## I ndustrial Automation Headquarters

Delta Electronics, Inc.
No.18, Xinglong Rd., Taoyuan City
Taoyuan County 33068 , Taiwan
TELL
886-3-362-6301
FAX:
TEL: 886-3-362-6301 /FAX: 886-3-371-6301

## Asia

Detta Electronics (Jiangsu) Ltd.
Wuiang Plant 3
1688 Jiangxing East Road,
Wuiliang Economic Development Zone
Wujiang City, Jiang Su Province, P.R.C. 215200
TEL: $86-512-6340-3008$ / FAX: 86-769-6340-729
Delta Greentech (China) Co., Ltd
238 Min-Xia Road, Pudong District
Stang Hal, P.R.C. 201209
TEL: $86-21-58635678 /$ FAX: $86-21-58630003$
Delta Electronics (Japan), Inc.
okyo Office
Tokyo 105-0012, Japan
TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211
Delta Electronics (Korea), Inc.
1511, Byucksan Digital Valley 6-cha, Gasan-dong
Geumcheon-gu, seoul, Korea, 153-704
Delta Electronics Intl (S) Pte Ltd. 4 Kaki Bukit Ave 1, \#05-05, Singapore 417939
TEL: 65-6747-5155 / FAX: 65-6744-9228
Delta Electronics (India) Pvt. Ltd.
Plot No 43 Sector 35, HSIIDC
Gurgaon, PIN 122001, Haryana, India
Americas
Delta Products Corporation (USA)
Raleigh Office
P.O. Box 12173,5101 Davis Drive,

Research Triangle Park, NC 27709, U.S.A.
TEL: 1-919-767-3800 FAX 1-919.
Delta Greentech (Brasil) S.A.
Sao Paulo Office
Rua Itapeva, 26 - $3^{\circ}$ andar Edificio Itapeva One-Bela Vista 332-000-São Paulo-SP-Brazi
TEL: 5511 3568-3855 / FAX: 5511 3568-3865

## Europe

Deltronics (The Netherlands) B.V
Eindhoven Office
De Witbogt 20, 5652 AG Eindhoven, The Netherland
TEL : +31-40-2592850 / FAX: $+31-40-2592851$
DVP-0001820-01

DVP10RC-E2
Resolver I nput Module Operation Manual

## DVP10RC-E2 Resolver Input Module Operation Manual <br> Table of Contents

Chapter 1 Introduction
1.1 Specifications ..... 1-2
1.2 Dimensions ..... 1-3
1.3 Profile ..... 1-3
1.4 Arrangement of the I/O Terminals ..... 1-4
1.5 Wiring I/O Terminals ..... 1-4
1.6 LED Indicators and Troubleshooting ..... 1-4
Chapter 2 Control Registers
2.1 Table of Control Registers ..... 2-2
2.2 Functions ..... 2-6
2.2.1 Adjusting an Angle ..... 2-6
2.2.2 Rotational Speed ..... 2-7
2.2.3 Counting the Number of Revolutions ..... 2-7
2.2.4 Forward/Backward Rotation ..... 2-8
2.2.5 Cam Output ..... 2-8
2.2.6 Using Y0 and Y1 as High-speed Output Terminals ..... 2-9
2.2.7 Controlling a Brake by Means of Y10/Y11 ..... 2-10
2.2.8 Automatically Bringing out a Gliding Angle List ..... 2-12
2.2.9 Offset Angle Percentage ..... 2-13
2.3 Descriptions of D9900~D9999 ..... 2-14
ii
PH"ं
Chapter 1 Introduction
Table of Contents
1.1 Specifications ..... 1-2
1.2 Dimensions ..... 1-3
1.3 Profile ..... 1-3
1.4 Arrangement of the I/O Terminals ..... 1-4
1.5 Wiring I/O Terminals ..... 1-4
1.6 LED Indicators and Troubleshooting ..... 1-4

Thanks for using the resolver input module DVP10RC-E2. To ensure that the product is correctly installed and operated, users need to read the operation manual carefully before they use DVP10RC-E2.
$\checkmark$ The operation manual provides functional specifications, and introduces installation, basic operation and setting, and the usage of DVP10RC-E2.
$\checkmark$ DVP10RC-E2 is an OPEN-TYPE device. It should be installed in a control cabinet free of airborne dust, humidity, electric shock and vibration. To prevent non-maintenance staff from operating DVP10RC-E2, or to prevent an accident from damaging DVP10RC-E2, the control cabinet in which DVP10RC-E2 is installed should be equipped with a safeguard. For example, the control cabinet in which DVP10RC-E2 is installed can be unlocked with a special tool or key. DO NOT touch any terminal when DVP10RC-E2 is powered up.
$\checkmark$ In order to prevent the product from being damaged, or prevent staff from being hurt, users need to read the operation manual carefully, and follow the instructions in the manual.

### 1.1 Specifications



### 1.2 Dimensions



### 1.3 Profile



### 1.4 Arrangement of the I/ O Terminals

| UP | ZP | Y0 | Y1 |  | Y3 | Y4 | Y5 | Y6 | Y7 | Y10 | Y11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DVP10RC-E2 (1RI/10DO) |  |  |  |  |  |  |  |  |  |  |  |
| 24 V | 0V | 完 | SG | D+ | D- | R1 | R2 | S2 | S4 | S3 | S1 |

### 1.5 Wiring I/ O Terminals

- Wiring input terminals

Resolver encoder DVP10RC-E2


- Wiring output terminals



### 1.6 LED I ndicators and Troubleshooting

- LED indicators

| LED indicator | Color | Description |
| :---: | :---: | :--- |
| POWER | Green | The POWER LED indicator indicates whether there is power <br> supplied to the CPU board. |
| RUN | Green | The RUN LED indicator indicates whether the module is running. |
| ERROR | Red | The ERROR LED indicator indicates whether an error occrus. |
| Y0~Y7, and Y10~Y11 | Red | An output LED indicator indicates whether there is an output signal. |

- RUN LED indicator and ERROR LED indicator

| RUN LED <br> indicator | ERROR LED <br> indicator | ON | Description |
| :---: | :---: | :--- | :--- |

## MEMO

Chapter 2 Control Registers
Table of Contents
2.1 Table of Control Registers ..... 2-2
2.2 Functions ..... 2-6
2.2.1 Adjusting an Angle ..... 2-6
2.2.2 Rotational Speed. ..... 2-7
2.2.3 Counting the Number of Revolutions ..... 2-7
2.2.4 Forward/Backward Rotation ..... 2-8
2.2.5 Cam Output ..... 2-8
2.2.6 Using Y0 and Y1 as High-speed Output Terminals ..... 2-9
2.2.7 Controlling a Brake by Means of Y10/Y11 ..... 2-10
2.2.8 Automatically Bringing out a Gliding Angle List ..... 2-12
2.2.9 Offset Angle Percentage ..... 2-13
2.3 Descriptions of D9900~D9999 ..... 2-14

### 2.1 Table of Control Registers

| CR\# | Attribute |  | Communication address | Name | Description | Default value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#0 | R | O | H1000 | Model code | The model code of a resolver input module is defined by the module's system. <br> DVP10RC-E2's model code=H'0026 | -- |
| \#1 | R | O | H1001 | Firmware version | Hexadecimal value Current firmware version | -- |
| \#3 | R | X | H1003 | State flag | Current state of DVP10RC-E2 | -- |
| \#4 | R | X | H1004 | Digital value of a resolver | K0~K4095 | -- |
| \#5 | R | X | H1005 | Angle of a resolver | K0~K3599 (Unit: 0.1 degrees) | -- |
| \#6 | R | X | H1006 | Angle of rotation | K0~K3599 (Unit: 0.1 degrees) | -- |
| \#7 | R | X | H1007 | Rotational speed | Unit: rpm | -- |
| \#8 | R | X | H1008 | Number of revolutions | K0~K32767 (Unit: Revolution) If the value in CR\#8 overflows, it will become zero. | K0 |
| \#9 | R | X | H1009 | States of the output terminals on DVP10RC-E2 <br> (1: ON; 0: OFF) | Bit 0~bit 7: YO~Y7 <br> Bit 8: Y10 <br> Bit 9: Y11 <br> Bit 10~bit 15: Reserved | -- |
| \#10 | R | O | H100A | Angular offset | K-3599~K3599 (Unit: 0.1 degrees) | K0 |
| \#11 | R/W | O | H100B | Target value for the adjustment of an angle | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#13 | R/W | X | H100D | Mode of controlling a brake by means of Y10 and Y11 | KO: No action <br> K1: Inching mode <br> K2: Continuous mode <br> K3: Safe/Single mode | K0 |
| \#14 | R/W | O | H100E | Station period | K0~K1000 (Unit: 1 ms ) <br> Range: $1 \mathrm{~ms} \sim 1000 \mathrm{~ms}$ KO: A system automatically brings out a station period according to a rotational speed. | K20 |
| \#15 | R/W | 0 | H100F | Station range | K1~K100 (Unit: 0.1 degrees) | K10 |
| \#16 | R/W | O | H1010 | Forward/Backward rotation | K0=Forward rotation K1=Backward rotation | K0 |
| \#17 | R/W | X | H1011 | Control command | K0: None <br> K1: Stopping applying a brake (Y10 and Y 11 are ON .) <br> K2: Starting to apply a brake (Y10 and Y11 are OFF.) <br> K3: Clearing the number of revolutions <br> K4: Automatically bringing out a gliding angle list <br> K5: Clearing an offset angle list <br> K6: Clearing a gliding angle list <br> K7: Adjusting an angle | K0 |
| \#20 | R/W | O | H1014 | Mode of communication | KO: MODBUS mode <br> K1: DVP-F6SEG's mode of communication | K1 |
| \#21 | R/W | O | H1015 | Communication station address | RS-485 communication address (1~254) | K1 |


| CR\# | Attribute |  | Communication address | Name | Description | Default value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#22 | R/W | O | H1016 | Communication format | There are six types of communication rates (4,800~115,200 bps) <br> b0: 4,800 bps <br> b1: 9,600 bps (Default value) <br> b2: 19,200 bps <br> b3: 38,400 bps <br> b4: 57,600 bps <br> b5: 115,200 bps <br> b6~b13: Reserved <br> b14: The high eight bits in a CRC <br> checksum is interchanged with the low <br> eight bits in the CRC checksum. (Only <br> effective in an RTU mode) <br> b15=0: ASCII mode <br> b15=1: RTU mode <br> ASCII mode: 7 bits, even parity bit, 1 <br> stop bit (7, E, 1) <br> RTU mode: 8 bits, even parity bit, 1 <br> stop bit ( $8, \mathrm{E}, 1$ ) <br> Default value: H'0002. |  |
| \#23 | R/W | X | H1017 | Angle of advance | K0~K3599 (Unit: 0.1 degrees) | K1800 |
| \#24 | R/W | X | H1018 | Angle of departure | K0~K3599 (Unit: 0.1 degrees) | K2500 |
| \#25 | R/W | O | H1019 | Way in which YO and Y1 operate | 0 : Angle comparison output terminals <br> 1: High-speed output terminals | K0 |
| \#26 | R/W | O | H101A | Start angle to which Y0 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#27 | R/W | 0 | H101B | End angle to which YO corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#28 | R/W | O | H101C | Start angle to which Y1 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#29 | R/W | 0 | H101D | End angle to which Y1 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#30 | R/W | O | H101E | Start angle to which Y2 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#31 | R/W | O | H101F | End angle to which Y2 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#32 | R/W | O | H1020 | Start angle to which Y3 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#33 | R/W | O | H1021 | End angle to which Y3 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#34 | R/W | O | H1022 | Start angle to which Y4 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#35 | R/W | O | H1023 | End angle to which Y4 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#36 | R/W | O | H1024 | Start angle to which Y5 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#37 | R/W | O | H1025 | End angle to which Y5 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#38 | R/W | O | H1026 | Start angle to which Y6 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#39 | R/W | O | H1027 | End angle to which Y6 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#40 | R/W | O | H1028 | Start angle to which Y7 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |

DVP10RC-E2 Resolver Input Module Operation Manual

| CR\# | Attribute |  | Communication address | Name | Description | Default value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#41 | R/W | O | H1029 | End angle to which Y7 corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#42 | R/W | O | H102A | Minimum rotational speed | Range: 1~200 (Unit: rpm) | K0 |
| \#43 | R/W | O | H102B | Gliding angle corresponding to a minimum rotational speed | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#44 | R/W | O | H102C | Maximum rotational speed | Range: 1~200 (Unit: rpm) | K0 |
| \#45 | R/W | O | H102D | Gliding angle corresponding to a maximum rotational speed | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#48 | R/W | O | H102E | Offset angle percentage | $\begin{aligned} & K 0=0 \% \text { (No offset) } \\ & \text { K1 }=25 \% \text { (Offset) } \\ & \text { K2 }=50 \% \text { (Offset) } \\ & \text { K3 }=100 \% \text { (Offset) } \end{aligned}$ | K2 |
| \#49 | R/W | 0 | H1031 | Stop angle | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#50 | R/W | O | H1032 | Gliding angle (10 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#51 | R/W | 0 | H1033 | Gliding angle (20 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#52 | R/W | 0 | H1034 | Gliding angle (30 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#53 | R/W | 0 | H1034 | Gliding angle (40 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#54 | R/W | O | H1035 | Gliding angle ( 50 rpm ) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#55 | R/W | O | H1036 | Gliding angle (60 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#56 | R/W | O | H1037 | Gliding angle (70rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#57 | R/W | 0 | H1038 | Gliding angle (80 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#58 | R/W | 0 | H1039 | Gliding angle (90 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#59 | R/W | O | H103A | Gliding angle (100 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#60 | R/W | O | H103B | Gliding angle of braking (110 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#61 | R/W | O | H103C | Gliding angle (120 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#62 | R/W | O | H103D | Gliding angle (130 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#63 | R/W | O | H103E | Gliding angle (140 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#64 | R/W | O | H103F | Gliding angle (150 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#65 | R/W | O | H1040 | Gliding angle (160 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#66 | R/W | O | H1041 | Gliding angle (170 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#67 | R/W | O | H1042 | Gliding angle (180 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#68 | R/W | O | H1043 | Gliding angle (190 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#69 | R/W | O | H1044 | Gliding angle (200 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#70 | R/W | O | H1046 | Rotational speed of an offset angle | K1~k200 (Unit: rpm) | K0 |
| \#71 | R/W | O | H1047 | Offset angle | K0~K3599 (Unit: 0.1 degrees) | K0 |


| CR\# | Attribute |  | Communication address | Name | Description | Default value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \# 100 \sim \\ \# 119 \end{gathered}$ | R/W | O | $\begin{gathered} \mathrm{H} 1064 ~ \\ \mathrm{H} 1077 \end{gathered}$ | Number of revolutions set for Y0 | K0~K32767 | K0 |
| $\begin{gathered} \# 120 ~ \\ \# 139 \end{gathered}$ | R/W | O | $\begin{gathered} \mathrm{H} 1078 ~ \\ \mathrm{H} 108 \mathrm{~B} \end{gathered}$ | Number of revolutions set for Y1 | K0~K32767 | K0 |
| $\begin{gathered} \text { \#140~ } \\ \# 159 \end{gathered}$ | R/W | O | $\begin{aligned} & \text { H108C~ } \\ & \text { H109F } \end{aligned}$ | Start angle corresponding to the number of revolutions set for Y0 | K0~K3599 (Unit: 0.1 degrees) | K0 |
| $\begin{gathered} \text { \#160~ } \\ \# 179 \end{gathered}$ | R/W | O | $\begin{aligned} & \text { H1080~ } \\ & \text { H10B3 } \end{aligned}$ | Start angle corresponding to the number of revolutions set for Y1 | K0~K3599 (Unit: 0.1 degrees) | K0 |
| $\begin{gathered} \text { \#180~ } \\ \# 199 \end{gathered}$ | R/W | O | $\begin{aligned} & \text { H10B4~ } \\ & \text { H10C7 } \end{aligned}$ | End angle corresponding to the number of revolutions set for YO | K0~K3599 (Unit: 0.1 degrees) | K0 |
| $\begin{gathered} \text { \#200~ } \\ \# 219 \end{gathered}$ | R/W | O | $\begin{aligned} & \text { H10C8~ } \\ & \text { H10DB } \end{aligned}$ | End angle corresponding to the number of revolutions set for Y1 | K0~K3599 (Unit: 0.1 degrees) | K0 |
| Symb <br> O: Th <br> X: Th <br> R: Us <br> co <br> W: Us | ols: <br> e reg <br> e regi <br> er can <br> mmun <br> sers |  | is a retentive regis is not a retentive re d the data in the co on. (Only 03 (read rite data to the con | ter. <br> egister. <br> ontrol register by means ing) is supported.) trol register by means | of the instruction FROM, or RS <br> the instruction TO. |  |

※ CR\#3: State flag

| Bit | Description | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :--- | :---: | :---: |
| Bit 0 | External power supply flag | Abnormal | Normal |
| Bit 1 | Abnormal start | Abnormal | Normal |
| Bit 2 | An input signal received by the resolver <br> connected is abnormal. (The resolver <br> used is disconnected.) | Abnormal | Normal |
| Bit 3 | A rotational speed exceeds the range <br> which can be resolved by the resolver <br> connected. | Abnormal | Normal |
| Bit 4 | Station judgment flag | Static | Not static |
| Bit 5~bit 15 | Reserved | -- | -- |

### 2.2 Functions

### 2.2.1 Adjusting an Angle

Making the angle which is set the current angle: After DVP10RC-E2 reads the absolute angle of a resolver, the absolute angle will be displayed in CR\#5. However, after a system is created, users want to change the current angle to a certain angle.

- Example: Changing an angle to $90^{\circ}$

After a system is created, the angle displayed is CR\#6 is $45^{\circ}$ (K450). Users want to change the angle to $90^{\circ}$ (K900).
Step 1: Write $90^{\circ}$ (K900) to CR\#11.
Step 2: Write K7 to CR\#17.


After the adjustment of the angle is complete, an angular offset will be displayed in CR\#10.

- Related control registers

| CR\# | Attribute | Communication <br> address | Name | Description | Default <br> value |
| :--- | :---: | :---: | :--- | :--- | :---: |
| \#5 | R | H1005 | Angle of a <br> resolver | Absolute angle of a resolver <br> K0~K3599 (Unit: 0.1 degrees) | -- |
| \#6 | R | H1006 | Angle of rotation | Angle of rotation after adjustment <br> K0~K3599 (Unit: 0.1 degrees) | -- |
| \#10 | R/W | H100A | Angular offset | Difference between the angle of a <br> resolver and the angle of rotation <br> K-3599~K3599 (Unit: 0.1 degrees) | -- |
| \#11 | R/W | H100B | Target value for <br> the adjustment of <br> an angle | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#17 | R/W | H1011 | Control command | K0: None <br> K1: Stopping applying a brake (Y10 and <br> Y11 are ON.) <br> K2: Starting to apply a brake (Y10 and <br> Y11 are OFF.) <br> K3: Clearing the number of revolutions <br> K4: Automatically bringing out a gliding <br> angle list <br> K5: Clearing an offset angle list <br> K6: Clearing a gliding angle list <br> K7: Adjusting an angle | K0 |

### 2.2.2 Rotational Speed

DVP10RC-E2 can detect the current rotational speed of a resolver. When the angle of the resolver is the angle of advance, DVP10RC-E2 starts to detect the rotational speed of the resolver. DVP10RC-E2 applies the brake connected when the angle of the resolver is the angle of departure. The current rotational speed of the resolver is displayed in CR\#7.

- Related control registers

| CR\# | Attribute | Communication <br> address | Name | Description | Default <br> value |
| :--- | :---: | :---: | :--- | :--- | :---: |
| \#7 | R | H1007 | Rotational speed | Unit: rpm | -- |
| \#23 | R/W | H1017 | Angle of advance | K0~K3599 (Unit: 0.1 degrees) | K1800 |
| \#24 | R/W | H1018 | Angle of departure | K0~K3599 (Unit: 0.1 degrees) | K2500 |

### 2.2.3 Counting the Number of Revolutions

After a resolver rotates forwards from 0 degrees to 360 degrees, the value in CR\#8 will increase by 1 . However, when the resolver rotates backwards, the number of revolutions displayed in CR\#8 does not change. After the resolver makes one backward revolution, the value in CR\#8 will not increase by 1 , or decrease by 1 . If the value in CR\#8 overflows (exceeds K32767), it will become 0 . If users want to clear the number of revolutions displayed in CR\#8, they can write K3 to CR\#17.

- Example: Clearing the number of revolutions

- Related control registers

| CR\# | Attribute | Communication <br> address | Name | Description | Default <br> value |
| :---: | :---: | :---: | :---: | :--- | :---: |
| \#8 | R | H1008 | Number of <br> revolutions | K0~K32767 (Unit: Revolution) <br> If the value in CR\#8 overflows, it will <br> become zero. | K0 |
| \#17 | R/W | H1011 | Control command | K0: None <br> K1: Stopping applying a brake (Y10 <br> and Y11 are ON.) <br> K2: Starting to apply a brake (Y10 <br> and Y11 are OFF.) <br> K3: Clearing the number of <br> revolutions <br> K4: Automatically bringing out a <br> gliding angle list <br> K5: Clearing an offset angle list <br> K6: Clearing a gliding angle list <br> K7: Adjusting an angle |  |

### 2.2.4 Forward/ Backward Rotation

The system controlled by DVP10RC-E2 generally rotate forwards $\left(0^{\circ} \boldsymbol{\rightarrow} 90^{\circ} \boldsymbol{\rightarrow} 180^{\circ} \boldsymbol{\rightarrow} 270^{\circ} \boldsymbol{\rightarrow} 0^{\circ}\right.$. If it needs to rotate backwards, users have to write 1 to CR\#16, otherwise problems may occur in other related control.

## Forward rotation



Backward rotation


- Related control register

| CR\# | Attribute | Communication <br> address | Name | Description | Default <br> value |
| :---: | :---: | :---: | :--- | :--- | :---: |
| \#16 | R | H1010 | Forward/Backward <br> rotation | K0=Forward rotation <br> K1=Backward rotation | K0 |

### 2.2.5 Cam Output

Users can set angle ranges for $\mathrm{Y} 0 \sim Y 7$. If the angle of a resolver is in the range of $\theta_{A} \sim \theta_{B}$, the output terminal corresponding to the angle range will be ON . If the angle of a resolver is not in the range of $\theta_{A} \sim \theta_{B}$, the output terminal corresponding to the range will be OFF. If the users want to use Y 0 and Y 1 as angle comparison output terminals, they have to write K0 to CR\#25.


- Related control registers

| CR\# | Attribute | Communication <br> address | Name | Description | Default <br> value |
| :--- | :---: | :---: | :--- | :--- | :---: |
| \#25 | R/W | H1019 | Way in which Y0 and Y1 <br> operate | 0: Angle comparison output <br> terminals <br> 1: High-speed output <br> terminals | K0 |
| \#26 | R/W | H101A | Start angle to which Y0 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#27 | R/W | H101B | End angle to which Y0 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#28 | R/W | H101C | Start angle to which Y1 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |


| CR\# | Attribute | Communication <br> address | Name | Description <br> value |  |
| :--- | :---: | :---: | :--- | :--- | :--- |
| \#29 | R/W | H101D | End angle to which Y1 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#30 | R/W | H101E | Start angle to which Y2 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#31 | R/W | H101F | End angle to which Y2 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#32 | R/W | H1020 | Start angle to which Y3 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#33 | R/W | H1021 | End angle to which Y3 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#34 | R/W | H1022 | Start angle to which Y4 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#35 | R/W | H1023 | End angle to which Y4 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#36 | R/W | H1024 | Start angle to which Y5 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#37 | R/W | H1025 | End angle to which Y5 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#38 | R/W | H1026 | Start angle to which Y6 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#39 | R/W | H1027 | End angle to which Y6 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#40 | R/W | H1028 | Start angle to which Y7 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#41 | R/W | H1029 | End angle to which Y7 <br> corresponds | K0~K3599 (Unit: 0.1 degrees) | K0 |

- Example: Y 2 is ON when the angle of a resolver is in the range of $90^{\circ}$ to $180^{\circ}$.

Step 1: Write K900 $\left(90^{\circ}\right)$ to CR\#30.
Step 2: Write K1800 $\left(180^{\circ}\right)$ to CR\#31.

| $\begin{gathered} \text { M0 } \\ H \end{gathered}$ | TO | K0 | K30 | K900 | K1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  | TO | K0 | K31 | K1800 | K1 |
|  |  |  |  | RST | M0 |

### 2.2.6 Using Y0 and Y1 as High-speed Output Terminals

After K0 is written to CR\#25, Y0/Y1 will be ON if a resolver makes a certain number of revolutions and the angle of the resolver is in a certain range, and Y0/Y1 will be OFF if a resolver does make a certain number of revolutions and the angle of the resolver is not in a certain range.
Users can set twenty values in CR\#100~CR\#119 for Y0, and twenty values in CR\#120~CR\#139 for Y1.

- Related control registers

| CR\# | Attribute | Communication <br> address | Name | Description | Default <br> value |
| :---: | :---: | :---: | :--- | :--- | :---: |
| \#25 | R/W | H1019 | Way in which Y0 and Y1 <br> operate | 0: Angle comparison output <br> terminals <br> 1: High-speed output <br> terminals | K0 |
| \#100~ <br> $\# 119$ | R/W | H1064~ <br> H1077 | Number of revolutions set <br> for Y0 | K0~K32767 | K0 |

DVP10RC-E2 Resolver Input Module Operation Manual

| CR\# | Attribute | Communication <br> address | Name | Description | Default <br> value |
| :---: | :---: | :---: | :--- | :--- | :---: |
| \#120~ <br> $\# 139$ | R/W | H1078~ <br> H108B | Number of revolutions set <br> for Y1 | K0~K32767 | K0 |
| \#140~ <br> $\# 219$ | R/W | H108C~ <br> H10DB | Angle corresponding to <br> the number of revolutions <br> set for Y0/Y1 | K0~K3599 (Unit: 0.1 <br> degrees) | K0 |

- Example: If the resolver connected makes ten revolutions, and the angle of the resolver is in the range of $0^{\circ}$ to $30^{\circ}, Y 0$ will be ON.
If the resolver connected makes twenty revolutions, and the angle of the resolver is in the range of $30^{\circ}$ to $60^{\circ}$, YO will be ON.
If the resolver connected makes forty revolutions, and the angle of the resolver is in the range of $60^{\circ}$ to $90^{\circ}$, YO will be ON.
If the resolver connected makes forty-six revolutions, and the angle of the resolver is in the range of $90^{\circ}$ to $160^{\circ}, \mathrm{YO}$ will be ON.

| Number of revolutions <br> set for Y0 | Start angle corresponding to the <br> number of revolutions set for Y0 | End angle corresponding to the <br> number of revolutions set for Y0 |
| :---: | :---: | :---: |
| 10 | $0^{\circ}$ | $30^{\circ}$ |
| 20 | $30^{\circ}$ | $60^{\circ}$ |
| 40 | $60^{\circ}$ | $90^{\circ}$ |
| 46 | $90^{\circ}$ | $160^{\circ}$ |


| $\stackrel{\text { MO }}{-1}$ | TO | K0 | K25 | K1 | K1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | TO | K0 | K100 | K10 | K1 |
|  | TO | K0 | K140 | K0 | K1 |
|  | TO | K0 | K180 | K300 | K1 |
|  | TO | K0 | K101 | K20 | K1 |
|  | TO | K0 | K141 | K300 | K1 |
|  | TO | K0 | K181 | K600 | K1 |
|  | TO | K0 | K102 | K40 | K1 |
|  | TO | K0 | K142 | K600 | K1 |
|  | TO | K0 | K182 | K900 | K1 |
|  | TO | K0 | K103 | K46 | K1 |
|  | TO | K0 | K143 | K900 | K1 |
|  | TO | K0 | K183 | K1600 | K1 |
|  |  |  |  | RST | M0 |

### 2.2.7 Controlling a Brake by Means of Y10/ Y11

- Description: A brake is controlled by Y10 and Y11. Y10 and Y11 are ON or OFF simultaneously.

| Output terminal | State | Control |
| :---: | :---: | :---: |
| $\mathrm{Y} 10 / \mathrm{Y} 11$ | OFF | Applying a brake |
| $\mathrm{Y} 10 / \mathrm{Y} 11$ | ON | Not applying a brake |

CR\#13: Mode of controlling a brake by means of Y10 and Y11

- No action (K0): The brake connected is applied. Y10 and Y11 are OFF continuously.
- Inching mode (K1): Y10 and Y11 are ON continuously.
- Continuous mode (K2): The brake connected is not applied initially. Y10 and Y11 are ON continuously. If K 2 is written to $\mathrm{CR} \# 17$, the brake connected will be applied ( Y 10 and Y 11 will be OFF) according to the stop angle, the gliding angle, and the offset angle which are set by users after the angle of advance appears again. When the punching machine used stops, Y10 and Y11 are OFF. If the users write K1 to CR\#17, the application of the brake connected will be stopped, Y10 and Y11 will be ON, and DVP10RC-E2 will wait for the next brake command.
■ Safe/Single mode (K3): Y10 are Y11 are ON initially. The brake connected will be applied automatically ( Y 10 and Y 11 will be OFF) according to the stop angle, the gliding angle, and the offset angle which are set by users after the angle of advance appears again. When the punching machine used stops, Y10 and Y11 are OFF. If the users write K1 to CR\#17, the application of the brake connected will be stopped, Y10 and Y11 will be ON, and the brake connected will be applied automatically after the angle of advance appears again.

| CR\#13 | Mode of controlling a brake | States of Y10 and Y11 |
| :---: | :--- | :--- |
| K0 | No action | The brake connected is applied (Y10 and Y11 are OFF <br> continuously). |
| K1 | Inching mode | The brake connected is not applied (Y10 and Y11 are ON <br> continuously). |
| K2 | Continuous mode | Initial states: Y10 and Y11 are ON (The brake connected is not <br> applied). <br> Writing K2 to CR\#17: The brake connected is applied (Y10 <br> and Y11 are OFF) according to the stop angle, the gliding <br> angle, and the offset angle which are set by users. <br> Writing K1 to CR\#17: The application of the brake connected <br> is stopped (Y10 and Y11 are ON). |
| K3 | Safe/Single mode | The brake connected is applied automatically (Y10 and Y11 <br> are OFF) according to the stop angle, the gliding angle, and <br> the offset angle which are set by users. <br> Initial states: Y10 are Y11 are ON (The brake connected is not <br> applied). <br> Writing K1 to CR\#17: The application of the brake connected <br> is stopped (Y10 and Y11 are ON). |

Related control registers

| CR\# | Attribute | Communication <br> address | Name | Description | Default <br> value |
| :--- | :--- | :--- | :--- | :--- | :---: |
| \#13 | R/W | H100D | Mode of controlling a <br> brake by means of <br> Y10 and Y11 | K0: No action <br> K1: Inching mode <br> K2: Continuous mode <br> K3: Safe/Single mode | K0 |
| \#17 | R/W | H1011 | Control command | K0: None <br> K1: Stopping applying a brake <br> (Y10 and Y11 are ON.) <br> K2: Starting to apply a brake (Y10 <br> and Y11 are OFF.) <br> K3: Clearing the number of <br> revolutions <br> K4: Automatically bringing out a <br> gliding angle list <br> K5: Clearing an offset angle list <br> K6: Clearing a gliding angle list <br> K7: Adjusting an angle |  |


| CR\# | Attribute | Communication <br> address | Name | Description | Default <br> value |
| :---: | :---: | :---: | :---: | :--- | :---: |
| \#48 | R/W | H102E | Offset angle <br> percentage | K0 $=0 \%$ (No offset) <br> K1 $=25 \%$ (Offset) <br> K2 <br> K3 $=100 \%$ (Offset) | K2 |
| \#49 | R/W | H1031 | Stop angle | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#50~ <br> $\# 69$ | R/W | H1032 <br> H1045 | Gliding angle <br> (10~200 rpm) | K0~K3599 (Unit: 0.1 degrees) | K0 |
| \#70 | R/W | H1032 | Rotational speed of <br> an offset angle | K1~k200 (Unit: rpm) | K0 |
| \#71 | R | H1033 | Offset angle | K0~K3599 (Unit: 0.1 degrees) | K0 |

- Angle at which a brake is applied

Angel at which a brake is applied $=$ Stop angle - Gliding angle - Offset angle
Example: The stop angle set in CR\#49 is 100 degrees, the gliding angle set in CR\#50 is 10 degrees, the
gliding angle set in CR\#51 is 20 degrees, and the offset angle set in CR71 is 0 degrees.

- 10 rpm : The angle at which the brake connected is applied is 90 degrees.
- 20 rpm : The angle at which the brake connected is applied is 80 degrees.

Users have to set gliding angle, a stop angle, and an offset angle according to the system used.

### 2.2.8 Automatically Bringing out a Gliding Angle List

- Description:

If users want to control a brake, they have to write twenty gliding angles to CR\#50~CR\#69. However, twenty gliding angles can be brought into CR\#50~CR\#69 easily if the users follow the steps below. Step 1: Write K6 to CR\#17.
Step 2: The resolver connected completes one stroke at the rotational speed $A$. The rotational speed $A$ is written to CR\#42, and the difference between the angle at which the resolver connected needs to stop and the actual angle at which the resolver connected stops is written to CR\#43.
Step 3: The resolver connected completes one stroke at the rotational speed $B$. The rotational speed $B$ is written to CR\#44, and the difference between the angle at which the resolver connected needs to stop and the actual angle at which the resolver connected stops is written to CR\#45.
Step 4: Write K4 to CR\#17.
After the users complete the steps above, they can read the gliding angles in CR\#50~CR\#69.

- Related control registers

| CR\# | Description |
| :---: | :--- |
| $\# 17$ | Control command |
| $\# 42$ | Rotational speed A |
| $\# 43$ | Gliding angle corresponding to the rotational speed A |
| $\# 44$ | Rotational speed B |
| $\# 45$ | Gliding angle corresponding to the rotational speed B |
| $\# 50 \sim \# 69$ | Gliding angle $(10 \sim 200 \mathrm{rpm})$ |

- Example:

CR\#42~CR\#45 are used to bring a gliding angle list.
When the resolver connected rotates at 9 rpm , the gliding angle measured is 4.3 degrees.
When the resolver connected rotates at 157 rpm , the gliding angle measured is 84.3 degrees.
Writing K4 to CR\#17: Automatically bringing out a gliding angle list



### 2.2.9 Offset Angle Percentage

| CR\# |  | Description |
| :--- | :--- | :--- |
| $\# 48$ | Offset angle percentage |  |

In addition to gliding angles, users can use an offset angle percentage. If the difference between the angle at which the resolver connected needs to stop and the actual angle at which the resolver connected stops is in the range of three degrees and thirty degrees when the resolve stops, the users can set an offset angle percentage.
KO $=0 \%$ (No offset)
K1 $=25 \%$ (Offset)
K2 $=50 \%$ (Offset)
$K 3=100 \%$ (Offset)
Example: The offset angle percentage set in CR\#48 is $50 \%$. The resolver connected rotates at 50 rpm . When the resolver connected stops, the difference between the angle at which the resolver connected needs to stop and the actual angle at which the resolver connected stops is ten degrees. If the resolver connected rotates at 50 rpm again, and then stops, the difference between the angle at which the resolver connected needs to stop and the actual angle at which the resolver connected stops will be five degrees. There can be an offset only if the difference between the angle at which the resolver connected needs to stop and the actual angle at which the resolver connected stops is in the range of three degrees and thirty degrees.

### 2.3 Descriptions of D9900~D9999

If a DVP-ES2 series PLC is connected to special modules, the registers D9900~D9999 will be occupied. Users can use D9900~D9999 in a program by means of the instruction MOV.
If a DVP-ES2 series PLC is connected to DVP10RC-E2 resolver input modules, special data registers will be assigned to the DVP10RC-E2 resolver input modules in the way described below.

| First <br> module | Second <br> module | Third <br> module | Fourth <br> module | Fifth <br> module | Sixth <br> module | Seventh <br> module | Eighth <br> module | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| D1320 | D1321 | D1322 | D1323 | D1324 | D1325 | D1326 | D1327 | Model code of the special <br> module which is connected |
| D9900 | D9910 | D9920 | D9930 | D9940 | D9950 | D9960 | D9970 | Angle of rotation |
| D9901 | D9911 | D9921 | D9931 | D9941 | D9951 | D9961 | D9971 | Rotational speed |
| D9902 | D9912 | D9922 | D9932 | D9942 | D9952 | D9962 | D9972 | Number of revolutions |
| D9903 | D9913 | D9923 | D9933 | D9943 | D9953 | D9963 | D9973 | States of the output terminals <br> on the special module <br> connected |

