm{~V})$										
	Frequency Tolerance		$\pm 5 \%(47 \sim 63 \mathrm{~Hz})$										

General Specifications			
	Control System		SPWM(Sinusoidal Pulse Width Modulation) control (V/f or sensorless vector control)
	Output Frequency Resolution		0.01 Hz
	Torque Characteristics		Including the auto-torque, auto-slip compensation; starting torque can be 150\% at 1.0 Hz
	Overload Endurance		V/f control: 150\% of rated current for 1 minute
			Vector contro: 150\% of rated current for 1 minute
	Accel/Decel Time		0.1 to 3600 seconds (4 Independent settings for Accel/Decel time)
	Stall Prevention Level		20 to 150%, setting of rated current
	Frequenc y Setting	Keypad	Setting by \quad -
		External Signal	Potentiometer $5 \mathrm{k} \Omega / 0.5 \mathrm{~W}, 0$ to +10 VDC (input impedance $47 \mathrm{k} \Omega$), 4 to 20 mA (input impedance $250 \mathrm{k} \Omega$), RS-485 interface, Multi-Function Inputs 1 to 6 (15 steps, Jog, up/down)
	Operation Setting Signal	Keypad	Set by RUN, STOP and JOG
		External Signal	FWD, REV, JOG operation, Auto-run operation, RS-485 serial interface (MODBUS)

Appendix A Specifications ${ }^{2}$ VFD-B-P Series

General Specifications		
	Multi-Function Input Signal	Multi-step selection 0 to 15 , accel/decel inhibit, first to forth accel/decel switches, counter, JOG operation, PLC operation, external Base Block (NC, NO), auxiliary motor control is invalid, ACI/AUI selections, driver reset, UP/DOWN key settings and sink/source selection
	Multi-Function Output Indication	Driver is ready, overheat alarm, emergency stop and signal loss alarm
	Analog Output Signal	Output frequency/current/voltage/frequency command/speed/factor
	Installation Location	Altitude 1,000 m or lower, keep from corrosive gasses, liquid and dust
	Ambient Temperature	$-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ Non-Condensing and not frozen
	Storage/ Transportation Temperature	$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
	Ambient Humidity	Below 90\% RH (non-condensing)
	Vibration	Less than 20 Hz : $9.80665 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{G}), 20$ to $50 \mathrm{~Hz}: 5.88 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G})$
	Protection Functions	Over voltage, over current, under voltage, overload, ground fault, overheating, electronic thermal, IGBT short circuit
	Operation Functions	AVR, 2 accel/decel S curves, over-voltage/over-current stall prevention, fault records, reverse inhibition, momentary power loss restart, DC brake, auto torque/slip compensation, auto tuning, adjustable carrier frequency, output frequency limits, parameter lock/reset, vector control, speed feedback control, PG feedback control, PID control, fan \& pump control, external counter, PLC, MODBUS communication, abnormal reset, abnormal re-start, power-saving, sleep/revival function, digital frequency output, sleep/wake frequency, master/auxiliary frequency, 1st/2nd frequency source selections

Appendix B Accessories

B. 1 Dimensions for Heatsinks

MKB-PHC
Applicable models: VFD055B43P, VFD075B43P, VFD110B43P, VFD150B43P

Appendix B Accessories | VFD-B-P Series

MKB-PHC1

Applicable models: VFD055B43P, VFD075B43P, VFD110B43P, VFD150B43P

MKB-PHD
Applicable models: VFD185B43P, VFD220B43P, VFD300B43P, VFD370B43W-P, VFD450B43W-P

Appendix B Accessories | VFD-B-P Series

MKB-PHD1

Applicable models: VFD185B43P, VFD220B43P, VFD300B43P

B. 2 All Brake Resistors \& Brake Units Used in AC Motor Drives

Note: Please only use DELTA resistors and recommended values. Other resistors and values will void Delta's warranty. Please contact your nearest Delta representative for use of special resistors. For instance, in 460 V series, $100 \mathrm{hp} / 75 \mathrm{~kW}$, the AC motor drive needs 2 brake units with total of 16 brake resistors, so each brake unit uses 8 brake resistors. The brake unit should be at least 10 cm away from AC motor drive to avoid possible interference. Refer to the "Brake Unit Module User Manual" for further details.

$\begin{array}{\|l\|} \hline \mathbb{0} \\ \frac{\pi}{2} \\ \frac{2}{0} \end{array}$	Applicable Motor		$\begin{array}{\|c\|} \hline \text { Full } \\ \text { Load } \\ \text { Torque } \\ \mathrm{Nm} \\ \hline \end{array}$	Resistor value spec for each AC Motor Drive	Brake Unit Part No. and Quantity		Brake Resistors Part No. and Quantity		Brake Torque 10\%ED	Min. Equivalent Resistor Value for each AC Motor Drive
	hp	kW								
	3	2.2	1.262	300W 250Ω			BR300W250	1	125	160Ω
	5	3.7	2.080	400W 150Ω			BR400W150	1	125	130Ω
	7.5	5.5	3.111	$500 \mathrm{~W} 100 \Omega$			BR500W100	1	125	91Ω
	10	7.5	4.148	$1000 \mathrm{~W} 75 \Omega$			BR1K0W075	1	125	62Ω
	15	11	6.186	$1000 \mathrm{~W} 50 \Omega$			BR1K0W050	1	125	39Ω
	20	15	8.248	$1500 \mathrm{~W} 40 \Omega$	4030	1	BR1K5W040	1	125	40Ω
	25	18.5	10.281	4800W 32Ω	4030	1	BR1K2W008	4	125	32Ω
	30	22	12.338	4800W 27.2Ω	4030	1	BR1K2W6P8	4	125	27.2Ω
	40	30	16.497	$6000 \mathrm{~W} 20 \Omega$	4030	1	BR1K5W005	4	125	20Ω
	50	37	20.6	9600W 16Ω	4045	1	BR1K2W008	8	125	16Ω
	60	45	24.745	9600W 13.6Ω	4045	1	BR1K2W6P8	8	125	13.6Ω

\square NOTE

1. Please select the factory setting resistance value (Watt) and the duty-cycle value (ED\%).
2. If damage to the drive or other equipment are due to the fact that the brake resistors and the brake modules in use are not provided by Delta, the warranty will be void.
3. Take into consideration the safety of the environment when installing the brake resistors.
4. When using more than 2 brake units, equivalent resistor value of parallel brake unit can't be less than the value in the column "Minimum Equivalent Resistor Value for Each AC Drive" (the right-most column in the table).
5. If the minimum resistance value is to be utilized, consult local dealers for the calculation of the Watt figures.
6. For those applications needed to use with brake resistor or brake unit, it should disable Pr.0600 and also recommend to disable Pr.08-16 function.
7. Definition for Brake Usage ED\%

Explanation: The definition of the barking usage $\mathrm{ED}(\%)$ is for assurance of enough time for the brake unit and brake resistor to dissipate away heat generated by braking. When the brake

Appendix B Accessories | VFD-B-P Series

resistor heats up, the resistance would increase with temperature, and brake torque would decrease accordingly. Suggest cycle time is one minute

8. For safety reasons, install a thermal overload relay between brake unit and brake resistor. Together with the magnetic contactor (MC) in the mains supply circuit to the drive it offers protection in case of any malfunctioning. The purpose of installing the thermal overload relay is to protect the brake resistor against damage due to frequent brake or in case the brake unit is continuously on due to unusual high input voltage. Under these circumstances the thermal overload relay switches off the power to the drive. Never let the thermal overload relay switch off only the brake resistor as this will cause serious damage to the AC Motor Drive.

Note1: When using the AC drive with DC reactor, please refer to wiring diagram in the AC drive user manual for the wiring of terminal $+(\mathrm{P})$ of Brake unit.
Note2: Do NOT wire terminal -(N) to the neutral point of power system.

B.1.1 Dimensions and Weights for Brake Resistors

(Dimensions are in millimeter)

Order P/N: BR300W250, BR400W150

Model no.	L1	L2	H	D	W	Max. Weight (g)
BR300W250	215	200	30	5.3	60	750
BR400W150	265	250	30	5.3	60	930

Order P/N: BR500W100, BR1KW075

Model no.	L1	L2	H	D	W	Max. Weight (g)
BR500W100	335	320	30	5.3	60	1100
BR1KW075	400	385	50	5.3	100	2800

B.1.2 Specifications for Brake Unit

		460V Series	
		4030	4045
Max. Motor Power (kW)		30	45
	Max. Peak Discharge Current (A) 10% ED	40	60
	Continuous Discharge Current (A)	15	18
	Brake Start-up Voltage (DC)	660/690/720/760/800/830 6 V	
	DC Voltage	400~800VDC	
듳¢0¢0¢	Heat Sink Overheat	Temperature over $+95^{\circ} \mathrm{C}\left(203{ }^{\circ} \mathrm{F}\right)$	
	Alarm Output	Relay contact 5A 120VAC/28VDC (RA, RB, RC)	
	Power Charge Display	Blackout until bus (P-N) voltage is below 50VDC	
	Installation Location	Indoor (no corrosive gases, metallic dust)	
	Operating Temperature	$-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$	
	Storage Temperature	$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$	
	Humidity	90\% Non-condensing	
	Vibration	$\begin{aligned} & 9.8 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{G}) \text { under } 20 \mathrm{~Hz} \\ & 2 \mathrm{~m} / \mathrm{s}^{2}(0.2 \mathrm{G}) \text { at } 20 \sim 50 \mathrm{~Hz} \\ & \hline \end{aligned}$	
Wall-mounted Enclosed Type		IP50	

B.1.3 Dimensions for Brake Unit

(Dimensions are in millimeter[inch])

B. 2 AMD - EMI Filter Cross Reference

AC Drives	Model Number	FootPrint
VFD022B43P-A	08TDT1W4C4	N
VFD037B43P-B	RF037B43BA	N
VFD055B43P, VFD075B43P, VFD110B43P	RF110B43CA	N
VFD150B43P, VFD185B43P	50TDS4W4C	N
VFD220B43P, VFD300B43P, VFD370B43W-P	100TDS84C	N
VFD450B43W-P	150TDS84C	N

Installation

All electrical equipment, including AC motor drives, will generate high-frequency/low-frequency noise and will interfere with peripheral equipment by radiation or conduction when in operation. By using an EMI filter with correct installation, much of the interference can be eliminated. It is recommended to use DELTA EMI filter to have the best interference elimination performance.

We assure that it can comply with following rules when AC motor drive and EMI filter are installed and wired according to user manual:

- EN61000-6-4

EN61800-3: 1996

- EN55011 (1991) Class A Group 1

General precaution

1. EMI filter and AC motor drive should be installed on the same metal plate.
2. Please install AC motor drive on same footprint with EMI filter or install EMI filter as close as possible to the AC motor drive.
3. All wiring should be as short as possible.
4. Metal plate should be grounded.
5. The cover of EMI filter and AC motor drive or grounding should be fixed on the metal plate and the contact area should be as large as possible.

Choose suitable motor cable and precautions

 Improper installation and choice of motor cable will affect the performance of EMI filter. Be sure to observe the following precautions when selecting motor cable.1. Use the cable with shielding (double shielding is the best).
2. The shielding on both ends of the motor cable should be grounded with the minimum length and maximum contact area.
3. Remove any paint on metal saddle for good ground contact with the plate and shielding.

Saddle on both ends

Saddle on one end

The length of motor cable

When motor is driven by an AC motor drive of PWM type, the motor terminals will experience surge voltages easily due to components conversion of AC motor drive and cable capacitance. When the motor cable is very long (especially for the 460 V series), surge voltages may reduce insulation quality. To prevent this situation, please follow the rules below:

Appendix B Accessories | VFD-B-P Series

■ Use a motor with enhanced insulation.

- Connect an output reactor (optional) to the output terminals of the AC motor drive
- The length of the cable between AC motor drive and motor should be as short as possible (10 to 20 m or less)

■ For models $7.5 \mathrm{hp} / 5.5 \mathrm{~kW}$ and above:

Insulation level of motor	1000 V	1300 V	1600 V
460VAC input voltage	$66 \mathrm{ft}(20 \mathrm{~m})$	$328 \mathrm{ft}(100 \mathrm{~m})$	$1312 \mathrm{ft}(400 \mathrm{~m})$

NOTE

When a thermal O/L relay protected by motor is used between AC motor drive and motor, it may malfunction (especially for 460 V series), even if the length of motor cable is only $165 \mathrm{ft}(50 \mathrm{~m})$ or less. To prevent it, please use AC reactor and/or lower the carrier frequency (Pr. 02-03 PWM carrier frequency).

NOTE

Never connect phase lead capacitors or surge absorbers to the output terminals of the AC motor drive.

- If the length is too long, the stray capacitance between cables will increase and may cause leakage current. It will activate the protection of over current, increase leakage current or not insure the correction of current display. The worst case is that AC motor drive may be damaged.
- If more than one motor is connected to the AC motor drive, the total wiring length is the sum of the wiring length from $A C$ motor drive to each motor.

B.2.1 Dimensions

Dimensions are in millimeter and (inch)
Order P/N: RF037B43BA

Appendix B Accessories | VFD-B-P Series

Order P/N: RF110B43CA

Order P/N: 08TDT1W4C4

Order P/N: 50TDS4W4C

Appendix B Accessories | VFD-B-P Series

Order P/N: 100TDS84C

Order P/N: 150TDS84C

B. 3 PG Card (for Encoder)

B.3.1 PG02 Installation

1. $3 \mathrm{hp}(2.2 \mathrm{~kW})$

2. $5 \mathrm{hp}(3.7 \mathrm{~kW})$

Appendix B Accessories | VFD-B-P Series

3. $7.5 \mathrm{hp}(5.5 \mathrm{~kW})$ and above

B.3.1.1 PG Card and Pulse Generator (Encoder)

1. Basic Wiring Diagram

2. Basic Wiring Diagram with RPM Meter Attached.

B.3.1.2 PG-02 Terminal Descriptions

1. Terminals

Terminal Symbols	Descriptions
VP	Power source of PG-02 (FSW1 can be switched to 12 V or 5 V$)$ Output Voltage: $(+12 \mathrm{VDC} \pm 5 \% 200 \mathrm{~mA})$ or $(+5 \mathrm{VDC} \pm 2 \% 400 \mathrm{~mA})$
DCM	Power source (VP) and input signal (A, B) common
$\mathrm{A}-\bar{A}, \mathrm{~B}-\bar{B}$	Input signal from Pulse Generator. Input type is selected by FSW2. It can be 1-phase or 2-phase input. Maximum 500kP/sec (z-phase function is reserved). If the voltage exceeds 12V, it needs to use TP type with connecting the external current limiting resistor(R). The current should be within 5 to 15mA. The formal of current limiting resistor is: $5 m A \leq \frac{\text { Vin }-2 V}{480 \Omega+R} \leq 15 m A$

Terminal Symbols	Descriptions
A/O, B/O	PG-02 output signal for use with RPM Meter. (Open Collector) Maximum DC24V 300mA
COM	PG-02 output signal (A/O, B/O) common.

2. Wiring Notes

The control, power supply and motor leads must be laid separately. They must not be fed through the same cable conduit / trunk.
a. Please use a shielded cable to prevent interference. Do not run control wires parallel to any high voltage AC power line (200 V and above).
b. Connect shielded wire to DCM $\xlongequal{\ominus}$ only.
c. Recommended wire size 0.21 to $0.81 \mathrm{~mm}^{2}$ (AWG24 to AWG18).
d. Wire length:

Types of Pulse Generators	Maximum Wire Length	Wire Gauge
Output Voltage	50 m	
Open Collector	50 m	$1.25 \mathrm{~mm}^{2}$ (AWG16) or above
Line Driver	300 m	
Complementary	70 m	

3. Control Terminals Block Designations.

4. Types of Pulse Generators (Encoders)

Appendix B Accessories VFD-B-P Series

Output Types of the Encoder		FSW1 and FSW2 Switch	
		5 V	12V
$\begin{aligned} & 0 \\ & 0 \\ & \frac{\pi}{0} \\ & 0 \\ & \vdots \\ & \stackrel{\rightharpoonup}{7} \\ & 0 \end{aligned}$			

B.3.2 PG03

B.3.2.1 Installation

1. $3 \mathrm{HP}(2.2 \mathrm{~kW})$

Appendix B Accessories | VFD-B-P Series

2. $5 \mathrm{HP}(3.7 \mathrm{~kW})$

3. $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ and above

B.3.2.2 PG Card and Pulse Generator (Encoder)

1. Basic wiring diagram

Connection between PG-03 and the Encoder

Appendix B Accessories | VFD-B-P Series

2. Connect Externally with the Encoder of 12V Power Supply and Output Signals to Additional Tachometer

B.3.2.3 PG-03 Terminal Descriptions

1. Terminals

Terminal Symbols	Descriptions
+12 V	Power Supply of the Encoder: +12 V Output Voltage: $+12 \mathrm{~V} \pm 5 \% ~ 200 \mathrm{~mA}$
0 V	Common point for the power supply and the signal
$\mathrm{A}-\bar{A}, \mathrm{~B}-\bar{B}$	Input signal from Pulse Generator. Input type is selected by FSW2. It can be 1-phase or 2-phase input. Maximum 500kP/sec (z-phase function is reserved). If the voltage exceeds 12V, it needs to use TP type with connecting the external current limiting resistor(R). The current should be within 5 to 15mA. The formal of current limiting resistor is: $5 m A \leq \frac{V i n-2 V}{600 \Omega+R} \leq 15 m A$
$\mathrm{~A} / \mathrm{O}, \mathrm{B} / \mathrm{O}$	The Encoder signal output Maximum: DC24V 300mA
Θ	Common point for signal grounding

2. Wiring Notes
a) Please use a shield cable to prevent interference. Do not run control wire parallel to any high voltage AC power line (200 V and up).
b) Connect shielded wire to $\xlongequal{\digamma} \mathrm{E}$ only.
c) Recommended wire size 0.21 to $0.81 \mathrm{~mm}^{2}$ (AWG24 to AWG18).
d) Wire length:

The Output Types of the Encoder	Maximum Wire Length	Wire Gauge
Output Voltage	50 m	
Open Collector	50 m	$1.25 \mathrm{~mm}^{2}$ (AWG16) or above
Line Driver	300 m	
Complementary	70 m	

3. Control Terminals Block Designations.

Appendix B Accessories | VFD-B-P Series

4. Encoder types

Output Types of the Encoder		FSW2 Switch
$\begin{aligned} & 00 \\ & \frac{0}{0} \\ & \frac{1}{0} \\ & \vdots \\ & \vdots \\ & \frac{2}{3} \\ & 0 \end{aligned}$		
	vcc	
		$\underset{T P}{O C}$
		$\begin{gathered} O C \\ \square \\ \square \\ \hline \end{gathered}$

B. 4 Remote Controller RC-01

Dimensions are in millimeter

VFD-B-P Programming:
Pr.02-00 set to 1
Pr.02-01 set to 1 (external controls)
Pr.02-05 set to 1 (setting Run/Stop and Fwd/Rev controls)
Pr.04-08 (MI5) set to 05 (External reset)
NOTE: It needs to set the switch SW1 to SINK mode.

Appendix B Accessories | VFD-B-P Series

B. 5 Remote Panel Adapter (RPA 01)

Remote panel adapter for VFDPU01

Mounting hole dimensions (Dimensions are in millimeter)
Following is the mounting hole dimension of the plate for RPA01. Please choose the applicable one from below, depending on the plate thickness (t).

B. 6 AC Reactor

B.6.1 AC Input Reactor Recommended Value

$460 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 3-\mathrm{Ph}$ ase

kW	HP	Fundamental Amps	Max. continuous Amps	Inductance (mH)	
			5\% impedance		
5.5	7.5	12	18	2.5	4.2
7.5	10	18	27	1.5	2.5
11	15	25	37.5	1.2	2
15	20	35	52.5	0.8	1.2
18.5	25	35	52.5	0.8	1.2
22	30	45	67.5	0.7	1.2
30	40	55	82.5	0.5	0.85
37	50	80	120	0.4	0.7
45	60	80	120	0.4	0.7

B.6.2 AC Output Reactor Recommended Value

$460 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 3-\mathrm{Phase}$

kW	HP	Fundamental Amps	Max. continuous Amps	Inductance (mH)	
			5\% impedance		
5.5	7.5	18	27	1.5	2.5
7.5	10	18	27	1.5	2.5
11	15	25	37.5	1.2	2
15	20	35	52.5	0.8	1.2
18.5	25	45	67.5	0.7	1.2
22	30	45	67.5	0.7	1.2
30	40	80	120	0.4	0.7
37	50	80	120	0.4	0.7
45	60	100	150	0.3	0.45

B.6.3 Applications for AC Reactor

Appendix B Accessories | VFD-B-P Series

Connected in input circuit

Application 1	Question
When more than one AC motor drive are connected to the same power, one of them is ON during operation.	When applying to one of the AC motor drive, the charge current of capacity may cause voltage ripple. The AC motor drive may damage when over current occurs during operation.

Correct wiring

Application 2	Question
Silicon rectifier and AC motor drive is connected to the same power.	Surges will be generated at the instant of silicon rectifier switching on/off. These surges may damage the mains circuit.

Correct wiring

AC motor drive

Appendix B Accessories VFD-B-P Series

Application 3	Question
Used to improve the input power factor, to	When power capacity is too large, line
reduce harmonics and provide protection from	impedance will be small and the charge
AC line disturbances= (surges, switching	current will be too large. That may damage
spikes, short interruptions, etc.). AC line	AC motor drive due to higher rectifier
reactor should be installed when the power	temperature.
supply capacity is 500 kVA or more and	
exceeds 6 times the inverter capacity, or the	
mains wiring distance $\leq 10 \mathrm{~m}$.	

Correct wiring

Appendix B Accessories | VFD-B-P Series

B. 7 Zero Phase Reactor (RF220X00A)

Dimensions are in millimeter and (inch)

	Motor		Qty.	Recommended Wire Size (mm^{2})	Wiring Method
	HP	kW			
	7.5	5.5	1	3.5-5.5	Diagram A
	10	7.5		5.5	
	15	11	4	8-14	Diagram B
$\stackrel{4}{6}$	20	15			
$\stackrel{\oplus}{\circ}$	25	18.5		14	
9	30	22		22	
	40	30			
	50	37		30	
	60	45		50	

Diagram A

Please wind each wire 4 times around the core. The reactor must be put at inverter output as close as possible.

Diagram B

Please put all wires through 4 cores in series without winding.

B. 8 DC Choke Recommended Values

460V DC Choke

Input voltage	kW	HP	DC Amps	Inductance (mh)	MTE CAT. NO
460 Vac $50 / 60 \mathrm{~Hz}$ 3-Phase	5.5	7.5	18	3.75	18RB004
	7.5	10	25	4.00	25RB005
	11	15	32	2.68	32RB003
	15	20	50	2.00	50RB004
	18.5	25	62	1.20	62RB004
	22	30	80	1.25	80RB005
	30	40	92	1.00	92RB003
	37	50	92	1.00	92RB003
	45	60	160	Built-in	-

B. 9 No-fuse Circuit Breaker Chart

For 1-phase/3-phase drives, the current rating of the breaker shall be within 2-4 times maximum input current rating.
(Refer to Appendix A for rated input current)

3-phase	
Model	Recommended no-fuse breaker (A)
VFD055B43P	30
VFD075B43P	40
VFD110B43P	50
VFD150B43P	60
VFD185B43P	75
VFD220B43P	100
VFD300B43P	125
VFD370B43W-P	150
VFD450B43W-P	200

B. 10 Fuse Specification Chart

Smaller fuses than those shown in the table are permitted.

Model	I (A) Input	I (A) Output	Line Fuse	
	14		30	Bussmann P/N
VFD055B43P	14	18	40	JJS-30
VFD075B43P	19	24	50	JJS-40
VFD110B43P	25	32	60	JJS-50
VFD150B43P	32	38	75	JJS-60
VFD185B43P	39	45	100	JJS-70
VFD220B43P	49	60	125	JJS-100
VFD300B43P	60	73	150	JJS-125
VFD370B43W-P	63	91	200	JJS-150
VFD450B43W-P	90		JJS-200	

B. 11 PU06

B.11.1 Description of the Digital keypad VFD-PU06

B.11.2 Explanation of Display Message

Display Message	Descriptions
$\begin{aligned} & \text { Eifí } \\ & \text { Eidin } \end{aligned}$	The AC motor drive Master Frequency Command.
$\begin{aligned} & \text { Eifi } \\ & \text { gidio } \end{aligned}$	The Actual Operation Frequency present at terminals U, V, and W .

| The custom unit (u) |
| :--- | :--- |

B.11.3 Operation Flow Chart

VFD-PU06 Operation Flow Chart

Appendix B Accessories | VFD-B-P Series

This page intentionally left blank.

Appendix C How to Select the Right AC Motor Drive

The choice of the right AC motor drive for the application is very important and has great influence on its lifetime. If the capacity of AC motor drive is too large, it cannot offer complete protection to the motor and motor maybe damaged. If the capacity of AC motor drive is too small, it cannot offer the required performance and the AC motor drive maybe damaged due to overloading.

But by simply selecting the AC motor drive of the same capacity as the motor, user application requirements cannot be met completely. Therefore, a designer should consider all the conditions, including load type, load speed, load characteristic, operation method, rated output, rated speed, power and the change of load capacity. The following table lists the factors you need to consider, depending on your requirements.

Item		Related Specification			
		Speed and torque characteristics	Time ratings	Overload capacity	Starting torque
Load type	Friction load and weight load Liquid (viscous) load Inertia load Load with power transmission	\bigcirc			\bigcirc
Load speed and torque characteristics	Constant torque Constant output Decreasing torque Decreasing output	\bigcirc	\bigcirc		
Load characteristics	Constant load Shock load Repetitive load High starting torque Low starting torque	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Continuous operation, Short-time operation Long-time operation at medium/low speeds			\bigcirc	\bigcirc	
Maximum output current (instantaneous) Constant output current (continuous)		\bigcirc		\bigcirc	
Maximum frequency, Base frequency		\bigcirc			
Power supply transformer capacity or percentage impedance Voltage fluctuations and unbalance Number of phases, single phase protection Frequency				\bigcirc	\bigcirc
Mechanical friction, losses in wiring				\bigcirc	-
Duty cycle modification			\bigcirc		

Appendix C How to Select the Right AC Motor Drive \| VFD-B-P Series

C. 1 Capacity Formulas

1. When one AC motor drive operates one motor

The starting capacity should be less than $1.5 x$ rated capacity of $A C$ motor drive The starting capacity=
$\frac{k \times N}{973 \times \eta \times \cos \varphi}\left(T_{L}+\frac{G D^{2}}{375} \times \frac{N}{t_{A}}\right) \leq 1.5 \times$ the _capacity _of_AC_motor_drive $(k V A)$

2. When one AC motor drive operates more than one motor

2.1 The starting capacity should be less than the rated capacity of AC motor drive

■ Acceleration time $\leqq 60$ seconds

The starting capacity=
$\frac{k \times N}{\eta \times \cos \varphi}\left[n_{T}+n_{s}\left(k_{s-1}\right)\right]=P_{C}\left[1+\frac{n_{s}}{n_{T}}\left(k_{s-1}\right)\right] \leq 1.5 \times$ the_capacity_of_AC_motor_drive $(k V A)$
Acceleration time $\geqq 60$ seconds

The starting capacity=

$$
\frac{k \times N}{\eta \times \cos \varphi}\left[n_{T}+n_{s}\left(k_{s-1}\right)\right]=P_{C 1}\left[1+\frac{n_{s}}{n_{T}}\left(k_{s-1}\right)\right] \leq t h e_{-} \text {capacity_of } A C_{-} \text {motor_drive }(k V A)
$$

2.2 The current should be less than the rated current of AC motor drive(A)

- Acceleration time $\leqq 60$ seconds

$$
n_{T}+I_{M}\left[1+\frac{n_{s}}{n_{T}}\left(k_{s}-1\right)\right] \leq 1.5 \times \text { the_rated_current_of } A C_{-} \text {motor_drive }(A)
$$

- Acceleration time $\geqq 60$ seconds

$$
n_{T}+I_{M}\left[1+\frac{n_{s}}{n_{T}}(k s-1)\right] \leq t h e_{-} r a t e d_{-} c u r r e n t _o f_{-} A C_{-} m o t o r_{-} \operatorname{drive}(A)
$$

2.3 When it is running continuously

- The requirement of load capacity should be less than the capacity of AC motor drive(kVA)

The requirement of load capacity=

$$
\frac{k \times P_{M}}{\eta \times \cos \varphi} \leq t h e_{-} \text {capacity_of } A_{-} C_{-} \text {motor_drive }(k V A)
$$

- The motor capacity should be less than the capacity of AC motor drive

$$
k \times \sqrt{3} \times V_{M} \times I_{M} \times 10^{-3} \leq \text { the_capacity_of_AC_motor_drive }(k V A)
$$

- The current should be less than the rated current of AC motor drive(A)

$$
k \times I_{M} \leq t h e_{-} r a t e d_{-} c u r r e n t _o f_{-} A C_{-} m o t o r_{-} \operatorname{drive}(A)
$$

Symbol explanation

$P_{M} \quad$: Motor shaft output for load (kW)
$\eta \quad: \quad$ Motor efficiency (normally, approx. 0.85)
$\cos \varphi \quad:$ Motor power factor (normally, approx. 0.75)
$V_{M} \quad$: Motor rated voltage(V)
$I_{M} \quad$: Motor rated current(A), for commercial power
$k \quad$: Correction factor calculated from current distortion factor (1.05-1.1, depending on PWM method)
$P_{C 1} \quad:$ Continuous motor capacity (kVA)
$k_{s} \quad$: Starting current/rated current of motor
$n_{T} \quad:$ Number of motors in parallel
$n_{S} \quad$: Number of simultaneously started motors
$G D^{2} \quad:$ Total inertia $\left(\mathrm{GD}^{2}\right)$ calculated back to motor shaft $\left(\mathrm{kg} \mathrm{m}^{2}\right)$
$T_{L} \quad$: Load torque
$t_{A} \quad:$ Motor acceleration time
N : Motor speed

Appendix C How to Select the Right AC Motor Drive \| VFD-B-P Series

C. 2 General Precaution

Selection Note

1. When the AC Motor Drive is connected directly to a large-capacity power transformer (600kVA or above) or when a phase lead capacitor is switched, excess peak currents may occur in the power input circuit and the converter section may be damaged. To avoid this, use an AC input reactor (optional) before AC Motor Drive mains input to reduce the current and improve the input power efficiency.
2. When a special motor is used or more than one motor is driven in parallel with a single AC Motor Drive, select the AC Motor Drive current $\geq 1.25 x$ (Sum of the motor rated currents).
3. The starting and accel./decel. characteristics of a motor are limited by the rated current and the overload protection of the AC Motor Drive. Compared to running the motor D.O.L. (Direct On-Line), a lower starting torque output with AC Motor Drive can be expected. If higher starting torque is required (such as for elevators, mixers, tooling machines, etc.) use an AC Motor Drive of higher capacity or increase the capacities for both the motor and the AC Motor Drive.
4. When an error occurs on the drive, a protective circuit will be activated and the AC Motor Drive output is turned off. Then the motor will coast to stop. For an emergency stop, an external mechanical brake is needed to quickly stop the motor.

Parameter Settings Note

1. The AC Motor Drive can be driven at an output frequency up to 400 Hz (less for some models) with the digital keypad. Setting errors may create a dangerous situation. For safety, the use of the upper limit frequency function is strongly recommended.
2. High DC brake operating voltages and long operation time (at low frequencies) may cause overheating of the motor. In that case, forced external motor cooling is recommended.
3. Motor accel./decel. time is determined by motor rated torque, load torque, and load inertia.
4. If the stall prevention function is activated, the accel./decel. time is automatically extended to a length that the AC Motor Drive can handle. If the motor needs to decelerate within a certain time with high load inertia that can't be handled by the AC Motor Drive in the required time, either use an external brake resistor and/or brake unit, depending on the model, (to shorten deceleration time only) or increase the capacity for both the motor and the AC Motor Drive.

C. 3 How to Choose a Suitable Motor

Standard motor

When using the AC Motor Drive to operate a standard 3-phase induction motor, take the following precautions:

1. The energy loss is greater than for an inverter duty motor.
2. Avoid running motor at low speed for a long time. Under this condition, the motor temperature may rise above the motor rating due to limited airflow produced by the motor's fan. Consider external forced motor cooling.
3. When the standard motor operates at low speed for long time, the output load must be decreased.
4. The load tolerance of a standard motor is as follows:

5. If 100% continuous torque is required at low speed, it may be necessary to use a special inverter duty motor.

Appendix C How to Select the Right AC Motor Drive | VFD-B-P Series

6. Motor dynamic balance and rotor endurance should be considered once the operating speed exceeds the rated speed $(60 \mathrm{~Hz})$ of a standard motor.
7. Motor torque characteristics vary when an AC Motor Drive instead of commercial power supply drives the motor. Check the load torque characteristics of the machine to be connected.
8. Because of the high carrier frequency PWM control of the VFD series, pay attention to the following motor vibration problems:

■ Resonant mechanical vibration: anti-vibration (damping) rubbers should be used to mount equipment that runs at varying speed.

- Motor imbalance: special care is required for operation at 50 or 60 Hz and higher frequency.
- To avoid resonances, use the Skip frequencies.

9. The motor fan will be very noisy when the motor speed exceeds 50 or 60 Hz .

Special motors:

1. Pole-changing (Dahlander) motor:

The rated current is differs from that of a standard motor. Please check before operation and select the capacity of the AC motor drive carefully. When changing the pole number the motor needs to be stopped first. If over current occurs during operation or regenerative voltage is too high, please let the motor free run to stop (coast).
2. Submersible motor:

The rated current is higher than that of a standard motor. Please check before operation and choose the capacity of the AC motor drive carefully. With long motor cable between AC motor drive and motor, available motor torque is reduced.
3. Explosion-proof (Ex) motor:

Needs to be installed in a safe place and the wiring should comply with the (Ex) requirements. Delta AC Motor Drives are not suitable for (Ex) areas with special precautions.
4. Gear reduction motor:

The lubricating method of reduction gearbox and speed range for continuous operation will be different and depending on brand. The lubricating function for operating long time at low speed and for high-speed operation needs to be considered carefully.
5. Synchronous motor:

The rated current and starting current are higher than for standard motors. Please check before operation and choose the capacity of the AC motor drive carefully. When the AC motor drive operates more than one motor, please pay attention to starting and changing the motor.

Power Transmission Mechanism

Pay attention to reduced lubrication when operating gear reduction motors, gearboxes, belts and chains, etc. over longer periods at low speeds. At high speeds of $50 / 60 \mathrm{~Hz}$ and above, lifetime reducing noises and vibrations may occur.

Motor torque

The torque characteristics of a motor operated by an AC motor drive and commercial mains power are different.
Below you'll find the torque-speed characteristics of a standard motor (4-pole, 15kW):

C. 4 Malfunction Reasons and Solutions for the AC Motor Drive

For the operation method, setting condition, environment factor or misoperation of the AC motor drive, following are the solutions or Preventions for operation.

C.4.1 Solutions for Electromagnetic/Induction Noise

There are many noises surround the AC motor drives and invade it by radiation or power circuit. It may cause the misoperation of control circuit and even damage the AC motor drive. Of course, that is a solution to increase the noise tolerance of AC motor drive. But it is not the best one due to the limit. Therefore, solve it from the outside as following will be the best.

1. Add surge suppressor on the relay or contact to suppress switching surge between ON/OFF.
2. Shorten the wiring length of the control circuit or serial circuit and separate from the main AC circuit wiring.
3. Comply with the wiring regulation for those shielded wire and use isolation amplifier for long wire length.
4. The grounding terminal should comply with the local regulation and ground independently, i.e. not to have common ground with electric welding machine and power equipment.
5. Connect a noise filter at the input terminal of the AC motor drive to prevent noise from power circuit.

In a word, three-level solutions for electromagnetic noise are "no product", "no spread" and "no receive".

C.4.2 Environmental Condition

Since the AC motor drive is an electronic device, you should comply with the environmental condition stated in the Chapter 2.1. The following steps should also be followed.

1. To prevent vibration, anti-vibration spacer is the last choice. The vibration tolerance must be within the specification. The vibration effect is equal to the mechanical stress and it cannot occur frequently, continuously or repeatedly to prevent damaging to the AC motor drive.
2. Store in a clean and dry location free from corrosive fumes/dust to prevent corrosion and poor contacts. It also may cause short by low insulation in a humid location. The solution is to use both paint and dust-proof. For particular occasion, use the enclosure with whole-seal structure.
3. The surrounding temperature should be within the specification. Too high or low temperature will affect the lifetime and reliability. For semiconductor components, damage will occur once any specification is out of range. Therefore, it is necessary to clean and periodical check for the air cleaner and cooling fan besides having cooler and sunshade. In additional, the microcomputer may not work in extreme low temperature and needs to have heater.
4. Store within a relative humidity range of 0% to 90% and non-condensing environment. Do not turn off the air conditioner and have exsiccator for it.

C.4.3 Affecting Other Machines

AC motor drive may affect the operation of other machine due to many reasons. The solutions are as follows.

- High Harmonic at Power Side

If there is high harmonic at power side during running, the improved methods are:

1. Separate power system: use transformer for AC motor drive.
2. Use reactor at the power input terminal of AC motor drive or decrease high harmonic by multiple circuit.
3. If phase lead capacitors are used (never on the AC motor drive output!!), use serial reactors to prevent capacitors damage from high harmonics.

■ Motor Temperature Rises

When the motor is induction motor with ventilation-cooling-type used in variety speed operation, bad cooling will happen in the low speed. Therefore, it may overheat. Besides, high harmonic is in output waveform to increase copper loss and iron loss. Following measures should be used by load situation and operation range when necessary.

1. Use the motor with independent power ventilation or increase the horsepower.
2. Use inverter duty motor.
3. Do NOT run at low speeds for long time.
