I ndustrial Automation Headquarters Delta Electronics, Inc.
Taoyuan Technology Center
No.18, Xinglong Rd., Taoyuan City
Taoyuan County 33068, Taiwan
TEL: 886--3-362--6301 /FAX: 886-3-371-6301

Asia
Delta Electronics (Jiangsu) Ltd.
Wuiang Plant 3
1688 Jiangxing East Road
Wuiiang City, Jiang Su Province, P.R.C. 215200
Delta Greentech (China) Co., Ltd
238 Min-Xia Road, Pudong Distric
ShangHai, P.R.C. 201209
TEL: 86-21-58635678/FAX: 86-21-58630003
Delta Electronics (Japan), In
Tokyo Office
2-1-14 Minato-ku Shibadaimon,
Tokyo 105-0012, Japan
TEL: $81-3-5733-1111$ / FAX
Delta Electronics (Korea), Inc
1511, Byucksan Digital Valley 6 -cha, Gasan-dong
Geumcheon-gu, seoul, Korea, 153-704
Delta Electronics Intl' (S) Pte Ltd.
4 Kaki Bukit Ave 1, \#05-05, Singapore 41793
747-5155/ FAX: 65-6744-9228
Delta Electronics (India) Pvt. LI
Plot No 43 Sector 35 , HSIIDC
Gurgaon, PIN 122001, Haryana, India
TEL: $91-124-4874900 /$ /AX: $91-124-4874945$
Americas
Delta Products Corporation (USA)
Raleigh Office
P.O. Box 12173,5101 Davis Drive,
Research Triangle Park, NC 2 27709, U.S.A.
TELL 1-919-767-3800 / FAX: 1-919-767-8080
Delta Greentech (Brasil) S.A.
Delta Greentech
Sao Paulo Office
Rua Itapeva, $26-3^{\circ}$ ondar Edificio Itapeva One-Bela Vista
TEL: 5511 3568-3855 / /FAX: 5511 3568-3865

Europe

Deltronics (The Netherlands) B.
Eindhoven Office
De Witbogt 20,5652 AG Eindhoven, The Netherlands
TEL: 31-40-2592850 / FAX: 31-40-2592851
DVP-0099720-01

DVP-20PM

DVP-20PM Application Manual

Contents

Chapter 1 Program Framework of a DVP-PM Series Motion Controller
1.1 Structure of O100 1-1
1.1.1 Manual Function of O100 1-2
1.2 Structure of Ox Motion Subroutines 1-3
1.3 Structure of P Subroutines 1-4
1.4 Using O100, Ox Motion Subroutines, and P Subroutines 1-6
1.4.1 Structure of a Program 1-6
Chapter 2 Hardware Specifications and Wiring
2.1 Hardware Specifications 2-1
2.1.1 Specifications for Power 2-1
2.1.2 Electrical Specifications for Input Terminals/Output Terminals 2-1
2.1.3 Dimensions 2-4
2.2 Wiring 2-6
2.2.1 Installation of a DVP-20PM Series Motion Controller in a Control Box 2-7
2.2.2 Wiring Power Input 2-7
2.2.3 Safety Wiring 2-8
2.2.4 Wiring Input/Output Terminals 2-8
2.2.5 Wiring a DVP-20PM Series Motion Controller and an Inferior Servo Drive 2-14
2.3 Communication Ports 2-19
2.3.1 COM1 (RS-232 Port) 2-19
2.3.2 COM2 (RS-485 Port) 2-20
2.3.3 COM3 (RS-232/RS-485 Port) 2-20
Chapter 3 Devices
3.1 Device Lists 3-1
3.2 Values, Constants, and Floating-point Numbers 3-4
3.3 External Input Devices and External Output Devices 3-6
3.4 Auxiliary Relays 3-8
3.5 Stepping Relays 3-8
3.6 Timers 3-8
3.7 Counters 3-9
3.8 Registers 3-13
3.8.1 Data Registers 3-13
3.8.2 Index Registers 3-14
3.9 Pointers 3-14
3.10 Specail Auxiliary Relays and Special Data Registers 3-15
3.11 Functions of Special Auxiliary Relays and Special Data Registers 3-30
3.12 Special Data Registers for Motion Axes 3-46
3.12.1 Descriptions of the Special Data Registers Related to Motion 3-47
3.12.2 Introduction of Modes of Motion 3-64
3.12.3 Special Data Registers for Motion Axes 3-65
Chapter 4 Basic Instructions
4.1 Table of Basic Instructions 4-1
4.2 Descriptions of the Basic Instructions 4-3
Chapter 5 Applied Instructions and Basic Usage
5.1 Table of Applied Instructions 5-1
5.2 Structure of an Applied Instruction 5-5
5.3 Processing Values 5-7
5.4 Using Index Registers to Modify Operands 5-10
5.5 Instruction Index 5-10
5.6 Descriptions of the Applied Instructions 5-14

- (API 00~09) Loop control 5-14
- (API 10~19) Transfer and comparison 5-23
- (API 20~29) Arithmetic 5-36
- (API 30~39) Rotation and move 5-48
- (API 40~49) Data processing 5-59
- (API 50) High-speed processing 5-73
- (API 61~69) Convenience 5-74
- (API 78~87) I/O 5-81
- (API 100~101) Communication 5-86
- (API 110~175) Floating-point value 5-95
- (API 215~223) Logical operation 5-126
- (API 224~246) Comparison instructions 5-129
- (API 147, 154, 202, 203, 256~260) Other instructions 5-132
5.7 Motion Control Function Block Table 5-145
5.8 Introduction of the Pins in a Motion Control Function Block 5-146
5.8.1 Definitions of Input Pins/Output Pins 5-146
5.8.2 Timing Diagram for Input/Output Pins 5-148
5.8.3 Introducing the Use of PMSoft 5-148
5.9 Delta-defined Parameter Table 5-150
5.10 Uniaxial Motion Control Function Blocks 5-152
5.10.1 Absolute Single-speed Motion 5-152
5.10.2 Relative Single-speed Motion 5-156
5.10.3 Absolute Two-speed Motion 5-160
5.10.4 Relative Two-speed Motion 5-163
5.10.5 Inserting Single-speed Motion 5-166
5.10.6 Inserting Two-speed Motion 5-170
5.10.7 JOG Motion 5-174
5.10.8 Manual Pulse Generator Mode 5-177
5.10.9 Electronic Gear Motion 5-179
5.10.10 Returning Home 5-181
5.10.11 Setting Input Sources for Manual Pulse Generators/Electronic Gears 5-183
5.10.12 Stopping Uniaxial Motion 5-184
5.10.13 Parameter Setting I 5-186
5.10.14 Parameter Setting II 5-188
5.10.15 Reading the Present Position/Speed of an Axis 5-190
5.10.16 State of an Axis 5-192
5.10.17 Setting the Present Position of an Axis 5-194
5.10.18 Setting the Polarities of Input Terminals 5-195
5.10.19 Uniaxial Cyclic Electronic Cam Motion 5-197
5.10.20 Uniaxial Noncyclic Electronic Cam Motion 5-202
5.10.21 Multiaxial Cyclic Electronic Cam Motion 5-206
5.10.22 Reading a Cam Point 5-210
5.10.23 Writing a Cam Point 5-212
5.10.24 Calculating a Synchronization Ratio 5-214
5.10.25 Creating a Cam Curve 5-217
5.10.26 Updating a Cam Curve 5-224
5.10.27 Rotaty Cut 5-226
5.10.28 Flying Shear 5-232
5.10.29 Creating a Curve for a Wire Winding Machine 5-239
5.11 Multiaxial Motion Control Function Blocks 5-243
5.11.1 Setting the Parameters of G-code Motion 5-243
5.11.2 Executing G-code Motion 5-246
5.11.3 Stopping G-code Motion 5-248
5.11.4 Reading an M-code 5-250
5.12 Other Motion Control Function Blocks 5-252
5.12.1 High-speed Counter 5-252
5.12.2 Setting High-speed Comparison 5-255
5.12.3 Resetting High-speed Comparison 5-257
5.12.4 Setting High-speed Capture 5-260
5.12.5 High-speed Masking 5-264
5.12.6 Setting an Interrupt 5-266
Chapter 6 Basic Usage of Motion Instructions and G-codes
6.1 Table of Motion Instructions and Table of G-codes 6-1
6.2 Composition of a Motion Instruction/G-code 6-3
6.2.1 Motion Instruction 6-3
6.2.2 G-code Instruction 6-4
6.3 Descriptions of Motion Instructions 6-7
6.4 Descriptions of O Pointers/M-code Instructions. 6-40
6.5 Descriptions of G-code Instructions 6-45
Chapter 7 Using a DVP-20PM Series Motion Controller as a Slave
7.1 Access between DVP-EH2, DVP20PM (as a Master) and DVP-20PM (as a Slave)7-1
7.1.1 Structure 7-1
7.1.2 Example of Master-slave Data Exchange. 7-1
Chapter 8 Application Examples
8.1 Drawing Paths by Motoin Instructions and G-codes 8-1
8.1.1 Paths 8-1
8.1.2 Steps 8-2
8.2 Applying Application Examples in PMSoft 8-6
8.2.1 Program Structure 8-6
8.2.2 Designing an Example Program 8-6
8.3 Planning Variable Speed Operation 8-9
8.3.1 Program Structure 8-9
8.3.1 Designing Programs 8-9
8.4 Connecting DVP20PM00D (as a Master) and DVP01PU-H2 (as a Slave) for Controlling the Third Axis 8-11
Chapter 9 Electronic Cam
9.1 Introduction of Electronic Cams 9-1
9.2 Operation of an Electronic Cam 9-2
9.2.1 Initial Setting 9-2
9.2.1.1 Creating Electronic Cam Data 9-2
9.2.1.2 Setting Terminals 9-2
9.2.1.3 Setting an Input/Output Pulse Type 9-3
9.2.1.4 Setting an Input/Output Ratio 9-4
9.2.1.5 Setting a Starting Angle 9-5
9.2.2 Setting a Master Axis 9-6
9.2.3 Starting/Stopping an Electronic Cam 9-10
9.2.3.1 Starting/Stopping a Cyclic Electronic Cam 9-10
9.2.3.2 Starting/Stopping a Noncyclic Electronic Cam 9-13
9.3 Registers for Electronic Cam Motion 9-15
9.4 Creating Electronic Cam Data 9-19
9.4.1 Creating a Cam Chart in PMSoft 9-20
9.4.1.1 Function Relating the Position of a Master Axis to the Position of a Slave Axis 9-20
9.4.1.2 Measuring the Relation between the Position of a Master Axis and the Position of a Slave Axis at Work 9-23
9.4.2 Using DTO/DFROM to Create Electronic Cam Data 9-24
9.4.2.1 Creating/Modifying Electronic Cam Data 9-30
9.4.2.2 Creating a Smooth Curve 9-32
9.4.2.3 Creating Rotary Cut Data 9-36
9.4.2.4 Electronic Cam Data for Cutting Thick Material 9-42
9.4.2.5 Offset Compensation for a Slave Error 9-46
9.4.2.6 Application of a Flying Shear—Checking the Position of a Cutter 9-49
9.5 Multi-axis Cam 9-49
9.6 Practical Application of an Electronic Cam 9-53
9.6.1 Application of a Winfing Machine 9-53
9.6.1.1 Operation of a High-speed Winding Device 9-54
9.6.1.2 Wiring Hardware 9-56
9.6.1.3 Creating an Electronic Cam Curve 9-57
9.6.2 Application of a Rotary Cutter. 9-59
9.6.2.1 Operation of a Rotary Cutter 9-59
9.6.2.2 Creating an Electronic Cam Curve 9-59
9.6.3 Application of a Flying Shear 9-61
9.6.3.1 Operation of a Rotary Cutter 9-61
9.6.3.2 Creating an Electronic Cam Curve 9-62
Chapter 10 Application of G-codes
10.1 Downloading a Program with PEP 10-1
10.2 Methods of Downloading G-codes 10-2
10.2.1 PMGDL Software. 10-2
10.2.2 Coverting the G-codes in Data Registers 10-8
10.3 Applying G-codes to a Dispenser 10-12
10.4 Storing G-codes/M-codes 10-17
Chapter 11 CANopen Communication Card
11.1 Introduction of DVP-FPMC: CANopen Communication Card 11-1
11.2 Specifications 11-1
11.3 Product Profile and Installation 11-2
11.4 Parameters for Control Registers 11-2
11.5 Descriptions of Control Registers 11-4
11.6 Setting a DVP-FPMC Mode 11-19
11.7 Ethernet Mode of DVP-FPMC 11-21
11.7.1 Communication between DVP-FPMC and an HMI 11-22
11.7.2 Communication between DVP-FPMC and PMSoft 11-24
11.8 LED Indicators and Troubleshooting 11-27
Chapter 12 High-speed Comparison and High-speed Capture
12.1 High-speed Comparison and High-speed Capture 12-1
12.2 High-speed Comparison 12-3
12.3 High-speed Capture 12-6
Chapter 13 Appendix
13.1 Appendix A: Error Code Table 13-1

1 Program Framework of a DVP-PM Series Motion Controller

Delta DVP-PM series motion controllers can put axes in particular positions at high-speeds, create linear interpolations, and circular interpolations. They can execute basic instructions, applied instructions, motion instructions, and G-codes. Different DVP-PM series motion controllers support different program frameworks and functions. The functions that DVP-PM series motion controllers support are shown in the table below.

Function		DVP-20PM	DVP-10PM
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	Main program O100	\bigcirc	\bigcirc
	Ox motion subroutines	\bigcirc	\times
	P subroutines	\bigcirc	\bigcirc
$\begin{aligned} & \overline{\overline{0}} \\ & \stackrel{\rightharpoonup}{2} \\ & \bar{\lambda} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$	General instructions/Applied instructions	\bigcirc	\bigcirc
	Motion instructions	\bigcirc	\times
	G-codes	\bigcirc	\times
	M-codes	\bigcirc	\times
	JOG motion	\bigcirc	\bigcirc
	Returning home	\bigcirc	\bigcirc
	Variable motion	\bigcirc	\bigcirc
	Single-speed motion	\bigcirc	\bigcirc
	Inserting single-speed motion	\bigcirc	\bigcirc
	Two-speed motion	\bigcirc	\bigcirc
	Inserting two-speed motion	\bigcirc	\bigcirc
	Triggering single-speed motion by means of an external signal	\bigcirc	\times
	Manual pulse generator mode	\bigcirc	\bigcirc
	Cyclic/Noncyclic electronic cam motion	\bigcirc	\times

In this chapter, the basic program frameworks of DVP-PM series motion controllers are described. Owing to the fact that the functionality of a DVP-PM series motion controller is composed of sequence control and positioning control, a program comprises O100, Ox motion subroutines, and P subroutines. O100, Ox motion subroutines, and P subroutines are described in this chapter. Basic instructions, applied instructions, motion instructions, and G-codes will be introduced in other chapter 4~chapter 6 . The specifications for DVP-PM series motion controllers are shown in the table below.

Specifications	DVP-10PM	DVP-20PM
High-speed output	4 axes (1000 kHz)	3 axes (500 kHz)
PWM	Precision: 0.3\%@200 kHz	-
High-speed counter	6 input terminals (2 differential input terminals, and 4 input terminals whose collectors are open collectors)	2 input terminals
Program capacity	64K steps	64 K steps
Execution speed	LD: 0.14 us MOV: 2 us DMUL: 7.6 us DEMUL: 6.1 us	

1.1 Structure of 0100

O100 is a sequence control program. It is the main program in a DVP-PM series motion controller. It only supports basic instructions and applied instructions. Users can use these two types of instructions to process I/O data, call P subroutines, and enable Ox motion subroutines (Ox0~Ox99). O100 functions as a main program. Motion subroutines are enabled through O100. There is hierarchical relation between O100 and motion subroutines. The characteristics of O 100 are described below.

1. There are two methods of enabling O100.

- If the STOP/RUN switch of a DVP-PM series motion controller is turned from the "STOP" position to the "RUN" position when the DVP-PM series motion controller is powered, M1072 will be ON, and O 100 will run.

1 Program Framework of a DVP-PM Series Motion Controller

- If a DVP-PM series motion controller is powered, users can use communication to set M1072 to ON, and to run O100.

2. O100 is scanned cyclically. The scan of the main program O100 starts from the starting flag O100. After the ending instruction M102 is scanned, the scan of the main program O100 will go back to the starting flag O100.

3. There are three methods of disabling O100.

- If the STOP/RUN switch of a DVP-PM series motion controller is turned form the "RUN" position to the "STOP" position when the DVP-PM series motion controller is powered, M1072 will be OFF, and O 100 will stop. If O 100 stops, Ox motion subroutines and P subroutines will not be executed.
- If a DVP-PM series motion controller is powered, users can use communication to set M1072 to OFF, and to stop O100. If O100 stops, Ox motion subroutines and P subroutines will not be executed.
- If an error occurs when O100 is compiled or when O100 runs, O100 will stop automatically. Please refer to appendix A in chapter 15 for more information about error codes.

4. O100 supports basic instructions and applied instructions. Users can write a control program according to their needs. They can set the parameters of motion instructions, and motion subroutine numbers (Ox0~Ox99) in O100.

- O100 does not support motion instructions and G-codes. Motion instructions and G-codes must be used in the motion subroutines Ox0~Ox99. Please refer to section 1.2 for more information.
- O100 can call P subroutines. Please refer to section 1.3 for more information.

5. The description of O 100 is shown below.

O100	Description
Enabling O100	Starting flag O100 (If O100 is a ladder diagram in PMSoft, the starting flag in O100 will be set automatically, and users do not have to write the starting flag.)
Disabling O100	Ending instruction M102 (If O100 is a ladder diagram in PMSoft, the ending instruction M102 will be set automatically, and users do not have to write the ending instruction M102.)
Executing O100	1. The STOP/RUN switch of a DVP-PM series motion controller is turned form the "STOP" position to the "RUN" position. 2. Users use communication to set M1072 to ON.
Operation characteristic	O100 is scanned cyclically.
Instructions supported	Basic instructions and applied instructions are supported.
Number	There is only one O100 in a program. Characteristic and function1. It is a sequence control program. 2. It can enable the motion subroutines Ox0~Ox99, and call P subroutines. 3. If O100 is used with Ox motion subroutines and P subroutines, O100, the Ox motion subroutines, and the P subroutines can be arranged in any order.

1.1.1 Manual Function of $\mathbf{O 1 0 0}$

Users can set manual motion modes by means of special registers in O100. (Please refer to section 3.12 for more information.)

1 Program Framework of a DVP-PM Series Motion Controller

1.2 Structure of Ox Motion Subroutines

The motion subroutines $\mathrm{OxO} \mathrm{\sim Ox99}$ are motion control programs. They are subroutines which control the motion of the axes of a DVP-PM series motion controller. Ox0~Ox99 support basic instructions, applied instructions, motion instructions, and G-codes. They can call P subroutines. Users can control the paths of the axes of a DVP-PM series motion controller through Ox motion subroutines. The characteristics of Ox motion subroutines are described below.

1. There are two methods of enabling an Ox motion subroutine.

- When O100 runs, users can set motion subroutine numbers in O100. (The motion subroutine numbers must be in the range of 0×0 to 0×99. The users can set a motion subroutine number in O100 by setting D1868. The value in D1868 must be in the range of H 8000 to H8063.) If the users want to enable an Ox motion subroutine, they have to set M1074 to ON or set bit 12 in D1846 to ON.
- Before an Ox motion subroutine is enabled, users have to make sure that no Ox motion subroutine runs.

2. Whenever an Ox motion subroutine is enabled, it is executed once. After O100 enables an Ox motion subroutine, the execution of the Ox motion subroutine will start from the starting flag in the Ox motion subroutine. After the ending instruction M2 in the Ox motion subroutine is executed, the execution of the Ox motion subroutine will stop.

If X 0 is ON , the motion subroutine Ox 10 will be enabled. After the ending instruction M 2 in Ox 10 is executed, the execution of Ox 10 will stop. ($\mathrm{O} \times 10$ is executed once. If $\mathrm{O} \times 10$ needs to be executed again, X0 has to be set to ON.)
3. There are four methods of disabling an Ox motion subroutine.

- If the STOP/RUN switch of a DVP-PM series motion controller is turned form the "RUN" position to the "STOP" position when the DVP-PM series motion controller is powered, M1072 will be OFF, O100 will stop, and Ox motion subroutines will not be executed.
- Users can stop the execution of Ox motion subroutines by means of the external terminal Stop0.
- If a DVP-PM series motion controller is powered, users can use communication to set the value in D1846 to 0, or to set M1074 to OFF, and to stop the execution of Ox motion subroutines.
- If an error occurs when an Ox motion subroutine is compiled or when an Ox motion subroutine is

1 Program Framework of a DVP-PM Series Motion Controller

executed, the execution of the Ox motion subroutine will stop automatically. Please refer to appendix A in chapter 15 for more information about error codes.
4. An Ox motion subroutine supports basic instructions, applied instructions, motion instructions, and G-codes. Users can write a motion program according to their needs. They can control the motion of the axes of a DVP-PM series motion controller by setting the parameters of the axes.

- Basic instructions, applied instructions, motion instructions and G-codes must be used in the motion subroutines Ox0~Ox99.
- Ox motion subroutines can call P subroutines. Please refer to section 1.3 for more information.

5. The description of $O x$ motion subroutines is shown below.

Ox motion subroutine	\quad Description		
Enabling an Ox motion subroutine	There are 100 Ox motion subroutines (Ox0~Ox99). (If an Ox motion subroutine is a ladder diagram in PMSoft, the starting flag in the Ox motion subroutine will be set automatically, and users do not have to write the starting flag.)		
Disabling an Ox motion subroutine	Ending instruction M2 (If an Ox motion subroutine is a ladder diagram in PMSoft, the ending instruction M2 will be set automatically, and users do not have to write the ending instruction M2.)		
1. If users set bit 12 in D1846 or M1074 to ON when O100 runs, an Ox motion subroutine will be enabled. Executing an Ox motion subroutine	2. If users use communication to set bit 12 in D1846 or M1074 to ON when O100 runs, an Ox motion subroutine will be enabled. 3. Users can stop the execution of Ox motion subroutines by means of the external terminal Stop0.		
Note: Before an Ox motion subroutine is enabled, users have to make sure that no Ox motion subroutine runs.			
Characteristic	Whenever an Ox motion subroutine is enabled, it is executed once. If an Ox motion subroutine needs to be executed again, it has to be enabled again.		
Instructions			
supported			Basic instructions, applied instructions, motion instructions, and G-codes are supported.
:---			
Note: Users have to avoid using pulse instructions.			

1.3 Structure of P Subroutines

P subroutines are general subroutines. They can be called by O100 and Ox motion subroutines. If P subroutines are called by O100, the P subroutines will support basic instructions and applied instructions. If P subroutines are called by $0 x 0 \sim 0 x 99$, the P subroutines will support basic instructions, applied instructions, motion instructions, and G-codes. After O 100 or an Ox motion subroutine calls a P subroutine, the P subroutine will be executed. After SRET in the P subroutine is executed, the lines under the instruction which calls the P subroutine will be executed.

1. There are two methods of enabling a P subroutine.

- O100 can call P subroutines.
- Ox motion subroutines can call P subroutines.

2. Whenever a P subroutine is called, it is executed once. After O 100 or an Ox motion subroutine calls a P subroutine, the P subroutine will be executed. After the ending instruction SRET in the P subroutine is executed, the execution of the P subroutine will stop, and the lines under the instruction which calls the P subroutine will be executed.

1 Program Framework of a DVP-PM Series Motion Controller

The subroutine P0 supports basic instructions and applied instructions. The subroutine P2 supports basic instructions, applied instructions, motion instructions, and G-codes.
3. There are three methods of disabling a P subroutine.

- If the STOP/RUN switch of a DVP-PM series motion controller is turned form the "RUN" position to the "STOP" position when the DVP-PM series motion controller is powered, M1072 will be OFF, O100 will stop, and Ox motion subroutines and P subroutines will not be executed.
- If a DVP-PM series motion controller is powered, users can use communication to set the value in D1846 to 0, or to set M1074 to OFF, to stop the execution of Ox motion subroutines, and to stop the execution of P subroutines.
- If an error occurs when a P subroutine is executed, the execution of the P subroutine will stop automatically. Please refer to appendix A in chapter 15 for more information about error codes.

4. If P subroutines are called by $O 100$, the P subroutines will support basic instructions and applied instructions. If P subroutines are called by $0 \times 0 \sim 0 \times 99$, the P subroutines will support basic instructions, applied instructions, motion instructions, and G-codes.
5. The description of P subroutines is shown below.

P subroutine	Description
Enabling a P subroutine	There are 256 P subroutines (P0~P255). (If a P subroutine is a ladder diagram in PMSoft, the starting flag in the P subroutine will be set automatically, and users do not have to write the starting flag.)
Disabling a P subroutine	Ending instruction SRET (If a P subroutine is a ladder diagram in PMSoft, the ending instruction SRET will be set automatically, and users do not have to write the ending instruction SRET.)

1 Program Framework of a DVP-PM Series Motion Controller

P subroutine	Description
Executing a P subroutine	1. O100 can call P subroutines. 2. Ox motion subroutines can call P subroutines.
Operation characteristic	Whenever a P subroutine is enabled, it is executed once. If a Pn subroutine needs to be executed again, it has to be enabled again.
Instruction supported	1. If P subroutines are called by O100, the P subroutines will support basic instructions and applied instructions. 2. If P subroutines are called by Ox motion subroutines, the P subroutines will support basic instructions, applied instructions, motion instructions, and G-codes. Note: If P subroutines are called by Ox motion subroutines, users have to avoid using pulse instructions.
Number	There are 256 P subroutines in a program.
Characteristic and function	1. P subroutines are general subroutines. 2. P subroutines can be called by O100 and Ox motion subroutines. 3. If P subroutines are used with O100 and Ox motion subroutines, the P subroutines, O100, and the Ox motion subroutines can be arranged in any order.

1.4 Using 0100, Ox Motion Subroutines, and P Subroutines

O100, Ox motion subroutines, and P subroutines are introduced in section 1.1~section 1.3. In this section, a program composed of O100, Ox motion subroutines, and P subroutines is described.

1.4.1 Structure of a Program

Suppose a program is composed of $\mathrm{O} 100, \mathrm{O} \times 0, \mathrm{O} \times 3, \mathrm{P} 1$, and P 2 . The five program blocks are shown below.

1 Program Framework of a DVP-PM Series Motion Controller

In order to describe the program, the program is divided into 5 sections (section (1)~section (5)).

The program is described below.

1. Section (1)~section (5) are created in numerical order, but they can be arranged in any order.
2. There is only one O100. O100 can not be called by another program, but it can freely call Ox motion subroutines and P subroutines.
3. Ox motion subroutines can be called by O100 and P subroutines, and it can call P subroutines.
4. P subroutines can be called by O 100 and Ox motion subroutines, and it can call Ox motion subroutines.

Note:

1. One Ox motion subroutine is executed at a time. If OxO is executed, $\mathrm{O} \times 3$ can not be executed. If Ox 3 is executed, Ox0 can not be executed.
2. After O 100 or a P subroutine enables an $O x$ motion subroutine, the next line will be executed, and the execution of the Ox motion subroutine will be ignored.

1 Program Framework of a DVP-PM Series Motion Controller

3. Whenever an Ox motion subroutine is enabled, it is executed once. If an Ox motion subroutine needs to be executed again, it has to be enabled again.
The instructions supported by O100, Ox0, Ox3, P1 and P3 are described below. (O: Supported; X: Not supported)

Section	O100	Ox0 and Ox3	P1	P2
Basic instruction	O	O	O	O
Applied instruction	O	O	O	O
Motion instruction	X	O	O	X
G-code	X	O	O Description$\quad-\quad$P1 is called by Ox0, and therefore it supports motion instructions and G-codes.	$\mathrm{P2}$ is called by O100, and therefore it does not support motion instructions and G-codes.

Additional remark:

	Main program	Subroutine	Motion subroutine
Order	In any order	In any order	In any order
Execution	It runs normally.	P subroutines can be called by O100 or Ox motion subroutines.	Ox motion subroutines can be called by O 100 or P subroutines.
Operation	It is scanned cyclically.	Whenever a subroutine is called, it is executed once.	Whenever a motion subroutine is called, it is executed once.
Number	1 main program	256 subroutines They can be used according to users' needs.	100 motion subroutines They can be used according to users' needs.

2 Hardware Specifications and Wiring

2.1 Hardware Specifications

Electrical specifications and wiring are described in this chapter. Please refer to chapter 5~chapter 6 for more information about the writing of a program and the use of instructions. For more information about the peripherals purchased, please refer to the manuals attached to them.

2.1.1 Specifications for Power

Item	20PM
Supply voltage	100~240 V AC (-15\%~10\%), 50/60 Hz $\pm 5 \%$
Fuse	2 A/250 V AC
Power Consumption	60 V A
24 V DC power	500 mA
Power protection	24 V DC output is equipped with a short circuit protection.
Surge voltage withstand level	1500 V AC (Primary-secondary), 1500 V AC (Primary-PE), 500 V AC (Secondary-PE)
Insulation impedance	Above $5 \mathrm{M} \Omega$ (The voltage between all input terminals/output terminals and the ground is 500 V DC.)
Noise immunity	ESD: 8 kV air discharge EFT: Power line: 2 kV ; digital I/O: 1 kV ; analog \& communication I/O: 250 V
Ground	The diameter of the ground should not be less than the diameters of the cables connected to the terminals L and N. (If several DVP-20PM series motion controllers are used, please use single-point ground.)
Operation/Storage	Operation: $0^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}$ (Temperature), 5~95\% (Humidity), pollution degree 2 Storage: $-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ (Temperature), 5~95\% (Humidity)
Vibration/Shock resistance	International standards IEC 61131-2, IEC 68-2-6 (TEST FC)/IEC 61131-2 \& IEC 68-2-27 (TEST Ea)
Weight	Approximately 478/688 g

2.1.2 Electrical Specifications for Input Terminals/ Output Terminals

Electrical specifications for input terminals:
■ DVP20PM00D

Terminal	Description	Response	Maximum input	
			Current	Voltage
START0 and START1	Input terminals for starting DVP20PM00D	10 ms	6 mA	24 V
STOPO and STOP1	Input terminals for stopping DVP20PM00D	10 ms	6 mA	24 V
LSPO/LSNO and LSP1/LSN1	Positive limit switches/Left limit switches (for the X -axis and the Y -axis)	10 ms	6 mA	24 V
$\begin{aligned} & \mathrm{A} 0+, \mathrm{A} 0-, \mathrm{A} 1+\text {, } \\ & \text { and } \mathrm{A} 1- \end{aligned}$	A-phase input terminals for manual pulse generators (differential input terminals)	200 kHz	15 mA	5~24 V
$\begin{aligned} & \mathrm{B} 0+\text {, } \mathrm{B} 0-\text { - } \mathrm{B} 1+\text {, } \\ & \text { and B1- } \end{aligned}$	B-phase input terminals for manual pulse generators (differential input terminals)	200 kHz	15 mA	5~24 V
$\begin{aligned} & \text { PG0+, PG0-, } \\ & \text { PG1+, and PG1- } \end{aligned}$	PG signals (differential input terminals)	200 kHz	15 mA	5~24 V
DOG0 and DOG1	The use of the input terminals varies with the mode used. 1. DOG signals for returning home 2. Signals for starting the insertion of single-speed motion or the insertion of two-speed motion	1 ms	6 mA	24 V
X0~X7	General input terminals	200 kHz	15 mA	24 V

2 Hardware Specifications and Wiring

- DVP20PMOOM

Terminal	Description	Response	Maximum input	
			Current	Voltage
STARTO and START1	Input terminals for starting DVP20PM00M	10 ms	6 mA	24 V
STOP0 and STOP1	Input terminals for stopping DVP20PM00M	10 ms	6 mA	24 V
LSPO/LSNO and LSP1/LSN1	Positive limit switches/Left limit switches (for the X -axis and the Y -axis)	10 ms	6 mA	24 V
X1/X2	Positive limit switch/Left limit switch (common-point ground) (for the Z-axis)	10 ms	6 mA	24 V
$\begin{aligned} & \text { A0+, A0-, A1+, and } \\ & \text { A1- } \end{aligned}$	A-phase input terminals for manual pulse generators (differential input terminals) (A1+ and A1- are for the Y -axis and the Z -axis.)	200 kHz	15 mA	5-24 V
$\begin{aligned} & \text { B0+, B0-, B1+, and } \\ & \text { B1- } \end{aligned}$	B-phase input terminals for manual pulse generators (differential input terminals) ($\mathrm{B} 1+$ and B 1 - are for the Y -axis and Z -axis.)	200 kHz	15 mA	5~24 V
$\begin{aligned} & \text { PG0+, PG0-, } \\ & \text { PG1+, and PG1- } \end{aligned}$	PG signals (differential input terminals)	200 kHz	15 mA	5~24 V
X3	PG signal (common-point ground) (for the Z-axis)	10 ms	6 mA	24 V
DOG0 and DOG1	The use of the input terminals varies with the mode used. 1. DOG signals for returning home 2. Signals for starting the insertion of single-speed motion or the insertion of two-speed motion	1 ms	6 mA	24 V
X0	The use of the input terminal varies with the mode used. 1. DOG signal for returning home (common-point ground) (for the Z -axis) 2. Signal for starting the insertion of single-speed motion or the insertion of two-speed motion (common-point ground) (for the Z-axis)	10 ms	6 mA	24 V
X4~X7	General input terminals	200 kHz	15 mA	24 V

Electrical specifications for output terminals:

- DVP20PM00D

Terminal	Description	Response	Maximum current output
CLRO+, CLR0-, CLR1+, and CLR1-	CLR signals (for clearing the present positions of servo drives which are stored in registers in the servo drives)	10 ms	20 mA
FP0+, FP0-, FP1+, and FP1-	U/D: Counting up P/D: Pulse A/B: A phase	500 kHz	40 mA
RP0+, RP0-, RP1+, and RP1-	U/D: Counting down P/D: Direction A/B: B phase	500 kHz	40 mA
Y0~Y7	General output terminals	200 kHz	40 mA

- DVP20PM00M

Terminal	Description	Response	Maximum current output
CLR0+, CLR0-, CLR1+, and CLR1-	CLR signals (for clearing the present positions of servo drives which are stored in registers in the servo drives)	10 ms	20 mA
Y2	CLR signal (for the Z-axis)	10 ms	30 mA

2 Hardware Specifications and Wiring

Terminal	Description	Response	Maximum current output
FP0+, FP0-, FP1+,	U/D: Counting up	500 kHz	40 mA
FP1-, FP2+, and	P/D: Pulse		
FP2-	A/B: A phase	500 kHz	40 mA
RP0+, RP0-, RP1+,	U/D: Counting down RP1-, RP2+, and RP2-	P/D: Direction A/B: B phase	200 kHz
Y3~Y7	General output terminals	40 mA	

Digital input terminals:

- DVP-20PM series motion controller

	Item	24 V	mon terminal	Remark
Specifications		Low speed	High speed of $200 \mathbf{k H z}^{\mathbf{\# 1}}$	
Wiring type		A current flows into current flows from	inal S/S (sinking), or a nal S/S.	\#1: The input terminals $\mathrm{A} 0+$, A0-, A1+, A1-, B0+, B0-, B1+, B1-, PG0+, PG0-, PG1+, and PG1- are high-speed input terminals, and the other input terminals are low-speed input terminals.
Input indicator		LED indicator (If th input terminal is ON LED indicator corre OFF, the input term	dicator corresponding to an ut terminal is ON. If the g to an input terminal is FF.)	
Input voltage				
Action level	Off \rightarrow On		us	
	On \rightarrow Off		us	\#2: Users can filter pulses by setting the input terminals X0~X7 to ON after the
Response time/Noise reduction ${ }^{* 2}$			/0.5 us us	XO~X7 to ON after the pulses in $10 \mathrm{~ms} \sim 60 \mathrm{~ms}$ are received.

Digital output terminals:

- DVP-20PM series motion controller

Specifications Item		Transistor output terminal connected to a common terminal ${ }^{\# 1}$		Relay output terminal connected to a common terminal ${ }^{\# 1}$
Specifications \longrightarrow -		Low speed	High speed	
Maximum frequency of output signals		10 kHz	200 kHz	100 Hz
Output indicator		LED indicator (If the LED indicator corresponding to an output terminal is ON, the output terminal is ON. If the LED indicator corresponding to an output terminal is OFF, the output terminal is OFF.)		
Minimum load		-		$2 \mathrm{~mA} / \mathrm{DC}$ power
Working voltag		5~30 V DC		<250 V AC, 30 V DC
Isolation		Optocoupler		Electromagnetic isolation
Current specifications	Resistance	0.5A/output	al (2A/COM)	$2 \mathrm{~A} /$ output terminal (5 A/COM)
	Inductance	9 W	DC)	\#2
	Bulb	2 W (24 V DC)		20 W DC/100 W AC
Response	Off \rightarrow On	20 us	0.2 us	10 ms
time	On \rightarrow Off	30 us		
Overcurrent protection		N/A		

\#1: Y0~Y7 on DVP20PM00D are relay output terminals. FP2+ and FP2- on DVP20PM00M are high-speed transistor output terminals, Y2 and T3 on DVP20PM00M are low-speed transistor output terminals, and Y4~Y7 on DVP20PM00M are relay output terminals. Y 0 is connected to the common terminal $\mathrm{C} 0, \mathrm{Y} 1$ is connected to the common terminal C1, Y 2 and Y 3 are connected to the common terminal $C 2$, and $\mathrm{Y} 4 \sim Y 7$ are connected to the common terminal C3.

2 Hardware Specifications and Wiring

\#2: Life cycle curve

2.1.3 Dimensions

(Unit: mm)

2 Hardware Specifications and Wiring

Profile

■ DVP-20PM series motion controller

(1) Communication port cover
(2) Input/Output terminal cover
(3) Function card cover
(4) Input LED indicators
(5) Output LED indicators
(6) Input/Output terminal (6) numbers
(7) Input/Output terminals
(8) Connector cover
(9) DIN rail mounting clip
(10) DIN rail (35 mm)
(11) COM2 (RS-485 port)
(12) STOP/RUN switch
(13) COM1 (RS-232 port)
(14) Battery compartment
(15) Battery
(16) Connector
(17) Mounting hole

POWER LED indicator,
(18) BATTERY LED indicator, and ERROR LED indicators
(19) Connector
(20) Set screw
(21) Mounting hole

Open the COM1 cover.

2 Hardware Specifications and Wiring

Please change the battery in a minute.

Take out the RS-485 terminals.

Part	Description
COM2 (RS-485 port)	Master/Slave mode
STOP/RUN switch	Running/Stopping the DVP-20PM series motion controller
COM1 (RS-232 port)	Slave mode (It can be used with COM2 at the same time.)

Arrangement of terminals: Please refer to section 2.1.2 for more information.

- DVP20PMOOD

DVP-20PM00D
(AC Power IN, DC Signal IN)

- DVP20PMOOM

DVP-20PM00M
(AC Power IN, DC Signal IN)

2.2 Wiring

A DVP-20PM series motion controller is an OPEN-TYPE device. It should be installed in a control cabinet free of airborne dust, humidity, electric shock and vibration. To prevent non-maintenance staff from operating a DVP-10PM series motion controller, or to prevent an accident from damaging a DVP-10PM series motion controller, the control cabinet in which a DVP-10PM series motion controller is installed should be equipped with a safeguard. For example, the control cabinet in which a DVP-10PM series motion controller is installed can be unlocked with a special tool or key.
DO NOT connect AC power to any of I/O terminals, otherwise serious damage may occur. Please check all wiring again before a DVP-20PM series motion controller is powered up. Make sure that the ground terminalon a DVP-20PM series motion controller is correctly grounded in order to prevent electromagnetic interference.

2.2.1 Installation of a DVP-20PM Series Motion Controller in a Control Box

Installing a DIN rail:

The installation is applicable to a 35 millimeter DIN rail. Before users hang a DVP-10PM series motion controller on a DIN rail, they have to insert a slotted screw into the slots on the mounting clips, and pull out the mounting clips. After the users hang the DVP-10PM series motion controller on the DIN rail, they have to push the mounting clips back. If the users want to remove the DVP-10PM series motion controller, they have to insert a slotted screw into the slots on the mounting clips, and pull out the mounting clips. After the mounting clips are pulled out, they will not move back.

1. Using screws: Please mount a DVP-20PM series motion controller on a DIN rail by means of M4 screws.
2. A DVP-20PM series motion controller has to be installed in a closed control box. In order to ensure that the DVP-20PM series motion controller radiates heat normally, there should be space between the DVP-20PM series motion controller and the control box.

$D>50 \mathrm{~mm}$
Points for attention:
3. Please use O-type terminals or Y-type terminals. The specifications for terminals are on the right. The torque applied to the terminal screws used should be $9.50 \mathrm{~kg}-\mathrm{cm}(8.25 \mathrm{lb}-\mathrm{in})$. Please use copper conducting wires. The temperature of the copper conducting wires used should be $60 / 75^{\circ} \mathrm{C}$.
4. Please do not wire NC. Please do not put the cables connected to input terminals and the cables connected to output terminals in the same cable tray.
5. Users have to make sure that there are no tiny metal conductors
 inside a DVP-10PM series motion controller when they tighten screws and wire terminals. In order to ensure that the DVP-10PM series motion controller radiates heat normally, the users have to remove the sticker on the heat hole.

2.2.2 Wiring Power Input

The power input of a DVP-20PM series motion controller is AC input. Users have to pay attention to the following points.

1. The voltage of $A C$ power input is in the range of 100 VAC to 240 V AC . A live wire and a neutral wire are connected to L and N . If 110 V AC power or 220 V AC power is connected to +24 V or an input terminal on a DVP-20PM series motion controller, the DVP-20PM series motion controller will be damaged.
2. The AC power input of a DVP-20PM series motion controller, and the AC power input of the I/O module connected to the DVP-20PM series motion controller must be ON or OFF at the same time.
3. The length of the cable connected to the ground terminal on a DVP-20PM series motion controller is at least 1.6 millimeters.
4. If a power cut lasts for less than 10 milliseconds, the DVP-20PM series motion controller used will keep running without being affected. If a power cut lasts for long, or if the voltage of the power input of DVP-20PM series motion controller decreases, the DVP-20PM series motion controller will stop running, and the output terminals will be OFF. When the power input returns to normal, the DVP-20PM series motion controller will resume. (Users have to notice that there are latching auxiliary relays and registers in a DVP-20PM series motion controller when they write a program.)
5. The maximum current which can flows from the power output terminal +24 V is 0.5 A . Please do not connect any external power to +24 V . The current flows into any input terminal must be in the range of 6 mA to 7 mA . If there are 16 input terminals, 100 mA will be required. As a result, the current that flows from +24 V to an external load can not be greater than 400 mA .

2 Hardware Specifications and Wiring

2.2.3 Safety Wiring

A DVP-20PM series motion controller controls many devices, and the activity of any device affects the activity of other devices. If any device breaks down, the whole automatic control system will go out of control, and dangers will occur. As a result, it is suggested that users should create the protection circuit shown below when they wire power input.

(1) Alternating-current power input: $100 \sim 240$ VAC, $50 / 60 \mathrm{~Hz}$
(2) Circuit breaker
(3) Emergency stop: The emergency stop button can be used to cut off power when an emergency occurs.
(4) Power indicator
(5) Load through which a alternating current passes
(6) 3 A fuse
(7) DVP-20PM series motion controller
(8) Direct-current power output: $24 \mathrm{~V} \mathrm{DC}, 500 \mathrm{~mA}$

2.2.4 Wiring Input/ Output Terminals

1. The power input of a DVP-20PM series motion controller is DC power input. Sinking and sourcing are current driving capabilities of a circuit. They are defined as follows.
Sinking:
DC power input

Sinking: The current flows into the common terminal S / S.

2 Hardware Specifications and Wiring

Sourcing:

DC power input

Souring: The current flows from the common terminal S / S.

2 Hardware Specifications and Wiring

2. Wiring differential input terminals

The direct-current signals ranging in voltage from 5 V to 24 V can pass through the high-speed input terminals A0~A1 and B0~B1 on a DVP-20PM series motion controller. The frequency of input signals can be up to 200 kHz . These high-speed input terminals are connected to a differential (two-wire) line driver.
Wiring of differential input terminals (used for high speed and noise):

If the frequency of input signals is less than 50 kHz and there is not much noise, these high-speed input terminals can be connected to the direct-current power input whose voltage is in the range of 5 V to 24 V , as shown below.
Sinking:
DVP-20PM

Sourcing:

> DVP-20PM

2 Hardware Specifications and Wiring

3. Relay output circuit

(1) Direct-current power input
(2) Emergency stop: An external switch is used.
(3) Fuse: To protect the output circuit, a fuse having a breaking capacity in the range of 5 A to 10 A is connected to a common terminal.
(4) A diode is used to absorb the surge voltage which occurs when the load connected is OFF. It can lengthen the lifespan of a terminal.
4. A diode is connected to a load through which a direct current passes. It is used when the power of the load connected is small.

D: 1N4001 diode
2. A diode and a zener diode are connected to a load through which a direct current passes. They are used when the power of the load is large and the load is turned ON/OFF frequently.

(5) Incandescent lamp: Resistive load
(6) Alternating-current power input
(7) Mutually exclusive output: Y4 controls the clockwise rotation of a motor, and Y5 controls the counterclockwise rotation of a motor. The interlock circuit which is formed, and the program in the DVP-20PM series motion controller ensure that there will be protective measures if an abnormal condition occurs.
(8) Indicator: Neon lamp

2 Hardware Specifications and Wiring

(9) Surge absorber: It can be used to reduce the noise of a load through which an alternating current passes.

R: 100-120.0
C: 01~024 (F
4. Transistor output circuit

DVP-20PM

(1) Direct-current power
(2) Emergency stop
(3) Fuse
(4) Transistor output terminals are open collectors. If $Y 0 / Y 1$ is a pulse output terminal, the output current passing through an output pull-up resistor must be larger than 0.1 A to ensure that transistor output terminals operate normally.

1. Diode: It is used when the power of the load connected is small.

2. Diode and zener diode: They are used when the power of the load connected is large and the load is turned ON/OFF frequently.

2 Hardware Specifications and Wiring

(5) Mutually exclusive output: Y 4 controls the clockwise rotation of a motor, and Y 5 controls the counterclockwise rotation of a motor. The interlock circuit which is formed, and the program in the DVP-10PM series motion controller ensure that there will be protective measures if an abnormal condition occurs.
5. Wiring differential output terminals

- Wiring differential output terminals on a DVP-20PM series motion controller and an ASDA-A series AC servo drive/ASDA-A+ series AC servo drive/ASDA-A2 series AC servo drive

Differential output terminals on a
DVP-20PM series motion controller
Drive

- Wiring differential output terminals on a DVP-20PM series motion controller and an ASDA-B series $A C$ servo drive

Differential output terminals on a
DVP-20PM series motion controller

- Wiring differential output terminals on a DVP-20PM series motion controller and an ASDA-AB series AC servo drive

Differential output terminals on a DVP-20PM series motion controller

Drive

2 Hardware Specifications and Wiring

2.2.5 Wiring a DVP-20PM Series Motion Controller and an Inferior Servo Drive

Wiring a DVP-20PM series motion controller and a Delta ASDA-A series AC servo drive:

2 Hardware Specifications and Wiring

Wiring a DVP-20PM series motion controller and a Panasonic CN5 series servo drive:

2 Hardware Specifications and Wiring

Wiring a DVP-20PM series motion controller and a Yaskawa servo drive:

2 Hardware Specifications and Wiring

Wiring a DVP-20PM series motion controller and a Mitsubishi MJR2 series servo drive:

2 Hardware Specifications and Wiring

Wiring a DVP-20PM series motion controller and a Fuji servo drive:
Fuji servo drive

2 Hardware Specifications and Wiring

2.3 Communication Ports

A DVP-20PM series motion controller is equipped with COM1 (RS-232 port), COM2 (RS-485 port), and a communication card (COM3 (RS-232 or RS-485 communication)).
COM1: It is an RS-232 port. It can function as a slave station. A program is edited through this port. COM1 can be used in a Modbus ASCII mode or an RTU mode.
COM2: It is an RS-485 port. It can function as a master station or a slave station. It can be used in a Modbus ASCII mode or an RTU mode.
COM3: It is an RS-232/RS-485 port. It can function as a slave station. It can be used in a Modbus ASCII mode.
Communication architecture:

Communication port Communication parameter	$\begin{aligned} & \text { RS-232 port } \\ & \text { (COM1) } \end{aligned}$	$\begin{aligned} & \text { RS-485 port } \\ & \text { (COM2) } \end{aligned}$	RS-232/RS-485 port (COM3)
Serial transmission rate	110~115,200 bps		110~38,400 bps
Number of data bits	7 bits~8 bits		
Parity bit	Even/Odd parity bit/None		
Number of stop bits	1 data bit-2 data bits		
Register where a communication format is stored	D1036	D1120	D1109
ASCII mode	Slave station	Master station/ Slave station	Slave station
RTU mode	Slave station	Master station/ Slave station	-
Quantity of data read/written (ASCII mode)	100 registers		32 registers
Quantity of data read/written (RTU mode)	100 registers		32 registers

Default communication protocol supported by a communication port

- Modbus ASCII mode
- 7 data bits
- 1 stop bit
- Even parity bit
- Serial transmission rate: 9600 bps

2.3.1 COM1 (RS-232 Port)

1. COM1 is an RS-232 port. Users can upload the program in a DVP-20PM series motion controller through COM1, and download a program to DVP-20PM series motion controller through COM1. The communication protocols that COM1 supports are Modbus ASCII and Modbus RTU, and the transmission rate supported is in the range of $9,600 \mathrm{bps}$ to $115,200 \mathrm{bps}$.
The communication cable DVPACAB2A30 is described below.

2 Hardware Specifications and Wiring

2. COM1 functions as a slave station. It can be connected to a human-machine interface.

2.3.2 COM2 (RS-485 Port)

1. COM2 is an RS-485 port. It can function as a master station or a slave station. The communication protocols that COM2 supports are Modbus ASCII and Modbus RTU, and the transmission rate supported is in the range of $9,600 \mathrm{bps}$ to $115,200 \mathrm{bps}$.
2. COM2 can function as a master station or a slave station. If it functions as a master station, it can be connected to a Delta PLC, or an inferior drive such as a Delta servo drive, a Delta AC motor drive, or a temperature controller, and read/write data. If it functions as a slave station, it can be connected to a human-machine interface such as a Delta TP series HMI or DOP series HMI.

2.3.3 COM3 (RS-232/ RS-485 Port)

1. If COM1 (RS-232 port) and COM2 (RS-485 port) can not fulfill a communication requirement, users can use the function card DVP-F232S or DVP-F485S to add a communication interface called COM3 (RS-232/RS485 interface). The functions of DVP-F232S/DVP-F485S is the same as those of COM1, but the transmission rate that DVP-F232S/DVP-F485 supports is 9600/19200/38400 bps in an ASCII mode.
2. COM3 functions as a slave station. It can be connected to a human-machine interface.

3.1 Device Lists

- Functional specifications

Item		Specifications			Remark
Operation of axes		Two axes operating synchronously control linear/circular interpolation or two axes operate independently (*5)			
Storage		The capacity of a built-in storage is 64 K steps.			
	Uit	Motor unit	Compound unit	Mechanical unit	
Master mode		Users can read the data in control registers in an I/O module by means of the instruction FROM and write data into control registers in an I/O module by means of the instruction TO. If the data read or written is 32 -bit data, two control registers will be used.			
Slave mode		If a DVP-20PM series motion controller is used as an I/O module, a master can read the data in CRO~CR199 in the DVP-20PM series motion controller or write data into CRO~CR199 in the DVP-20PM series motion controller. (CRO~CR199 correspond to D1500~D1699.)			
Pulse output		There are three types of pulse output modes. These modes adopt differential output. 1. Pulse/Direction 2. Counting up/Counting down 3. A/B-phase output			
Maximum speed		Single axis: 500 K PPS Multi-axis interpolation: 500K PPS			
Input signal	Switch	STOP/RUN switch (Manual/Automatic switch), START switch, STOP switch			
	Detector	DOG, LSP, LSN, PG0			
	General input terminal	X0~X7 They can be connected to I/O modules. The maximum number of expansion input terminals is 256 , including the number of input terminals on a DVP-20PM series motion controller.			
Output signal	Servo output signal	FP, RP, CLR			
	General output terminal	Y0~Y7 They can be connected to I/O modules. The maximum number of expansion output terminals is 256 , including the number of output terminals on a DVP-20PM series motion controller.			
	Serial communicatio n port	The communication ports which can be used for the reading/writing of a program are as follows. COM1: RS-232 port (It can function as a slave station.) COM2: RS-485 port (It can function as a master station or a slave station.) COM3 (Communication card): RS-232/RS-485 port (It can function as a slave station, and it is optionally required.)			
Special I/O module	Optional purchase	The EH2 series special right-side modules which are supported are AD, DA, PT, TC, XA, and PU. (Eight special right-side modules can be connected at most, and they do not occupy I/O devices.)			
Special function card	Optional purchase	The function cards which are supported are 02AD, 02DA, and COM3.			
Number of basic instructions		27			
Number of applied instructions		130			
Number of motion instructions		22			

Item				Specifications	Remark
M-code				- Ox0~Ox99 (motion subroutine/positioning program): M02 (The execution of a program stops. (END)) - M00~M01, M03~M101, and M103~M65535: The execution of a program pauses. (WAIT) (Users can use them freely.) - O100 (main program in a DVP-20PM series motion controller/subtask program): M102 (The execution of a program stops. (END))	
G-code				G0 (rapid positioning), G1 (linear interpolation), G2 (circular interpolation, clockwise), G3 (circular interpolation, counterclockwise), G4 (dwell), G17 (XY plane selection), G18 (ZX plane selection), G19 (YZ plane selection), G90 (absolute programming), and G91 (incremental programming)	
Self-diagnosis				Parameter errors, program errors, external errors and so on are displayed.	
X External input relay				X0~X377; octal numbers; 256 external input relays (corresponding to external input terminals)	512 relays in total
	Y	External output relay		Y0~Y377, octal numbers, 256 external output relays (corresponding to external output terminals)	
	M	Auxiliary relay	General	M0~M499; 500 general auxiliary relays (*2)	There are 4,096 auxiliary relays in total. They can be set to ON/OFF in a program.
				M3000~M4095; 1096 general auxiliary relays (*3)	
			Latching	M500~M999; 500 latching auxiliary relays (*3)	
			Special	M1000~M2999; 2000 special auxiliary relays (Some special auxiliary relays are latching auxiliary relays.)	
	T	Timer	10 ms	T0~T255; 256 timers (*2)	There are 256 timers in total. If the present value of the timer specified by the instruction TMR matches the value set, the contact of the timer will be ON.
	C	Counter	16-bit up counter	C0~C99; 100 16-bit up counters (*2)	There are 250 counters in total. If the present value of the counter specified by the instruction CNT (DCNT) matches the value set, the contact of the counter will be ON.
				C100~C199; 100 16-bit up counters (*3)	
			32-bit up/down counter	C208~C219; 12 32-bit up/down counters (*2)	
				C220~C255; 36 32-bit up/down counters (*3)	
			32-bit high-speed counter	C200 and C204; 2 32-bit high-speed counters (*2)	
	S	Stepping relay	General	S0~S499; 500 stepping relays (*2)	There are 1,024 stepping relays in total. They can be set to ON/OFF in a program.
			Latching	S500~S1023; 524 stepping relays (*3)	

Item				Specifications	Remark
	T	Present value of a timer		T0~T255; 16-bit timers; 256 timers	If the present value of a timer matches the value set, the contact of the timer will be ON.
		Present value of a counter		C0~C199; 16-bit counters; 200 counters	If the present value of a counter matches the value set, the contact of the counter will be ON.
	C			C200~C255; 32-bit counters; 56 counters	
	D	Data register	General	D0~D199; 200 general data registers (*2)	There are 10,000 registers in total. Users can store data in data registers. V/Z registers are index registers.
			Latching	D200~D999; 800 latching data registers (*3)	
				D3000~D9999; 7000 latching data registers (*3)	
			Special	D1000~D2999; 2000 special data registers (Some special data registers are latching data registers.)	
			Index	V0~V7 (16-bit registers); Z0~Z7 (32-bit registers); 16 index registers (*1)	
	P	Used with CJ, CJN, CALL, or JMP		P0~P255; 256 pointers	It is used with CJ, CJN, CALL, or JMP.
	K	Decimal system		K-32,768~K32,767 (16-bit operation)	
				K-2,147,483,648~K2,147,483,647 (32-bit operation)	
	H	Hexadec	al system	H0000~HFFFF (16-bit operation); H00000000~HFFFFFFFFF (32-bit operation)	
	F	Float nu	g-point mber	32-bit operation: $\pm 1.1755 \times 10^{-38} \sim \pm 3.4028 \times 10^{+38}$ (The IEEE 754 standard is used.)	

*1: They are non-latching devices, and can not be changed.
*2: They are non-latching devices. Users can change them to latching devices by setting parameters.
*3: They are latching devices. Users can change them to non-latching devices by setting parameters.
*4: They are latching devices, and can not be changed.
*5: DVP20PM00M can create three-axis linear/helical interpolation.

- Latching and non-latching memory devices

Auxiliary relay (M)	General auxiliary relays			Special auxiliary relays
	M0~M499	M500~M999	M3000~M4095	M1000~M2999
	Non-latching	Latching	Non-latching	(They are in the general auxiliary relay range.)
	Start: D1200 (K500)*1 End: D1201 (K999) *1			Some special auxiliary relays are latching auxiliary relays. They can not be changed.

Timer (T)	10 ms
	T0~T255
	Start: D1202 (K-1) *2; End: D1203 (K-1) *2

Counter (C)	16-bit up counters		32-bit up/down counters	
	C0~C99	C100~C199	C200, C204, and C208~C219	C220~C255
	Non-latching	Latching	Non-latching	Latching
	Start: D1204 (K100) End: D1205 (K199)		Start: D1206 (K220) End: D1207 (K255)	

3 Devices

Stepping relay (S)	Initial stepping relays	General stepping relay	Latching stepping relay
	S0~S9	S10~S499	S500~S1023
	Non-latching		Latching
	Start: D1208 (K500); End: D1209 (K1023)		

Data register (D)	General data registers	Latching data registers	Special data registers
	D0~D999	D3000~D9999	D1000 ~ D2999 (They are between the general data register range and the latching data register range.)
	Non-latching	Latching	Some special data registers are latching data registers. They can not be changed.
	$\begin{aligned} & \text { Start: D1210 (K200) *3 } \\ & \text { End: D1211 (K9999) *3 } \end{aligned}$		

*1: If the value in D1200 is 0, and the value in D1201 is 4095, the DVP-20PM series motion controller used will automatically skip M1000~M2999, and M0~M999 and M3000~M4095 will be changed to latching devices.
*2: K-1 indicates that the timers are non-latching devices.
*3: If the value in D1210 is 0, and the value in D1211 is 9999, the DVP-20PM series motion controller used will automatically skip D1000~D2999, and D0~M999 and D3000~D9999 will be changed to latching devices.

- When power is switched ON/OFF, or when the DVP-20PM series motion controller used switches between a manual mode and an automatic mode, the action of general devices are as shown below.

Memory type	Power OFF=>ON	STOP=>RUN	RUN=>STOP	Clearing all non-latching devices (M1031 is ON.)	Clearing all latching devices (M1032 is ON.)	Factory setting
Non-latching	Cleared	Unchanged	Cleared when M1033 is OFF	Cleared	Unchanged	0
			Unchanged when M1033 is ON			
Latching		Unchanged		Unchanged	Cleared	0

3.2 Values, Constants, and Floating-point Numbers

Constant	K	Decimal system	16-bit operation: K-32,768~K32,767 32-bit operation: $\mathrm{K}-2,147,483,648 \sim K 2,147,483,647$
	H	Hexadecimal system	16-bit operation: H0~HFFFF 32 -bit operation: H0~HFFFFFFFFF
	F	32-bit number	32-bit operation: $\pm 1.1755 \times 10^{-38} \sim \pm 3.4028 \times 10^{+38}$ (The IEEE 754 standard is used.)

A DVP-20PM series motion controller performs operations on five types of values according to various control purposes. The functions of the five types of values are described below.

1. Binary number (BIN)

The values on which a DVP-20PM series motion controller performs operations, and the values stored in the DVP-20PM series motion controller are binary numbers. Binary numbers are described below.
Bit:
A bit is the basic unit of information in the binary system. Its state is either 1 or 0.
Nibble: A nibble is composed of four consecutive bits (e.g. b3~b0). Nibbles can be used to represent 0~9 in the decimal system, or 0~F in the hexadecimal system.
Byte: A byte is composed of two consecutive nibbles (i.e. 8 bits, b7~b0). Bytes can be used to represent 00~FF in the hexadecimal system.
Word: A word is composed of two consecutive bytes (i.e. 16 bits, b15~b0). Words can be used to represent 0000~FFFF in the hexadecimal system.
Double word: A double word is composed of two consecutive words (i.e. 32 bits, b31~b0). Double words can be used to represent 00000000~FFFFFFFF in the hexadecimal system.

The relation among bits, nibbles, bytes, words, and double words in the binary system is shown below.

2. Octal number (OCT)

The external input terminal numbers and the external output terminal numbers on a DVP-20PM series motion controller are octal numbers.
■ External input terminals: $\mathrm{X0} \mathrm{\sim X7} ,\mathrm{X} 10 \sim \mathrm{X} 17 \ldots$ (Device numbers)
■ External output terminals: Y0~Y7, Y10~Y17... (Device numbers)
3. Decimal number (DEC)

■ A decimal number can be used as the setting value of a timer, or the setting value of a counter, e.g. TMR T0 K50 (K indicates that the value following it is a constant.).
■ A decimal number can be used as an S/M/T/C/D/V/Z/P device number, e.g. M10 and T30.

- A decimal number can be used as an operand in an applied instruction, e.g. MOV K123 D0 (K indicates that the value following it is a constant.).

4. Binary-coded decimal number (BCD)

A decimal value is represented by a nibble or four bits, and therefore sixteen consecutive bits can represent a four-digit decimal value. A binary-coded decimal number is mainly used as the input value of a DIP switch, or the value displayed on a seven-segment display.
5. Hexadecimal Number (HEX)

- A hexadecimal number can be used as an operand in an applied instruction, e.g. MOV H1A2B D0 (H indicates that the value following it is a constant.).
Constant (K): A decimal number in a DVP-20PM series motion controller is generally preceded by K. For example, K100 represents the decimal number 100.

Exception:

If K is used with an $X / Y / M / S$ device, a nibble device, a byte device, a word device, or a double word device will be formed.
Example:
K1Y10 represents a device composed of 4 bits, K2Y10 represents a device composed of 8 bits, K3Y10 represents a device composed of 12 bit, and K4Y10 represents a device composed of 16 bits. K1M100 represents a device composed of 4 bits, K2M100 represents a device composed of 8 bits, K3M100 represents a device composed of 12 bit, and K4M100 represents a device composed of 16 bits.

Constant (H) : A hexadecimal number in a DVP-20PM series motion controller is generally preceded by H . For example, the hexadecimal number H 100 represents the decimal number 256.
Floating-point number (F): A floating-point number in a DVP-20PM series motion controller is generally preceded by F. For example, the floating-point number F3.123 represents 3.123 .

Value table:

Binary number (BIN)		Octal number (OCT)	Decimal number (DEC)	Binary-c	d decimal er)	Hexadecimal Number (HEX)
For internal operations in a DVP-20PM series motion controller		X/Y device number	Constant (K) M/S/T/C/D/V/Z/P device number	Input value of a DIP switch, and the value displayed on a seven-segment display		Constant (H)
00000	$0 \quad 000$	0	0	$0 \quad 0 \quad 00$	$0 \begin{array}{llll}0 & 0 & 0\end{array}$	0
00000	00001	1	1	$0 \begin{array}{llll}0 & 0 & 0\end{array}$	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	1
0 0 0 0	00010	2	2	0 0 0 0 0	$0 \begin{array}{llll}0 & 0 & 1 & 0\end{array}$	2
00000	$0 \begin{array}{llll}0 & 0 & 1\end{array}$	3	3	0 0 0 0 0	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	3
00000	01100	4	4	0 0 0 0 0	$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	4
00000	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	5	5	$0 \begin{array}{llll}0 & 0 & 0 & 0\end{array}$	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	5
00000	$0 \begin{array}{llll}0 & 1 & 1 & 0\end{array}$	6	6	$0 \begin{array}{llll}0 & 0 & 0 & 0\end{array}$	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	6
00000	$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	7	7	0 0 0 0 0	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	7
00000	1000	10	8	$0 \begin{array}{llll}0 & 0 & 0 & 0\end{array}$	$1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$	8
00000	$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	11	9	$0 \begin{array}{llll}0 & 0 & 0 & 0\end{array}$	$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	9
0000	1010	12	10	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	00000	A
00000	$1 \begin{array}{llll}1 & 0 & 1\end{array}$	13	11	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	B
00000	1100	14	12	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$0 \begin{array}{llll}0 & 0 & 1 & 0\end{array}$	C
00000	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	15	13	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	D
0 0 0 0	11110	16	14	000001	$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	E
00000	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	17	15	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	F
00001	0000	20	16	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	10
00001	$0 \quad 0 \quad 01$	21	17	000001	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	11
			: : : S			: \vdots \vdots $:$ $:$
01110	0 0 1 1	143	99	$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	100001	63

3.3 External Input Devices and External Output Devices

- Input devices: X0~X377

Input device numbers are octal numbers. A DVP-20PM series motion controller has 256 input devices at most (X0~X7, X10~X17,, X370~X377).

- Output devices: Y0~Y377

Output device numbers are octal numbers. A DVP-20PM series motion controller has 256 output devices at most (YX0~Y7, Y10~Y17,, Y370~Y377).

- Functions of input devices:

After X devices in a DVP-20PM series motion controller are connected to an input device, the input signals sent to the DVP-20PM series motion controller will be read. There is no limitation on the number of times the Form A contact/the Form B contact of an X device can be used in a program. The state of an X device varies with the state of the input device to which the X device is connected.

- Users can turn X devices ON/OFF by means of M1304.

If M1304 is OFF, X devices can not be turned ON/OFF by means of PMSoft. If M1304 is ON, X devices can be turned ON/OFF by means of PMSoft. However, if users use PMSoft to turn ON/OFF X devices in a DVP-20PM series motion controller when M1304 is ON, the function of updating input signals will be disabled.

- Functions of output devices:

A Y device sends a signal to drive the load connected to it. There are two types of output devices. They are relays and transistors. There is no limitation on the number of times the Form A contact/the Form B contact of a Y device can be used in a program. However, it is suggested that a Y device should be
used once in a program. If a Y device is used more than once in a program, the state of the Y device depends on the Y device used last time.

The state of YO depends on circuit (2), that is, the state of X10 determines the state of Y 0 .

The procedure for processing the program in a DVP-20PM series motion controller is described below.

- Regenerating an input signal:

1. Before a DVP-20PM series motion controller executes a program, it reads the states of the input signals sent to it into its input memory.
2. If the states of the input signals change during the execution of the program, the states of input signals stored in the input memory will not change until the DVP-20PM series motion controller reads the states of the input signals sent to it next time.
3. The time it takes for an input device in the program to receive the state of an external signal is about 10 milliseconds. (The time it takes for a contact in the program to receive the state of an external signal may be affected by the time it takes for the program to be scanned.)

- Processing a program:

After the DVP-20PM series motion controller reads the states of the input signals stored in the input memory, the execution of the instructions in the program will start from the beginning of the program. After the program is executed, the states of the Y devices used in the program will be stored in the device memory in the DVP-20PM series motion controller.

- Regenerating an output signal:

1. After M102 is executed, the states of the Y devices stored in the device memory will be sent to the latch memory in the DVP-20PM series motion controller.
2. The time it takes for a relay to be turned form ON to OFF or turned from OFF to ON is about 10.
3. The time it takes for a transistor to be turned form ON to OFF or turned from OFF to ON is about 10~20 milliseconds.

3 Devices

3.4 Auxiliary Relays

Auxiliary relay (M): Auxiliary relay numbers are decimal numbers.

	General auxiliary relay	M0~M499 (500 general auxiliary relays) Users can change M0~M499 to latching devices by setting parameters.	
Auxiliary relay (M)	Latching auxiliary relay	M500~M999 and M3000~M4095 (1,596 latching auxiliary relays) Users can change M0~M499 to non-latching devices by 4,096 anctiliary parameters.	relays in total
	Special auxiliary relay	M1000~M2999 (2,000 special auxiliary relays) Some of them are latching devices.	

Functions of auxiliary relays:
An M device has an output coil and a Form A contact/Form B contact. There is no limitation on the number of times an M device can be used in a program. Users can combine control loops by means of M devices, but can not drive external loads by means of M devices. There are three types of auxiliary relays.

1. General auxiliary relay: If a power cut occurs when a DVP-20PM series motion controller runs, the general auxiliary relays in the DVP-20PM series motion controller will be reset to OFF. When the supply of electricity is restored, the general auxiliary relays are still OFF.
2. Latching auxiliary relay: If a power cut occurs when a DVP-20PM series motion controller runs, the latching auxiliary relays will remain in their last states. When the supply of electricity is restored, the latching auxiliary relays remain unchanged.
3. Special auxiliary relay: Every auxiliary relay has its own specific function. Please do not use the auxiliary relays which are not defined. Users can refer to section 3.10 for more information about special auxiliary relays and special data registers, and refer to section 3.11 for more information about the functions of special auxiliary relays and functions of special data registers.

3.5 Stepping Relays

Stepping relay (S): Stepping relay numbers are decimal numbers.

Stepping relay (S)	General stepping relay	S0~S499 (490 general stepping relays) Users can change S0~S499 to latching devices by setting parameters.	$\begin{aligned} & 1,024 \\ & \text { stepping } \\ & \text { relays in } \\ & \text { total } \end{aligned}$
	Latching stepping relay	S500~S1023 (524 latching stepping relays) Users can change S500~S1023 to non-latching devices by setting parameters.	

Functions of stepping relays:
There are 1024 stepping relays (S0~S1023). An S device has an output coil and a Form A contact/Form B contact. There is no limitation on the number of times an S device can be used in a program. Users can not drive external loads by means of S devices. An S device can be used as a general auxiliary relay.

3.6 Timers

Timer (T): Timer numbers are decimal numbers.

Timer	10 ms	T0~T255 (256 general timers)
(T)	General timer	Users can change T0~T255 to latching devices by setting parameters.

Functions of timers:
10 milliseconds are a unit of measurement for time. A timer counts upwards for measuring time which elapses. If the present value of a timer is equal to the value set, the output coil of the timer will be ON. The value set can be a decimal value preceded by K, or the value in a data register.

Actual time measured by a timer= Unit of measurement for time \times Setting value

1. If the instruction TMR is executed, a timer will count for measuring time which elapses once. If the value of a timer matches the value set, the output coil of the timer will be ON.

- If $X 0$ is $O N$, the timer TO will count upwards from the present time value every 10 milliseconds. If the present timer value matches the setting value K100, the output coil T0 will be ON.
- If XO is OFF, or there is a power cut, the present value in T0 will become 0 , and the output coil T0 will be OFF.

Setting value: Actual time measured by a timer= Unit of measurement for time \times Setting value

1. Constant preceded by K: A setting value can be a constant preceded by K.
2. Value in a data register: A setting value can be the value in a data register.

3.7 Counters

Counter (C): Counter numbers are decimal numbers.

C	Counter	16-bit up counter	C0~C199 (200 16-bit up counters)	248 counters in total	If the present value of the counter specified by the instruction CNT (DCNT) matches the value set, the contact of the counter will be ON.
		32-bit up/down counter	C208~C255 (48 32-bit up/down counters) (Accumulation)		
		32-bit high-speed counter	C200 and C204 (232-bit high-speed counters)	2 counters in total	Input contact of C 200 : $\mathrm{A} 0 \pm / \mathrm{B0} \pm$ Input contact of C 204 : $\mathrm{A} 1 \pm / \mathrm{B} 1 \pm$

Characteristics of counters:

Item	16-bit counter	32-bit counter	
Type	General counter	General counter	High-speed counter
Direction	Counting up	Counting up/down	
Setting value	$0 \sim 32,767$	$-2,147,483,648 \sim+2,147,483,647$	
Specification of a setting value	Constant preceded by K, or value stored in a data register	Constant preceded by K, or value stored in two consecutive data registers	
Change of the present value	If the present value matches the setting value, the counter will stop counting.	Even if the present value matches the setting value, the counter will keep counting.	
Output contact	If the present value matches the setting value, the output contact will be ON.	Counting up: If the present value matches the setting value, the output contact will be ON. Counting down: If the present value matches the setting value, the output contact will be reset to OFF.	
Resetting of a contact	If the instruction RST is executed, the present value will becomes zero, and the contact will be reset to OFF.		
Actions of contacts	After the scan of a program is complete, the contacts will act.	After the scan of a program is complete, the contacts will act.	If the present value matches the setting value, the contact will be ON.

Functions of counters:
If the input signal of a counter is turned from OFF to ON, and the present value of the counter matches the value set, the output coil of the counter will be ON. A setting value can be a constant preceded by K , or the value stored in a data register.
16-bit counter:

1. The setting value of a 16 -bit counter must be in the range of $K 0$ to $K 32,767$. ($K 0$ is equal to $K 1$. If the setting value of a counter is K0 or K1, the output contact of the counter will be ON after the counter counts for the first time.)
2. If a power cut occurs when a general counter in a DVP-20PM series motion controller counts, the present value of the counter will be cleared. If a power cut occurs when a latching counter counts, the present value of the counter and the state of the contact of the counter will be retained, and the latching counter will not continue counting until power is restored.
3. If users move a value greater than the setting value of CO to CO by means of the instruction MOV, the contact C 0 will be ON , and the present value of the counter will become the setting value next time X 1 is turned from OFF to ON.
4. The setting value of a counter can be a constant preceded by K , or the value stored in a data register. (The special data registers D1000~D2999 can not be used.)
5. If the setting value of a counter is a value preceded by K, the setting value can only be a positive value. If the setting value of a counter is the value stored in a data register, the setting value can be a positive value or a negative value. If a counter counts up from the present value 32,767 , the next value following 32,767 will be $-32,768$.
Example:

LD	X0	
RST	C0	
LD	X1	
CNT	C0	K5
LD	C0	
OUT	Yo	

1. If $X O$ is ON , the instruction RST will be executed, the present value of CO will become zero, and the output contact will be reset to OFF.
2. If X01 is turned from OFF to ON, the present value of the counter will increase by one.
3. If the present value of $C 0$ matches the setting value $K 5$, the contact $C 0$ will be $O N$ (Present value of $C 0=$ Setting value $=K 5$). K 5 will be retained even if X 1 is turned from OFF to ON again.

32-bit up/down counter:

1. The setting value of a 32 -bit general up/down counter must be in the range of $K-2,147,483,648$ to K2,147,483,647. The states of the special auxiliary relays M1208~M1255 determine whether the 32-bit general up/down counters C220~C255 count up or count down. For example, C208 will count up if M1208 is OFF, and C208 will count down if M1208 is ON.
2. The setting value of a 32 -bit up/down counter can be a constant preceded by K, or the value stored in two consecutive data registers. (The special data registers D1000~D2999 can not be used.) A setting value can be a positive value, or a negative value.
3. If a power cut occurs when a general counter in a DVP-20PM series motion controller counts, the
present value of the counter will be cleared. If a power cut occurs when a latching counter counts, the present value of the counter and the state of the contact of the counter will be retained, and the latching counter will not continue counting until power is restored.
4. If a counter counts up from the present value $2,147,483,647$, the next value following $2,147,483,647$ will be $-2,147,483,648$. If a counter counts down from the present value $-2,147,483,648$, the next value following $-2,147,483,648$ will be 2,147,483,647.
Example:

LD	X10	
OUT	M1255	
LD	X11	
RST	C255	
LD	X12	
DCNT	C255	K-5
LD	C255	
OUT	Y0	

1. M1255 is driven by X10. The state of M1255 determines whether C255 counts up or counts down.
2. If X 11 is turned form OFF to ON, the instruction RST will be executed, the present value of C 255 will become 0 , and the contact will be OFF.
3. If X 12 is turned form OFF to ON , the present value of the counter will increase by one or decrease by one.
4. If the present value of the counter C255 increases from K-6 to $\mathrm{K}-5$, the contact C 255 will be turned form OFF to ON. If the present value of the counter C255 decreases from K-5 to K-6, the contact C255 will be turned from ON to OFF.
5. If users move a value greater than the setting value of C255 to C255 by means of the instruction MOV, the contact C255 will be ON, and the present value of the counter will become the setting value next time X11 is turned from OFF to ON.

32-bit high-speed counter:

- DVP-20PM series motion controller (C200 and C204)

1. The setting value of a 32 -bit high-speed counter must be in the range of $K-2,147,483,648$ to K2,147,483,647.
2. Mode of counting:

Counter	Mode of counting		Resetting a counter	External reset terminal	External input terminal
	Device	Setting value			
C200	K1M1200	0: U/D* 1: P/D* 2: A / B^{*} (One time the frequency of A/B-phase	M1203	PG0	$\mathrm{AO}+, \mathrm{AO}-, \mathrm{B} 0+$, and $\mathrm{BO}-$
C204	K1M1204	3: 4A/B (Four times the frequency of A/B-phase inputs)	M1207	PG1	A1+, A1-, B1+, and B1-

Note: U/D: Counting up/Counting down; P/D: Pulse/Direction; A/B: A phase/B phase
3. The state of M1908 determines the terminal which controls the input signals for C200/C204.

- M1908=Off: The input signals for C200 are controlled by $\mathrm{A} 0 \pm / \mathrm{BO} \pm$, and the reset signals for C200 are controlled by PG0. The input signals for C204 are controlled by A1 \pm /B1 \pm, and the reset signals for C204 are controlled by PG1.

- M1908=On: C200 are for the X-axis, the Y-axis, and the Z-axis. The input signals for C 200 are controlled by $\mathrm{A} \pm \pm / \mathrm{B} 0 \pm$, and the reset signals for C 200 are controlled by PG0.

4. The setting value of a 32-bit high-speed counter can be a constant preceded by K , or the value stored in two consecutive data registers. (The special data registers D1000~D2999 can not be used.) A setting value can be a positive value, or a negative value.
5. If a power cut occurs when a general counter in a DVP-20PM series motion controller counts, the present value of the counter will be cleared. If a power cut occurs when a latching counter counts, the present value of the counter and the state of the contact of the counter will be retained, and the latching counter will not continue counting until power is restored.
6. If a counter counts up from the present value $2,147,483,647$, the next value following $2,147,483,647$ will be $-2,147,483,648$. If a counter counts down from the present value $-2,147,483,648$, the next value following $-2,147,483,648$ will be $2,147,483,647$.

3.8 Registers

Registers are classified according to their characters. There are four types of registers.

1. General register: If the STOP/RUN switch on a DVP-20PM series motion controller is turned from the STOP position to the RUN position, or a DVP-20PM series motion controller is disconnected, the values in the general registers will become 0. If M1033 in a DVP-20PM series motion controller is turned ON, the values in the general registers will be retained after the STOP/RUN switch on the DVP-20PM series motion controller is turned from the RUN position to the STOP position, and will become 0 after the module is disconnected.
2. Latching register: If a module is disconnected, the values in the latching registers will be retained.
If users want to clear the value in a latching register, they can use the instruction RST or ZRST.
3. Special data register: Every special data register has its definition and purposes. System states, error messages, and states monitored are stored in special data registers. Please refer to section 3.10 and section 3.11 for more information about special auxiliary relays and special data registers.
4. Index register $(\mathrm{V}) /(\mathrm{Z})$: V devices are 16 -bit registers, and Z devices are 32-bit registers. There are 8 V devices (V0~V7), and 8 Z devices (ZO~Z7) in a DVP-20PM series motion controller.

3.8.1 Data Registers

The value in a data register is a 16-bit value. The highest bit in a 16-bit data register represents an algebraic sign. The value stored in a data register must be in the range of $-32,768$ to $+32,767$. Two 16 -bit data registers can be combined into one 32 -bit data register ($D+1, D$). The highest bit in a 32 -bit data register represents an algebraic sign. The value stored in a 32 -bit data register must be in the range of $-2,147,483,648$ to $+2,147,483,647$.

	General data register	D0~D199 (200 general data registers in total) Users can change them to latching devices by setting parameters.	
Data register (D)	Latching data register	D200~D999 and D3000~D9999 (7,800 latching data register in total) Users can change them to non-latching devices by setting parameters.	10,000 data registers in total
	Special data register	D1000~D2999 (2,000 special data registers in total) Some of them are latching devices.	

3 Devices

3.8.2 I ndex Registers

Index register $(\mathrm{V}) /(\mathrm{Z})$	$\mathrm{V} 0 \sim \mathrm{~V} 7$	16 index
	$\mathrm{ZO} \sim \mathrm{Z7}$	registers in total

V devices are 16-bit registers. Data can be freely written into a \checkmark device, and data can be freely read from a V device. If a V device is used as a general register, it can only be used in a 16-bit instruction.
Z devices are 32-bit registers. If a Z device is used as a general register, it can only be used in a 32-bit instruction.

If XO is ON , the value in V 0 will be 8 , and the value in $\mathrm{Z1}$ will be 14, the value in D8 will be moved to D16, and the value in D17 will be moved to D12.
If a V device or a Z device is an index register used to modify an operand, the V device or the Z device can be used in a 16-bit instruction and a 32-bit instruction.

Index registers are like general operands in that they can be used in movement instructions and comparison instructions. They can be used to modify word devices (KnX/KnY/KnM/KnS/T/C/D devices) and bit devices ($\mathrm{X} / \mathrm{Y} / \mathrm{M} / \mathrm{S}$ devices).
There are 8 V devices (V0~V7), and 8 Z devices (Z0~Z7) in a DVP-20PM series motion controller.
※Constants and some instructions do not support the use of index registers. Please refer to section 5.4 for more information about using index registers to modify operands.
※To prevent error from occurring, if a V device or a Z device is used to modify an operand, the effective address which is formed can not be in the range of D1000 to D2999, and can not be in the range of M1000 to M2999.

3.9 Pointers

Pointer	N	Used with a master control loop	N0~N7 (8 pointers)	Used with a master control loop
	P	Used with CJ, CJN, or JMP	P0~P255 (256 pointers)	Used with CJ, CJN, or JMP

Pointer (P): A pointer is used with API 00 CJ, API 256 CJN, or API 257 JMP. Please refer to chapter 5 for more information about the use of $C J / C J N / J M P$.

- Conditional jump (CJ):

- If $X O$ is ON , the execution of the program will jump from address 0 to address N , and the part of the program between address 0 and address N will not be executed.
- If XO is OFF, the execution of the program starts from address 0 , and the instruction CJ will not be executed.

3.10 Special Auxiliary Relays and Special Data Registers

Special auxiliary relays (special M devices) and special data registers (special D devices) are shown in the tables below. Some device numbers in the tables are marked with *. Users can refer to section 3.11 for more information. If the attribute of a device is " R ", the users can only read data from the device. If the attribute of a device is "R/W", the users can read data from the device, and write data into the device. In addition, "-" indicates that the state of a special auxiliary relay is unchanged, or the value in a special data register is unchanged. "\#" indicates that a special auxiliary relay or a special data register in a DVP-20PM series motion controller is set according to the state of the DVP-20PM series motion controller. The users can read a setting value, and refer to the manual for more information.

Special M device	Function	20D	20M	$\begin{array}{\|c\|} \hline \text { Off } \\ \sqrt{3} \\ \text { On } \end{array}$	$\begin{gathered} \text { STOP } \\ \sqrt{4} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt{3} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
M1000*	If the motion controller runs, M1000 will be a normally-open contact (Form A contact). When the motion controller runs, M1000 is ON.	\bigcirc	\bigcirc	Off	On	Off	R	No	Off	3-30
M1001*	If the motion controller runs, M1001 will be a normally-closed contact (Form B contact). When the motion controller runs, M1001 is OFF.	\bigcirc	\bigcirc	On	Off	On	R	No	On	3-30
M1002*	A positive-going pulse is generated at the time when the motion controller runs. The width of the pulse is equal to the scan cycle.	\bigcirc	\bigcirc	Off	On	Off	R	No	Off	3-30
M1003*	A negative-going pulse is generated at the time when the motion controller runs. The width of the pulse is equal to the scan cycle.	\bigcirc	\bigcirc	On	Off	On	R	No	On	3-30
M1008	The watchdog timer is ON.	\bigcirc	\bigcirc	Off	Off	-	R	No	Off	-
M1009	The low voltage signal has ever occurred.	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1011	10 millisecond clock pulse (The pulse is ON for 5 milliseconds, and is OFF for 5 milliseconds.)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1012	100 millisecond clock pulse (The pulse is ON for 50 milliseconds, and OFF for 50 milliseconds.)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1013	1 second clock pulse (The pulse is ON for 0.5 seconds, and OFF for 0.5 seconds.)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1014	1 minute clock pulse (The pulse is ON for 30 seconds, and OFF for 30 seconds.)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1025	Incorrect request for communication (If a PC or an HMI is connected to a DVP-20PM series motion controller, and the DVP-20PM series motion controller receives illegal request for communication during data transmission, M1025 will be set to ON, and an error code will be stored in D1025.)	\bigcirc	\bigcirc	Off	Off	-	R	No	Off	-
M1026	Selecting a RAMP mode	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	
M1029	The sending of pulses through $\mathrm{CHO}(\mathrm{YO}, \mathrm{Y} 1)$ is complete.	\bigcirc	\bigcirc	Off	-	-	R	No	Off	
M1031	All the non-latching devices are cleared.	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1032	All the latching devices are cleared.	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1033	Data is retained when the DVP-20PM series motion controller does not run.	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1034	All the outputs are disabled.	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1035	Using STOP0/START0 as external I/O terminals.	\bigcirc	\bigcirc	Off	Off	Off	R/W	No	Off	-
M1036*	Creating a continuous path by means of subroutines	\bigcirc	\bigcirc	Off	Off	Off	R/W	No	Off	3-37
M1039*	The scan time for the program is fixed.	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	3-34
M1048	Status of the alarm	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1049	Monitoring the alarm	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1072	The DVP-20PM series motion controller is made to run. (Communication)	\bigcirc	\bigcirc	Off	On	Off	R/W	No	Off	-
M1074*	Enabling the Ox motion subroutine specified	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	3-15
M1077	The battery voltage is low, or malfunctions, or there is no battery.	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1087	The low voltage signal occurs.	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-

Special M device	Function	20D	20M	$\begin{array}{\|c\|} \hline \text { Off } \\ \text { On } \\ \text { On } \end{array}$	$\begin{aligned} & \text { STOP } \\ & \sqrt{2} \\ & \text { RUN } \end{aligned}$	$\begin{gathered} \text { RUN } \\ \text { f } \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
M1120*	The setting of the communication through COM2 (RS-485 port) is retained. After M1120 is set to ON, changing the value in D1120 will be invalid.	\bigcirc	\bigcirc	Off	Off	-	R/W	No	Off	3-31
M1121	The transmission of the RS-485 data is ready.	\bigcirc	\bigcirc	Off	On	-	R	No	Off	-
M1122	Request for sending the data	\bigcirc	\bigcirc	Off	Off	-	R/W	No	Off	-
M1123	The reception of the data is complete.	\bigcirc	\bigcirc	Off	Off	-	R/W	No	Off	-
M1124	The reception of the data is ready.	\bigcirc	\bigcirc	Off	Off	-	R	No	Off	-
M1125	The reception of the data is reset.	\bigcirc	\bigcirc	Off	Off	-	R/W	No	Off	-
M1127	The sending/reception of the data is complete.	\bigcirc	\bigcirc	Off	Off	-	R/W	No	Off	-
M1128	The data is being sent/received.	\bigcirc	\bigcirc	Off	Off	-	R	No	Off	-
M1129	Reception timeout	\bigcirc	\bigcirc	Off	Off	-	R/W	No	Off	-
M1136	The setting of the communication through COM3 (communication card) is retained.	\bigcirc	\bigcirc	Off	-	-	R	No	Off	3-31
M1138*	The setting of the communication through COM1 (RS-232 port) is retained. After M1138 is set to ON, changing the value in D1036 will be invalid.	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	3-31
M1139*	Selecting an ASCII mode or an RTU mode when COM1 (RS-232 port) is in a slave mode. (OFF: ASCII mode; ON: RTU mode)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	3-31
M1140	The data that users receive by means of MODRD/MODWR is incorrect.	\bigcirc	\bigcirc	Off	Off	-	R	No	Off	-
M1141	The values of parameters of MODRD/MODWR are incorrect.	\bigcirc	\bigcirc	Off	Off	-	R	No	Off	-
M1143*	Selecting an ASCII mode or an RTU mode when COM2 (RS-485 port) is in a slave mode. (OFF: ASCII mode; ON: RTU mode) Selecting an ASCII mode or an RTU mode when COM2 (RS-485 port) is in a master mode. (M1143 is used with MODRD/MODWR.) (OFF: ASCII mode; ON: RTU mode)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	3-31
M1161	8-bit mode (ON: 8-bit mode; OFF: 16-bit mode)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1162	Using decimal integers or binary floating-point values when SCLP is executed. ON: Binary floating-point values OFF: Decimal integers	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1168	SMOV: Mode of operation	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1200	C200: Selecting a mode of counting	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1201	C200: Selecting a mode of counting	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1203	Resetting C200	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1204	C204: Selecting a mode of counting	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1205	C204: Selecting a mode of counting	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1207	Resetting C204	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1208	C208: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1209	C209: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1210	C210: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1211	C211: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1212	C212: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1213	C213: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1214	C214: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1215	C215: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-

Special M device	Function	20D	20M	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	$\begin{gathered} \text { STOP } \\ \sqrt{5} \\ \text { RUN } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { RUN } \\ \checkmark \\ \text { STOP } \end{array}$	Attribute	Latching	Default	Page
M1216	C216: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1217	C217: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1218	C218: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1219	C219: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1220	C220: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1221	C221: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1222	C222: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1223	C223: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1224	C224: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1225	C225: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1226	C226: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1227	C227: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1228	C228: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1229	C229: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1230	C230: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1231	C231: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1232	C232: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1233	C233: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1234	C234: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1235	C235: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1236	C236: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1237	C237: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1238	C238: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1239	C239: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1240	C240: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1241	C241: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1242	C242: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1243	C243: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1244	C244: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1245	C245: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-

Special M device	Function	20D	20M	$\begin{array}{\|c\|} \hline \text { Off } \\ \sqrt{n} \\ \text { On } \end{array}$	$\begin{gathered} \text { STOP } \\ \sqrt{2} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt{3} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
M1246	C246: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1247	C247: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1248	C248: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1249	C249: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1250	C250: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1251	C251: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1252	C252: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1253	C253: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1254	C254: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1255	C255: Selecting a mode of counting (On: Counting down)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1303	Interchanging high bits with low bits when XCH is executed	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	
M1304*	The input terminals can be set to ON or OFF.	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	3-35
M1744*	Resetting the M-code in the Ox motion subroutine	\bigcirc	\bigcirc	Off	Off	-	R/W	No	Off	3-36
M1745	Disabling the X -axis from returning home in the Ox motion subroutine	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1746	Setting the signal for starting the noncyclic electronic cam motion	\bigcirc	\bigcirc	Off			R/W	No	Off	-
M1748	Stopping the electronic cam motion	\bigcirc	\bigcirc	Off			R	No	Off	-
M1749	Controlling the maximum frequency of pulses sent by the electronic cam	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1751	Enabling the writing of the present command position of the X-axis	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	3-36
M1752	The electronic cam does not start at zero. Immediately stopping the noncyclic electronic cam motion when there is a transition in DOG's signal from low to high or form high to low	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1755	Switching the source of the master axis of the noncyclic electronic cam	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1756	The reference terminals for the synchronization output terminals are X 0 (CLRO=Off) and X 1 (CLR1= Off).	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1757	The present speed of the electronic cam remains unchanged.	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1760	Using a radian or a degree in the Ox motion subroutine	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1761	The X -axis stops at the angle specified.	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	3-36
M1792	The X-axis is ready.	\bigcirc	\bigcirc	On	On	On	R	No	On	3-36
M1793*	X -axis motion error flag (It is reset at the time when the X -axis operates.)	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	3-37
M1794*	If an M code in an $O x$ motion subroutine is executed, M1794 will be ON. (M1974 is reset to OFF at the time when the Ox motion subroutine is executed.)	\bigcirc	\bigcirc	Off	-	Off	R	No	Off	3-36
M1795	If MO in an Ox motion subroutine is executed, M1795 will be ON. (M1795 is reset to OFF at the times when the Ox motion subroutine is executed.)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1796	If M02 in an Ox motion subroutine is executed, M1796 will be ON. (M1796 is reset to OFF at the time when the Ox motion subroutine is executed.)	\bigcirc	\bigcirc	Off	On	-	R	No	Off	-

Special M device	Function	20D	20M	$\begin{gathered} \text { Off } \\ \sqrt[n]{\text { On }} \end{gathered}$	$\begin{gathered} \text { STOP } \\ \text { 』 } \\ \text { RUN } \end{gathered}$		Attribute	Latching	Default	Page
M1808	Zero flag in the Ox motion subroutine	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1809	Borrow flag in the Ox motion subroutine	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1810	Carry flag in the Ox motion subroutine	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1811	An error occurs in a floating-point operation in the Ox motion subroutine	\bigcirc	\bigcirc	Off	Off	-	R	No	Off	-
M1812	Initialization of the electronic cam	\bigcirc	\bigcirc	Off			R/W	No	Off	
M1813	The electronic cam cycle is complete.	\bigcirc	\bigcirc	Off			R/W	No	Off	
M1825	Disabling the Y-axis from returning home	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1831	Enabling the writing of the present command position of the Y-axis	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	3-36
M1841	The Y -axis stops at the angle specified.	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	3-36
M1872	The Y-axis is ready.	\bigcirc	\bigcirc	On	On	On	R	No	On	3-36
M1873*	Y -axis motion error flag (It is reset at the time when the Y -axis operates.)	\bigcirc	\bigcirc	Off	-	-	R	No	Off	3-37
M1908	Determining the terminal which controls the input signals for C200/C204	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	
M1909	Virtual axis mode 1	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	
M1910	Virtual axis mode 2	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	
M1920	Using a radian or a degree in O100	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	-
M1952	O100 is ready.	\bigcirc	\bigcirc	On	Off	On	R	No	On	-
M1953*	An error occurs in O100.	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	3-39
M1957	State of the STOP/RUN switch	\bigcirc	\bigcirc	Off	On	-	R	No	Off	-
M1968	Zero flag in O100.	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1969	Borrow flag in O100.	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1970	Carry flag in O100.	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1971	An error occurs in a floating-point operation in O100.	\bigcirc	\bigcirc	Off	-	-	R	No	Off	-
M1985	Disabling the Z-axis from returning home	\times	\bigcirc	Off	-	-	R/W	No	Off	-
M1991	Enabling the writing of the present command position of the Z-axis	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	3-36
M2001	The Z-axis stops at the angle specified.	\bigcirc	\bigcirc	Off	-	-	R/W	No	Off	3-36
M2032	The Z -axis is ready.	\times	\bigcirc	On	On	On	R	No	On	3-36
M2033*	Z-axis motion error flag (It is reset at the time when the Z-axis operates.)	\times	\bigcirc	Off	-	-	R/W	No	Off	3-37

Additional remark: 20D=DVP20PM00D; 20M=DVP20PM00M

Special D device	Function	20D	20M	$\begin{gathered} \text { Off } \\ \sqrt{n} \\ \text { On } \end{gathered}$	$\begin{gathered} \text { STOP } \\ \checkmark \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt{3} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D1000*	Watchdog timer (Unit: ms)	\bigcirc	\bigcirc	200	-	-	R/W	No	200	3-30
D1002	Size of the program	\bigcirc	\bigcirc	65535	-	-	R	No	65535	
D1003	Checksum of the program	\bigcirc	\bigcirc	-	-	-	R	Yes	0	-
D1005	Firmware version of the DVP-20PM series motion controller (factory setting)	\bigcirc	\bigcirc	\#	-	-	R	No	\#	-
D1008	Step address at which the watchdog timer is ON	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1010	Present scan time (Unit: 1 millisecond)	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1011	Minimum scan time (Unit: 1 millisecond)	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1012	Maximum scan time (Unit: 1 millisecond)	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1020	Filtering the inputs X0~X7 (Unit: ms)	\bigcirc	\bigcirc	10	-	-	R/W	No	10	3-31
D1025	Code for a communication request error	\bigcirc	\bigcirc	0	0	-	R	No	0	-
D1036*	Communication protocol of COM1	\bigcirc	\bigcirc	H'86	-	-	R/W	No	H'86	3-31
D1038*	Delay which is allowed when an RS-485 port on the DVP-20PM series motion controller functions as a slave station (Setting range: 0~3000; Unit: 10 ms)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	3-34
D1039*	Fixed scan time (Unit: ms)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
$\begin{array}{\|c} \text { D1050 } \\ \downarrow \\ \text { D1055 } \end{array}$	Modbus communication data is processed. The DVP-20PM series motion controller automatically converts the ASCII data in D1070~D1085 to hexadecimal values.	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1056	Present value of CHO in the function card 2AD	\bigcirc	\bigcirc	0	\#	-	R	No	0	-
D1057	Present value of CH 1 in the function card 2AD	\bigcirc	\bigcirc	0	\#	-	R	No	0	-
$\begin{array}{\|c} \text { D1070 } \\ \downarrow \\ \text { D1085 } \end{array}$	Modbus communication data is processed. A DVP-20PM series motion controller has an RS-485 communication instruction. After a receptor receives the command sent by an RS-485 communication instruction, it will reply with a message which will be stored in D1070~D1085. Users can view the message by D1070~D1085.	\bigcirc	\bigcirc	0	-	-	R	No	0	-
$\begin{array}{\|c} \text { D1089 } \\ \downarrow \\ \text { D1099 } \end{array}$	Modbus communication data is processed. A DVP-20PM series motion controller has an RS-485 communication instruction. The command sent by the RS-485 communication instruction is stored in D1089~D1099. Users can check whether the command is correct by viewing the values in D1089~D1099.	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1109	Communication protocol of COM3 (communication card)	\bigcirc	\bigcirc	H'86	-	-	R/W	No	H'86	3-31
D1110	Number by which the sum of several values of CHO in the function card 2AD is divided	\bigcirc	\bigcirc	0	\#	-	R	No	0	-
D1111	Number by which the sum of several values of CH 1 in the function card 2AD is divided	\bigcirc	\bigcirc	0	\#	-	R	No	0	-
D1116	Present value of CHO in the function card 2DA	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D1117	Present value of CH 1 in the function card 2DA	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D1120*	Communication protocol of COM2 (RS-485 port)	\bigcirc	\bigcirc	H'86	-	-	R/W	No	H'86	3-31
D1121	Communication address of the DVP-20PM series motion controller	\bigcirc	\bigcirc	-	-	-	R/W	Yes	1	-
D1122	Number characters which remain to be sent	\bigcirc	\bigcirc	0	0	-	R	No	0	-
D1123	Number of characters which remain to be received	\bigcirc	\bigcirc	0	0	-	R	No	0	-
D1124	Start-of-text character (STX)	\bigcirc	\bigcirc	H'3A	-	-	R/W	No	H'3A	
D1125	First terminator (END High)	\bigcirc	\bigcirc	H'OD	-	-	R/W	No	H'OD	
D1126	Second terminator (END Low)	\bigcirc	\bigcirc	H'OA	-	-	R/W	No	H'OA	
D1129	Communication timeout (Unit: ms)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-

Special D device	Function	20D	20M	$\begin{gathered} \text { Off } \\ \sqrt[n]{n} \\ \text { On } \end{gathered}$	$\begin{gathered} \hline \text { STOP } \\ \text { \& } \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt{n} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D1130	Error code that a slave station sends by means of Modbus when the RS-485 port on the DVP-20PM series motion controller functions as a master station	\bigcirc	\bigcirc	0	0	-	R	No	0	-
D1140*	Number of right-side modules (8 right-side modules at most)	\bigcirc	\bigcirc	0	-	-	R	No	0	3-35
D1142*	Number of X devices in a digital module	\bigcirc	\bigcirc	0	-	-	R	No	0	3-35
D1143*	Number of Y devices in a digital module	\bigcirc	\bigcirc	0	-	-	R	No	0	3-35
D1149	ID of a function card (0: No card inserted; 3: COM3; 8: 2AD; 9: 2DA)	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1200*	Starting latching auxiliary relay address	\bigcirc	\bigcirc	-	-	-	R/W	Yes	500	3-35
D1201*	Terminal latching auxiliary relay address	\bigcirc	\bigcirc	-	-	-	R/W	Yes	999	3-35
D1202*	Starting latching timer address	\bigcirc	\bigcirc	-	-	-	R/W	Yes	-1	3-35
D1203*	Terminal latching timer address	\bigcirc	\bigcirc	-	-	-	R/W	Yes	-1	3-35
D1204*	Starting latching 16-bit counter address	\bigcirc	\bigcirc	-	-	-	R/W	Yes	100	3-35
D1205*	Terminal latching 16-bit counter address	\bigcirc	\bigcirc	-	-	-	R/W	Yes	199	3-35
D1206*	Starting latching 32-bit counter address	\bigcirc	\bigcirc	-	-	-	R/W	Yes	220	3-35
D1207*	Terminal latching 32-bit counter address	\bigcirc	\bigcirc	-	-	-	R/W	Yes	255	3-35
D1208*	Starting latching stepping relay address	\bigcirc	\bigcirc	-	-	-	R/W	Yes	500	3-35
D1209*	Terminal latching stepping relay address	\bigcirc	\bigcirc	-	-	-	R/W	Yes	1023	3-35
D1210*	Starting latching data register address	\bigcirc	\bigcirc	-	-	-	R/W	Yes	200	3-35
D1211*	Terminal latching data register address	\bigcirc	\bigcirc	-	-	-	R/W	Yes	9999	3-35
D1313*	Value of the second in the real-time clock (RTC): 00~59	\times	\times	-	-	-	R/W	Yes	0	-
D1314*	Value of the minute in the real-time clock (RTC): 00~59	\times	\times	-	-	-	R/W	Yes	0	-
D1315*	Value of the hour in the real-time clock (RTC): 00~23	\times	\times	-	-	-	R/W	Yes	0	-
D1316*	Value of the day in the real-time clock (RTC): 1~31	\times	\times	-	-	-	R/W	Yes	1	-
D1317*	Value of the month in the real-time clock (RTC): 01~12	\times	\times	-	-	-	R/W	Yes	1	-
D1318*	Value of the week in the real-time clock (RTC): 1~7	\times	\times	-	-	-	R/W	Yes	2/5	-
D1319*	Value of the year in the real-time clock (RTC): 00~99 (A.D.)	\times	\times	-	-	-	R/W	Yes	8/10	-
D1320*	ID of the first right-side module	\bigcirc	\bigcirc	0	-	-	R	No	0	3-35
D1321*	ID of the second right-side module	\bigcirc	\bigcirc	0	-	-	R	No	0	3-35
D1322*	ID of the third right-side module	\bigcirc	\bigcirc	0	-	-	R	No	0	3-35
D1323*	ID of the fourth right-side module	\bigcirc	\bigcirc	0	-	-	R	No	0	3-35
D1324*	ID of the fifth right-side module	\bigcirc	\bigcirc	0	-	-	R	No	0	3-35
D1325*	ID of the sixth right-side module	\bigcirc	\bigcirc	0	-	-	R	No	0	3-35
D1326*	ID of the seventh right-side module	\bigcirc	\bigcirc	0	-	-	R	No	0	3-35
D1327*	ID of the eighth right-side module	\bigcirc	\bigcirc	0	-	-	R	No	0	3-35
D1328*	Target position of the third axis controlled by G00 and G01 (low word) Target position of the third axis controlled by G00 and G01 (High word)	\bigcirc	\times	0	-	-	R/W	No	0	-
D1330*	Maximum speed of the third axis controlled by G00 (low word) Speed of the interpolation executed by the third axis controlled by G01 (low word)	\bigcirc	\times	0	-	-	R/W	No	0	-
D1331*	Maximum speed of the third axis controlled by G00 (high word) Speed of the interpolation executed by the third axis controlled by G01 (high word)	\bigcirc	\times	0	-	-	R/W	No	0	-
D1400	Enabling the interrupt	\bigcirc	\bigcirc	0	-	-	R/W	No	0	3-35
D1401	Cycle of the time interrupt (Unit: ms)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	3-35

3 Devices

Special D device	Function	20D	20M	$\begin{aligned} & \text { Off } \\ & \sqrt{4} \\ & \text { On } \end{aligned}$	$\begin{gathered} \text { STOP } \\ \sqrt{5} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt{n} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D1500	Data block used by FROM/TO It corresponds to CR\#0.	\bigcirc	\bigcirc	H6260	-	-	R	No	H6260	-
$\begin{array}{\|c} \hline \text { D1501 } \\ \downarrow \\ \text { D1699 } \end{array}$	Data block used by FROM/TO They correspond to CR\#1~CR\#199.	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D1700	Ox motion subroutine which is executed	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1702	Step address which is executed in the Ox motion subroutine	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1703*	M-code which is executed in the Ox motion subroutine	\bigcirc	\bigcirc	0	-	-	R	No	0	3-36
D1704	Dwell duration of the Ox motion subroutine which is set	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1705	Present dwell duration of the Ox motion subroutine	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1706	Number of times the instruction RPT in the Ox motion subroutine is executed	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1707	Number of times the instruction RPT in the Ox motion subroutine has been executed	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1708	Compensation value for the X-axis (low word)	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1709	Compensation value for the X-axis (high word)				-					
D1710	Compensation value for the center of the arc created by the X -axis (low word)	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1711	Compensation value for the center of the arc created by the X -axis (high word)	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1712	Compensation value for the radius (low word)	\bigcirc	-	0	-	-	R	No	0	-
D1713	Compensation value for the radius (high word)	\bigcirc	0	0			R	No	0	
D1724	Compensation value for the Y-axis (low word)	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1725	Compensation value for the Y-axis (high word)	\bigcirc	0				R		0	
D1726	Compensation value for the center of the arc created by the Y -axis (low word)	\bigcirc	-	0	-	-	R	No	0	-
D1727	Compensation value for the center of the arc created by the Y -axis (high word)	\bigcirc								
D1736	Dwell duration of O100 which is set	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1737	Present dwell duration of O100	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1738	Number of times the instruction RPT in O100 is executed	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1739	Number of times the instruction RPT in O100 has been executed	\bigcirc	\bigcirc	0	-	-	R	No	0	-
D1796*	Speed to which the speed of the continuous interpolation decreases	\bigcirc	\bigcirc	0	-	-	R	No	0	3-37
D1798*	Percentage for the values of the speed parameters of the G-codes	\bigcirc	\bigcirc	0	-	-	R	No	0	3-38
D1799*	Polarities of the input terminals	\bigcirc	\bigcirc	0	-	-	R/W	No	0	3-38
D1800*	States of the input terminals	\bigcirc	\bigcirc	0	-	-	R	No	0	3-38
D1802*	O100 error code	\bigcirc	\bigcirc	0	-	-	R/W	No	0	3-39
D1803*	Step address in O100 at which an error occurs	\bigcirc	\bigcirc	0	0	-	R/W	No	0	3-39
D1804*	Polarities of the input terminals	\times	\bigcirc	0	-	-	R/W	No	0	3-39
D1805*	States of the input terminals	\times	\bigcirc	0	-	-	R	No	0	3-39
D1806	Filter coefficient for the input terminals	\bigcirc	\bigcirc	0	-	-	R/W	No	0	3-39
D1816*	Setting the parameters of the X -axis	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	3-40
D1818	Number of pulses it takes for the motor of the X-axis to rotate once (low word)									
D1819	Number of pulses it takes for the motor of the X-axis to rotate once (high word)	\bigcirc	-	-	-	-	R/W	Yes	2000	-

$\begin{gathered} \hline \text { Special } \\ D \\ \text { device } \end{gathered}$	Function	20D	20M	$\begin{gathered} \text { Off } \\ \sqrt[n]{2} \\ \text { On } \end{gathered}$	$\begin{gathered} \text { STOP } \\ \sqrt[3]{2} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt[\Omega]{8} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D1820	Distance generated after the motor of the X-axis rotate once (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	1000	-
D1821	Distance generated after the motor of the X-axis rotate once (High word)									
D1822	Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the X -axis rotates (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	500K	-
D1823	Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the X -axis rotates (high word)									
D1824	Start-up speed (VBIAS) at which the X-axis rotates (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	-
D1825	Start-up speed (VBIAs) at which the X-axis rotates (high word)									
D1826	JOG speed ($\mathrm{V}_{\text {JOG }}$) at which the X-axis rotates (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	5000	-
D1827	JOG speed ($\mathrm{V}_{\text {JoG }}$) at which the X -axis rotates (high word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	5000	-
D1828	Speed (V_{RT}) at which the X-axis returns home (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	50K	-
D1829	Speed (V_{RT}) at which the X-axis returns home (high word)									
D1830	Speed (V_{CR}) to which the speed of the X-axis decreases when the X -axis returns home (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	1000	-
D1831	Speed (V_{CR}) to which the speed of the X-axis decreases when the X -axis returns home (high word)									
D1832*	Number of PG pulses for the X-axis	-	-	-	-	-	R/W	Yes	0	-
	Setting the number of times the noncyclic electronic cam motion is repeated	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	3-41
D1833*	Supplementary pulses for the X-axis	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	3-41
	Number of remaining pulses sent by the master axis of the electronic cam	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	3-41
D1834*	Home position of the X-axis (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	3-41
	Number of pulses sent by the master axis of the electronic cam before the electronic cam is started	-	\bigcirc	-	-	-	R/W	Yes	0	3-41
D1835	Home position of the X-axis (high word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	-
D1836	Time ($\mathrm{T}_{\mathrm{AcC}}$) it takes for the X -axis to accelerate	\bigcirc	\bigcirc	-	-	-	R/W	Yes	500	-
D1837	Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the X -axis to decelerate	\bigcirc	\bigcirc	-	-	-	R/W	Yes	500	-
D1838	Target position of the X-axis (P (I)) (low word)	\bigcirc	\bigcirc	\bigcirc	-	-	R/W	No	0	-
	Upper limit for a synchronization zone (low word)	\bigcirc	\bigcirc	\bigcirc	-	-	R/W	No	0	-
D1839	Target position of the X-axis (P (I)) (high word)	\bigcirc	\bigcirc	\bigcirc	-	-	R/W	No	0	-
	Lower limit for a synchronization zone (high word)	\bigcirc	\bigcirc	\bigcirc	-	-	R/W	No	0	-
D1840	Speed at which the X-axis rotates (V (I)) (low word)	\bigcirc	\bigcirc	1000	-	-	R/W	No	1000	-
	Maximum frequency of pulses sent by the electronic cam	\bigcirc	\bigcirc	1000	-	-	R/W	No	1000	-
D1841	Speed at which the X-axis rotates (V (I)) (high word)	\bigcirc	\bigcirc	1000	-	-	R/W	No	1000	-
	Maximum frequency of pulses sent by the electronic cam	\bigcirc	\bigcirc	1000	-	-	R/W	No	1000	-
D1842	Target position of the X-axis (P (II)) (low word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
	Upper limit for a synchronization zone (low word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D1843	Target position of the X-axis (P (II)) (high word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
	Upper limit for a synchronization zone (high word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-

3 Devices

Special D device	Function	20D	20M	$\begin{gathered} \text { Off } \\ \sqrt{n} \\ \text { On } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { STOP } \\ \boxed{8} \\ \text { RUN } \end{array}$	$\begin{gathered} \text { RUN } \\ \sqrt{5} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D1844	Speed at which the X-axis rotates (V (II)) (low word)	\bigcirc	\bigcirc	2000	-	-	R/W	No	2000	-
D1845	Speed at which the X-axis rotates (V (II)) (high word)	-	-							
D1846*	Operation command for the X-axis	\bigcirc	\bigcirc	0	-	0	R/W	No	0	3-42
	Starting the electronic cam	\bigcirc	\bigcirc	0	-	0	R/W	No	0	3-42
D1847*	X-axis's mode of operation	\bigcirc	\bigcirc	0	-	-	R/W	No	0	3-43
D1848	Present command position of the X -axis (pulse) (low word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
	Position of the slave axis									
D1849	Present command position of the X -axis (pulse) (high word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
	Position of the slave axis									
D1850	Present command speed of the X-axis (PPS) (low word)	-	\bigcirc	0	0	0	R/W	No	0	-
D1851	Present command speed of the X-axis (PPS) (high word)									
D1852	Present command position of the X-axis (unit) (low word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D1853	Present command position of the X-axis (unit) (high word)									
D1854	Present command speed of the X-axis (unit) (low word)		\bigcirc	0	0	0	R/W	No	0	-
D1855	Present command speed of the X-axis (unit) (high word)	\bigcirc	-			0				-
D1856*	State of the X-axis	\bigcirc	\bigcirc	0	-	-	R	No	0	3-44
D1857*	X-axis error code	\bigcirc	\bigcirc	0	-	-	R	No	0	3-37
D1858	Electronic gear ratio of the X-axis (numerator)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	1	-
D1859	Electronic gear ratio of the X-axis (denominator)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	1	-
D1860	Frequency of pulses generated by the manual pulse generator for the X -axis (low word)	\bigcirc	\bigcirc	0	0	-	R/W	No	0	-
	Frequency of pulses sent by the master axis									
D1861	Frequency of pulses generated by the manual pulse generator for the X -axis (high word)	\bigcirc	\bigcirc	0	0	-	R/W	No	0	-
	Frequency of pulses sent by the master axis									
D1862	Number of pulses generated by the manual pulse generator for the X -axis (low word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
	Position of the master axis									
D1863	Number of pulses generated by the manual pulse generator for the X -axis (high word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
	Position of the master axis									
D1864*	Response speed of the manual pulse generator for the X -axis	\bigcirc	\bigcirc	-	-	-	R/W	Yes	5	-
	Pulse type received by the master axis of the electronic cam	\bigcirc	\bigcirc	-	-	-	R/W	Yes	5	-
D1865	Mode of stopping Ox0~Ox99 (K1: The execution of Ox0~Ox99 will resume next time Ox0~Ox99 are started. K2: The next instruction will be executed next time Ox0~Ox99 are started. Others: Ox0~Ox99 are executed again.)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	-
D1866	Electrical zero of the X-axis (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	-
	Number of pulses for switching the source of the master axis of the noncyclic electronic cam (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	-
D1867	Electrical zero of the X-axis (high word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	-
	Number of pulses for switching the source of the master axis of the noncyclic electronic cam (high word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	-

Special D device	Function	20D	20M	$\begin{gathered} \text { Off } \\ \sqrt{n} \\ \text { On } \end{gathered}$	$\begin{gathered} \text { STOP } \\ \sqrt[3]{2} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt{8} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D1868*	Setting an Ox motion subroutine number	\bigcirc	\bigcirc	0	0	-	R/W	Yes	0	-
	Specifying an electronic cam chart	\bigcirc	\bigcirc	0	0	-	R/W	Yes	0	-
D1869	Step address in the Ox motion subroutine at which an error occurs	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D1877	Enabling the PID closed-loop control of the X-axis	\bigcirc	\bigcirc	-	-	-	R/W	No	0	3-44
D1878	Present value of the command for the PID closed-loop control of the X-axis (low word)	\bigcirc	\bigcirc	-	-	-	R	No	0	3-44
D1879	Present value of the command for the PID closed-loop control of the X-axis (high word)	\bigcirc	\bigcirc	-	-	-	R	No	0	-
D1880	Proportional gain for the PID closed-loop control of the X-axis (low word)	\bigcirc	\bigcirc	-	-	-	R/W	No	0	3-44
D1881	Proportional gain for the PID closed-loop control of the X-axis (high word)	\bigcirc	\bigcirc	-	-	-	R/W	No	0	-
D1882	Integral gain for the PID closed-loop control of the X-axis (low word)	\bigcirc	\bigcirc	-	-	-	R/W	No	0	3-44
D1883	Integral gain for the PID closed-loop control of the X-axis (high word)	\bigcirc	\bigcirc	-	-	-	R/W	No	0	-
D1884	Error for the PID closed-loop control of the X-axis (low word)	\bigcirc	\bigcirc	-	-	-	R	No	0	-
D1885	Error for the PID closed-loop control of the X-axis (high word)	\bigcirc	\bigcirc	-	-	-	R	No	0	-
D1886	Cumulative error for the PID closed-loop control of the X-axis (low word)	\bigcirc	\bigcirc	-	-	-	R	No	0	-
D1887	Cumulative error for the PID closed-loop control of the X -axis (high word)	\bigcirc	\bigcirc	-	-	-	R	No	0	-
D1888	Maximum cumulative error for the PID closed-loop control of the X-axis (low word)	\bigcirc	\bigcirc	-	-	-	R	No	0	3-44
D1889	Maximum cumulative error for the PID closed-loop control of the X -axis (high word)	\bigcirc	\bigcirc	-	-	-	R	No	0	
D1896*	Setting the parameters of the Y -axis	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	3-40
D1898	Number of pulses it takes for the motor of the Y -axis to rotate once (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	2000	-
D1899	Number of pulses it takes for the motor of the Y-axis to rotate once (high word)									
D1900	Distance generated after the motor of the Y -axis rotate once (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	1000	-
D1901	Distance generated after the motor of the Y -axis rotate once (High word)									
D1902	Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the Y -axis rotates (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	500K	-
D1903	Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the Y -axis rotates (high word)									
D1904	Start-up speed (VBIAS) at which the Y-axis rotates (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	-
D1905	Start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the Y -axis rotates (high word)									
D1906	JOG speed $\left(\mathrm{V}_{\text {JoG }}\right)$ at which the Y -axis rotates (low word)	\bigcirc	-	-	-	-	R/W	Yes	5000	-
D1907	JOG speed $\left(V_{\text {JoG }}\right)$ at which the Y-axis rotates (high word)									
D1908	Speed (V_{RT}) at which the Y -axis returns home (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	50K	-
D1909	Speed (V_{RT}) at which the Y -axis returns home (high word)									

3 Devices

Special D device	Function	20D	20M	$\begin{gathered} \hline \text { Off } \\ \text { On } \end{gathered}$	$\begin{gathered} \text { STOP } \\ \sqrt[3]{3} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt{4} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D1910	Speed $\left(\mathrm{V}_{\mathrm{CR}}\right)$ to which the speed of the Y -axis decreases when the Y-axis returns home (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	1000	-
D1911	Speed $\left(\mathrm{V}_{\mathrm{CR}}\right)$ to which the speed of the Y -axis decreases when the Y -axis returns home (high word)									
D1912	Number of PG pulses for the Y-axis	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	-
D1913	Supplementary pulses for the Y -axis	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	-
D1914	Home position of the Y-axis (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	-
D1915	Home position of the Y-axis (high word)									
D1916	Time ($\mathrm{T}_{\text {ACc }}$) it takes for the Y -axis to accelerate	\bigcirc	\bigcirc	-	-	-	R/W	Yes	500	-
D1917	Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the Y -axis to decelerate	\bigcirc	\bigcirc	-	-	-	R/W	Yes	500	-
D1918	Target position of the Y-axis (P (I)) (low word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D1919	Target position of the Y-axis (P (I)) (high word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D1920	Speed at which the Y -axis rotates ($\mathrm{V}(\mathrm{I})$) (low word)	\bigcirc	\bigcirc	1000	-	-	R/W	No	1000	-
D1921	Speed at which the Y -axis rotates ($\mathrm{V}(\mathrm{I})$) (high word)									
D1922	Target position of the Y-axis (P (II)) (low word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D1923	Target position of the Y-axis (P (II)) (high word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D1924	Speed at which the Y -axis rotates (V (II)) (low word)	\bigcirc	\bigcirc	2000	-	-	R/W	No	2000	-
D1925	Speed at which the Y -axis rotates (V (II)) (high word)									
D1926*	Operation command for the Y-axis	\bigcirc	\bigcirc	0	-	0	R/W	No	0	3-42
D1927*	Y-axis's mode of operation	\bigcirc	\bigcirc	0	-	-	R/W	No	0	3-43
D1928	Present command position of the Y -axis (pulse) (low word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D1929	Present command position of the X-axis (pulse) (high word)									
D1930	Present command speed of the Y -axis (PPS) (low word)	\bigcirc	\bigcirc	0	0	0	R/W	No	0	-
D1931	Present command speed of the Y-axis (PPS) (high word)									
D1932	Present command position of the Y -axis (unit) (low word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D1933	Present command position of the Y -axis (unit) (high word)									
D1934	Present command speed of the Y -axis (unit) (low word)	\bigcirc	\bigcirc	0	0	0	R/W	No	0	-
D1935	Present command speed of the Y -axis (unit) (high word)									
D1936*	State of the Y-axis	\bigcirc	-	0	-	-	R	No	0	3-44
D1937*	Y-axis error code	\bigcirc	-	0	-	-	R	No	0	3-37
D1938	Electronic gear ratio of the Y -axis (numerator)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	1	-
D1939	Electronic gear ratio of the Y-axis (denominator)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	1	-
D1940	Frequency of pulses generated by the manual pulse generator for the Y -axis (low word)	\bigcirc	\bigcirc	0	-	0	R/W	No	0	-
D1941	Frequency of pulses generated by the manual pulse generator for the Y -axis (high word)									
D1942	Number of pulses generated by the manual pulse generator for the Y -axis (low word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D1943	Number of pulses generated by the manual pulse generator for the Y -axis (high word)									
D1944	Response speed of the manual pulse generator for the Y -axis	\bigcirc	\bigcirc	-	-	-	R/W	Yes	5	-
D1946	Electrical zero of the Y-axis (low word)	\bigcirc	\bigcirc	-	-	-	R/W	Yes	0	-
D1947	Electrical zero of the Y-axis (high word)									

Special D device	Function	20D	20M	$\begin{gathered} \hline \text { Off } \\ \sqrt[n]{2} \\ \text { On } \end{gathered}$	$\begin{gathered} \hline \text { STOP } \\ \sqrt{n} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt{3} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D1957	Enabling the PID closed-loop control of the Y-axis	\bigcirc	\bigcirc	-	-	-	R/W	No	0	-
D1958	Present value of the command for the PID closed-loop control of the Y-axis (low word)	\bigcirc	\bigcirc	-	-	-	R	No	0	-
D1959	Present value of the command for the PID closed-loop control of the Y-axis (high word)	\bigcirc	\bigcirc	-	-	-	R	No	0	-
D1960	Proportional gain for the PID closed-loop control of the Y-axis (low word)	\bigcirc	\bigcirc	-	-	-	R/W	No	0	-
D1961	Proportional gain for the PID closed-loop control of the Y -axis (high word)	\bigcirc	\bigcirc	-	-	-	R/W	No	0	-
D1962	Integral gain for the PID closed-loop control of the Y -axis (low word)	\bigcirc	\bigcirc	-	-	-	R/W	No	0	-
D1963	Integral gain for the PID closed-loop control of the Y-axis (high word)	\bigcirc	\bigcirc	-	-	-	R/W	No	0	-
D1964	Error for the PID closed-loop control of the Y-axis (low word)	\bigcirc	\bigcirc	-	-	-	R	No	0	-
D1965	Error for the PID closed-loop control of the Y-axis (high word)	\bigcirc	\bigcirc	-	-	-	R	No	0	-
D1966	Cumulative error for the PID closed-loop control of the Y -axis (low word)	\bigcirc	\bigcirc	-	-	-	R	No	0	-
D1967	Cumulative error for the PID closed-loop control of the Y-axis (high word)	\bigcirc	\bigcirc	-	-	-	R	No	0	-
D1968	Maximum cumulative error for the PID closed-loop control of the Y-axis (low word)	\bigcirc	\bigcirc	-	-	-	R	No	0	-
D1969	Maximum cumulative error for the PID closed-loop control of the Y-axis (high word)	\bigcirc	\bigcirc	-	-	-	R	No	0	-
D1976	Setting the parameters of the Z-axis	\times	\bigcirc	-	-	-	R/W	Yes	0	-
D1978	Number of pulses it takes for the motor of the Z-axis to rotate once (low word)	\times	\bigcirc	-	-	-	R/	Ye	2	-
D1979	Number of pulses it takes for the motor of the Z-axis to rotate once (high word)	x	\bigcirc	-	-	-	R/	Ye	2	
D1980	Distance generated after the motor of the Z-axis rotate once (low word)	\times	\bigcirc	-	-	-		Yes	1000	-
D1981	Distance generated after the motor of the Z-axis rotate once (High word)	x	0	-	-	-		Yes	1000	
D1982	Maximum speed ($\mathrm{V}_{\mathrm{MAX}}$) at which the Z-axis rotates (low word)	\times	\bigcirc	-	-	-	R/W	Yes	500K	-
D1983	Maximum speed ($\mathrm{V}_{\mathrm{MAX}}$) at which the Z-axis rotates (high word)	x	0	-	-	-	R/W	Yes	500K	-
D1984	Start-up speed (VBIAs) at which the Z-axis rotates (low word)	\times	\bigcirc	-	-	-	R/W	Yes	0	-
D1985	Start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the Z-axis rotates (high word)	x	-	-	-	-	R/W	Yes	0	-
D1986	JOG speed ($\mathrm{V}_{\text {JoG }}$) at which the Z-axis rotates (low word)	\times	\bigcirc	-	-	-	R/W	Yes	5000	-
D1987	JOG speed ($\mathrm{V}_{\text {JoG }}$) at which the Z-axis rotates (high word)	x	\bigcirc	-	-	-	RN	Yes	5000	-
D1988	Speed (V_{RT}) at which the Z-axis returns home (low word)	\times	\bigcirc	-	-	-	R/W	Yes	50K	-
D1989	Speed (V_{RT}) at which the Z-axis returns home (high word)	\times	\bigcirc	-	-	-	RN	Yes	50K	-
D1990	Speed (V_{CR}) to which the speed of the Z-axis decreases when the Z-axis returns home (low word)	\times	\bigcirc	-	-	-	R/W	Yes	1000	-
D1991	Speed (V_{CR}) to which the speed of the Z -axis decreases when the Z-axis returns home (high word)				-	-				
D1992	Number of PG pulses for the Z-axis	\times	\bigcirc	-	-	-	R/W	Yes	0	-
D1993	Supplementary pulses for the Z-axis	\times	\bigcirc	-	-	-	R/W	Yes	0	-

3 Devices

Special D device	Function	20D	20M	$\begin{gathered} \hline \text { Off } \\ \text { On } \\ \text { On } \end{gathered}$	$\begin{gathered} \text { STOP } \\ \sqrt{5} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt{n} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D1994	Home position of the Z-axis (low word)	\times	\bigcirc	-	-	-	R/W	Yes	0	-
D1995	Home position of the Z-axis (high word)									
D1996	Time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the Z -axis to accelerate	\times	\bigcirc	-	-	-	R/W	Yes	500	-
D1997	Time ($T_{\text {DEC }}$) it takes for the Z-axis to decelerate	\times	\bigcirc	-	-	-	R/W	Yes	500	-
D1998	Target position of the Z-axis (P (I)) (low word)	\bigcirc	\bigcirc	\bigcirc	-	-	R/W	No	0	-
D1999	Target position of the Z-axis (P (I)) (high word)	\bigcirc	\bigcirc	\bigcirc	-	-	R/W	No	0	-
D2000	Speed at which the Z-axis rotates (V (I)) (low word)	\times	\bigcirc	1000	-	-	R/W	No	1000	-
D2001	Speed at which the Z-axis rotates (V (I)) (high word)									
D2002	Target position of the Z-axis (P (II)) (low word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D2003	Target position of the Z-axis (P (II)) (high word)	\bigcirc	\bigcirc	0	-	-	R/W	No	0	-
D2004	Speed at which the Z-axis rotates (V (II)) (low word)	\times	\bigcirc	2000	-	-	R/W	No	2K	-
D2005	Speed at which the X-axis rotates (V (II)) (high word)									
D2006	Operation command for the Z-axis	\times	\bigcirc	0	-	0	R/W	No	0	3-42
D2007	Z-axis's mode of operation	\times	\bigcirc	0	-	-	R/W	No	0	3-43
D2008	Present command position of the Z-axis (pulse) (low word)	\times	\bigcirc	0	-	-	R/W	No	0	-
D2009	Present command position of the Z-axis (pulse) (high word)									
D2010	Present command speed of the Z-axis (PPS) (low word)	\times	\bigcirc	0	0	0	R/W	No	0	-
D2011	Present command speed of the Z-axis (PPS) (high word)									
D2012	Present command position of the Z-axis (unit) (low word)	\times	\bigcirc	0	-	-	R/W	No	0	-
D2013	Present command position of the Z-axis (unit) (high word)									
D2014	Present command speed of the Z-axis (unit) (low word)	\times	\bigcirc	0	0	0	R/W	No	0	-
D2015	Present command speed of the Z-axis (unit) (high word)									
D2016	State of the Z-axis	\times	\bigcirc	0	-	-	R	No	0	3-44
D2017*	Z-axis error code	\times	\bigcirc	0	-	-	R	No	0	3-37
D2018	Electronic gear ratio of the Z-axis (numerator)	\times	\bigcirc	-	-	-	R/W	Yes	1	-
D2019	Electronic gear ratio of the Z-axis (denominator)	\times	\bigcirc	-	-	-	R/W	Yes	1	-
D2020	Frequency of pulses generated by the manual pulse generator for the Z-axis (low word)	\times	\bigcirc	0	-	0	R/W	No	0	-
D2021	Frequency of pulses generated by the manual pulse generator for the Z-axis (high word)									
D2022	Number of pulses generated by the manual pulse generator for the Z-axis (low word)	\times	\bigcirc	0	-	-	R/W	No	0	-
D2023	Number of pulses generated by the manual pulse generator for the Z-axis (high word)									
D2024	Response speed of the manual pulse generator for the Z-axis	\times	\bigcirc	-	-	-	R/W	Yes	5	-
D2026	Electrical zero of the Z-axis (low word)	\times	\bigcirc	-	-	-	R/W	Yes	0	-
D2027	Electrical zero of the Z-axis (high word)									
D2029	Step address at which an Oz error occurs (The register is not available presently, and is reserved.)	\times	\bigcirc	-	-	-	R/W	Yes	0	-
D2037	Enabling the PID closed-loop control of the Z-axis	\times	\bigcirc	-	-	-	R/W	No	0	

Special D device	Function	20D	20M	$\begin{gathered} \text { Off } \\ \text { \& } \\ \text { On } \end{gathered}$	$\begin{gathered} \text { STOP } \\ \sqrt{5} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt{4} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D2038	Present value of the command for the PID closed-loop control of the Z-axis (low word)	\times	\bigcirc	-	-	-	R	No	0	
D2039	Present value of the command for the PID closed-loop control of the Z-axis (high word)	\times	\bigcirc	-	-	-	R	No	0	
D2040	Proportional gain for the PID closed-loop control of the Z-axis (low word)	\times	\bigcirc	-	-	-	R/W	No	0	
D2041	Proportional gain for the PID closed-loop control of the Z-axis (high word)	\times	\bigcirc	-	-	-	R/W	No	0	
D2042	Integral gain for the PID closed-loop control of the Z-axis (low word)	\times	\bigcirc	-	-	-	R/W	No	0	
D2043	Integral gain for the PID closed-loop control of the Z-axis (high word)	\times	\bigcirc	-	-	-	R/W	No	0	
D2044	Error for the PID closed-loop control of the Z-axis (low word)	\times	\bigcirc	-	-	-	R	No	0	
D2045	Error for the PID closed-loop control of the Z-axis (high word)	\times	\bigcirc	-	-	-	R	No	0	
D2046	Cumulative error for the PID closed-loop control of the Z-axis (low word)	\times	\bigcirc	-	-	-	R	No	0	
D2047	Cumulative error for the PID closed-loop control of the Z-axis (high word)	\times	\bigcirc	-	-	-	R	No	0	
D2048	Maximum cumulative error for the PID closed-loop control of the Z-axis (low word)	\times	\bigcirc	-	-	-	R	No	0	
D2049	Maximum cumulative error for the PID closed-loop control of the Z-axis (high word)	\times	\bigcirc	-	-	-	R	No	0	

Additional remark: 20D=DVP20PM00D; 20M=DVP20PM00M

3.11 Functions of Special Auxiliary Relays and Special Data Registers

Operation
flags

M1000~M1003

Watchdog timer

D1000

1. M1000: If the DVP-20PM series motion controller runs, M1000 will be a normally-open contact (Form A contact). When the DVP-20PM series motion controller runs, M1000 is ON.

2. M1001: If the DVP-20PM series motion controller runs, M1001 will be a normally-closed contact (Form B contact). When the DVP-20PM series motion controller runs, M1001 is OFF.
3. M1002: A positive-going pulse is generated at the time when the DVP-20PM series motion controller runs. The width of the pulse is equal to the scan cycle. If users want to initialize the DVP-20PM series motion controller, they can use the contact.
4. M1003: A negative-going pulse is generated at the time when the DVP-20PM series motion controller runs. The width of the pulse is equal to the scan cycle.

5. The watchdog timer is used to monitor a scan cycle. If the scan cycle is greater than the watchdog timer value, the ERROR LED indicator on the DVP-20PM series motion controller will be turned ON, and all the output devices will be turned OFF.
6. The watchdog timer is initailly set to 200 . If the program is long, or the operation is complex, users can change the watchdog timer value by means of the instruction MOV. In the example below, the watchdog timer value is changed to 300.

7. The maximum value which can be stored in the watchdog timer is 32,767 . However, the larger the watchdog timer value is, the more time it takes to detect any operation error. As a result, if there is no complex operation resulting in a scan cycle longer than 200 milliseconds, it is suggested that the watchdog timer value should be less than 200.
8. If an opration is complex, the scan cycle may be long. Users can check whether the scan cycle is greater than the value stored in D1000 by monitoring D1010~D1012. If the scan cycle is greater than the value stored in D1000, the users can change the value in D1000.

Inputfilter

D1020

Communication port

M1120, M1136, M1138, M1139, M1143, D1036, D1109, and D1120

1. Users can set the time it takes for the input terminals $\mathrm{XO} \sim \mathrm{X7}$ to respond by setting D1020. The value in D1020 must be in the range of 0 to 20. (Unit: ms)
2. If the DVP-20PM series motion controller is turned form OFF to ON, the value in S D1020 will automatically become 10.

3. If the program below is executed, the time is takes for the input terminals $\mathrm{X} 0 \sim \mathrm{X7}$ to respond will be 0 milliseconds. Owing to the fact that the input terminals are connected to resistor-capacitor circuits in series, the shortest time it takes for the input terminals to respond is 50 microseconds.

4. If high-spedd counters and interrupts are used in a program, the value in D1020 does not have any effect.
The communication ports with which a DVP-20PM series motion controller is equipped are COM1 (RS-232 port) and COM2 (RS-485 port). They support Modbus ASCII/RTU. The maximum speed available is $115,200 \mathrm{bps}$. COM3 (RS-232/RS-485 communication card) supports Modbus ASCII. The maximum speed available is 38,400 bps. COM1, COM2, and COM3 can be used simultaneously.
COM1 COM1 can only be used as a slave station. It supports ASCII/RTU, and the adjustment of a communication speed. The maximum speed available is $115,200 \mathrm{bps}$. It supports the modification of the number of data bits.
COM2 COM2 can be used as a master station or a slave station. It supports ASCII/RTU, and the adjustment of a communication speed. The maximum speed available is $115,200 \mathrm{bps}$. It supports the modification of the number of data bits.
COM3 COM3 can only be used as a slave station. It supports the ASCII communication format 7, E, 1 (7 data bits, even parity bit, 1 stop bit), and the adjustment of a communication speed. The maximum speed available is $38,400 \mathrm{bps}$. COM2 and COM3 can not be used as slave stations simultaneously.
(0) Setting a communication format:

COM1 1. D1036 is used to set a communication format. Bit 8~bit 15 in D1036 do not support the setting of a communicaiton format.
2. M1138: The setting of the communication through COM1 is retained.
3. M1139: Selecting an ASCII mode or an RTU mode

COM2 1. D11120 is used to set a communication format.
2. M1120: The setting of the communication through COM2 is retained.
3. M1143: Selecting an ASCII mode or an RTU mode

COM3 1. D1109 is used to set a communication format. Bit 0~bit 3 and Bit 8~bit 15 in D1036 do not support the setting of a communicaiton format.
2. M1136: The setting of the communication through COM3 is retained.
Communication format:

Example 1: Modifying the communication format of COM2
If users want to modify the communication format of COM2 on a DVP-20PM series motion controller, they have to add the program shown below to the top of the program in the DVP-20PM series motion controller. After the STOP/RUN switch on the DVP-20PM series motion controller is turned from the STOP position to the RUN position, the state of M1120 will be detected during the first scan cycle. If M1120 is ON, the setting of COM2 will be changed in accordance with the value in D1120.
The communication format of COM2 is changed to the ASCII format 9600, 7, E 1 ($9,600 \mathrm{bps}, 7$ data bits, even parity bit, 1 stop bit).

Notes:

1. If COM2 on a DVP-20PM series motion controller is used as a slave station, no communication instruction can exist in the program in the DVP-20PM series motion controller.
2. If the STOP/RUN switch on a DVP-20PM series motion controller is turned from the RUN position to the STOP position after the communication format of COM2 is modified, the new communication format of COM2 will not be changed.
3. If users disconnect a DVP-20PM series motion controller and then power it up after they modify the communication format of COM2, the new communication format of COM2 will be restored to its factory setting.
Example 2: Modifying the communication format of COM1
If users want to modify the communication format of COM1 on a DVP-20PM series motion controller, they have to add the program shown below to the top of the program in the DVP-20PM series motion controller. After the STOP/RUN switch on the DVP-20PM series motion controller is turned from the STOP position to the RUN position, the state of M1138 will be detected during the first scan cycle. If M1138 is ON, the setting of COM1 will be changed in accordance with the value in D1036.
The communication format of COM1 is changed to the ASCII format 9600, 7, E 1 ($9,600 \mathrm{bps}, 7$ data bits, even parity bit, 1 stop bit).

Notes:

1. If the STOP/RUN switch on a DVP-20PM series motion controller is turned from the RUN position to the STOP position after the communication format of COM1 is modified, the new communication format of COM1 will not be changed.
2. If users disconnect a DVP-20PM series motion controller and then power it up after they modify the communication format of COM1, the new communication format of COM1 will be restored to its factory setting.
Example 3: Modifying the communication format of COM3
The communication format of COM3 is 7, E 1 (7 data bits, even parity bit, 1 stop bit). If users want to change the communication speed of COM3 on a DVP-20PM series motion controller to 38,400 bps, they have to add the program shown below to the top of the program in the DVP-20PM series motion controller. After the STOP/RUN switch on the DVP-20PM series motion controller is turned from the STOP position to the RUN position, the state of M1136 will be detected during the first scan cycle. If M1136 is ON, the setting of COM3 will be changed in accordance with the value in D1109.
The communication speed of COM3 is changed to $38,400 \mathrm{bps}$.

3 Devices

Example 4: Using COM1/COM2 in an RTU mode COM1: (9,600, 8, E, 1, RTU)

COM2: (9,600, 8, E, 1, RTU)

If an RS-485 port on a DVP-20PM series motion controller functions as a slave station,

Communication timeout

D1038

Fixed scan time

M1039 and D1039

Setting an OX motion subroutine number

M1074 and D1868 users can set a communication timeout. The value in D1038 is in the range of 0 to 3,000 (0 to 30 seconds). The unit used is 10 milliseconds. If the value in D1038 is not in the range of 0 to 3,000 , the value in D1038 will become 0 . The value in D1038 must be less than the value in D1000.

1. If M1039 is ON, the time it takes for the program to be scanned will depend on the value in D1039. If the execution of a program is complete, the program will not be scanned again until the fixed scan time set elapses. If the value in D1039 is less than the time it takes for a program to be scanned, the time it takes for a program to be scanned, will be given priority.

2. The values stored in D1010~D1012 include the value stored in D1039.

Users can specify an Ox motion subroutine by setting D1868. The steps of setting D1868 are as follows.

1. The users have to set bit 14 in D1868 to 1, set bit 15 in D1868 to 1, or set bit 14 and bit 15 in D1868 to 1. Besides, the users have to write K99 (H63) into bit 0~bit 13 in D1868, that is, the Ox motion subroutine number specified is Ox99. To sum up, the users have to write H8063 into D1868.
2. After M1074 is set to ON, the Ox motion subroutine specified by D1868 will be executed.
The program is shown below.

In the main program O100, X0 starts the motion subroutine Ox99.

Detecting
expansion
D1140, D1142, and D1143

Latching device range

D1200~D1211

Turning the X devices ON/OFF

M1304
Right-side special I/O module ID

D1320~D1327

Interrupt register

D1400 and D1401

1. D1140: Number of right-side modules (AD, DA, XA, PT, TC, RT, HC, PU) (8 right-side modules at most)
2. D1142: Number of X devices in a digital module
3. D1143: Number of Y devices in a digital module
4. Users can set latching device ranges. The devices in the range of a starting latching device address and a terminal latching device address are latching devices.
5. Please refer to section 3.1 for more information.

If M1304 in a DVP-20PM series motion controller is ON, the X devices (X0~X17) in the DVP-20PM series motion controller can be turned ON/OFF by means of PMSoft.

1. If a DVP-20PM series motion controller is connected to special I/O modules, the IDs of the special I/O modules will be stored in D1320~D1327.
2. ID's of the special I/O modules which can be connected to a DVP-20PM series motion controller:

I/O module	ID (Hexadecimal value)
DVP04AD-H2	H'6400
DVP04DA-H2	H'6401
DVP04TC-H2	H'6403
DVP-PM	H'6260 2

I/O module	ID (Hexadecimal value)
DVP01PU-H2	H'6110 $^{\prime}$
DVP04PT-H2	H'6402 $^{\prime}$
DVP06XA-H2	H'6604 $^{\prime}$ H'6120
DVP01HC-H2	$H^{\prime} 6$

1. D1400 is an interrupt register. If users set a bit in D1400 to ON, an interrupt will be enabled.

Bit\#	Interrupt	Interrupt number
0	Time interrupt	10
1	External terminal START0/X0*	11
2	External terminal STOP0/X1*	12
3	External terminal START1/X2*	13
4	External terminal STOP1/X3*	14
5	External terminal X4*	15
6	External terminal X5*	16
7	External terminal X6*	17
8	External terminal $\times 7^{*}$	18

*: Only applicable to DVP-10PM series motion controllers
2. If an interrupt enabled is a time interrupt, users can write the cycle of the interrupt into D1401.
3. There are two types of interrupts.

- External interrupt: If an interrupt is triggered by the rising edge/falling edge of a pulse received through an external terminal, the execution of the present program will stop, and the interrupt will be executed. After an interrupt is executed, the program which is executed before the interrupt is triggered will be executed.
- Time interrupt: The execution of the present program stops at regular intervals. Whenever the execution of the present program stops, an interrupt is executed.

Clearing the M-code which is executed

M1744, M1794, and D1703

Ready flag

M1792, M1872, and M2032

Enabling the writing of the present command position

M1751, M1831, and M1991

Stopping the uniaxial motion at the angle specified

M1761, M1841, and M2001

- If users want to clear the M-code in D1703, they have to set M1744 to ON. If M1744 is set to ON, the value in D1703 will be cleared, and M1794 will be reset.
- If an M code in an Ox motion subroutine is executed, M1794 will be ON. The M-code which is executed is stored in D1703.

1. Every motion axis uses a ready flag. The X-axis uses M1792, the Y-axis uses M1872, and the Z-axis uses M2032. Users can use the ready flags to judge whether the axes operate.
2. Description of the ready flag for the X-axis: Before the X-axis operates, M1792 is ON. When the X -axis operates, M1792 is OFF. After the first axis finishes operating, M1792 is ON.
3. If users want to write the present command position of the X -axis/Y-axis/Z-axis, they have to set M1751/M1831/M1991 to ON. After M1751/M1831/M1991 is set to ON, a value can be written into D1848/D1928/D2008.
4. If users write a value into D1848 when M1751 is OFF, the value in D1848 will be cleared to 0.
5. M1761, M1841, and M2001 are used to stop the X-axis, the Y-axis, and the Z-axis at the angles specified in positive JOG motion.
6. Users have to set M1761 to ON, write the number of pulses per cycle into (D1843, D1842), write an angle into (D1839, D1838), and start positive JOG motion.
7. Stopping uniaxial motion at an angle specified

Parameter	X-axis	Y-axis	Z-axis
Stopping at the angle specified	M 1761	M 1841	M 2001
Angle	(D1838, D1839)	(D1918, D1919)	(D1998, D1999)
Number of pulses per cycle	(D1842, D1843)	(D1922, D1923)	(D2002, D2003)

4. If the number of pulses it takes for the motor of an axis to rotate once is 20000, and the angle at which users want to stop the axis is 90 degrees, there will be the states shown below.

Clearing the

 motion errorM1793, D1857, M1873, D1937, M2033, and D2017

Continuous interpolation

D1796 and M1036 2. If the value in D1796 is greater than 0, a continuous path can be created, and only G1/G2/G3/LIN/CW/CCW can be used to create a continuous created. If M1036 is set to ON, other applied instructions can be used to create a continuous path.
3. If the value in D1796 is K0 (there is no continuous interpolation), the speed of motion will decrease to 0 Hz no matter what the actual deceleration is.

4. The value in D1796 is K500 (there is continuous interpolation). After the value in D1796 is compared with the acutal deceleration, the smaller deceleration will be taken as a turning point.

5. Continuous path

If D1796 is not set, the path along which the X-axis moves and the path along which the Y-axis moves will be at right angles. If D1796 is set, the path along which the X -axis moves and the path along which the Y -axis moves will form a smooth curve.
G01 X100 F1000; (Block A)
Y100; (Block B)

Setting the percentage for the values of the speed parameters of the G-codes

D1798

Setting the polarities of the input terminals

D1799

Reading the states of the input terminals

D1800

The path along which the x-axis moves and the path along which the y-axis moves form a smooth curve.

Block B

Block A: Path along which the X -axis moves; Block B: Path along which the Y -axis moves

1. If the value in D1798 is 100, the speeds of the G-codes used will be the orginial speeds. If the value in D1798 is 1000, the speeds of the G-codes used will be multipled by 10. If the value in D1798 is 50 , the speeds of the G-codes used will be half the original speed.
2. If the result gotten from the multiplication of the speed of a G-code by the percentage set in D1798 is greater than 500000 Hz , the G-code will move the axes used at a speed of 500000 Hz .

If users want to turn an input terminal into a Form A contact, they have to set the bit corresponding to the input terminal to ON. If the users want to turn an input terminal into a Form B contact, they have to set the bit corresponding to the input terminal to OFF.

Bit\#	Polarity of an input terminal of the X-axis	Bit\#	Polarity of the input terminal of the Y-axis
0	PG0	8	PG1
1	B0	9	B1
2	A0	10	A1
3	LSN0	11	LSN1
4	LSP0	12	LSP1
5	DOG0	13	DOG1
6	STOP0	14	STOP1
7	START0	15	START1

If a bit in D1800 is ON, the input terminal corresponding to the bit receives a signal. If a bit in D1800 is OFF, the input terminal corresponding to the bit does not receive a signal.

Bit\#	State of an input terminal of the X-axis	Bit\#	State of an input terminal of the Y-axis
0	PG0	8	PG0
1	B0	9	B1
2	A0	10	A1
3	LSN	11	LSN
4	LSP	12	LSP
5	DOG	13	DOG
6	STOP	14	STOP
7	START	15	START

Setting the polarities of the input terminals

D1804

Reading the states of the in put terminals

D1805
 coefficient for the input terminals

D1806

O100 error

M1953, D1802, and D1803

If users want to turn an input terminal into a Form A contact, they have to set the bit corresponding to the input terminal to ON. If the users want to turn an input terminal into a Form B contact, they have to set the bit corresponding to the input terminal to OFF.

Bit\#	Polarity of an input terminal of the Z-axis
0	PG2
1	B1
2	A1
3	LSN2
4	LSP2
5	DOG2

If a bit in D1805 is ON, the input terminal corresponding to the bit receives a signal. If a bit in D1805 is OFF, the input terminal corresponding to the bit does not receive a signal.

Bit\#	State of an input terminal of the Z-axis
0	PG2
1	B1
2	A1
3	LSN2
4	LSP2
5	DOG2

1. Users can set the hardware filter for the input terminals START, STOP, DOG, LSN, LSP, and PG by means of D1806.
2. Users can set a filter coefficient for the input terminal MPGO/1 by setting the high byte in D1806.
3. Filter coefficeint $=\frac{85000}{2^{\mathrm{N}+4}}(\mathrm{kHz}) ; \mathrm{N}=1 \sim 19$

\mathbf{N}	$\mathbf{k H z}$	\mathbf{N}	$\mathbf{k H z}$	
1	2656.25	11	2.593994	
2	1328.125	12	1.296997	
3	664.0625	13	0.648499	
4	332.0313	14	0.324249	
5	166.0156	15	0.162125	
6	83.00781	16	0.081062	
7	41.50391	17	0.040531	
8	20.75195	18	0.020266	
9	10.37598	19	0.010133	
10	5.187988			

4. If the value in D1806 is 0 , no signals will be filtered.
5. If the value in D1806 is HOA0A, the filter coefficient for START, STOP, DOG, LSN, LSP, and PG $=\frac{85000}{2^{10+4}}=5.187988$, and the signals whose frequencies are higher than 5.187988 kHz will be removed.
6. If an error occurs in O100, M1953 will be ON, the error code corresponding to the error will be stored in D1802, and the step address at which the error occurs will be stored in D1803.
7. Please refer to appendix A in chapter 15 for more information about error codes.

Setting the parameters of the X -axis/ Y-axis/z-axis
D1816, D1896, and D1976

D1816 is for the X-axis, D1896 is for the Y-axis, and D1976 is for the Z-axis.

Bit\#	Parameter of the X-axis/Y-axis/Z-axis	Bit\#	Parameter of the X-axis/Y-axis/Z-axis
0	Unit ${ }^{* 1}$	8	Direction in which the axis returns home ${ }^{* 4}$
1		9	Mode of returning home ${ }^{* 4}$
2	Ratio*2	10	Mode of triggering the return to home ${ }^{* 4}$
3		11	Direction in which the motor rotates ${ }^{* 4}$
4	Output type ${ }^{* 3}$	12	Relative/Absolute coordinates ${ }^{* 4}$
5		13	Mode of triggering the calculation of the target position ${ }^{* 4}$
6		14	Curve ${ }^{*}$
7		15	

*1:

	Motor unit	Compound unit	Mechanical unit
Position	pulse	$\mu \mathrm{m}$	
	pulse	mdeg	
	pulse	10^{-4} inches	
	pulse/second		centimeter/minute
	pulse/second		10 degrees/minute
	pulse/second		inch/minute

*2:
*3:

b3	b2	Ratio
0	0	10^{0}
0	1	10^{1}
1	0	10^{2}
1	1	10^{3}

b5	b4	Description
0	0	Positive-going pulse+Negative-going pulse
0	1	Pulse+Direction
1	0	A/B-phase pulse (two phases and two inputs)
1	1	

Bit\#	Description
8	$\begin{array}{c}\text { Bit 8=0: The value indicating the present command position of the axis decreases } \\ \text { progressively. }\end{array}$
9	Bit 8=1: The value indicating the present command position of the axis increases
progressively.	

Bit\#	Description
13	Bit 13=0: The calculation of the target position of the axis is triggered by a transition in DOG's signal from low to high.
Bit 13=1: The calculation of the target position of the axis is triggered by a transition in DOG's signal from high to low. (The setting of bit 13 is applicable to the insertion of single-speed motion, and the insertion of two-speed motion.)	
14	Bit 14=0: Trapezoid curve Bit 14=1: S curve

Setting the noncyclic electronic cam

D1832, D1833, and D1834

Only DVP-20PM series motion controllers support this function.

1. D1832: Setting the number of times noncyclic electronic cam motion is repeated Users can set the number of times noncyclic electronic cam motion is repeated by means of D1832. If the value in D1832 is greater than H8000 (bit 15=1), there will be cyclic electronic cam motion. If the value in D1832 is 0 , noncyclic electronic cam motion will not be repeated. If the value in D1832 is 1, noncyclic electronic cam motion will be repeated once.
D1832=0

D1832=1

2. D1833: Number of remaining pulses sent by the master axis of an electronic cam If the number of pulses sent by the master axis of an electronic cam is not divisible by the number of pulses per ccycle, users can divide the number that is left by setting D1833. If the number of pulses sent by the master axis of an electronic cam is 202, and the number of pulses per cycle is 50 , two pulses will be left after four cycles. If the value in D1832 is 3, and the value in D1833 is 2, one pulse will be added to the first cycle and the second cycle.
D1832=4 and D1833=1

Master acyclic Input
D1832=4 and D1833=3

*The value in D1833 can not be greater than the value in D1832.
3. D1834: Number of pulses sent by the master axis of the electronic cam before the electronic cam is started
Users can delay the sending of pulses by the slave axis of a noncyclic electronic cam by setting D1834. When the number of pulses sent by the master of a noncyclic electronic cam sends is equal to the value in D1834, the slave axis of the noncyclic electronic cam sends pulses.
D1834=10
(The slave axis sends pulses after the master axis sends 10 pulses.)

D1834=50
(The slave axis sends pulses after the master axis sends 50 pulses.)

D1846, D1926, and D2006

D1846 is for the X-axis, D1926 is for the Y-axis, and D2006 is for the Z-axis.

Bit\#	Operation command for the X-axis/Y-axis/Z-axis	Bit\#	Operation command for the X-axis/Y-axis/Z-axis
0	The motion of the axis specified is stopped by software.	8	A mode of single-speed motion is activated.
1	The motion of the axis specified is started by software.	9	A mode of inserting single-speed motion is activated.
2	The axis specified operates in a JOG+ mode.	10	A mode of two-speed motion is activated.
3	The axis specified operates in a JOG- mode.	11	A mode of inserting two-speed motion is activated.
4	A mode of variable motion is activated.	12	0 : The execution of the Ox motion subroutine set stops. 1: The execution of the Ox motion subroutine set starts.
5	A manual pulse generator is operated.	$13 *^{2}$	Starting the cyclic electronic cam specified
6	A mode of triggering the return to home is activated.	$14^{* 2}$	Starting the noncyclic electronic cam specified
$7^{* 1}$	Triggering single-speed motion by means of an external signal	15	-

Input terminals on DVP20PM00D for manual pulse generators: X-axis (A0+/A0-, B0+/B0-); Y-axis (A1+/A1-, B1+/B1-)
Input terminals on DVP20PM00M for manual pulse generators: X -axis (A0+/A0-, B0+/B0-); Y-axis and Z-axis (A1+/A1-, B1+/B1-)
*1: Only the Y-axis supports this function. (D1926)
*2: Only the X-axis supports this function. (D1846)

Mode of operation

D1847, D1927, and D2007

D1847 is for the X-axis, D1927 is for the Y-axis, D2007 is for the Z-axis, D2087 is for the A-axis, D2167 is for the B-axis, and D2247 is for the C-axis.

Bit\#	Mode of operation	Bit\#	Mode of operation
0	-	8	Setting a stop signal
1	-	9	
2	Mode of sending a CLR signal	10	
3	Setting the CLR output to ON/OFF	11	01: The motion of the axis specified is interrupted, and an electronic cam chart is inserted. 10: G-codes can be created in a cam chart. 11: The axis specified can operate clockwise and operate counterclockwise.
4	Setting the polarity of the CLR output	12	
5	Mode of stopping the motor used when STOP is ON	13	-
6	Limitation on the present position of the slave axis controlled by the manual pulse generator used	14	-
7	Mode of stopping the motor used when the motor used comes into contact with a positive limit switch/negative limit switch	15	Restoring the DVP-20PM series motion controller to the factory settings

Bit\#	Description
2	Bit 2=0: After the axis specified returns home, the CLR output will send a 130 millisecond signal to the servo drive used, and the present position of the servo drive which is stored in a register in the servo drive will be cleared.
3	Bit 2=1: The CLR output functions as a general output. Its state is controlled by bit 3. Bit 3=1: The CLR output is OFF.
4	Bit 4=0: The CLR output is a Form A contact. Bit 4=1: The CLR output is a Form B contact.
5	Bit 5=0: If STOP is ON when the motor used operates, the motor will decelerate and stop. If a motion command is sent, the motor will ignore the previous unfinished distance, and rotate for the distance specified. If STOP is ON when the motor used operates, the motor will decelerate and stop. If a motion command is sent, the motor will complete the previous unfinished distance, and then rotate for the distance specified.
6	Bit 6=0: There is no limitation on the present position of the slave axis controlled by the manual pulse generator used
Bit The present position of the slave axis controlled by the manual pulse	
generator used has to be in the range of the P (I) set to the P (II) set. If the	
present position of the slave axis controlled by the manual pulse generator	
used is not in the range of the P (I) set to the P (II) set, the slave axis will	
decelerate and stop.	

State of the axis

D1856, D1936, and D2016

Enabling the
PID closed-loop control

D1877, D1878, D1880, D1882, and D1888

Bit\#	Description
8	$\begin{array}{l}\text { When single-speed motion, two-speed motion, inserting single-speed motion, or } \\ \text { inserting two-speed motion is executed, A0 or B0 can be used to stop the motion. } \\ \text { Bit 10~bit 8=K0 (000) or other values: No function }\end{array}$
9	$\begin{array}{l}\text { Bit 10~bit 8=K1 (001): Motion is stopped immediately when there is a transition in A0's } \\ \text { signal from low to high. }\end{array}$
Bit 10~bit 8=K2 (010): Motion is stopped immediately when there is a transition in A0's	
signal from high to low.	
Bit 10~bit 8=K3 (011): Motion is stopped immediately when there is a transition in B0's	
signal from low to high.	

signal from high to low.\end{array}\right\}\)

D1856 is for the X-axis, D1936 is for the Y-axis, and D2016 is for the Z-axis.

Bit\#	State of the X-axis/Y-axis/Z-axis
$\mathbf{0}$	Positive-going pulses are being output.
$\mathbf{1}$	Negative-going pulses are being output.
$\mathbf{2}$	The axis specified is operating.
$\mathbf{3}$	An error occurs.
$\mathbf{4}$	The axis specified pauses.
$\mathbf{5}$	The manual pulse generator used generates positive-going pulses.
$\mathbf{6}$	The manual pulse generator used generates negative-going pulses.
$\mathbf{7}$	

1. D1877 is used to enable the PID closed-loop control of the X-axis. The source of the feedback given to a closed loop is shown below.

Value	Source
1	C200
2	C204
3	Present position (D1848, D1928, D2008)
Others	Disabling PID closed-loop control

2. The value in (D1879, D1878) indicates the present value of the command for the PID closed-loop control of the X-axis. The source of the feedback given to a closed loop is controlled by the closed loop so that the output value of the command for the closed loop is the same as the setting value of the command for the closed loop.
3. The value in (D1881, D1880) indicates the proportional gain for the PID closed-loop control of the X-axis.
4. The value in (D1883, D1882) indicates the integral gain for the PID closed-loop control of the X-axis.
5. The value in (D1889, D1888) indicates the maximum cumulative error for the PID closed-loop control of the X-axis. D1888 and D1889 are used to limit the difference between an input value and an output value.
6. Closed-loop control

After the closed-loop control is used to select the source of the feedback given to the closed loop, the source value of the feedback will be compared with the present value of the command sent to the closed loop. Owing to the PID closed-loop control, the source value of the feedback is the same as the present value of the command. The maximum cumulative error set is used to limit the difference between the source value of the feedback and the present value of the command. If the difference is greater than the maximum cumulative error, there will no output.

3.12 Special Data Registers for Motion Axes

The special data registers for the X-axis, the Y-axis, and the Z-axis in a DVP-20PM series motion controller are described below. Please refer to this section for more information about the setting of the special data registers.

Special D device number						Special data register	Setting range	Default value
X-axis		Y-axis		Z-axis				
HW ${ }^{1}$	LW ${ }^{\text {¹ }}$	HW	LW	HW	LW			
-	D1816	-	D1896	-	D1976	Setting the parameters of the axis specified	Bit 0~bit 15	H0
D1819	D1818	D1899	D1898	D1979	D1978	Number of pulses it takes for the motor of the axis specified to rotate once (A)	$1 ~+2,147,483,647$ pulses/revolution	K2,000
D1821	D1820	D1901	D1900	D1981	D1980	Distance generated after the motor of the axis specified rotate once (B)	1~+2,147,483,647*2	K1,000
D1823	D1822	D1903	D1902	D1983	D1982	Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the axis specified rotates	0~+2,147,483,647*3	K500,000
D1825	D1824	D1905	D1904	D1985	D1984	Start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the axis specified rotates	$0 \sim+2,147,483,647{ }^{* 3}$	K0
D1827	D1826	D1907	D1906	D1987	D1986	JOG speed ($V_{\text {JoG }}$) at which the axis specified rotates	0~+2,147,483,647*3	K5,000
D1829	D1828	D1909	D1908	D1989	D1988	Speed (V_{RT}) at which the axis specified returns home	0~+2,147,483,647*3	K50,000
D1831	D1830	D1911	D1910	D1991	D1990	Speed (V_{CR}) to which the speed of the axis specified decreases when the axis returns home	0~+2,147,483,647*3	K1,000
-	D1832	-	D1912	-	D1992	Number of PG0 signals for the axis specified	0~+32,767 PLS	K0
-	D1833	-	D1913	-	D1993	Number of supplementary pulses for the axis specified	-32,768~+32,767 PLS	K0
D1835	D1834	D1915	D1914	D1995	D1994	Home position of the axis specified	0~さ999,999 ${ }^{* 1}$	K0
-	D1836	-	D1916	-	D1996	Time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the axis specified to accelerate	10~+32,767 ms	K100
-	D1837	-	D1917	-	D1997	Time ($T_{D E C}$) it takes for the axis specified to decelerate	10~+32,767 ms	K100
D1839	D1838	D1919	D1918	D1999	D1998	Target position of the axis specified (P (I))	$-2,147,483,648 \sim+2,147,483,647^{* 1}$	KO
D1841	D1840	D1921	D1920	D2001	D2000	Speed at which the axis specified rotates (V (I))	0~+2,147,483,647 ${ }^{\text {* }}$	K1000
D1843	D1842	D1923	D1922	D2003	D2002	Target position of the axis specified (P (II))	$-2,147,483,648 \sim+2,147,483,647^{* 1}$	K0
D1845	D1844	D1925	D1924	D2005	D2004	Speed at which the axis specified rotates (V (II))	0~+2,147,483,647*2	K2,000
-	D1846	-	D1926	-	D2006	Operation command	Bit 0~bit 15	H0
-	D1847	-	D1927	-	D2007	Mode of operation	Bit 0~bit 15	H0
D1849	D1848	D1929	D1928	D2009	D2008	Present command position of the axis specified (Pulse)	$-2,147,483,648 \sim+2,147,483,647^{* 1}$	K0
D1851	D1850	D1931	D1930	D2011	D2010	Present command speed of the axis specified (PPS)	0~+2,147,483,647 PPS	K0
D1853	D1852	D1933	D1932	D2013	D2012	Present command position of the axis specified (unit ${ }^{* 3}$)	$-2,147,483,648 \sim+2,147,483,647^{* 1}$	K0
D1855	D1854	D1935	D1934	D2015	D2014	Present command speed of the axis specified (unit ${ }^{* 3}$)	0~+2,147,483,647 PPS	K0
-	D1856	-	D1936	-	D2016	State of the axis specified	Bit 0~bit 15	H0
-	D1857	-	D1937	-	D2017	Axis error code	Please refer to appendix A for more information.	H0
-	D1858	-	D1938	-	D2018	Electronic gear of the axis specified (Numerator)	1~+32,767	K1

Special D device number						Special data register	Setting range	Default value
X-axis		Y -axis		Z-axis				
HW ${ }^{1}$	LW ${ }^{1}$	HW	LW	HW	LW			
-	D1859	-	D1939	-	D2019	Electronic gear of the axis specified (Denominator)	1~+32,767	K1
D1861	D1860	D1941	D1940	D2021	D2020	Frequency of pulses generated by the manual pulse generator for the axis specified	Frequency of pulses generated by the manual pulse generator for the axis specified	K0
D1863	D1862	D1943	D1942	D2023	D2022	Number of pulses generated by the manual pulse generator for the axis specified	Number of pulses generated by the manual pulse generator for the axis specified	K0
-	D1864	-	D1944	-	D2024	Response speed of the manual pulse generator for the axis specified	Response speed of the manual pulse generator for the axis specified	K5
D1865	-	-	-	-	-	Mode of stopping Ox0~Ox99	Users have to set a value according to their needs.	K0
D1867	D1866	D1947	D1946	D2027	D2026	Electrical zero of the axis specified	Users have to set a value according to their needs.	K0
D1868	-	-	-	-	-	Setting an Ox motion subroutine number	Users have to set a value according to their needs.	K0
D1869	-	-	-	-	-	Step address in the Ox motion subroutine executed at which an error occurs	Users have to set a value according to their needs.	K0

*1: HW: High word; LW: Low word
*2: Unit: $\mu \mathrm{m} / \mathrm{rev}$, mdeg/rev, and 10^{-4} inches/rev
*3: The unit used varies with the setting of bit 0 and bit 1 in D1816/D1896/D1976.

3.12.1 Descriptions of the Special Data Registers Related to Motion

X-axis		Y-axis		Z-axis		Setting the parameters of the axis specified
HW	LW	HW	LW	HW	LW	
	D1816		D1896		D1976	

[Description]

Bit 0~bit 15 in D1816 (D1896, D1976) are described below.

1. Bit 0 and bit 1 in D1816 (D1896, D1976): Unit

b1	b0	Unit	Description
0	0	Motor unit	A pulse is a unit.
0	1	Mechanical unit	A micrometer, 10-4 inches, or a degree is a unit.
1	0	Compound unit	Position: A micrometer, 10-4 inches, or a degree is a unit. (Mechanical unit) Speed: A pulse is a unit. (Motor unit)
1	1		

	Motor unit	Compound unit	Mechanical unit
Position	pulse	$\mu \mathrm{m}$	
	pulse	mdeg	
	pulse	10^{-4} inches	
Speed		pulse/second	centimeter/minute
		pulse/second	10 degrees/minute
		pulse/second	inch/minute

- Position: Home position of the axis specified, target position of the axis specified (P (I)), target position of the axis specified ($\mathrm{P}(\mathrm{II})$), and present command position of the axis specified
- Speed: Maximum speed $\left(\mathrm{V}_{\text {MAX }}\right)$ at which the axis specified rotates, start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the axis specified rotates, JOG speed $\left(V_{\text {JoG }}\right)$ at which the axis specified rotates, speed $\left(V_{R T}\right)$ at which the axis specified returns home, speed $\left(V_{C R}\right)$ to which the speed of the axis specified decreases when the axis returns home, speed at which the axis specified rotates ($\mathrm{V}(\mathrm{I})$), and speed at which the axis specified rotates (V (II))
- Example 1:

Bit [1:0]=00 \Rightarrow Motor unit
Position: Pulse
Speed: Pulse/second (PPS)
Target position of the axis specified (P (I)): 10,000 pulses
Speed at which the axis specified rotates: 10K PPS
After the DVP-20PM series motion controller sends 10,000 pulses, the axis specified can move to the target position specified. (The frequency of pulses is 10 K PPS.) The distance for which the axis specified can move after a pulse is sent is calculated according to the physical quantity used.

- Example 2:

Bit [1:0]=01 \Rightarrow Mechanical unit
Position: $\mu \mathrm{m}$
Speed: Centimeter/minute
$\mathrm{N}=0$
D1818 (D1898, D1978)=1,000 (pulses/revolution)
D1820 (D1900, D1980)=100 (micrometers/revolution)
$P(I)=10,000$ (micrometers)
$\mathrm{V}(\mathrm{I})=6$ (centimeters/minute)
The number of pulses sent by the DVP-20PM series motion controller and the frequency of pulses are calculated below.
Distance $=\underbrace{\frac{\text { Distance }}{\text { Revolution }}}_{\mathrm{B}} \times \underbrace{\frac{\text { Revolution }}{\text { Number of pulses }}}_{1 / \mathrm{A}} \times$ Number of pulses
Number of pulses it takes for the axis specified to move to the target position
specified $=\frac{P(I) \mu \mathrm{m}}{B / A}=P(I) \times \frac{A}{B}=100,000$ (pulses)
Speed at which the axis specified rotates (V (I)): 6 (centimeters/minute) $=60,000 / 60$ (micrometers/second)

$$
\text { Speed }=\frac{\text { Distance }}{\text { Time }}=\underbrace{\frac{\text { Distance }}{\text { Revolution }}}_{B} \times \underbrace{\frac{\text { Revolution }}{\text { Number of pulses }}}_{1 / \mathrm{A}} \times \underbrace{\frac{\text { Number of pulses }}{\text { Time }}}_{\text {PPs,pulesec }}
$$

The frequency of pulses calculated by the DVP-20PM series motion controller
$=V(I) \times \frac{10^{4}}{60} \times \frac{A}{B}=\frac{60,000}{60} \times \frac{1,000}{100}=10,000 \quad(P P S)$

- Example 3

Bit $[1: 0]=10$ or $11 \Rightarrow$ Compound unit
Position: Micrometer
Speed: Pulse/second (PPS)
$\mathrm{N}=0$
D1818 (D1898, D1978)=2,000 (pulses/revolution)
D1820 (D1900, D1980)=100 (micrometers/revolution)
$P(I)=10,000$ (micrometers)
$\mathrm{V}(\mathrm{I})=10 \mathrm{~K}$ (PPS)
The number of pulses sent by the DVP-20PM series motion controller is calculated below.
Number of pulses it takes for the axis specified to move to the target position specified
$=\frac{\mathrm{P}(\mathrm{I}) \mu \mathrm{m}}{\mathrm{B} / \mathrm{A}}=\mathrm{P}(\mathrm{I}) \times \frac{\mathrm{A}}{\mathrm{B}}=200,000$ (pulses)
2. Bit 2 and bit 3 in D1816 (D1896, D1976): Ratio

Position: The home position of the axis specified, the target position of the axis specified ($\mathrm{P}(\mathrm{I})$), the target position of the axis specified (P (II)), and the present command position of the axis specified must be multiplied by a ratio.

b3	b2	Ratio
0	0	Position $\times 10^{0}$
0	1	Position $\times 10^{1}$
1	0	Position $\times 10^{2}$
1	1	Position $\times 10^{3}$

3. Bit 4 and bit 5 in D1816 (D1896, D1976): Output type

b5	b4	Output type (positive logic)	Description
0	0	FP Clockwise pulses RP Counterclockwise pulses	Counting up/down
0	1		Pulses+Directions
1	0	FP A-phase pulses	A/B-phase pulses
1	1	RP B-phase pulses \qquad \square \square \square \qquad Clockwise	Four times the frequency of A/B-phase pulses

4. Bit 6 in D1816 (D1896, D1976): Setting a PWM mode

Bit 6=1: If positive JOG motion is started, Y0~Y3 will execute PWM.
5. Bit 8 in D1816 (D1896, D1976): Direction in which the axis specified returns home

Bit $8=0$: The value indicating the present command position of an axis specified decreases, and the axis returns home in the negative direction.
Bit 8=1: The value indicating the present command position of an axis specified increases, and the axis returns home in the positive direction.
6. Bit 9 in D1816 (D1896, D1976): Mode of returning home

Bit 9=0: Normal mode
After DOG's signal is generated, the motor used will rotate for a specific number of PGO pulses, then rotate for a specific number of supplementary pulses, and finally stop.
Bit 9=1: Overwrite mode
After DOG's signal is generated, the motor used will rotate for a number of PGO pulses or rotate for a number of supplementary pulses, and then stop.
7. Bit 10 in D1816 (D1896, D1976): Mode of triggering the return to home

Bit 10=0: The return to home is triggered by a transition in DOG's signal from high to low.
Bit 10=1: The return to home is triggered by a transition in DOG's signal from low to high.

- Bit [9:10] in D1816 (D1896, D1976) is 00. \Rightarrow The mode of returning home is a normal mode, and the return to home is triggered by a transition in DOG's signal from high to low.
Steps: The motor used rotates at the speed V_{RT}. When DOG's signal is generated, the speed of the motor begins to decrease to the speed V_{CR}. After DOG's signal goes from high to low, the motor will rotate for a specific number of PG0 pulses, and then rotate for a specific number of supplementary pulses, and finally stop.
If the number of PGO pulses or the number of supplementary pulses is not large, the speed of the motor used will decrease to the speed V_{CR} after DOG's signal is generated. After DOG's signal goes from high to low, the motor will rotate for a specific number of PGO pulses, and then rotate for a specific number of supplementary pulses, and finally stop whether the its speed is V_{CR}.

If the number of PGO pulses is 0 , and the number of supplementary pulses is 0 , the motor used will stop after DOG's signal is generated and there is a transition in DOG's signal from high to low.

- Bit [9:10] in D1816 (D1896, D1976) is 01. \Rightarrow The mode of returning home is a normal mode, and the return to home is not triggered by a transition in DOG's signal from high to low.
Steps: The motor used rotates at the speed V_{RT}. When DOG's signal is generated, the speed of the motor begins to decrease to the speed V_{CR}. After the motor rotates for a specific number of PG0 pulses, and rotate for a specific number of supplementary pulses, it will stop.
If the number of PGO pulses or the number of supplementary pulses is not large, the speed of the motor used will decrease to the speed V_{CR} after DOG's signal is generated. After the motor rotates for a specific number of PG0 pulses, and rotates for a specific number of supplementary pulses, it will stop whether its speed is V_{CR}.
If the number of PGO pulses is 0 , and the number of supplementary pulses is 0 , the motor used will stop after DOG's signal is generated.

- Bit [9:10] in D1816 (D1896, D1976) is 10. \Rightarrow The mode of returning home is an overwrite mode, and the return to home is triggered by a transition in DOG's signal from high to low.
Steps: The motor used rotates at the speed V_{RT}. When DOG's signal is generated, the speed of the motor begins to decrease to the speed V_{CR}. After DOG's signal goes from high to low, the motor will rotate for a specific number of PGO pulses, or rotate for a specific number of supplementary pulses, and then stop.
If the number of PGO pulses or the number of supplementary pulses is not large, the speed of the motor used will decrease to the speed V_{CR} after DOG's signal is generated. After DOG's signal
goes from high to low, the motor will rotate for a specific number of PG0 pulses, or rotate for a specific number of supplementary pulses, and then stop whether the its speed is V_{CR}.
If the number of PG0 pulses is 0 , and the number of supplementary pulses is 0 , the motor used will stop after DOG's signal is generated and there is a transition in DOG's signal from high to low.

- Bit [9:10] in D1816 (D1896, D1976) is $11 . \Rightarrow$ The mode of returning home is an overwrite mode, and the return to home is not triggered by a transition in DOG's signal from high to low.
Steps: The motor used rotates at the speed V_{RT}. When DOG's signal is generated, the speed of the motor begins to decrease to the speed V_{CR}. After the motor rotates for a specific number of PG0 pulses, or rotate for a specific number of supplementary pulses, it will stop.
If the number of PG0 pulses or the number of supplementary pulses is not large, the speed of the motor used will decrease to the speed V_{CR} after DOG's signal is generated. After the motor rotates for a specific number of PG0 pulses, or rotates for a specific number of supplementary pulses, it will stop whether its speed is V_{CR}.
If the number of PG0 pulses is 0 , and the number of supplementary pulses is 0 , the motor used will stop after DOG's signal is generated.

8. Bit 11 in D1816 (D1896, D1976): Direction in which the motor used rotates

- Bit 11=0: When the motor rotates clockwise, the value indicating the present command position of the axis specified increases.
- Bit 11=1: When the motor rotates clockwise, the value indicating the present command position of the axis specified decreases.

9. Bit 12 in D1816 (D1896, D1976): Relative/Absolute coordinates

- Bit 12=0: Absolute coordinates
- Bit 12=1: Relative coordinates

10. Bit 13 in D1816 (D1896, D1976): Mode of triggering the calculation of the target position

- Bit 13=0: The calculation of the target position of the axis specified is triggered by a transition in DOG's signal from low to high.
- Bit 13=1: The calculation of the target position of the axis specified is triggered by a transition in DOG's signal from high to low. (The setting of bit 13 is applicable to the insertion of single-speed motion, and the insertion of two-speed motion.)

11. Bit 14 in D1816 (D1896, D1976): Curve

- Bit 14=0: Trapezoid curve
- Bit 14=1: S curve

X-axis		Y-axis		Z-axis	
HW	LW	HW	LW	HW	LW
D1819	D1818	D1899	D1898	D1979	D1978

Number of pulses it takes for the motor of the axis specified to rotate once (A)
[Description]

1. Owing to the fact that users can set an electronic gear ratio for a servo drive, the number of pulses it takes for a servo motor to rotate once is not necessarily equal to the number of pulses which will be generated after a decoder rotates once. The relation between the number of pulses it takes for a servo drive to rotate once and an electronic gear ratio is described below.
Number of pulses it takes for a motor to rotate once (A) x Electronic gear ratio (CMX/CDV)=Number of pulses which will be generated after a decoder rotates once
2. The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976). If the unit selected is a mechanical unit or a compound unit, users need to set D1818 (D1898, D1978) and D1819 (D1899, D1979). If the unit selected is a motor unit, users do not need to set D1818 (D1898, D1978) and D1819 (D1899, D1979).

X-axis		Y-axis		Z-axis	
HW	LW	HW	LW	HW	LW
D1821	D1820	D1901	D1900	D1981	D1980

Distance generated after the motor of the axis specified rotate once (B)
[Description]

1. Three units are available. They are $\mu \mathrm{m} /$ revolution, $\mathrm{mdeg} /$ revolution, and 10^{-4} inches/revolution. The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976). The value in (D1821, D1820) ((D1901, D1900), (D1981, D1980)) is in the range of 1 to 2,147,483,647.
2. The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976). If the unit selected is a mechanical unit or a compound unit, users need to set D1820 (D1900, D1980) and D1821 (D1901, D1981). If the unit selected is a motor unit, users do not need to set D1820 (D1900, D1980) and D4821 (D1901, D1981).

X-axis		Y-axis		Z-axis	
HW	LW	HW	LW	HW	LW
D1823	D1822	D1903	D1902	D1983	D1982

Maximum speed $\left(\mathrm{V}_{\text {MAX }}\right)$ at which the axis specified rotates
[Description]

1. Users can set the maximum speed of motion. The value in (D1823, D1822) ((D1903, D1902), (D1983, D1982)) is in the range of 0 to $2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976).)
2. The frequency of pulses generated by motion is in the range of 10 PPS to 500 K PPS. If the value in (D1823, D1822) ((D1903, D1902), (D1983, D1982)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1823, D1822) ((D1903, D1902), (D1983, D1982)) is less than 10, the frequency of pulses generated will be 10 PPS.

X-axis		Y-axis		Z-axis		Start-up speed (V $\left.\mathrm{V}_{\mathrm{BIAS}}\right)$ at which the axis specified
rotates						

[Description]

1. Users can set the start-up speed of motion. The value in (D1825, D1824) ((D1905, D1904), (D1985, D1984)) is in the range of 0 to $2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976).)
2. The frequency of pulses generated by motion is in the range of 0 PPS to 500 KPPS . If the value in (D1825, D1824) ((D1905, D1904), (D1985, D1984)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1825, D1824) ((D1905, D1904), (D1985, D1984)) is less than 0 , the frequency of pulses generated will be 0 PPS.
3. If a stepper motor system is used, the start-up speed that users set must be greater than the motor resonance frequency generated.

X-axis		Y-axis		Z-axis		JOG speed ($\mathrm{V}_{\text {JOG }}$) at which the axis specified
HW	LW	HW	LW	HW	LW	
D1827	D1826	D1907	D1906	D1987	D1986	

[Description]

1. Users can set the JOG speed $\left(\mathrm{V}_{\mathrm{JOG}}\right)$ at which the axis specified rotates. The value in (D1827, D 1826) ((D1907, D1906), (D1987, D1986)) is in the range of 0 to $2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976).
2. The frequency of pulses generated by motion is in the range of 10 PPS to 500 K PPS. If the value in (D1827, D1826) ((D1907, D1906), (D1987, D1986)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1827, D1826) ((D1907, D1906), (D1987, D1986)) is less than 10, the frequency of pulses generated will be 10 PPS .
3. $\mathrm{V}_{\mathrm{MAX}}>\mathrm{V}_{\text {JOG }}>\mathrm{V}_{\text {BIAS }}$

If the $\mathrm{V}_{\text {JOG }}$ set is greater than the $\mathrm{V}_{\text {MAX }}$ set, the actual $\mathrm{V}_{\text {JOG }}$ will be equal to the $\mathrm{V}_{\text {MAX }}$.
If the $\mathrm{V}_{\text {JOG }}$ set is less than the $\mathrm{V}_{\text {BIAS }}$ set, the actual $\mathrm{V}_{\text {JOG }}$ will be equal to the $\mathrm{V}_{\text {BIAS }}$, and an error will occur.
4. When an axis operates, users can not modify the JOG speed of the axis

X-axis		Y-axis		Z-axis		Speed $\left(\mathrm{V}_{\mathrm{RT}}\right)$ at which the axis specified returns
HW home						
D1829	D1828	D1909	D1908	D1989	D1988	

[Description]

1. Users can set the speed at which the axis specified returns home. The value in (D1829, D1828) ((D1909, D1908), (D1989, D1988)) is in the range of 1 to $2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976).)
2. The frequency of pulses generated by motion is in the range of 10 PPS to 500 KPPS . If the value in (D1829, D1828) ((D1909, D1908), (D1989, D1988)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1829, D1828) ((D1909, D1908), (D1989, D1988)) is less than 10, the frequency of pulses generated will be 10 PPS .
3. $V_{M A X}>V_{R T}>V_{\text {BIAS }}$
4. When an axis returns home, the speed at which the axis returns home can not be changed.

X-axis		Y-axis		Z-axis		Speed $\left(V_{C R}\right)$ to which the speed of the axis Specified decreases when the axis returns home
HW	LW	HW	LW	HW	LW	
D1831	D1830	D1911	D1910	D1991	D1990	

[Description]

1. The value in (D1831, D1830) ((D1911, D1910), (D1991, D1990)) is in the range of 1 to $2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976).
2. The frequency of pulses generated by motion is in the range of 10 PPS to 500 K PPS. If the value in (D1831, D1830) ((D1911, D1910), (D1991, D1990)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1831, D1830) ((D1911, D1910), (D1991, D1990)) is less than 10, the frequency of pulses generated will be 10 PPS .
3. When motion of returning home is executed, the speed of the motor used is the V_{RT} set. When there is a transition in DOG's signal from low to high or from high to low, the speed of the motor used decreases to the V_{CR} set.
4. In order for the axis specified to returns home precisely, it is suggested that the V_{CR} set should be a low speed.
5. When the motion of returning home is executed, the V_{CR} set can not be changed.

X-axis		Y-axis		Z-axis		Number of PG0 pulses for the axis specified
HW	LW	HW	LW	HW	LW	
-	D1832	-	D1912	-	D1992	

[Description]

1. The value in D1832 (D1912, D1992) is in the range of $-32,768$ to 32,767 . If the value in D1832 (D1912, D1992) is a positive value, the axis specified will move in the direction in which it returns home. If the value in D1832 (D1912, D1992) is a negative value, the axis specified will move in the direction which is opposite to the direction in which it returns home.
2. Please refer to the descriptions of bit 9 and bit10 in D1816 (D1896, D1976) for more information about decelerating and stopping the motor used.

X-axis		Y-axis		Z-axis	
HW	LW	HW	LW	HW	LW
-	D1833	-	D1913	-	D1993

Supplementary pulses for the axis specified

[Description]

1. The value in D1833 (D1913, DD1993) is in the range of $-32,768$ to 32,767 . If the value in D1833 (D1913, DD1993) is a positive value, the axis specified will move in the direction in which it returns home. If the value in D1833 (D1913, DD1993) is a negative value, the axis specified will move in the direction which is opposite to the direction in which it returns home.
2. Please refer to the descriptions of bit 9 and bit10 in D1816 (D1896, D1976) for more information about decelerating and stopping the motor used.

X-axis		Y-axis		Z-axis		Home position of the axis specified
HW	LW	HW	LW	HW	LW	
D1835	D1834	D1915	D1914	D1995	D1994	

[Description]

1. The value in (D1835, D1834) ((D1915, D1914), (D1995, D1994)) is in the range of 0 to $\pm 999,999$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976).
2. After the axis specified returns home, the value in (D1835, D1834) ((D1915, D1914), (D1995, D1994)) will be written into (D1849, D1848) ((D1929, D1928), (D2009, D2008)).

X-axis		Y-axis		Z-axis	
HW	LW	HW	LW	HW	LW
-	D1836	-	D1916	-	D1996

Time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the axis specified to accelerate

[Description]

1. Users can set the times it takes for the speed of the axis specified to increase from its start-up speed to its maximum speed. The value in D1836 (D1916, D1996) is in the range of 0 to 32,767 . A millisecond is a unit.
2. If the value in D1836 (D1916, D1996) is less than 10, it will be counted as 10. If the value in D1836 (D1916, D1996) is greater than 32,767 , it will be counted as 32,767 .
3. If users want to have a complete S curve, the maximum speed which is set must be the same as the speed at which the axis specified operates.

X-axis		Y-axis		Z-axis		Time ($\left.\mathrm{T}_{\mathrm{DEC}}\right)$ it takes for the axis specified to
decelerate						

[Description]

1. Users can set the times it takes for the speed of the axis specified to decrease from its maximum speed to its start-up speed. The value in D1837 (D1917, D1997) is in the range of 0 to 32,767. A millisecond is a unit.
2. If the value in D1837 (D1917, D1997) is less than 10, it will be counted as 10. If the value in D1837 (D1917, D1997) is greater than 32,767 , it will be counted as 32,767 .
3. If users want to have a complete S curve, the maximum speed which is set must be the same as the speed at which the axis specified operates.

X-axis		Y-axis		Z-axis	
HW	LW	HW	LW	HW	LW
D1839	D1838	D1919	D1918	D1999	D1998

Target position of the axis specified ($\mathrm{P}(\mathrm{I})$)
[Description]

1. The value in (D1839, D1838) ((D1919, D1918), (D1999, D1998)) is in the range of $-2,147,483,648$ to $+2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976).)
2. Target position ($\mathrm{P}(\mathrm{I})$)

- Absolute coordinates: Bit 12 in D1816 (D1896, D1976) is 0.

The target position of the axis specified indicates a distance from 0 . If the target position of an axis is greater than its present command position, the motor used will rotate clockwise. If the target position of an axis is less than its present command position, the motor used will rotate counterclockwise.

- Relative coordinates: Bit 12 in D1816 (D1896, D1976) is 1.

The target position of an axis indicates a distance from its present command position. If the target position specified is a positive value, the motor used will rotate clockwise. If the target position specified is a negative value, the motor used will rotate counterclockwise.
3. The ratio used is determined by bit 2 and bit 3 in D1816 (D1896, D1976).

X-axis		Y-axis		Z-axis		Speed at which the axis specified rotates (V (I))
HW	LW	HW	LW	HW	LW	
D1841	D1840	D1921	D1920	D2001	D2000	

[Description]

1. The value in (D1841, D1840) ((D1921, D1920), (D2001, D2000)) is in the range of $-2,147,483,647$ to $+2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976).)
2. The frequency of pulses generated by motion is in the range of 10 PPS to 500 K PPS. If the value in (D1841, D1840) ((D1921, D1920), (D2001, D2000)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1841, D1840) ((D1921, D1920), (D2001, D2000)) is less than 10, the frequency of pulses generated will be 10 PPS.
3. $\mathrm{V}_{\mathrm{MAX}}>\mathrm{V}(\mathrm{I})>\mathrm{V}_{\mathrm{BIAS}}$
4. When bit 4 in D1846 (D1926, D2006) is ON, the speed at which the axis specified rotates (V (I)) can be changed. If the Speed at which the axis specified rotates is a positive value, the motor used will rotate clockwise. If the Speed at which the axis specified rotates is a negative value, the motor used will rotate counterclockwise.

X-axis		Y-axis		Z-axis		Target position of the axis specified (P (II))
HW	LW	HW	LW	HW	LW	
D1843	D1842	D1923	D1922	D2003	D2002	

[Description]

1. The value in (D1843, D1842) ((D1923, D1922), (D2003, D2002)) is in the range of $-2,147,483,648$ to $+2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976).)
2. Target position (P (II))

- Absolute coordinates: Bit 12 in (D1816 (D1896, D1976) is 0.

The target position of the axis specified indicates a distance from 0 . If the target position of an axis is greater than its present command position, the motor used will rotate clockwise. If the target position of an axis is less than its present command position, the motor used will rotate counterclockwise.

- Relative coordinates: Bit 12 in (D1816 (D1896, D1976, D2056, D2136, D2216) is 1.

The target position of an axis indicates a distance from its present command position. If the target position specified is a positive value, the motor used will rotate clockwise. If the target position specified is a negative value, the motor used will rotate counterclockwise.
3. The ratio used is determined by bit 2 and bit 3 in D1816 (D1896, D1976).

X-axis		Y-axis		Z-axis		Speed at which the axis specified rotates(V (II))
HW	LW	HW	LW	HW	LW	
D1845	D1844	D1925	D1924	D2005	D2004	

[Description]

1. The value in (D1845, D1844) ((D1925, D1924), (D2005, D2004)) is in the range of 0 to $2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976).)
2. The frequency of pulses generated by motion is in the range of 10 PPS to 500 K PPS. If the value in (D1845, D1844) ((D1925, D1924), (D2005, D2004)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1845, D1844) ((D1925, D1924), (D2005, D2004)) is less than 10, the frequency of pulses generated will be 10 PPS.
3. $\mathrm{V}_{\text {MAX }}>\mathrm{V}$ (II) $>\mathrm{V}_{\text {BIAS }}$

X-axis		Y-axis		Z-axis		Operation command
HW	LW	HW	LW	HW	LW	
-	D1846	-	D1926	-	D2006	

[Description]

1. Bit 0 in D1846 (D1926, D2006): The motion of the axis specified is stopped by software.

- The motion of the axis specified is stopped by software when bit 0 in D1846 (D1926, D2006) is turned from OFF to ON.
- The function of bit 0 in D1846 (D1926, D2006) is the same as the function of STOP. Bit 0 in D1846 (D1926, D2006) and STOP can be used to decelerate and stop the motion controller used.

2. Bit 1 in D1846 (D1926, D2006): The motion of the axis specified is started by software.

- The motion of the axis specified is started by software when bit 1 in D1846 (D1926, D2006) is turned from OFF to ON.

3. Bit 2 in D1846 (D1926, D2006): The axis specified operates in a JOG+ mode.

- When bit 2 in D1846 (D1926, D2006), clockwise pulses are generated at the JOG speed set.

4. Bit 3 in D1846 (D1926, D2006): The axis specified operates in a JOG- mode.

- When bit 3 in D1846 (D1926, D2006) is ON, counterclockwise pulses are generated at the JOG speed set.

5. Bit 4 in D1846 (D1926, D2006): A mode of variable motion is activated.

- After bit 4 in D1846 (D1926, D2006) is set to 1, the DVP-20PM series motion controller will execute variable motion, and it will send pulses by a pulse generator.
- After a mode of variable motion is activated, the $\mathrm{V}_{\text {BIAS }}$ of the axis specified will increase to its V (I). When the axis operates, users can change its $\vee(I)$ at will. The DVP-20PM series motion controller accelerates or decelerates according to the V (I) set.
- Users can stop variable motion by setting bit 0 in D1846 (D1926, D2006,) to 1, or by setting bit 4 in D1846 (D1926, D2006) to 0.
- Diagram

6. Bit 5 in D1846 (D1926, D2006): A manual pulse generator is operated.

- If bit 5 in D1846 (D1926, D2006) is set to ON, a manual pulse generator mode will be activated. Please refer to the descriptions of D1858~D1864 (D1938~D1944, D2018~D2024) for more information.

7. Bit 6 in D1846 (D1926, D2006): A mode of triggering the return to home is activated.

- When bit 6 in D1846 (D1926, D20066) is turned from OFF to ON, a mode of triggering the return to home is activated. The mode of triggering the return to home varies with the present command position of the axis specified. There are two situations.

Position (1): Position [1] is at the right side of the home and DOG, and DOG is OFF.
Position (2): Position [2] is at the right side of the home, and DOG is ON.
Position (3)*: Position [3] is at the left side of the home and DOG. DOG is OFF, and LSN is OFF. Position (4)*: Position [4] is at the left side of the home and DOG. DOG is OFF, and LSN is ON. *: A DVP-10PM series motion controller does not have LSN and LSP, and therefore does not support position (3) and position (4).
8. Bit 7 in D1926: Triggering single-speed motion by means of an external signal

- If bit 7 in D1926 is set to ON, single-speed motion can be triggered by an external signal. After DOG1's signal goes from low to high or from high to low, the single-speed motion will be executed. If PG1 is turned ON when the Y-axis moves to the range which is not masked, the motion of the Y-axis will stop immediately, and CLR1 will be ON twenty microseconds after PG1's signal goes from low to high or from high to low. The speed of the single-speed motion depend on the \vee (I)
which are set by users, and the DVP-20PM series motion controller sends pulses by a pulse generator.
- The range which is masked is shown below. It depends on the present command position of the Y -axis and the target position of the Y -axis. If the present command position of the Y -axis is less than its target position, t the motor used will rotate clockwise. If the present command position of the Y -axis is greater than its target position, the motor used will rotate counterclockwise, and the Y -axis leaves the range which is masked when the value in D1928 is 0 .

Positive direction

- If relative single-speed motion is activated, the sign bit of the $P(I)$ set by users will determine the direction of the relative single-speed motion.
- Absolute single-speed motion: If the target position of the axis specified is greater than its present command position, the motor used will rotate clockwise. If the target position of the axis specified is less than its present command position, the motor used will rotate counterclockwise.
- The speed of the Y-axis increases from the $V_{\text {BIAS }}$ set to the $V(I)$ set. After PG1 is turned ON, the Y-axis will stop outputting pulses.
- $\mathrm{V}_{\text {BIAS }}$ D1824 (D1904, D1984); V (I): D1840 (D1920, D2000); $\mathrm{V}_{\text {MAX }}$: D1822 (D1902, D1982); $\mathrm{T}_{\text {ACC }}$: D1836 (D1916, D1996)

9. Bit 8 in D1846 (D1926, D2006): A mode of single-speed motion is activated.

- After bit 8 in D1846 (D1926, D2006) is set to 1, a mode of single-speed motion will be activated. The target position of the single-speed motion and the speed of the single-speed motion depend on the $\mathrm{P}(\mathrm{I})$ and the $\mathrm{V}(\mathrm{I})$ which are set by users, and the DVP-20PM series motion controller sends pulses by a pulse generator.
- If relative single-speed motion is activated, the sign bit of the $P(I)$ set by users will determine the direction of the relative single-speed motion.
- Absolute single-speed motion: If the target position of the axis specified is greater than its present command position, the motor used will rotate clockwise. If the target position of the axis specified is less than its present command position, the motor used will rotate counterclockwise.
- After single-speed motion is activated, the speed of the absolute single-speed motion will increase from the $\mathrm{V}_{\text {BIAS }}$ set to the $\mathrm{V}(\mathrm{I})$ set. The speed of the absolute single-speed motion will not decrease from the $\mathrm{V}(\mathrm{I})$ set to the $\mathrm{V}_{\text {BIAS }}$ set until the number of pulses output is near the $\mathrm{P}(\mathrm{I})$ set.
- $\mathrm{V}_{\text {BIAs }}$: D1824 (D1904, D1984); V (I): D1840 (D1920, D2000); $\mathrm{V}_{\text {max }}$: D1822 (D1902, D1982); P (I): D1838 (D1918, D1998); $\mathrm{T}_{\text {ACC: }}$ D1836 (D1916, D1996); $\mathrm{T}_{\mathrm{DEC}}:$ D1837 (D1917, D1997)

- If bit 6 in D1816 (D1896, D1976) is ON, and bit 8 in D1846 (D1926, D2006) is ON, Y0~Y3 will output unidirectional pulses.

10. Bit 9 in D1846 (D1926, D2006): A mode of inserting single-speed motion is activated.

- After bit 9 in D1846 (D1926, D2006) is set to 1 , a mode of inserting single-speed motion will be activated, and the DVP-20PM series motion controller will send pulses by a pulse generator. After DOG's signal goes from low to high or from high to low, the axis specified will move to the target position indicated by the $P(I)$ set.
- If relative single-speed motion is activated, the sign bit of the $P(I)$ set by users will determine the direction of the relative single-speed motion.
- Absolute single-speed motion: If the target position of the axis specified is greater than its present command position, the motor used will rotate clockwise. If the target position of the axis specified is less than its present command position, the motor used will rotate counterclockwise.
- The speed of motion will increase from the $\mathrm{V}_{\text {BIAS }}$ set to the V (I) set. After DOG's signal goes from low to high or from high to low, the DVP-20PM series motion controller used will continue sending pulses. The speed of the motion will not decrease from the $\vee(I)$ set to the $V_{\text {BIAS }}$ set until the number of pulses output is near the $P(I)$ set.
- $\mathrm{V}_{\text {BIAs: }}$ D1824 (D1904, D1984); V (I): D1840 (D1920, D2000); V ${ }_{\text {MAX }}$: D1822 (D1902, D1982); P (I): D1838 (D1918, D1998); $\mathrm{T}_{\text {ACC }}$: D1836 (D1916, D1996); $\mathrm{T}_{\mathrm{DEC}}$: D1837 (D1917, D1997)

11. Bit 10 in D1846 (D1926, D2006): A mode of two-speed motion is activated.

- After bit 10 in D1846 (D1926, D2006) is set to 1, a mode of two-speed motion will be activated. The axis specified moves at the $V(I)$ set. After it moves to the $P(I)$ set, it will move to the P (II) set at the V (II) set.
- Relative coordinates: The sign bit of the $\mathrm{P}(\mathrm{I})$ set by users determines the direction of motion. If the $P(I)$ specified is a positive value, the motor used will rotate clockwise. If the $P(I)$ specified is a negative value, the motor used will rotate counterclockwise.
- Absolute coordinates: If the target position (P (I)) of an axis is greater than its present command position, the motor used will rotate clockwise. If the target position (P (I)) of an axis is less than its present command position, the motor used will rotate counterclockwise.
- After motion is started, the speed of the motion will increase from the $\mathrm{V}_{\text {BIAS }}$ set to the V (I) set. The speed of the motion will not increase/decrease from the V (I) set to the V (II) set until the number of pulses output is near the $P(I)$ set. The speed of the motion will not decrease from the V (II) to
the $\mathrm{V}_{\text {BIAS }}$ set until the present command position of the axis specified is near the P (II) set.
- V ${ }_{\text {BIAs: }}$ D1824 (D1904, D1984); V (I): D1840 (D1920, D2000); V (II): D1844 (D1924, D2004,); V ${ }_{\text {Max: }}$: D1822 (D1902, D1982); P (I): D1838 (D1918, D1998); P (II): D1842 (D1922, D2002); T Acc : D1836 (D1916, D1996); T ${ }_{\text {DEc }}$: D1837 (D1917, D1997)

Start
12. Bit 11 in D1846 (D1926, D2006): A mode of inserting two-speed motion is activated.

- After bit 11 in D1846 (D1926, D2006) is set to 1, a mode of inserting two-speed motion will be activated. The axis specified moves at the $V(\mathrm{I})$ set. After DOG's signal goes from low to high or from high to low, the axis will move to the target position indicated by the P (II) set at the V (II) set.
- Relative coordinates: The sign bit of the $P(I)$ set by users determines the direction of motion.
- Absolute coordinates: If the target position (P (I)) of an axis is greater than its present command position, the motor used will rotate clockwise. If the target position (P (I)) of an axis is less than its present command position, the motor used will rotate counterclockwise.
- After motion is started, the speed of the motion will increase from the $\mathrm{V}_{\text {BIAS }}$ set to the V (I) set. After DOG's signal goes from low to high or from high to low, the speed of the motion will increase/decrease from the V (I) set to the V (II) set. If there is a transition in STOP's signal from low to high or from high to low when the axis specified moves at the V (II) set, the axis will stop outputting pulses.
- V ${ }_{\text {BIAS }}$: D1824 (D1904, D1984); V (I): D1840 (D1920, D2000); V (II): D1844 (D1924, D2004); V ${ }_{\text {MAX }}$: D1822 (D1902, D1982); P (I): D1838 (D1918, D1998); P (II): D1842 (D1922, D2002); T Acc : D1836 (D1916, D1996); $\mathrm{T}_{\text {Dec: }}$: D1837 (D1917, D1997)

13. Bit 12 inD1846 (D1926, D2006): The execution of the Ox motion subroutine set starts.

- Bit 12=1: The execution of the Ox motion subroutine set starts.
- Bit $12=0$: The execution of the Ox motion subroutine set stops.

X-axis		Y-axis		Z-axis		Mode of operation
HW	LW	HW	LW	HW	LW	
-	D1847	-	D1927	-	D2007	

[Description]

1. Bit 2 in D1847 (D1927, D2007): Mode of sending a CLR signal

- Bit 2=0: After the axis specified returns home, the CLR output will send a 130 millisecond signal to the servo drive used, and the present position of the servo drive which is stored in a register in the
servo drive will be cleared.
- Bit 2=1: The CLR output functions as a general output. Its state is determined by bit 3 in D1847 (D1927, D2007).

2. Bit 3 in D1847 (D1927, D2007): Setting the CLR output to ON/OFF

- Bit 3=0: The CLR output is OFF.
- Bit 3=1: The CLR output is ON.

3. Bit 4 in D1847 (D1927, D2007): Setting the polarity of the CLR output

- Bit 4=0: The CLR output is a Form A contact.
- Bit 4=1: The CLR output is a Form B contact.

4. Bit 5 in D1847 (D1927, D2007): Mode of stopping the motor used when STOP is ON.

- Bit 5=0: If STOP is ON when the motor used operates, the motor will decelerate and stop. If a motion command is sent, the motor will ignore the previous unfinished distance, and rotate for the distance specified.
- Bit 5=1: If STOP is ON when the motor used operates, the motor will decelerate and stop. If a motion command is sent, the motor will complete the previous unfinished distance, and then rotate for the distance specified.

5. Bit 6 in D1847 (D1927, D2007,): Limitation on the present position of the slave axis controlled by the manual pulse generator used

- Bit 6=0: There is no limitation on the present position of the slave axis controlled by the manual pulse generator used.
- Bit 6=1: The present position of the slave axis controlled by the manual pulse generator used has to be in the range of the $P(I)$ set to the $P(I I)$ set. If the present position of the slave axis controlled by the manual pulse generator used is not in the range of the P (I) set to the P (II) set, the slave axis will decelerate and stop.

6. Bit 7 in D1847 (D1927, D2007): Mode of stopping the motor used when the motor used comes into contact with a positive limit switch/negative limit switch

- Bit 7=0: If the motor used comes into contact with a positive limit switch/negative limit switch when it rotates, it will decelerate and stop.
- Bit 7=1: If the motor used comes into contact with a positive limit switch/negative limit switch when it rotates, it will stop immediately.

7. Bit 8~bit 10 in D1847 (D1927, D2007): Setting a stop signal

- When single-speed motion, two-speed motion, inserting single-speed motion, or inserting two-speed motion is executed, A0 or B0 can be used to stop the motion.
- Bit 10~bit 8=K0 (000) or other values: No function

Bit 10~bit 8=K1 (001): Motion is stopped immediately when there is a transition in A0's signal from low to high.
Bit 10~bit 8=K2 (010): Motion is stopped immediately when there is a transition in A0's signal from high to low.
Bit 10~bit 8=K3 (011): Motion is stopped immediately when there is a transition in B0's signal from low to high.
Bit 10~bit 8=K4 (100): Motion is stopped immediately when there is a transition in B0's signal from high to low.
8. Bit 15 in D1847 (D1927, D2007): Restoring the DVP-20PM series motion controller to the factory settings

- Bit 15=1: The values of parameters are restored to factory settings.

X-axis		Y-axis		Z-axis		Present command position of the axis specified
HW	LW	HW	LW	HW	LW	
D1849	D1848	D1929	D1928	D2009	D2008	

[Description]

1. The value in (D1849, D1848) ((D1929, D1928), (D2009, D2008)) is in the range of $-2,147,483,648$ to +2,147,483,647.
2. The present command position of the axis specified is indicated by the number of pulses. The unit used
is determined by bit 0 and bit 1 in D1816 (D1896, D1976). After the axis specified returns home, the value in (D1835, D1834) ((D1915, D1914), (D1995, D1994)) will be written into (D1849, D1848) ((D1929, D1928), (D2009, D2008)).

X-axis		Y-axis		Z-axis	
HW	LW	HW	LW	HW	LW
D1851	D1850	D1931	D1930	D2011	D2010

Present command speed of the axis specified (PPS)
[Description]

1. The value in (D1851, D1850) ((D1931, D1930), (D2011, D2010)) is in the range of 0 to $2,147,483,647$.
2. The present command speed of the axis specified is indicated by the number of pulses.

X-axis		Y-axis		Z-axis		Present command position of the axis specified
HW	LW	HW	LW	HW	LW	
(Unit)						

[Description]

1. The value in (D1853, D1852) ((D1933, D1932), (D2013, D2012)) is in the range of $-2,147,483,648$ to $+2,147,483,647$.
2. The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976). After the axis specified returns home, the value in (D1835, D1834) ((D1915, D1914), (D1995, D1994)) will be written into (D1853, D1852) ((D1933, D1932), (D2013, D2012)).

X-axis		Y-axis		Z-axis	
HW	LW	HW	LW	HW	LW
D1855	D1854	D1935	D1934	D2015	D2014

Present command speed of the axis specified (Unit)
[Description]

1. The value in (D1855, D1854) ((D1935, D1934), (D2015, D2014)) is in the range of 0 to $2,147,483,647$.
2. The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976).

X-axis		Y-axis		Z-axis		SW
HW	LW	HW	LW	HW	LW	
-	D1856	-	D1936	-	D2016	

[Description]

Bit\#	D1856 (D1936, D2016)
$\mathbf{0}$	Positive-going pulses are being output.
$\mathbf{1}$	Negative-going pulses are being output.
$\mathbf{2}$	The axis specified is operating.
$\mathbf{3}$	An error occurs.
$\mathbf{4}$	The axis specified pauses.
$\mathbf{5}$	The manual pulse generator used generates positive-going pulses.
$\mathbf{6}$	The manual pulse generator used generates negative-going pulses.
$\mathbf{7}$	

X-axis		Y-axis		Z-axis		Axis error code
HW	LW	HW	LW	HW	LW	
-	D1857	-	D1937	-	D2017	

[Description]

Please refer to chapter 15 for more information.

X-axis		Y-axis		Z-axis		Electronic gear ratio
HW	LW	HW	LW	HW	LW	
-	D1858	-	D1938	-	D2018	Electronic gear ratio (Denominator)
-	D1859	-	D1939	-	D2019	Elann

[Description]

1. If bit 5 in D1846 (D1926, D2006) is set to ON, a manual pulse generator mode will be activated.
2. A manual pulse generator generates $A / B-$ phase pulses that are sent to the input terminals $A 0 \pm / B 0 \pm$ ($\mathrm{A} 1 \pm / \mathrm{B} 1 \pm$). The relation between the position of the axis specified and the input pulses generated by the manual pulses used is shown below.

If a positive limit switch or a negative limit switch is enabled when a manual pulse generator is operated, the generation of pulses will stop. If a positive limit switch is enabled, positive-going pulses will be inhibited, and negative-going will be allowed. If a negative limit switch is enabled, negative-going pulses will be inhibited, and positive-going switch will be allowed.
3. The speed output is determined by the frequency of input pulses generated by a manual pulse generator and an electronic gear ratio.

X-axis		Y-axis		Z-axis	
HW	LW	HW	LW	HW	LW
D1861	D1860	D1941	D1940	D2021	D2020

Frequency of pulses generated by the manual pulse generator for the axis specified

[Description]

1. The value in (D1861, D1860) ((D1941, D1940), (D2021, D2020)) indicates the frequency of pulses generated by the manual pulse generator for the axis specified. It does not vary with the values in D1858 (D1938, D2018) and D1859 (D1939, D2019).

X-axis		Y-axis		Z-axis	
HW	LW	HW	LW	HW	LW
D1863	D1862	D1943	D1942	D2023	D2022

Number of pulses generated by the manual pulse generator for the axis specified
[Description]

1. The value in (D1863, D1862) ((D1943, D1942), (D2023, D2022)) indicates the number of pulses generated by the manual pulse generator for the axis specified. If the pulses generated by the manual pulse generator for the axis specified are clockwise pulses, the value in (D1863, D1862) ((D1943, D1942), (D2023, D2022)) will increase. If the pulses generated by the manual pulse generator for the axis specified are counterclockwise pulses, the value in (D1863, D1862) ((D1943, D1942), (D2023, D2022)) will decrease.
2. The value in (D1863, D1862) ((D1943, D1942), (D2023, D2022)) does not vary with the values in D1858 (D1938, D2018) and D1859 (D1939, D2019).

X-axis		Y-axis		Z-axis		Response speed of the manual pulse generator
HW	LW	HW	LW	HW	LW	
-	D1864	-	D1944	-	D2024	

[Description]

1. If the response speed set is high, the pulses output happen almost at the same time as the pulses input by the manual pulse generator used.
2. If the response speed set is low, the pulses output follows the pulses input by the manual pulse generator used.

Setting value	Response speed
$\geqq 5$	4 ms (Initial value)

3 Devices

Setting value	Response speed
4	32 ms
3	108 ms
2	256 ms
1 or 0	500 ms

3. Bit 8 and bit 9 in D1864 (D1944, D2024): Setting the input pulses generated by the manual pulse generator specified

b9	b8	Input type (positive logic)	Description
0	0	RP Counterclockwise pulses \qquad \square \square \square	Counting up/down
0	1		Pulses+Directions
1	0	FP A-phase pulses	A/B-phase pulses
1	1	RP B-phase pulses \square Clockwise \square \uparrow \square Counterclockwise	Four times the frequency of A/B-phase pulses

3.12.2 Introduction of Modes of Motion

1. There are ten modes of motions.
2. Returning home
3. Two-speed motion
4. JOG motion
5. Inserting two-speed motion
6. Single-speed motion
7. Variable motion
8. Inserting single-speed motion
9. Manual pulse generator mode
10. Triggering single-speed motion by means of an external signal*
11. Starting a cyclic/noncyclic electronic cam*
12. If more than one mode of motion is activated, they will be executed in particular order.
13. Stopping the motion of the axis specified by software
14. Single-speed motion
15. Returning home
16. Inserting single-speed motion
17. Positive JOG motion
18. Triggering single-speed motion by means of an external signal*
19. Negative JOG motion
20. Two-speed motion
21. Manual pulse generator mode
22. Inserting two-speed motion
23. Variable motion
24. Starting a cyclic/noncyclic electronic cam*
*: Only DVP-20PM series motion controllers support this mode of motion.
If a mode of motion is activated when another mode of motion is executed, the DVP-20PM series motion controller will continue executing the original mode.
25. There are two types of acceleration curves.

1. Trapezoid curve		2. S curve	

3.12.3 Special Data Registers for Motion Axes

3 Devices

(o) indicates that the special data registers are applicable to the motion.

MEMO

4.1 Table of Basic Instructions

[a] General instructions

Instruction code	Function	Operand	Execution speed ($\boldsymbol{\mu} \boldsymbol{s})$	Step	Page number
LD	Loading a Form A contact	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	3.3	3	$4-3$
LDI	Loading a Form B contact	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	3.3	3	$4-3$
AND	Connecting a Form A contact in series	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	3.3	3	$4-4$
ANI	Connecting a Form B contact in series	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	3.3	3	$4-4$
OR	Connecting a Form A contact in parallel	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	3.3	3	$4-5$
ORI	Connecting a Form B contact in parallel	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	3.3	3	$4-5$
ANB	Connecting circuit blocks in series	None	2.3	3	$4-6$
ORB	Connecting circuit blocks in parallel	None	2.3	3	$4-7$

Output instructions

Instruction code	Function	Operand	Execution speed ($\boldsymbol{\mu} \boldsymbol{s})$	Step	Page number
OUT	Driving a coil	$\mathrm{Y}, \mathrm{M}, \mathrm{S}$	7.3	3	$4-7$
SET	Keeping a device ON	$\mathrm{Y}, \mathrm{M}, \mathrm{S}$	5.6	3	$4-8$
RST	Resetting a contact or a register	$\mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}, \mathrm{D}, \mathrm{V}, \mathrm{Z}$	6.9	3	$4-8$

Timer and counters

API	Instruction code	Function	Operand	Execution speed ($\boldsymbol{\mu s}$)	Step	Page number
96	TMR	16-bit timer	T-K or T-D	19	5	$4-9$
97	CNT	16-bit counter	C-K or C-D (16 bits)	16	5	$4-9$
97	DCNT	32-bit counter	C-K or C-D (32 bits)	16.5	6	$4-10$

Ead Rising-edge/Falling-edge detection instructions

API	Instruction code	Function	Operand	Execution speed ($\boldsymbol{\mu}$)	Step	Page number
90	LDP	Starting rising-edge detection	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	12.3	3	$4-10$
91	LDF	Starting falling-edge detection	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	12.3	3	$4-11$
92	ANDP	Connecting rising-edge detection in series	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	12.3	3	$4-11$
93	ANDF	Connecting falling-edge detection in series	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	12.3	3	$4-12$
94	ORP	Connecting rising-edge detection in parallel	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	12.6	3	$4-12$
95	ORF	Connecting falling-edge detection in parallel	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	12.6	3	$4-13$

4 Basic Instructions

Rising-edge/Falling-edge output instruction

API	Instruction code	Function	Operand	Execution speed (us)	Step	Page number
89	PLS	Rising-edge output	Y, M	20.7	3	$4-14$
99	PLF	Falling-edge output	Y, M	20.9	3	$4-14$

[ad Other instructions

Instruction code	Function	Operand	Execution speed (us)	Step	Page number
P	Pointer	$\mathrm{P} 0 \sim \mathrm{P} 255$	-	1	$4-15$

4.2 Descriptions of the Basic I nstructions

Instruction code	Function					Applicable model	
LD	Loading a Form A contact					20PM	
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

Instruction code: Description:

LD	X0	Loading the Form A contact X0
AND	X1	Connecting the Form A contact X1 in series
OUT	Y1	Driving the coil Y1

Instruction code	Function					Applicable model	
LDI	Loading a Form B contact					20PM\checkmark	
	X0~X377	Y0-Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
Operand	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

- The instruction LDI applies to the Form B contact which starts from a busbar or the Form B contact which is the start of a circuit. It reserves the present contents, and stores the state which is gotten in an accumulation register.

Instruction code: Description:

LDI	X0	Loading the Form B contact X0
AND	X1	Connecting the Form A contact X1 in series
OUT	Y1	Driving the coil Y1

Instruction code	Function					Applicable model	
AND	Connecting a Form A contact in series					20PM	
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

- The instruction AND is used to connect a Form A contact in series. It reads the

Explanation state of a contact which is connected in series, and performs the AND operation on the previous logical operation result. The final result is stored in an accumulation register.
Ladder diagram:

Instruction code:	Description: LDI X1	Loading the Form B contact X1
AND	X0	Connecting the Form A contact X0
OUT	Y1	Driving the coil Y1

Instruction code	Function					Applicable model	
ANI	Connecting a Form B contact in series					20PM	
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

- The instruction ANI is used to connect a Form B contact in series. It reads the state of a contact which is connected in series, and performs the AND operation on the previous logical operation result. The final result is stored in an accumulation register.
Ladder diagram:
Example

Instruction code: LD	X1	Description: Loading the Form A contact X1
ANI	X0	Connecting the Form B contact X0 in series
OUT	Y1	Driving the coil Y1

Instruction code	Function				Applicable model											
OR	Connecting a Form A contact in parallel					20PM										
	Operand									X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark										

Explanation

Instruction code	Function	Applicable model
ORI	Connecting a Form B contact in parallel	20 PM

Operand	$\mathrm{X} 0 \sim \mathrm{X} 377$	$\mathrm{Y} 0 \sim \mathrm{Y} 377$	$\mathrm{M} 0 \sim \mathrm{M} 4,095$	$\mathrm{~S} 0 \sim \mathrm{~S} 1,023$	$\mathrm{~T} 0 \sim$ T255	$\mathrm{C} 0 \sim \mathrm{C} 255$	$\mathrm{D} 0 \sim \mathrm{D} 9,999$
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Instruction code:	Description:	
LD	X0	Loading the Form A contact X0
OR	X1	Connecting the Form A contact X1 in
OUT	Y1	parallel
Driving the coil Y1		

- The instruction OR is used to connect a Form A contact in parallel. It reads the state of a contact which is connected in parallel, and performs the OR operation on the previous logical operation result. The final result is stored in an

Explanation

- The instruction ORI is used to connect a Form B contact in parallel. It reads the operation on the previous logical operation result. The final result is stored in an
-xplanation accumulation register.
Ladder diagram:

Instruction code: Description:

LD	X0	Loading the Form A contact X0
ORI	X1	Connecting the Form B contact X1 in
OUT	Y1	parallel
Driving the coil Y1		

Instruction code	Function	Applicable model
ANB	Connecting circuit blocks in series	20PM
	None	
Operand	\checkmark	

Explanation accumulation register.

Ladder diagram:
Example
 operation result reserved previously and the contents of the present

- The instruction ANB is used to perform the AND operation on the logical

Instruction code:	Description: LD\quad X0	Loading the Form A contact X0
ORI	X2	Connecting the Form B contact X2 in parallel
LDI	X1	Loading the Form B contact X1
OR	X3	Connecting the Form A contact X3 in parallel
ANB		Connecting the circuit blocks in series
OUT	Y1	Driving the coil Y1

Instruction code	Function	Applicable model
ORB	Connecting circuit blocks in parallel	20 PM
Operand	None	\checkmark

Explanation

- The instruction ORB is used to perform the OR operation on the logical

Instruction code: Description:

LD	X0	Loading the Form A contact X0 Connecting the Form
ANI	X1	B contact X1 in series Loading the Form B contact X2
LDI	X2	
AND	X3	Connecting the Form A contact X3 in series
ORB		Connecting the circuit blocks in parallel
OUT	Y1	Driving the coil Y1

Instruction code	Function					Applicable model	
OUT	Driving a coil					20PM	
	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
Ope	-	\checkmark	\checkmark	\checkmark	-	-	-

Instruction code	Function					Applicable model	
SET	Keeping a device ON					20PM	
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	-	\checkmark	\checkmark	\checkmark	-	-	-

Explanation

- When the instruction SET is driven, the device specified is set to ON. Whether the instruction SET is still driven or not, the device specified remains ON. Users can set the device specified to OFF by means of the instruction RST.

Instruction code: Description:

LD	X0	Loading the Form A contact X0
ANI	Y0	Connecting the Form B contact Y0
SET	Y1	YO1 remains ON.

Instruction code	Function				Applicable model		
RST	Resetting a contact or a register					20PM	
	Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	
		\checkmark	\checkmark	\checkmark	$\checkmark \sim$ C255	D0~D9,999	

Explanation

- When the instruction RST is driven, the device specified acts in the way

Device	State
S, Y, M	The coil and the contact are set to OFF.
T, C	The present timer value or the present counter value becomes 0. The coil and the contact are set to OFF.
D, V, Z	The value becomes 0.

- If the instruction RST is not executed, the state of the device specified will remain unchanged.
Ladder diagram:
Example

Instruction code: Description:
LD X0 Loading the Form A contact XO
RST Y5 Resetting Y5

Instruction code	Function	Applicable model
TMR	16-bit timer	20PM
Operand	T-K	T0~T255, K0~K32,767
	T-D	T0~T255, D0~D9,999

- When the instruction TMR is executed, the coil specified is ON, and the timer

Explanation

Example

 specified begins to count. If the timer value matches the setting value (timer value \geqq setting value), the contact specified will act in the way described below.| NO (Normally-open) contact | OFF |
| :--- | :---: |
| NC (Normally-closed) contact | ON |

Ladder diagram:

Instruction code: Description:
LD X0 Loading the Form A contact X0
TMR T5 K1000 The setting value in the timer T5 is K1000.

Additional remark

Instruction code	Function	Applicable model	
CNT	16-bit counter		

Explanation
Explanation

- When the counter coil specified by the instruction CNT is turned from OFF to ON, the counter value increases by 1. If the counter value matches the setting value (counter value=setting value), the contact specified will act in the way described below.

NO (Normally-open) contact	OFF
NC (Normally-closed) contact	ON

- If there are pulses sent to the counter specified by the instruction CNT after the counter value matches the setting value, the state of the contact specified and the counter value will remain unchanged. Users can reset a counter by means of the instruction RST.
Ladder diagram:

Example

Instruction code: Description:

LD	X0	Loading the Form A contact X0
CNT	C20 K100	The setting value in the counter C20 is K100.

Instruction code	Function		Applicable model
DCNT	32-bit counter		
		20PM	
Operand	C-K	C200, C204, C208~C255, K-2,147,483,648~K2,147,483,647	
	C-D	C200, C204, C208~C255, D0~D9,999	

Explanation \begin{tabular}{l}
DCNT is an instruction which is use

C221~C2255 are general up/down
by the instruction DCNT is turned fr
or decreases by one according to the

Example
\end{tabular}

Instruction code	Function				Applicable model		
LDF	Starting falling-edge detection					20PM	
	Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	
		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

- The usage of LDF is similar to that of LD, but the action of LDP is different from

Explanation that of LD. LDF reserves the present contents, and stores the state of the falling edge-triggered contact specified to an accumulation register.

Example	Ladder diagram:	Instruction code:		Description:
		LDF	X0	Starting the detection of the state of the falling edge-triggered contact XO
		AND	X1	Connecting the Form A contact X 1 in series
		OUT	Y1	Driving the coil Y 1

Instruction code	Function				Applicable model	
ANDP	Connecting rising-edge detection in series				20PM	
	Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255
		\checkmark	\checkmark	\checkmark	$\checkmark \sim$ C255	D0~D9,999

Explanation

- The instruction ANDP is used to connect a rising edge-triggered contact in series.

Instruction code: Description:

LD	X0	Loading the Form A contact X0
ANDP	X1	Connecting the rising edge-triggered contact
OUT	Y1	X1 in series
Driving the coil Y1		

Instruction code	Function					Applicable model	
ANDF	Connecting falling-edge detection in series					20PM	
Operand	X0~X377	Y0-Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

- The instruction ANDF is used to connect a falling edge-triggered contact in
-xplanation series.

Instruction code: Description:

LD	X0	Loading the Form A contact X0
ANDF	X1	Connecting the falling edge-triggered contact X1 in series
OUT	Y1	Driving the coil Y1

Instruction code	Function					Applicable model	
ORP	Connecting rising-edge detection in parallel					20PM	
	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
Operand	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

- The instruction ORP is used to connect a rising edge-triggered contact in parallel.

Instruction code:		Description:
LD	X0	Loading the Form A contact X0
ORP	X1	Connecting the rising edge-triggered contact
OUT	Y1	X1 in parallel

Instruction code	Function				Applicable model	
ORF	Connecting falling-edge detection in parallel				20PM	
	Operand		X0~X377	Y0~Y377	M0~M4,095	S0~S1,023
	T0~T255	C0~C255	D0~D9,999			
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Explanation

- The instruction ORF is used to connect a falling edge-triggered contact in Explanation parallel.

Ladder diagram:
Example

\(\left.$$
\begin{array}{lll}\text { Instruction code: } & \begin{array}{l}\text { Description: } \\
\text { LD }\end{array} & \text { X0 }\end{array}
$$ \begin{array}{l}Loading the Form A

contact X0\end{array}\right]\)| ORF | X1 | Connecting the falling
 edge-triggered contact
 X1 |
| :--- | :--- | :--- |
| OUT | Y1 | Driving the coil Y1 |

Instruction code	Function					Applicable model	
PLS	Rising-edge output					20PM	
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	-	\checkmark	\checkmark	-	-	-	-

Explanation

- PLS is a rising-edge output instruction. When XO is turned from OFF to ON, the
\square

Ladder diagram:
Example

Timing diagram:

Instruction code: Description:

LD	X0	Loading the Form A contact X0
PLS	MO	MO is rising edge-triggered.
LD	MO	Loading the Form A contact M0
SET	YO	YO remains ON.

Instruction code	Function					Applicable model	
PLF	Falling-edge output					20PM	
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	-	\checkmark	\checkmark	-	-	-	-

Explanation

- PLF is a falling-edge output instruction. When X0 is turned from ON to OFF, the

Ladder diagram:
Example

Timing diagram:

Instruction code: Description:

LD	X0	Loading the Form A contact X0
PLF	MO	MO is falling edge-triggered.
LD	MO	Loading the Form A contact M0
SET	YO	YO remains ON.

Instruction code	Function	Applicable model
\mathbf{P}	Pointer	20 PM
Operand		

Explanation
A pointer can be used by API 00 CJ, API 01 CALL, API 256 CJN, and API 257 JMP. The pointers used do not have to start from P0. A pointer number can not be used repeatedly, otherwise an unexpected error will occur.

Ladder diagram:
Example

Instruction code: Description:
LD X0 Loading the Form A contact XO
CJ P10 The jump instruction CJ specifies P10.

| P10 | Pointer P10 |
| :--- | :--- | :--- |
| LD | Loading the Form A
 contact X1 |

OUT Y1 Driving the coil Y 1

MEMO

5 Applied Instructions and Basic Usage

5.1 Table of Applied I nstructions

Type	API	Instruction code		Pulse instruction	Function	Model supported 20 PM	Step		Page No.
		16-bit	32-bit				16-bit	32-bit	
	00	CJ	-	\checkmark	Conditional jump	\checkmark	3	-	5-14
	01	CALL	-	\checkmark	Calling a subroutine	\checkmark	3	-	5-17
	02	SRET	-	-	Indicating that a subroutine ends	\checkmark	1	-	5-18
	07	WDT	-	\checkmark	Watchdog timer	\checkmark	1	-	5-20
	08	RPT	-	-	Start of a nested loop (only one loop)	\checkmark	3	-	5-21
	09	RPE	-	-	End of a nested loop	\checkmark	1	-	5-22
	10	CMP	DCMP	\checkmark	Comparing values	\checkmark	7	9	5-23
	11	ZCP	DZCP	\checkmark	Zonal comparison Zonal comparison	\checkmark	9	12	5-24
	12	MOV	DMOV	\checkmark	Transferring a value	\checkmark	5	6	5-25
	13	SMOV	-	\checkmark	Transferring digits	\checkmark	11	-	5-26
	14	CML	DCML	\checkmark	Inverting bits	\checkmark	5	9	5-29
	15	BMOV	-	\checkmark	Transferring values	\checkmark	7	-	5-30
	16	FMOV	DFMOV	\checkmark	Transferring a value to several devices	\checkmark	7	13	5-32
	17	XCH	DXCH	\checkmark	Interchanging values	\checkmark	5	9	5-33
	18	BCD	DBCD	\checkmark	Converting a binary value into a binary-coded decimal value	\checkmark	5	5	5-34
	19	BIN	DBIN	\checkmark	Converting a binary-coded decimal value into a binary value	\checkmark	5	5	5-35
$\begin{aligned} & \frac{D}{0} \\ & \stackrel{\rightharpoonup}{7} \\ & \stackrel{3}{3} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	20	ADD	DADD	\checkmark	Binary addition	\checkmark	7	9	5-36
	21	SUB	DSUB	\checkmark	Binary subtraction	\checkmark	7	9	5-38
	22	MUL	DMUL	\checkmark	Binary multiplication	\checkmark	7	9	5-39
	23	DIV	DDIV	\checkmark	Binary division	\checkmark	7	9	5-40
	24	INC	DINC	\checkmark	Adding one to a binary value	\checkmark	3	3	5-41
	25	DEC	DDEC	\checkmark	Subtracting one from a binary value	\checkmark	3	3	5-42
	26	WAND	DWAND	\checkmark	Logical AND operation	\checkmark	7	9	5-43
	27	WOR	DWOR	\checkmark	Logical OR operation	\checkmark	7	9	5-44
	28	WXOR	DWXOR	\checkmark	Logical exclusive OR operation	\checkmark	7	9	5-45
	29	NEG	DNEG	\checkmark	Taking the two's complement of a value	\checkmark	3	3	5-46
	30	ROR	DROR	\checkmark	Rotating bits rightwards	\checkmark	5	9	5-48
	31	ROL	DROL	\checkmark	Rotating bits leftwards	\checkmark	5	9	5-49
	32	RCR	DRCR	\checkmark	Rotating bits rightwards with a carry flag	\checkmark	5	9	5-50
	33	RCL	DRCL	\checkmark	Rotating bits leftwards with a carry flag	\checkmark	5	9	5-51
	34	SFTR	-	\checkmark	Moving the states of bit devices rightwards	\checkmark	9	-	5-52
	35	SFTL	-	\checkmark	Moving the states of bit devices leftwards	\checkmark	9	-	5-53
	36	WSFR	-	\checkmark	Moving the values in word devices rightwards	\checkmark	9	-	5-54
	37	WSFL	-	\checkmark	Moving the values in word devices leftwards	\checkmark	9	-	5-56
	38	SFWR	-	\checkmark	Moving a value and writing it into a word device	\checkmark	7	-	5-57
	39	SFRD	-	\checkmark	Moving a value and reading it from a word device	\checkmark	7	-	5-58

5 Applied Instructions and Basic Usage

Type	API	Instruction code		Pulse instruction	Function	Model supported 20 PM	Step		$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
		16-bit	32-bit				16-bit	32-bit	
	40	ZRST	-	\checkmark	Resetting a zone	\checkmark	5	-	5-59
	41	DECO	-	\checkmark	Decoder	\checkmark	7	-	5-60
	42	ENCO	-	\checkmark	Encoder	\checkmark	7	-	5-62
	43	SUM	DSUM	\checkmark	Number of bits which are ON	\checkmark	5	9	5-64
	44	BON	DBON	\checkmark	Checking the state of a bit	\checkmark	7	13	5-65
	45	MEAN	DMEAN	\checkmark	Mean	\checkmark	7	13	5-66
	46	ANS	-	-	Driving an annunciator	\checkmark	7	--	5-67
	47	ANR	-	\checkmark	Resetting an annunicator	\checkmark	1	-	5-68
	48	SQR	DSQR	\checkmark	Square root of a binary value	\checkmark	5	9	5-70
	49	-	DFLT	\checkmark	Converting a binary integer into a binary floating-point value	\checkmark	-	6	5-71
	50	REF	-	\checkmark	Refreshing the states of I/O devices	\checkmark	5	-	5-73
	61	SER	DSER	\checkmark	Searching data	\checkmark	9	17	5-74
	66	ALT	-	\checkmark	Alternating between ON and OFF	\checkmark	3	-	5-76
	67	RAMP	DRAMP	-	Ramp	\checkmark	9	17	5-77
	69	SORT	DSORT	-	Sorting data	\checkmark	11	21	5-79
$\overline{\text { ® }}$	78	FROM	DFROM	\checkmark	Reading data from a control register in a special module	\checkmark	9	12	5-81
	79	TO	DTO	\checkmark	Writing data into a control register in a special module	\checkmark	9	13	5-82
	87	ABS	DABS	\checkmark	Absolute value	\checkmark	3	5	5-85
	89	PLS	-	-	Rising-edge output	\checkmark	3	-	4-14
	90	LDP	-	-	Starting rising-edge detection	\checkmark	3	-	4-10
	91	LDF	-	-	Starting falling-edge detection	\checkmark	3	-	4-11
	92	ANDP	-	-	Connecting rising-edge detection in series	\checkmark	3	-	4-11
	93	ANDF	-	-	Connecting falling-edge detection in series	\checkmark	3	-	4-12
	94	ORP	-	-	Connecting rising-edge detection in parallel	\checkmark	3	-	4-12
	95	ORF	-	-	Connecting falling-edge detection in parallel	\checkmark	3	-	4-13
	96	TMR	-	-	16-bit timer	\checkmark	5	-	4-9
	97	CNT	DCNT	-	16-bit counter	\checkmark	5	6	4-9
	99	PLF	-	-	Falling-edge output	\checkmark	3	-	4-14
	100	MODRD	-	-	Reading Modbus data	\checkmark	7	-	5-86
	101	MODWR	-	-	Writing Modbus data	\checkmark	7	-	5-90
	110	-	DECMP	\checkmark	Comparing binary floating-point values	\checkmark	7	9	5-95
	111	-	DEZCP	\checkmark	Binary floating-point zonal comparison	\checkmark	9	12	5-96
	112	-	DMOVR	\checkmark	Transferring a floating-point value	\checkmark	-	9	5-97
	116	-	DRAD	\checkmark	Converting a degree to a radian	\checkmark	-	6	5-98
	117	-	DDEG	\checkmark	Converting a radian to a degree	\checkmark	-	6	5-99
	120	-	DEADD	\checkmark	Binary floating-point addition	\checkmark	7	9	5-100
	121	-	DESUB	\checkmark	Binary floating-point subtraction	\checkmark	7	9	5-101

5 Applied Instructions and Basic Usage

Type	API	Instruction code		Pulse instruction	Function	Model supported 20PM	Step		$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
		16-bit	32-bit				16-bit	32-bit	
	122	-	DEMUL	\checkmark	Binary floating-point multiplication	\checkmark	7	9	5-102
	123	-	DEDIV	\checkmark	Binary floating-point division	\checkmark	7	9	5-103
	124	-	DEXP	\checkmark	Exponent of a binary floating-point value	\checkmark	-	6	5-104
	125	-	DLN	\checkmark	Natural logarithm of a binary floating-point value	\checkmark	-	6	5-105
	126	-	DLOG	\checkmark	Logarithm of a binary floating-point value	\checkmark	-	9	5-106
	127	-	DESQR	\checkmark	Square root of a binary floating-point value	\checkmark	5	6	5-107
	128	-	DPOW	\checkmark	Power of a floating-point value	\checkmark	-	9	5-108
	129	-	DINT	\checkmark	Converting a binary floating-point value into a binary integer	\checkmark	-	6	5-109
	130	-	DSIN	\checkmark	Sine of a binary floating-point value	\checkmark	5	6	5-110
	131	-	DCOS	\checkmark	Cosine of a binary floating-point value	\checkmark	5	6	5-112
	132	-	DTAN	\checkmark	Tangent of a binary floating-point value	\checkmark	5	6	5-114
	133	-	DASIN	\checkmark	Arcsine of a binary floating-point value	\checkmark	-	6	5-116
	134	-	DACOS	\checkmark	Arccosine of a binary floating-point value	\checkmark	-	6	5-117
	135	-	DATAN	\checkmark	Arctangent of a binary floating-point value	\checkmark	-	6	5-118
	136	-	DSINH	\checkmark	Hyperbolic sine of a binary floating-point value	\checkmark	-	6	5-119
	137	-	DCOSH	\checkmark	Hyperbolic cosine of a binary floating-point value	\checkmark	-	6	5-120
	138	-	DTANH	\checkmark	Hyperbolic tangent of a binary floating-point value	\checkmark	-	6	5-121
	172	-	DADDR	\checkmark	Floating-point addition	\checkmark	-	13	5-122
	173	-	DSUBR	\checkmark	Floating-point subtraction	\checkmark	-	13	5-123
	174	-	DMULR	\checkmark	Floating-point multiplication	\checkmark	-	13	5-124
	175	-	DDIVR	\checkmark	Floating-point division	\checkmark	-	13	5-125
	215	LD\&	DLD\&	-	S1\&S2	\checkmark	5	7	5-126
	216	LD\|	DLD\|	-	S1\|S2	\checkmark	5	7	5-126
	217	LD^	DLD^	-	S1^S2	\checkmark	5	7	5-126
	218	AND\&	DAND\&	-	S1\&S2	\checkmark	5	7	5-127
	219	AND\|	DAND\|	-	S1\|S2	\checkmark	5	7	5-127
	220	AND^{\wedge}	DAND^	-	S1^S2	\checkmark	5	7	5-127
	221	OR\&	DOR\&	-	S1\&S2	\checkmark	5	7	5-128
	222	OR\|	DOR\|	-	S1\|S2	\checkmark	5	7	5-128
	223	OR^{\wedge}	DOR^	-	S1^S2	\checkmark	5	7	5-128

5
 Applied Instructions and Basic Usage

Type	API	Instruction code		Pulse instruction	Function	Model supported 20 PM	Step		$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
		16-bit	32-bit				16-bit	32-bit	
	224	LD=	DLD=	-	$\mathrm{S} 1=\mathrm{S} 2$	\checkmark	5	7	5-129
	225	LD>	DLD>	-	S1 > S2	\checkmark	5	7	5-129
	226	LD<	DLD<	-	S1 < S2	\checkmark	5	7	5-129
	228	LD<>	DLD<>	-	S1FS2	\checkmark	5	7	5-129
	229	LD<=	DLD<=	-	$\mathrm{S} 1 \leq$ S2	\checkmark	5	7	5-129
	230	LD>=	DLD>=	-	$\mathrm{S} 1 \geq \mathrm{S} 2$	\checkmark	5	7	5-129
	232	AND=	DAND=	-	S1 = S2	\checkmark	5	7	5-130
	233	AND>	DAND>	-	S1 > S2	\checkmark	5	7	5-130
	234	AND<	DAND<	-	S1 < S2	\checkmark	5	7	5-130
	236	AND<>	DAND<>	-	S1才, 2	\checkmark	5	7	5-130
	237	AND<=	DAND<=	-	S1 S 2	\checkmark	5	7	5-130
	238	AND>=	DAND>=	-	$\mathrm{S} 1 \geqq$ S2	\checkmark	5	7	5-130
	240	OR=	DOR=	-	S1 = S2	\checkmark	5	7	5-131
	241	OR>	DOR>	-	S1 > S2	\checkmark	5	7	5-131
	242	OR<	DOR<	-	S1 < S2	\checkmark	5	7	5-131
	244	OR<>	DOR<>	-	S1才S2	\checkmark	5	7	5-131
	245	$\mathrm{OR}<=$	DOR<=	-	S1 \leqq S2	\checkmark	5	7	5-131
	246	OR>=	DOR>=	-	$\mathrm{S} 1 \geqq \mathrm{~S} 2$	\checkmark	5	7	5-131
	147	SWAP	DSWAP	\checkmark	Interchanging the high byte in a device with the low byte in the device	\checkmark	3	5	5-132
	154	RAND	DRAND	\checkmark	Random value	\checkmark	7	13	5-133
	202	SCAL	-	\checkmark	Scale	\checkmark	9	-	5-134
	203	SCLP	DSCLP	\checkmark	Parameter scale	\checkmark	7	13	5-136
	256	CJN	-	\checkmark	Negated conditional jump	\checkmark	3	-	5-140
	257	JMP	-	-	Unconditional jump	\checkmark	3	-	5-141
	258	BRET	-	-	Returning to a busbar	\checkmark	1	-	5-142
	259	MMOV	-	\checkmark	Converting a 16-bit value into a 32-bit value	\checkmark	6	-	5-143
	260	RMOV	-	\checkmark	Converting a 32-bit value into a 16-bit value	\checkmark	6	-	5-144

5 Applied Instructions and Basic Usage

5.2 Structure of an Applied Instruction

- An applied instruction is composed of an instruction name and operands. Instruction name: An instruction name represents a function.
Operand: An operand is the object of an operation.
An instruction name occupie one step. The number of steps an operand occupies can be two or three, depending on the instruction used is a 16 -bit instruciton or a 32 -bit instruction.
- Descriptions of the applied instructions

(1) API number

The upper cell indicates a 16 -bit instruction. If the upper cell is a dotted cell, there will be no 16 -bit instruction.
The lower cell indicates a 32-bit instruction. If the lower cell is a dotted cell, there is no 32-bit instruction. If there is a 32-bit instruction, \mathbf{D} is displayed in the lower cell, e.g. API 10 DCMP.
(3) Applied instruction name
(4) If © is displayed in the upper cell, a pulse instruction is generally used.

The lower cell indicates a pulse instruction. If there is a pulse instruction, \mathbf{P} is displayed in the lower cell, e.g. API 12 MOVP.
(5) Operands
(6) Function
(7)

Number of steps occupied by a 16-bit instruction, continuity instruction name, and pulse instruction name
(8) Number of steps occupied by a 32-bit instruction, continuity instruction name, and pulse instruction name
(9) Flags related to an applied instruction
(10) The devices marked with ' * ' displayed in grayscale can be modified by V devices and Z devices.
(11) Points for attention
(12) The devices marked with ' * ' can be used.
(13) Device name
(14) Device type
(15) Applicable model

- Typing an applied instruction

Some applied instructions are composed of instruction names, e.g. BRET and SRET, but most applied instructions are composed of instruction names and operands.
The applied instructions that a DVP-20PM series motion controller can use are assigned the instruction numbers API 00~API 260. Besides, every applied instruction is assigned a mnemonic. For example,

5
 Applied Instructions and Basic Usage

the mnemonic of API 12 is MOV. If users want to type an instruction by means of PMSoft, they can type the mnemonic assigned to the instruction. If users want to type an instruction by means of the handheld programming panel DVPHPP03, they can type the API number assigned to the instruction. Every applied instruction specifies operands. Take the instruction MOV for instance.

The instruction is used to move the value in the operand \mathbf{S} to the operand \mathbf{D}.

\mathbf{S}	Source operand If there is more one source operand, the source operands will be represented by $\mathbf{S}_{1}, \mathbf{S}_{2}$, and etc.
\mathbf{D}	Destination operand If there is more than one destination operand, the destination operands will be represented by $\mathbf{D}_{\mathbf{1}}, \mathbf{D}_{2}$, and etc.
If operands are constants, they will be represented by $\mathbf{m}, \mathbf{m}_{1}, \mathbf{m}_{\mathbf{2}}, \mathbf{n}, \mathbf{n}_{1}, \mathbf{n}_{2}$, and etc.	

If operands are constants, they will be represented by $\mathbf{m}, \mathbf{m}_{1}, \mathbf{m}_{\mathbf{2}}, \mathbf{n}, \mathbf{n}_{\mathbf{1}}, \mathbf{n}_{\mathbf{2}}$, and etc.

- Length of an operand (16-bit instruction or 32-bit instruction)

The values in operands can be grouped into 16 -bit values and 32 -bit values. In order to process values of difference lengths, some applied instructions are grouped into 16 -bit instructions and 32 -bit instructions. After " D " is added to the front of a 16 -bit instruction, the instruction becomes a 32 -bit instruction.
The instruction MOV is a 16-bit instruction. When X0 is ON, K10 is moved to D10.

The instruction DMOV is a 32-bit instruction.

- Continuity instruction/Pulse instruction

The applied instructions can be grouped into continuity instructions and pulse instructions in terms of the ways the applied instructions are executed. If an instruction in a program is not executed, the execution of the program will take less time. As a result, if there are pulse instructions in a program, the scan cycle will be shorter. If " P " is added to the back of an instruction, the instruction becomes a pulse instruction. Some instructions are mostly used as pulse instructions, e.g. INC and DEC. If © appears at the upper-right side of an instruction, the instruction is generally used as a pulse instruction.

Pulse instruction

Continuity instruction

When XO is turned from OFF to ON, the instruction MOVP is executed once. MOVP will not be executed again during the scan cycle, and therefore it is a pulse instruction.
Whenever X 1 is ON , the instruction MOV is executed once. MOV is a continuity instruction.

When the contacts X0 and X1 are OFF, the instructions are not executed, and the values in the destation operands are not changed.

- Operand

1. A word device can consist of bit devices. Applied instructions can use $\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}$, and KnS . Values can be stored in KnX, KnY, KnM, and KnS.
2. Data registers, timers, counters, and index registers can be used as general operands.
3. A data register is a 16 -bit register. If users want to use a 32 -bit data register, they have to specify two consecutive data registers.
4. If a 32-bit instruction uses D0 as an operand, the 32-bit data register composed of D1 and D0 will be used. D1 occupies the high 16 bits, and D0 occupy the low 16 bits. Timers and the 16-bit

5 Applied Instructions and Basic Usage

counters C0~C199 can be used in the same way.
5. If the 32-bit counters C200~C255 are used as data registers, they can be operands used by 32-bit instructions.
Operand type

1. X devices, Y devices, M devices, and S devices can only be turned $O N$ or OFF. They are bit devices.
2. 16-bit (or 32-bit) T devices, C device, D devices, V devices, and Z devices are word devices.
3. If Kn is added to the front of an $\mathrm{X} / \mathrm{Y} / \mathrm{M} / \mathrm{S}$ device, a word device will be formed. For example, K2M0 represents a device composed of the eight bit devices $\mathrm{MO} \sim \mathrm{M} 7$.

- Values in word devices composed of bit devices

16-bit instruction	
A 16-bit value is in the range of K-32,768 to K32,767.	
Value in a word device composed of bit devices	
K1 (4 bits)	$0 \sim 15$
K2 (8 bits)	$0 \sim 255$
K3 (12 bits)	$0 \sim 4,095$
K4 (16 bits)	$-32,768 \sim+32,767$

A 16-bit value is in the range of $K-32,768$ to K32,767.
Value in a word device composed of bit devices

- General flags

Example: M1968 is a zero flag, M1969 is a borrow flag, and M1970 is a carry flag Every flag in a DVP-20PM series motion controller corresponds to an operation result.
The state of a flag varies with an operation result. For example, if the instruction ADD/SUB/MUL/DIV is used in the main program O100~M102, the operation result gotten will affect the states of M1968~M1970. However, if the instruciton is not executed, the states of the flags will remain unchanged. The states of flags are related to instructions. Please refer to the explanations of instructions for more information.

5.3 Processing Values

- X devices, Y devices, M devices, and S devices can only be turned ON or OFF. They are bit devices. Values can be stored in T device, C devices, D devices, V devices, and Z devices. They are word devices. If Kn is added to the front of an $\mathrm{X} / \mathrm{Y} / \mathrm{M} / \mathrm{S}$ device, a word device will be formed.
- If Kn is added to the front of an X/Y/M/S device, a word device will be formed. For example, K2M0 represents a device composed of the eight bit devices $\mathrm{M} 0 \sim \mathrm{M} 7$.

5
 Applied Instructions and Basic Usage

- The value in K1M0 is moved to a 16-bit register, and bit 4~bit 15 in the register are set to 0 . The value in K2MO is moved to a 16 -bit register, and bit 8~bit 15 in the register are set to 0 . The value in K3M0 is moved to a 16 -bit register, and bit 12~bit 15 in the register are set to 0 . The value in K1M0 is moved to a 32 -bit register, and bit $4 \sim$ bit 31 in the register are set to 0 . The value in K2M0 is moved to a 32 -bit register, and bit $8 \sim$ bit 31 in the register are set to 0 . The value in K3MO is moved to a 32-bit register, and bit 12~bit 31 in the register are set to 0 . The value in K4MO is moved to a 32-bit register, and bit 16~bit 31 in the register are set to 0 . The value in K5MO is moved to a 32-bit regiser, and bit 20~bit 31 in the register are set to 0 . The vlaue in K6M0 is moved to a 32-bit register, and bit 24~bit 31 in the register are set to 0 . The value in K7M0 is moved to a 32-bit register, and bit 28~bit 31 in the register are set to 0 .
- If Kn is in the range of $\mathrm{K} 1 \sim \mathrm{~K} 3$ (or K4~K7), the bits which are not assigned values in the 16 -bit register (the 32-bit register) to which a value is moved will be set to 0 . As a result, operations will be performed on positive values if Kn is in the range of $\mathrm{K} 1 \sim \mathrm{~K} 3$ (or K4~K7).

The binary-coded decimal value in $\mathrm{X} 4 \sim \mathrm{X} 11$ is converted into a binary value, and the binary value is stored in DO.
- Users can specify bit device numbers freely. It is suggested X device numbers/ Y devuce numbers should end with 0 , and that M device numbers/S device numbers should start from a number which is a multiple of 8 .
- Consecutive devices

Take data registers for instances. D0, D1, D2, D3, and D4 are consecutive data registers.
The consecutive word devices composed of bit devices are shown below.

K1X0	K1X4	K1X10	K1X14......
K2Y0	K2Y10	K2Y20	Y2X30.....
K3M0	K3M12	K3M24	K3M36......
K4S0	K4S16	K4S32	K4S48......

The consecutive word devices composed of bit devices are shown above. To avoid confusion, please do not skip any word device composed of bit devices. Beisdes, if a 32 -bit operation is performed on K4Y0, the high 16 bits in the 32 -bit register to which the value in K4Y0 is moved will be set to 0 . If a 32 -bit value is required, please use K8YO.
After an operation is performed, the binary integer gotten will be given priority. For example, $40 \div 3=13$, and the remainder 1 is dropped. The integer part of the square root of an integer is retained, and the fractional part of the square root is dropped. However, if a decimal instruiction is used, a decimal will be gotten.
The applied intructions listed below are decimal instructions.

API 110 (D ECMP)	API 111 (D EZCP)	API 116 (D RAD)	API 117 (D DEG)
API 120 (D EADD)	API 121 (D ESUB)	API 122 (D EMUL)	API 123 (D EDIV)
API 124 (D EXP)	API 125 (D LN)	API 126 (D LOG)	API 127 (D ESQR)
API 128 (D POW)	API 129 (D INT)	API 130 (D SIN)	API 131 (D COS)
API 132 (D TAN)	API 133 (D ASIN)	API 134 (D ACOS)	API 135 (D ATAN)
API 136 (D SINH)	API 137 (D COSH)	API 138 (D TANH)	

Representations of binary floating-point values

The floating-point values in a DVP-20PM series motion controller are 32-bit floating-point values, and the representations of the floating-point values conform to the IEEE 754 standard.

Representation of a floating-point value:
$(-1)^{S} \times 2^{E-B} \times 1 . M ; B=127$

5 Applied Instructions and Basic Usage

A 32-bit floating-point value is in the range of $\pm 2^{-126}$ to $\pm 2^{+128}$, that is, a 32-bit floating-point value is in the range of $\pm 1.1755 \times 10^{-38}$ to $\pm 3.4028 \times 10^{+38}$.
Example 1: 23 is represented by a 32 -bit floating-point value.
Step 1: Converting 23 into a binary value: 23.0=10111
Step 2: Normalizing the binary value: 10111=1.0111×24 (0111 is a mantissa, and 4 is an exponent)
Step 3: Getting the exponent which is stored

$$
\because \mathrm{E}-\mathrm{B}=4 \rightarrow \mathrm{E}-127=4 \therefore \mathrm{E}=131=10000011_{2}
$$

Step 4: Combining the sign bit, the exponent, and the mantissa to form a floating-point value. $01000001101110000000000000000000_{2}=41 \mathrm{~B} 80000_{16}$
Example 2: -23.0 is represented by a 32 -bit floating-point value.
-23.0 is converted in the same way as 23.0 . Users only need to change the sign bit to 1 .
A DVP-20PM series motion controller uses two consecutive registers to form a 32-bit floating-point values. Take (D1, D0) in which a bianry floating-point value is stored for instance.

Decimal floating-point value

- Since binary floating-point values are not widely accepted by people, they can be converted into decimal floating-point values. However, the decimals on which operations are performed in a DVP-20PM series motion controller are still binary floating-point values.
- A decimal floating-point value is stored in two consecutive registers. The constant part is stored in the register whose device number is smaller, and the exponent part is stored in the register whose device number is bigger.
Take (D1, D0) for instance.
Decimal floating-point number=[Constant D0]* 10
Base: D0 $= \pm 1,000 \sim \pm 9,999$
Exponent: D1=-41~+35
Besides, the base 100 does not exist in DO because 100 is represented by $1,000 \times 10^{-1}$. A decimal floating-point value is in the range of $\pm 1,175 \times 10^{-41}$ to $\pm 3,402 \times 10^{+35}$.
- If the instruction ADD/SUB/MUL/DIV is used in the main program O100~M102, the operation result gotten will affect the states of M1968~M1970. If a floating-point operation instruction is used, the result gotten will also affect the state of the zero flag M1968, the state of the borrow flag M1969, and the state of the carry flag M1970.
- Zero flag: If the operation result gotten is 0, M1968 will be ON.
- Carry flag: If the absolute value of the operaiton result gotten is greater than the maximum value allowed, M1969 will be ON.
- Borrow flag: If the absolute value of the operation result gotten is less than the minimum value allowed, M1970 will be ON.

5 Applied Instructions and Basic Usage

5.4 Using I ndex Registers to Modify Operands

V devices are 16-bit index registers, and Z devices are 32-bit index registers. There are 6 V devices (VO~V5), 8 Z devices (Z0~Z7) in a DVP-10PM series motion controller.

V devices are 16-bit registers. Data can be freely written into a V device, and data can be freely read from a \vee device. If a 32 -bit value is required, please use a Z device.

Index registers can be used to modify P///X/Y/M/S/KnX/KnY/KnM/KnS/T/C/D devices, but they can not be used to modify index registers, constants, and Kn. For example, K4@ZO is invalid, K4M0@ZO is valid, and K0@ZOMO is invalid. The devices marked with ‘ * ' displayed in grayscale in the table in the explanation of an applied instruction can be modified by V devices and Z devices..

5.5 I nstruction I ndex

- Arranging applied instructions in alphabetical order

Type	API	Instruction code		Pulseinstruction	Function	Step		Page No.
		16-bit	32-bit			16-bit	32-bit	
A	87	ABS	DABS	\checkmark	Absolute value	3	5	5-85
	20	ADD	DADD	\checkmark	Binary addition	7	9	5-36
	66	ALT	-	\checkmark	Alternating between ON and OFF	3	-	5-76
	218	AND\&	DAND\&	-	S1\&S2	5	7	5-127
	220	AND^	DAND^	-	S1^S2	5	7	5-127
	219	AND\|	DAND\|	-	S1\|S2	5	7	5-127
	234	AND<	DAND<	-	S1 < S2	5	7	5-130
	93	ANDF	-	-	Connecting falling-edge detection in series	3	-	4-12
	92	ANDP	-	-	Connecting rising-edge detection in series	3	-	4-11
	47	ANR	-	\checkmark	Resetting an annunciator	1	-	5-68
	46	ANS	-	-	Driving an annunciator	7	-	5-67
	237	AND<=	DAND<=	-	$\mathrm{S} 1 \leqq \mathrm{~S} 2$	5	7	5-130
	236	AND<>	DAND<>	-	S1才S2	5	7	5-130
	232	AND=	DAND=	-	S1 = S2	5	7	5-130
	233	AND>	DAND>	-	S1 > S2	5	7	5-130
	238	AND>=	DAND>=	-	$\mathrm{S} 1 \geqq \mathrm{~S} 2$	5	7	5-130
	134	-	DACOS	\checkmark	Arccosine of a binary floating-point value	-	6	5-117
	133	-	DASIN	\checkmark	Arcsine of a binary floating-point value	-	6	5-116
	135	-	DATAN	\checkmark	Arctangent of a binary floating-point value	-	6	5-118
B	18	BCD	DBCD	\checkmark	Converting a binary value into a binary-coded decimal value	5	5	5-34
	19	BIN	DBIN	\checkmark	Converting a binary-coded decimal value into a binary value	5	5	5-35
	15	BMOV	-	\checkmark	Transferring values	7	-	5-30
	44	BON	DBON	\checkmark	Checking the state of a bit	7	13	5-65
	258	BRET	-	-	Returning to a busbar	1	-	5-142
C	01	CALL	-	\checkmark	Calling a subroutine	3	-	5-17
	131	-	DCOS	\checkmark	Cosine of a binary floating-point value	5	6	5-112
	137	-	DCOSH	\checkmark	Hyperbolic cosine of a binary floating-point value	-	6	5-120
	00	CJ	-	\checkmark	Conditional jump	3	-	5-14
	256	CJN	-	\checkmark	Negated conditional jump	3	-	5-140
	14	CML	DCML	\checkmark	Inverting bits	5	9	5-29

5 Applied Instructions and Basic Usage

Type	API	Instruction code		Pulse instruction	Function	Step		$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
		16-bit	32-bit			16-bit	32-bit	
C	10	CMP	DCMP	\checkmark	Comparing values	7	9	5-23
	97	CNT	DCNT	-	16-bit counter	5	6	4-9
D	25	DEC	DDEC	\checkmark	Subtracting one from a binary value	3	3	5-42
	41	DECO	-	\checkmark	Decoder	7	-	5-60
	117	-	DDEG	\checkmark	Converting a radian to a degree	-	6	5-99
	23	DIV	DDIV	\checkmark	Binary division	7	9	5-40
E	42	ENCO	-	\checkmark	Encoder	7	-	5-62
	172	-	DADDR	\checkmark	Floating-point addition	-	13	5-122
	175	-	DDIVR	\checkmark	Floating-point division	-	13	5-125
	120	-	DEADD	\checkmark	Binary floating-point addition	7	9	5-100
	110	-	DECMP	\checkmark	Comparing binary floating-point	7	9	5-95
	123	-	DEDIV	\checkmark	Binary floating-point division	7	9	5-103
	122	-	DEMUL	\checkmark	Binary floating-point multiplication	7	9	5-102
	127	-	DESQR	\checkmark	Square root of a binary floating-point value	5	6	5-107
	121	-	DESUB	\checkmark	Binary floating-point subtraction	7	9	5-101
	124	-	DEXP	\checkmark	Exponent of a binary floating-point value	-	6	5-104
	111	-	DEZCP	\checkmark	Binary floating-point zonal comparison	9	12	5-96
	112 174	-	DMOVR	\checkmark	Transferring a floating-point value	-	9	5-97
	174	-	DMULR	\checkmark	Floating-point multiplication	-	13	5-124
	173	-	DSUBR	\checkmark	Floating-point subtraction	-	13	5-123
F	49	-	DFLT	\checkmark	Converting a binary integer into a binary floating-point value	-	6	5-71
	16	FMOV	DFMOV	\checkmark	Transferring a value to several devices	7	13	5-32
	78	FROM	DFROM	\checkmark	Reading data from a control register in a special module	9	12	5-81
1	24	INC	DINC	\checkmark	Adding one to a binary value	3	3	5-41
	129	-	DINT	\checkmark	Converting a binary floating-point value into a binary integer	-	6	5-109
J	257	JMP	-	-	Unconditional jump	3	-	5-141
L	215	LD\&	DLD\&	-	S1\&S2	5	7	5-126
	217	LD^	DLD^	-	S1^S2	5	7	5-126
	216	LD\|	DLD\|	-	S1\|S2	5	7	5-126
	226	LD<	DLD<	-	S1 < S2	5	7	5-129
	229	LD<=	DLD<=	-	$\mathrm{S} 1 \leq$ S2	5	7	5-129
	228	LD<>	DLD<>	-	S1FS2	5	7	5-129
	224	LD=	DLD=	-	S1 = S2	5	7	5-129
	225	LD>	DLD>	-	$\mathrm{S} 1>\mathrm{S} 2$	5	7	5-129
	230	LD>=	DLD>=	-	$\mathrm{S} 1 \geqq \mathrm{~S} 2$	5	7	5-129
	125	-	DLN	\checkmark	Natural logarithm of a binary floating-point value	-	6	5-105
	126	-	DLOG	\checkmark	Logarithm of a binary floating-point value	-	9	5-106
	90	LDP	-	-	Starting rising-edge detection	3	-	4-10
	91	LDF	-	-	Starting falling-edge detection	3	-	4-11
M	45	MEAN	DMEAN	\checkmark	Mean	7	13	5-66
	259	MMOV	-	\checkmark	Converting a 16-bit value into a 32-bit value	6	-	5-143
	100	MODRD	-	-	Reading Modbus data	7	-	5-86
	101	MODWR	-	-	Writing Modbus data	7	-	5-90
	12	MOV	DMOV	\checkmark	Transferring a value	5	6	5-25
	22	MUL	DMUL	\checkmark	Binary multiplication	7	9	5-39
N	29	NEG	DNEG	\checkmark	Taking the two's complement of a value	3	3	5-46
0	221	OR\&	DOR\&	-	S1\&S2	5	7	5-128
	223	OR^{\wedge}	DOR^	-	S1^S2	5	7	5-128

Type	API	Instruction code		Pulse instruction	Function	Step		Page No.
		16-bit	32-bit			16-bit	32-bit	
0	222	OR\|	DOR\|	-	S1\|S2	5	7	5-128
	242	OR<	DOR<	-	S1 < S2	5	7	5-131
	245	$\mathrm{OR}<=$	DOR<=	-	$\mathrm{S} 1 \leq$ S2	5	7	5-131
	244	OR<>	DOR<>	-	S1 $=$ S2	5	7	5-131
	240	OR=	DOR=	-	S1 = S2	5	7	5-131
	241	OR>	DOR>	-	S1 > S2	5	7	5-131
	246	OR>=	DOR>=	-	$\mathrm{S} 1 \geqq \mathrm{~S} 2$	5	7	5-131
	95	ORF	-	-	Connecting falling-edge detection in parallel	3	-	4-13
	94	ORP	-	-	Connecting rising-edge detection in parallel	3	-	4-12
P	99	PLF	-	-	Falling-edge output	3	-	4-14
	89	PLS	-	-	Rising-edge output	3	-	4-14
	128	-	DPOW	\checkmark	Power of a floating-point value	-	9	5-108
R	116	-	DRAD	\checkmark	Converting a degree to a radian	-	6	5-98
	67	RAMP	DRAMP	-	Ramp	9	17	5-77
	154	RAND	DRAND	\checkmark	Random value	7	13	5-133
	33	RCL	DRCL	\checkmark	Rotating bits leftwards with a carry flag	5	9	5-51
	32	RCR	DRCR	\checkmark	Rotating bits rightward with a carry flag	5	9	5-50
	50	REF	-	\checkmark	Refreshing the states of I/O devices	5	-	5-73
	260	RMOV	-	\checkmark	Converting a 32-bit value into a 16-bit value	6	-	5-144
	31	ROL	DROL	\checkmark	Rotating bits leftwards	5	9	5-49
	30	ROR	DROR	\checkmark	Rotating bits rightwards	5	9	5-48
	09	RPE	-	-	End of a nested loop	1	-	5-22
	08	RPT	-	-	Start of a nested loop (only one loop)	3	-	5-21
S	202	SCAL	-	\checkmark	Scale	9	-	5-134
	203	SCLP	DSCLP	\checkmark	Parameter scale	7	13	5-136
	61	SER	DSER	\checkmark	Searching data	9	17	5-74
	39	SFRD	-	\checkmark	Moving a value and reading it from a word device	7	-	5-58
	35	SFTL	-	\checkmark	Moving the states of bit devices leftwards	9	-	5-53
	34	SFTR	-	\checkmark	Moving the states of bit devices rightwards	9	-	5-52
	38	SFWR	-	\checkmark	Moving a value and writing it into a word device	7	-	5-57
	13	SMOV	-	\checkmark	Transferring digits	11	-	5-26
	69	SORT	DSORT	-	Sorting data	11	21	5-79
	130	-	DSIN	\checkmark	Sine of a binary floating-point value	5	6	5-110
	136	-	DSINH	\checkmark	Hyperbolic sine of a binary floating-point value	-	6	5-119
	48	SQR	DSQR	\checkmark	Square root of a binary value	5	9	5-70
	02	SRET	-	-	Indicating that a subroutine ends	1	-	5-18
	21	SUB	DSUB	\checkmark	Binary subtraction	7	9	5-38
	43	SUM	DSUM	\checkmark	Number of bits which are ON	5	9	5-64
	147	SWAP	DSWAP	\checkmark	Interchanging the high byte in a device with the low byte in the device	3	5	5-132
T	132	-	DTAN	\checkmark	Tangent of a binary floating-point value	5	6	5-114
	138	-	DTANH	\checkmark	Hyperbolic tangent of a binary floating-point value	-	6	5-121
	96	TMR	-	-	16-bit timer	5	-	4-9
	79	TO	DTO	\checkmark	Writing data into a control register in a special module	9	13	5-82
W	26	WAND	DWAND	\checkmark	Logical AND operation	7	9	5-43
	07	WDT	-	\checkmark	Watchdog timer	1	-	5-20
	27	WOR	DWOR	\checkmark	Logical OR operation	7	9	5-44
	37	WSFL	-	\checkmark	Moving the values in word devices leftwards	9	-	5-56
	36	WSFR	-	\checkmark	Moving the values in word devices rightwards	9	-	5-54
	28	WXOR	DWXOR	\checkmark	Logical exclusive OR operation	7	9	5-45

5 Applied Instructions and Basic Usage

Type	API	Instruction code		Pulse instruction	Function	Step		Page No.
		16-bit	32-bit			16-bit	32-bit	
X	17	XCH	DXCH	\checkmark	Interchanging values	5	9	5-33
Z	11	ZCP	DZCP	\checkmark	Zonal comparison	9	12	5-24
Z	40	ZRST	-	\checkmark	Resetting a zone	5	-	5-59

5 Applied Instructions and Basic Usage

5.6 Descriptions of the Applied Instructions

API		CJ			P	(S)					Conditional jump							Applicable model							
00												20PM													
													\checkmark												
		t de	ice		Word device											16-bit instruction (3 steps)									
	X	Y	M	S	K	H	KnX	KnY		KnS							T	C	D	V	Z	CJ $\begin{aligned} & \text { Continuity } \\ & \text { instruction }\end{aligned}$		cJP	Pulse
- Note: S can be a pointer. S can be a pointer in the range of P0 to P255. A pointer can not be modified by a V device or a Z device.																CJP	instruction								
																32-bit instruction									
																	-	-	-						
																- Flag									

Explanation

Example 1

S: Pointer which points to a jump destination

- If some part of the main program O100 does not need to be executed, users can use CJ or CJP to shorten the scan time. Besides, if a dual output is used, users can use CJ or CJP.
- If the program specified by a pointer is prior to the instruction CJ, a watchdog timer error will occur, and the main program will not be executed. Please use the instruction carefully.
- The instruction CJ can specify the same pointer repeatedly. The pointer specified by CJ can not be the same as the pointer specified by CALL, otherwise an error will occur.
- When the instruction CJ/CJP in a program is executed, the actions of the devices in the program are as follows.

1. The states of the Y devices, the states of the M devices, and the states of the S devices in the program remain the same as those before the execution of the jump.
2. The 10 millisecond timers in the program stop counting.
3. The general counters in the program stop counting, and the general applied instructions in the program are not executed.
4. If the instructions which are used to reset the timers in the program are driven before the jump is executed, the timers will still be reset during the execution of the jump.

- When XO is ON, the execution of the program jumps from address 0 to address N (P1).
When X0 is OFF, the execution of the program starts from address 0 , and the instruction CJ is not executed.

5 Applied Instructions and Basic Usage

Example 2

States of devices

Device	States of contacts before the execution of CJ	States of contacts during the execution of CJ	States of output coils during the execution of CJ
Y devices, M devices, S devices	M1, M2, and M3 are OFF.	M1, M2, and M3 are turned from OFF to ON.	Y1 ${ }^{{ }^{*},}$, M20, and S1 are OFF.
	M1, M2, and M3 are ON.	M1, M2, and M3 are turned from ON to OFF.	$\mathrm{Y}_{1}{ }^{{ }^{1}}, \mathrm{M} 20$, and S 1 are ON.
$\begin{array}{\|c\|} 10 \\ \text { millisecond } \\ \text { timers } \end{array}$	M 4 is OFF.	M4 is turned from OFF to ON.	The timer T0 does not count.
	M 4 is ON.	M4 is turned from ON to OFF.	The timer T0 stops counting immediately. When MO is turned from ON to OFF, the timer TO is reset to 0 .
	M6 is OFF.	M6 is turned from OFF to ON.	The timer T240 does not count.
	$\mathrm{M6}$ is ON .	M6 is turned from ON to OFF.	The timer T240 stops counting immediately. When MO is turned from ON to OFF, the timer T240 is reset to 0 .
C0~C234	M7 and M10 are OFF.	M10 is ON/OFF.	The counter C0 does not count.
	M7 is OFF. M10 is ON/OFF.	M10 is ON/OFF.	C0 stops counting. After MO is turned OFF, C0 will resume counting.
Applied instructions	M11 OFF	M11 is turned from OFF to ON.	The applied instructions are not executed.
	M11 ON	M11 is turned from ON to OFF.	The applied instructions which are skipped are not executed, but API 53~API 59 and API 157~API 159 are still executed,

*1: Y1 is a dual output. When M0 is OFF, Y1 is controlled by M1. When M0 is $\mathrm{ON}, \mathrm{Y} 1$ is controlled by M12.

- Y 1 is a dual output. When M 0 is OFF, Y 1 is controlled by M1. When M0 is ON , Y1 is controlled by M12.

5 Applied Instructions and Basic Usage

Explanation

- \mathbf{S} : Pointer which points to a subroutine
- The subroutine to which a pointer points should be written after M102, M2 and the instruction SRET.
- The pointer used by the instruction CALL can not be the same as the pointers used by the instructions CJ, CJN, and JMP.
- If only the instruction CALL is used, the same subroutine can be called repeatedly.

5 Applied Instructions and Basic Usage

Explanation

- The instruction SRET indicates that a soubroutine ends. After the execution of a subroutine in a program is complete, the instruction following CALL which calls the subroutine in the main program O 100 will be executed.

Example 1

Example 2
When X0 is ON, the instruction CALL is executed, and the execution of the program jumps to the subroutine to which P2 points. When the instruction SRET is executed, the execution of the program returns to address 24.

20
24

- When X20 is turned from OFF to ON, the instruction CALL P10 is executed, and the execution of the program jumps to the subroutine to which P10 points
- When X11 is ON, the instruction CALL P11 is executed, and the execution of the program jumps to the subroutine to which P11 points.
- When X12 is ON, the instruction CALL P12 is executed, and the execution of the program jumps to the subroutine to which P 12 points.
- When X13 is ON, the instruction CALL P13 is executed, and the execution of the program jumps to the subroutine to which P 13 points.
- When X14 is ON, the instruction CALL P14 is executed, and the execution of the program jumps to the subroutine to which P14 points. When the instruction SRET is executed, the execution of the program returns to the previous subroutine.
- When the instruction SRET in the subroutine to which P10 points is executed, the execution of the program returns to the main program.

5 Applied Instructions and Basic Usage

5 Applied Instructions and Basic Usage

Explanation

Additional remark

- The instruction WDT is used to reset the watchdog timer in a DVP-10PM series motion controller. If the scan time in a DVP-10PM series motion controller exceeds 200 milliseconds, the ERROR LED indicator of the motion controller will be ON, and users will have to disconnect the motion control module. After the users connect the motion controller again, the motion controller will judge its state according to the setting of the "STOP/RUN switch" switch. If there is no "STOP/RUN switch" switch, the motion controller will stop running automatically.
- The points when a watchdog timer acts are as follows.
- The system is abnormal.
- The execution of a program takes much time, and therefore the scan time is greater than the setting value in D1000. There are two ways users can use to improve the situation.

1. Using the instruction WDT

2. Changing the value in D1000 (The default setting is 200 milliseconds.)

- Suppose the scan time is 300 milliseconds. After the program is divided into two parts, and the instruction WDT is inserted between these two parts, the time it takes to scan either the first part of the program or the second part of the program will be less than 200 milliseconds.

The program is divided into two parts. The time it takes to scan either the first part of the program or the second part of the program is less than 200 milliseconds.

The watchdog timer is reset.

- The instruction WDT is executed when a condition is met. Users can make the instruction WDT executed only in one scan cycle by writing a program. They can use the pulse instruction WDTP.
- The default setting of a watchdog timer is 200 milliseconds. Users can set a watchdog timer by means of D1000.

5 Applied Instructions and Basic Usage

Explanation

- S: Number of times a loop is executed

There is only one RPT-RPE loop in a program. If there is more than one RPT-RPE loop in a program, an error will occur.

5 Applied Instructions and Basic Usage

Explanation

Example 1

RPT in a program specifies that the RPT-RPE loop in the program must be executed N times.

- $\quad \mathrm{N}$ is in the range of K 1 to $\mathrm{K} 32,767$. If $\mathrm{N} \leqq \mathrm{K} 1, \mathrm{~N}$ will be regarded as K 1 .
- Users can skip the execution of the RPT-RPE loop in a program by means of the instruction CJ .
- An error will occur if
- the instruction RPE is before the instruction RPT. there is RPT, but there is no RPE.
- the number of times RPT is used is not the same as the number of times RPE is used.
- There is only one RPT-RPE loop in a program. If there is more than one RPT-RPE loop in a program, an error will occur.
- Part A can be executed three times by means of a RPT-RPE loop.

- When X0.7 is OFF, the program between RPT and RPE is executed. When

Example 2

 X 0.7 is ON , the instruction CJ is executed, the subroutine to which P6 points is executed, and the program between RPT and RPE is skipped.

5 Applied Instructions and Basic Usage

Explanation

Example

- $\quad \mathbf{S}_{1}$: Comparison value 1; $\mathbf{S}_{\mathbf{2}}$: Comparison value 2; \mathbf{D} : Comparison result The instruction is used to compare the value in \mathbf{S}_{1} with that in \mathbf{S}_{2}. The comparison result is stored in \mathbf{D}.
- The operand D occupies three consecutive devices.
- If the operand \mathbf{D} is $\mathrm{Y} 0, \mathrm{Y} 0, \mathrm{Y} 1$, and Y 2 will be occupied automatically.
- When X10 is ON, the instruction CMP is executed, and Y0, Y1, or Y2 is ON. When X10 is OFF, the execution of the instruction CMP stops, and the states of $Y 0, \mathrm{Y} 1$, and Y 2 remain unchanged.

If users want to get the result that $\mathrm{K} 10 \geqq$ the value in D10, they have to connect Y0 and Y 1 in series. If users want to get the result that K10 the value in D10, they have to connect Y 1 and Y 2 in series. If users want to get the result that K10キthe value in D10, they have to connect Y0, Y1, and Y2 in series.

5 Applied Instructions and Basic Usage

- \mathbf{S}_{1} : Minimum value; \mathbf{S}_{2} : Maximum value; \mathbf{S} : Comparison value; \mathbf{D} : Comparison

Explanation

Example

 resultThe instruction is used to compare the value in \mathbf{S} with that in \mathbf{S}_{1}, and compare the value in \mathbf{S} with that in \mathbf{S}_{2}. The comparison result is stored in \mathbf{D}.

- The value in \mathbf{S}_{2} must be greater than that in \mathbf{S}_{1}.
- The operand D occupies three consecutive devices.
- If the operand \mathbf{D} is M0, M0, M1, and M2 will be occupied automatically.
- When XO is ON, the instruction ZCP is executed, and M0, M1, or M2 is ON. When XO is OFF, the execution of the instruction ZCP stops, and the states of M0, M1, and M2 remain unchanged.

5 Applied Instructions and Basic Usage

Explanation

Example

S: Source; D: Destination

When the instruction is executed, the value in \mathbf{S} is transferred to \mathbf{D}. When the instruction is not executed, the value in \mathbf{D} is unchanged.
If an operation result gotten is a 32-bit value, users can only move the operation result by means of the instruction DMOV.

- If users want to move a 16 -bit value, they have to use the instruction MOV.

1. When $X 0$ is OFF, the value in DO is unchanged. When $X O$ is $O N$, the value K10 is transferred to the data register D0.
2. When X 1 is OFF, the value in D10 is unchanged. When X 1 is ON , the value in K2M4 is transferred to the data register D10.

- If users want to move a 32-bit value, they have to use the instruction DMOV. When X2 is OFF, the values in (D31, D30) and (D41, D40) are unchanged. When X 2 is ON, the value in (D21, D20) is transferred to (D31, D30), and the value in (D51, D50) is transferred to (D41, D40).

5 Applied Instructions and Basic Usage

API	SMOV				$\text { (S) } \underset{n}{m_{1} m_{2}} \xrightarrow{D}$						Transferring digits							Applic	ble model				
13				P								OPM											
	Bit device				Word device											16 -bit instruction (11 steps) SMOV Continuity instruction SMOVPPulse instruction							
	X	Y	M	S	K	H	KnX	KnY	KnM	KnS								T	C	D	V	Z	
S							*	*	*	*	*	*	*	*									
m1					*	*														32-bit in	truction		-
m2					*	*										- Flag:	1168						
D								*	*	*	*	*	*	*									
n					*	*																	
- Note: The instruction supports V devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ is used, it is suggested that $\mathrm{X} /$ devices/ Y devices/M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system).																							

- \mathbf{S} : Data source; \mathbf{m}_{1} : Start digit which will be transferred from the source device; \mathbf{m}_{2} : Number of digits which will be transferred; D: Data destination; \mathbf{n} : Start digit where the source data is stored in the destination device
- The value used by the instruction is a binary-coded decimal value (M1168 is OFF).
The value used by SMOV is a binary-coded decimal value. When the instruction is executed, the \mathbf{m}_{2} digits of the four-digit binary-code decimal value in \mathbf{S} which start from the $\mathbf{m}_{1}^{\text {th }}$ digit of the four-digit binary-code decimal value in \mathbf{S} are transferred to the \mathbf{m}_{2} digits of the four-digit binary-code decimal value in \mathbf{D} which starts from the $\mathbf{n}^{\text {th }}$ digit of the four-digit binary-code decimal value in \mathbf{D}.
- The value used by the instruction is a binary value (M1168 is ON).

When the instruction is executed, the $\mathbf{m}_{\mathbf{2}}$ digits of the four-digit decimal value in \mathbf{S} which start from the $\boldsymbol{m}_{1}^{\text {th }}$ digit of the four-digit decimal value in \mathbf{S} are transferred to the $\mathbf{m}_{\mathbf{2}}$ digits of the four-digit decimal value in \mathbf{D} which starts from the $\mathbf{n}^{\text {th }}$ digit of the four-digit decimal value in \mathbf{D}.

- \boldsymbol{m}_{1} is in the range of 1 to 4 .
- $\boldsymbol{m}_{\mathbf{2}}$ is in the range of 1 to \boldsymbol{m}_{1}. (It can not be greater than \boldsymbol{m}_{1}.)
- $\quad \mathbf{n}$ is in the range of \mathbf{m}_{2} to 4 . (It can not be less than $\mathbf{m}_{\mathbf{2}}$.)

5 Applied Instructions and Basic Usage

Example 1

Example 2

- When M1168 is OFF, the value used by SMOV is a binary-coded decimal value. When X0 is ON, the two digits of the decimal value in D10 which start from the fourth digit of the decimal value (the digit in the thousands place of the decimal value) in D10 are transferred to the two digits of the decimal value in D20 which start from the third digit of the decimal value (the digit in the hundreds place of the decimal value) in D20. After the instruction is executed, the digits in the thousands place of the decimal value $\left(10^{3}\right)$ and the ones place of the decimal value $\left(10^{\circ}\right)$ in D20 will be unchanged.
- If the binary-coded decimal value used is not in the range of 0 to 9,999 , an operation error will occur, the instruction will not executed, M1067 will be ON, and the error code in D1067 will be 0E18 (hexadecimal value).

- Suppose the value in D10 is K1234, and the value in D20 is K5678. After the instruction is executed, the value in D10 will be unchanged, and the value in D20 is K5128.
- When M1168 is ON, the value used by SMOV is a is binary value. When the instruction SMOV is executed, the binary values in D10 and D20 are not converted into the binary-coded decimal values, and evey digit which is transferred is composed of four bits.

$4^{\text {th }}$ digit $3^{\text {rd }}$ digit $2^{\text {nd }}$ digit $1^{\text {st }}$ digit

$4^{\text {th }}$ digit $3^{\text {rd }}$ digit $2^{\text {nd }}$ digit $1^{\text {st }}$ digit
Unchanged Unchanged
- Suppose the value in D10 is H1234, and the value in D20 is H5678. After the instruction is executed, the value in D10 will be unchanged, and the value in D20 is H5128.

5 Applied Instructions and Basic Usage

Example 3

- The two digits of the value of the DIP switch on the right are transferred to the the two digits of the value in D2 which start from the second digit of the value in D 2 , and the one digit of the value of the DIP switch on the left is transferred to the the first digit of the value in D1. The instruction SMOV can be used to transfer the first digit of the value in D1 to the third digit of the value in D2. In other words, the two DIP switches can be combined into one DIP switch by means of the instruction SMOV.

5 Applied Instructions and Basic Usage

Explanation

Example 1

- When X10 is ON, bit 0~bit 3 in D1 are inverted, and the inversion result is transferred to $\mathrm{YO}-\mathrm{Y} 3$.

- The circuits below can be represented by means of the instruction CML.

Example 2

5 Applied Instructions and Basic Usage

Explanation

Example 2

Example 1

- S: Source; D: Destination; n: Length
- The instruction is used to transfer the values in registers to new registers. The values in the \mathbf{n} registers starting from \mathbf{S} are transferred to the \mathbf{n} registers starting from \mathbf{D}. If \mathbf{n} is not in the range available, only the values in registers available will be transferred.
- $\quad \mathbf{n}$ is in the range of 1 to 512 .
- When X2.0 is ON, the values in D0~D3 are transferred to D20~D23.

D0	\rightarrow	D20
D1	\rightarrow	D21
D2	\rightarrow	D22
D3	\rightarrow	D23

$\mathrm{n}=4$

If users specify KnM and KnY, n in KnM must be the same as n in KnY .

M1000	BMOV	K1M0	K1Y0	K3

M4	\longrightarrow	Y4
M5	\rightarrow	Y5
M6	\longrightarrow	Y6
M7	\longrightarrow	Y7

M8	\longrightarrow	Y10
M9	\longrightarrow	Y11
M10	\longrightarrow	Y12
M11	\longrightarrow	Y13

5 Applied Instructions and Basic Usage

Example 3

- In order to prevent the error which results from the overlap between source devices and destination devices, the values in the source devices are transferred in the following way.

1. The device number of \mathbf{S} is greater than the device number of \mathbf{D}. The values in D20~D22 are transferred in the order (1) \rightarrow (2) \rightarrow (3).

X20	BMOV	D20	D19	K3

D20	$\xrightarrow{(1)}$	D19
D21	$\xrightarrow{(2)}$	D20
D22	$\xrightarrow{(3)}$	D21

2. The device number of S is less than the device number of D. The values in D10~D12 are transferred in the order (3) \rightarrow (2) \rightarrow (1). The values in D11~D13 are the same as the value in D10.

D10	(3)	D11
D11	(2)	D12
D12	$\xrightarrow{(1)}$	D13

5 Applied Instructions and Basic Usage

- S: Source; D: Destination; n: Length

Explanation

Example

- $\quad \mathbf{n}$ is in the range of 1 to 512 .
- When X20 is ON, K10 is transferred to the 5 registers starting from D10 (D10~D14).

| FMOV | K10 | D10 | K5 |
| :---: | :--- | :--- | :--- | :--- |

5 Applied Instructions and Basic Usage

Explanation

Example

Additional remark

- \mathbf{D}_{1} : Value which is interchanged; \mathbf{D}_{2} : Value which is interchanged
- The instruction is used to interchange the value in \mathbf{D}_{1} with the value in \mathbf{D}_{2}.
- It is suggested that users should use the pulse instruction XCHP.
- When X0 is turned from OFF to ON, the value in D20 is interchanged with the value in D40.

Before the instruction is executed	After the instruction is executed
D20 20	
D40 40	
40	
D20	

- 16 -bit instruction: If D_{1} is the same as D_{2}, and M1303 is ON, the high 8 bits are interchanged with the low 8 bits.
- 32-bit instruction: If \boldsymbol{D}_{1} is the same as \boldsymbol{D}_{2}, and M1303 is ON , the high 16 bits are interchanged with the low 16 bits.
- When X0 is ON, and M1303 is ON, the high 8 bits in D100 are interchanged with the high 8 bits in D101, and the low 8 bits in D100 are interchanged with the low 8 bits in D101.

Before the instruction is executed

Afterthe instruction is executed

5 Applied Instructions and Basic Usage

API	D	BCD				(S D					Converting a binary value into a binary-coded decimal value								Appli	ble model	
18																			OPM		
	Bit device					Word device											16-bit in	struction (5	teps)		
	X		Y	M		S	K	H	KnX	KnY	KnM	KnS	T	C	D	V	Z	BCD	Continuity	BCDP	Pulse
S											*				*						
D										*	*	*		*	*		32-bit in	Contruction (6)	teps)	Pulse	
- Note: The instruction supports V devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges.																					

Explanation

Example

The binary value in \mathbf{S} is converted into a binary-coded decimal value, and the conversion result is transferred to \mathbf{D}.
If a binary value is converted to a binary-coded decimal value which is not in the range of 0 to 9,999 , the instruction BCD will not be executed. If a binary value is converted to a binary-coded decimal value which is not in the range of 0 to 99,999,999, the instruction DBCD will not be executed.

- BCD can be used to convert the binary value in a positioning unit to a binary-coded decimal value, and transfer the conversion result to an external device, e.g. a seven-segment display.
- When X0 is ON, the binary value in D10 is converted into a binary-coded decimal value, and the digit in the ones place of the conversion result is stored in K1YO (Y0~Y3).

If D10=001E (hexadecimal value) $=0030$ (decimal value), $Y 0 \sim Y 3=0000$ (binary value).

5 Applied Instructions and Basic Usage

Explanation

Example remark

S: Source; D: Conversion result

The binary-coded decimal value in \mathbf{S} is converted into a binary value, and the conversion result is transferred to \mathbf{D}.
The 16-bit binary-coded decimal value in \mathbf{S} should be in the range of 0 to 9,999 , and the 32-bit binary-coded decimal value in \mathbf{S} should be in the range of 0 to 99,999,999.

- Decimal constants and hexadecimal constants are converted into binary values automatically. Users do not need to use the instruction.
- When X0 is ON, the binary-coded decimal value in K1MO is converted into a binary value, and the conversion result is stored in D10.

Applications of the instructions BCD and BIN:

1. If a DVP-10PM series motion controller wants to read a binary-coded decimal value created by a DIP switch, users have to use the instruction BIN to convert the value into a binary value, and store the conversion result in the DVP-10PM series motion controller.
2. If users want to display a value stored in a DVP-10PM series motion controller on a seven-segment display on which binary-coded decimal values can be displayed, they have to use the instruction BCD to convert the value into a binary-coded decimal value, and transfer the conversion result to the seven-segment display.
3. When XO is ON , the binary-coded decimal value in K4MO is converted into a binary value, and the conversion result is stored in D100. Subsequently, the binary value in D100 is converted into a binary-coded decimal value, and the conversion result is stored in K4Y20.

5 Applied Instructions and Basic Usage

Explanation

Example 1

Example 2

\mathbf{S}_{1} : Augend; $\mathbf{S}_{\mathbf{2}}$: Addend; \mathbf{D} : Sum

- The binary value in \mathbf{S}_{2} is added to the binary value in $\mathbf{S}_{\mathbf{1}}$, and the sum is stored in \mathbf{D}.
$-\quad$ The highest bit in $\mathbf{S}_{\mathbf{1}}$ and the highest bit in $\mathbf{S}_{\mathbf{2}}$ are sign bits. If the sign bit in a register is 0 , the value in the register is a positive value. If the sign bit in a register is 1 , the value in the register is a negative value.
- The flags related to 16 -bit binary addition and 32 -bit binary addition are listed below.
16-bit binary addition:

1. If the operation result gotten is 0 , a zero flag will be ON .
2. If the operation result gotten is less than $-32,768$, a borrow flag will be ON.
3. If the operation result gotten is greater than 32,767, a carry flag will be ON.

32-bit binary addition:

1. If the operation result gotten is 0 , a zero flag will be ON .
2. If the operation result gotten is less than $-2,147,483,648$, a borrow flag will be ON.
3. If the operation result gotten is greater than $2,147,483,647$, a carry flag will be ON.

- 16-bit binary addition: When X0 is ON, the addend in D10 is added to the augend in D0, and the sum is stored in D20.

ADD	D0	D10	D20

- 32-bit binary addition: When X1 is ON, the value in (D41, D40) is added to the augend in (D31, D30), and the sum is stored in (D51, D50).

| DADD | D30 | D40 | D50 |
| :--- | :--- | :--- | :--- | :--- |

5 Applied Instructions and Basic Usage

Additional remark

- The relations between flags and values are shown below.

5 Applied Instructions and Basic Usage

API		SUB			$S_{1} S_{2}$ D					Binary subtraction								Applica	ble model				
	D										PM												
	Bit device				Word device											16 -bit instruction (7 steps) SUB Continuity instruction SUBPPulse instruction							
	X	Y	M	S	K	H	KnX	KnY	KnM									KnS	T	C	D	V	Z
S_{1}					*	*				*	*	*	*	*									
S_{2}					*					*	*	*	*	*						32 -bit instruction (9 steps) DSUBContinuity instruction		teps)	Pulse
D											*	*	*	*		DSUBP	instruction						

Explanation

- \mathbf{S}_{1} : Minuend; \mathbf{S}_{2} : Subtrahend; D: Difference
- The binary value in $\mathbf{S}_{\mathbf{2}}$ is subtracted from the binary value in $\mathbf{S}_{\mathbf{1}}$, and the difference is stored in \mathbf{D}.
- The highest bit in \mathbf{S}_{1} and the highest bit in $\mathbf{S}_{\mathbf{2}}$ are sign bits. If the sign bit in a register is 0 , the value in the register is a positive value. If the sign bit in a register is 1 , the value in the register is a negative value.
- The flags related to 16 -bit binary subtraction and 32 -bit binary subtraction are listed below.
16-bit binary subtraction:

1. If the operation result gotten is 0 , a zero flag will be ON .
2. If the operation result gotten is less than $-32,768$, a borrow flag will be ON.
3. If the operation result gotten is greater than 32,767, a carry flag will be ON.

32-bit binary subtraction:

1. If the operation result gotten is 0 , a zero flag will be ON .
2. If the operation result gotten is less than $-2,147,483,648$, a borrow flag will be ON.
3. If the operation result gotten is greater than $2,147,483,647$, a carry flag will be ON.

- Please refer to the additional remark on the instruction ADD for more information about the relations between flags and values.

Example 1
 - 1

- 16-bit binary subtraction: When X0 is ON, the subtrahend in D10 is subtracted from the minuend in D0, and the difference is stored in D20.

SO	SUB	D0	D10	D20

- When X 1 is ON , the subtrahend in (D41, D40) is subtracted from the minuend

Example 2

D1	DSUB	D30	D40	D50

5 Applied Instructions and Basic Usage

 the product is stored in \mathbf{D}. Users have to notice the sign bits in $\mathbf{S}_{1}, \mathbf{S}_{2}$, and \mathbf{D} when 16 -bit binary multiplication or 32-bit binary multiplication is done.

- 16-bit binary multiplication

Sign bit=0 (Positive sign); Sign bit=1 (Negative sign)

- 32-bit binary multiplication

Sign bit=0 (Positive sign); Sign bit=1 (Negative sign)

Example

The 16 -bit value in D0 is multiplied by the 16 -bit value in D10, and the 32 -bit product is stored in (D21, D20). The bits in D21 is the high 16 bits in (D21, D20), whereas the bits in D20 is the low 16 bits in (D21, D20). Whether the product is a positive value or a negative value depends on the leftmost bit in (D21, D20).

| MUL | D0 | D10 | D20 |
| :--- | :--- | :--- | :--- | :--- |
| | MUL D0 D10 K8M0 | | |

5 Applied Instructions and Basic Usage

Explanation The singed binary value in \mathbf{S}_{1} is divided by the signed binary value in \mathbf{S}_{2}. The quotient and the remainder are stored in \mathbf{D}. Users have to notice the sign bits in $\mathbf{S}_{1}, \mathbf{S}_{2}$, and \mathbf{D} when 16 -bit binary division or 32 -bit binary division is done.

- If the divisor in $\mathbf{S}_{\mathbf{2}}$ is 0 , the instruciton will not be executed.
- 16-bit binary division

Example

When XO is ON , the dividend in D0 is divided by the divisor in D10, the quotient is stored in D20, and the remainder is stored in D21. Whether the quotient and the remainder are positive values or negative values depends on the leftmost bit in D20 and the leftmost bit in D21.

DIV	D0	D10	D20	
	DIV	D0	D10	K4Y0

5 Applied Instructions and Basic Usage

D: Destination device
Explanation
If the instruction used is not a pulse instruction, the value in \mathbf{D} used by the instruction increases by one whenever the instruction is executed.

- Generally, the pulse instructions INCP and DINCP are used.
- If a 16 -bit operation is performed, 32,767 plus 1 equals $-32,768$. If a 32 -bit operation is performed, $2,147,483,647$ plus 1 equals $-2,147,483,648$.

Example

When XO is turned from OFF to ON, the value in DO increases by one.

5 Applied Instructions and Basic Usage

Explanation

- D: Destination device
-
- Generally, the pulse instructions DECP and DDECP are used.
- If a 16 -bit operation is performed, $-32,768$ minus 1 leaves 32,767 . If a 32 -bit operation is performed, $-2,147,483,648$ minus 1 leaves $2,147,483,647$.

Example
When XO is turned from OFF to ON, the value in DO decreases by one.

5 Applied Instructions and Basic Usage

Explanation

Example 1
\mathbf{S}_{1} : Source device 1; \mathbf{S}_{2} : Source device 2; \mathbf{D} : Operation result列 ${ }_{1}$, and performs the logical AND operation on each pair of corresponding bits. The operation result is stored in D.

- The result in each position is 1 if the first bit is 1 and the second bit is 1 . Otherwise, the result is 0 .
- When XO is ON, a logical AND operator takes the values in the 16-bit device
 is executed

Example 2

When X 1 is ON, a logical AND operator takes the values in the 32-bit device (D11, D10) and the 32-bit device (D21, D20), and performs the logical AND operation on each pair of corresponding bits, and the operation result is stored in (D41, D40).

X1	DWAND	D10	D20

5 Applied Instructions and Basic Usage

\mathbf{S}_{1} : Source device 1; \mathbf{S}_{2} : Source device 2; \mathbf{D} : Operation result

Explanation
Explanation performs the logical inclusive OR operation on each pair of corresponding bits. The operation result is stored in \mathbf{D}.

- The result in each position is 1 if the first bit is 1 , the second bit is 1 , or both bits are 1 . Otherwise, the result is 0 .

Example 1

Example 2

When XO is ON, a logical OR operator takes the values in the 16-bit device DO and the 16 -bit device D2, and performs the logical inclusive OR operation on each pair of corresponding bits, and the operation result is stored in D4.

WO	WOR	D0	D2	D4

- When X1 is ON, a logical OR operator takes the values in the 32-bit device (D11, D10) and the 32-bit device (D21, D20), and performs the logical inclusive OR operation on each pair of corresponding bits, and the operation result is stored in (D41, D40).

5 Applied Instructions and Basic Usage

\mathbf{S}_{1} : Source device 1; \mathbf{S}_{2} : Source device 2; \mathbf{D} : Operation result

Explanation

Example 1
 Example 1

Ast the instruction is executed

Example 2
Explanation same.

A logical XOR operator takes the binary representations in \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$, and performs the logical exclusive OR operation on each pair of corresponding bits. The operation result is stored in \mathbf{D}.

- The result in each position is 1 if the two bits are different, and 0 if they are the O in a a logical XOR operator takes the values in the 16-bit device D0 and the 16-bit device D2, and performs the exclusive OR operation on each pair of corresponding bits, and the operation result is stored in D4.

When X1 is ON, a logical XOR operator takes the values in the 32-bit device (D11, D10) and the 32-bit device (D21, D20), and performs the logical exclusive OR operation on each pair of corresponding bits, and the operation result is stored in (D41, D40).

5 Applied Instructions and Basic Usage

D: Device in which the two's complement of the value in the device is stored

Explanation
\square
Example 1

Example 2

- Getting the aboluste value of a negative value

1. When bit 15 in $D 0$ is $1, M 0$ is $O N$. (The value in $D 0$ is a negative value.)
2. When MO is ON, the instruction NEG is used to take the two's complement of the negative value in DO.

Example 3

- Getting the absolute value of the difference between two values

Suppose XO is ON.

1. When the value in $D 0$ is greater than that in $D 2, M 0$ is $O N$.
2. When the value in D 0 is equal to that in $\mathrm{D} 2, \mathrm{M} 1$ is ON .
3. When the value in DO is less than that in D2, M2 is ON.
4. The value in D 4 is a positive value.

5 Applied Instructions and Basic Usage

Additional remark

- The representation of a negative value and its absolute value are described below.

1. Whether the value in a register is a positive value or a negative value depends on the leftmost bit in the register. If the leftmost bit in a register is 0 , the value in the register is a positive value. If the leftmost bit in a register is 1 , the value in the register is a negative value.
2. The negative value in a register can be converted into its absolute value by means of the instruction NEG.
(D0) $=2$

(DO) $=-4$	($\overline{\mathrm{D}})+1=4$	

$(\mathrm{D} 0)=-5 \quad(\overline{\mathrm{DO}})+1=5$

(D0) $=-32,766$	($\overline{\mathrm{DO}})+1=32,766$

The maximum absolute value is 32,767 .

5 Applied Instructions and Basic Usage

API	D	ROR			P	(D) n				Rotating bits rightwards									Appli	le model				
30											PM													
							Word device											16-bit instruction (5 steps) ROR Continuity instruction RORPPulse instruction						
		X	Y	M	S	K	H	KnX	KnY									KnM	KnS	T	C	D	V	Z
D											*		*	*	*	*								
N																	$\underline{32-b i t ~ i n s t r u c t i o n ~(9 ~ s t e p s) ~}$ Continuity							
- Note: The instruction supports V devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ is used, it is suggested that $\mathrm{X} /$ devices/Y devices/M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system).	Note: The instruction supports V devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ is used, it is suggested that $\mathrm{X} /$ devices/Y devices/M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system).																DROR instruction DRORP instruction - Flags Ox O100 M1810 M1970 Carry flag - Please refer to the additional remark below.							

Explanation

Example

D: Device which is rotated; \mathbf{n} : Number of bits forming a group rotated rightwards.

- The $\mathbf{n}^{\text {th }}$ bit from the right is transmitted to a carry flag.
- Generally, the pulse instructions RORP and DRORP are used.
- If the operand \mathbf{D} is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}, \mathrm{Kn}$ in $\mathrm{KnY/KnM/KnS}$ must be K 4 (16 bits) or K8 (32 bits).
- 16-bit instruction: $1 \leq n \leq 16 ; 32$-bit instruction: $1 \leq n \leq 32$
- When X0 is turned from OFF to ON, the bits in D10 are divided into groups (four bits as a group), and these groups are rotated rightwards. (The bit marked with $※$ is transmitted to a carry flag.)

5 Applied Instructions and Basic Usage

Example

D: Device which is rotated; \mathbf{n} : Number of bits forming a group
Explanation \quad The bits in \mathbf{D} are divided into groups (\mathbf{n} bits as a group), and these groups are rotated leftwards.

- The $\mathbf{n}^{\text {th }}$ bit from the left is transmitted to a carry flag.
- Generally, the pulse instructions ROLP and DROLP are used.
- If the operand \mathbf{D} is $\mathrm{KY} / \mathrm{KnM} / \mathrm{KnS}, \mathrm{Kn}$ in $\mathrm{KY} / \mathrm{KnM} / \mathrm{KnS}$ must be K 4 (16 bits) or K8 (32 bits).
- 16 -bit instruction: $1 \leq \boldsymbol{n} \leq 16 ; 32$-bit instruction: $1 \leq \boldsymbol{n} \leq 32$
- When X0 is turned from OFF to ON, the bits in D10 are divided into groups (four bits as a group), and these groups are rotated leftwards. (The bit marked with $※$ is transmitted to a carry flag.)

5 Applied Instructions and Basic Usage

API	D	RCR			P	(D) n				Rotating bits rightwards with a carry flag								Appli	le model					
32										PM														
							Word device											16-bit instruction (5 steps) RCR Continuity instruction RCRPPulse instruction						
		X	Y	M	S	K	H	KnX	KnY									KnM	KnS	T	C	D	V	Z
D														*	*	*								
n																	32 -bit instruction (9 steps)							
- Note: The instruction supports V devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ is used, it is suggested that $\mathrm{X} /$ devices/ Y devices/M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system).	Note: The instruction supports V devices and Z devices. (If the 16-bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ is used, it is suggested that $\mathrm{X} /$ devices/ Y devices/M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system).																DRCR instruction DRCRP - instruction - Flags Ox O100 M1810 M1970 Carry flag - Please refer to the additional remark below. .							

Explanation

Example

D: Device which is rotated; \mathbf{n} : Number of bits forming a group rotated rightwards with a carry flag.
The $\mathbf{n}^{\text {th }}$ bit from the right is transmitted to a carry flag.

- Generally, the pulse instructions RCRP and DRCRP are used.
- If the operand \mathbf{D} is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}, \mathrm{Kn}$ in $\mathrm{KnY/KnM/KnS}$ must be K 4 (16 bits) or K8 (32 bits).
- 16 -bit instruction: $1 \leq n \leq 16 ; 32$-bit instruction: $1 \leq n \leq 32$
- When X0 is turned from OFF to ON, the bits in D10 are divided into groups (four bits as a group), and these groups are rotated rightwards with a carry flag. (The bit marked with $※$ is transmitted to the carry flag.)

5 Applied Instructions and Basic Usage

API	D	RCL				(D) n					Rotating bits leftwards with a carry flag							Applic	ble model
33					\mathbf{P}														OPM
		Bit device				Word device											16-bit instruction (5 steps) $R C L$ Continuity Pulse instruction RCLP instruction		
		X	Y	M	S	K	H	KnX	KnY	KnM	KnS	T	C	D	V	Z			
D									*	*	*	*	*	*	*	*			
n						*	*										32-bit instruction (9	ps)	
- Note: The instruction supports \vee devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ is used, it is suggested that $\mathrm{X} /$ devices/ Y devices/M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system).																	DRCL instruction - Flags Ox O100 M1810 M1970 - Please refer to the		instruction mark below.

Explanation

Example

D: Device which is rotated ${ }^{\circ} \mathbf{n}$: Number of bits forming a group
The bits in \mathbf{D} are divided into groups (\mathbf{n} bits as a group), and these groups are rotated leftwards with a carry flag.

- The $\mathbf{n}^{\text {th }}$ bit from the left is transmitted to a carry flag.
- Generally, the pulse instructions RCLP and DRCLP are used.
- If the operand \mathbf{D} is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}, \mathrm{Kn}$ in $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ must be K 4 (16 bits) or K8 (32 bits).
- 16-bit instruction: $1 \leq n \leq 16 ; 32$-bit instruction: $1 \leq n \leq 32$
- When X0 is turned from OFF to ON, the bits in D10 are divided into groups (four bits as a group), and these groups are rotated leftwards with a carry flag. (The bit marked with $※$ is transmitted to the carry flag.)

5 Applied Instructions and Basic Usage

Explanation

Example

Example

- $\quad \mathbf{S}$: Initial device which is moved; \mathbf{D} : Initial device which is moved; $\mathbf{n}_{\mathbf{1}}$: Number of bits which are moved; $\mathbf{n}_{\mathbf{2}}$: Number of bits forming a group The states of the $\mathbf{n}_{\mathbf{1}}$ bit devices starting from \mathbf{D} are divided into groups ($\mathbf{n}_{\mathbf{2}}$ bits as a group), and these groups are moved rightwards. The states of the $\mathbf{n}_{\mathbf{2}}$ bit devices starting from \mathbf{S} are moved to the vacant devices in the devices starting from \mathbf{D}.
- Generally, the pulse instruction SFTRP is used.
- $1 \leq n_{2} \leq n_{1} \leq 1024$
- When X0 is turned from OFF to ON, the states of the sixteen bit devices starting from M0 are divided into groups (four bits as a group), and these groups are moved rightwards.
The states of the bit devices are moved rightwards in the order $\mathbf{(1) \boldsymbol { 5 } \text { during a }}$ scan cycle.
(1) M3~M0 \rightarrow The states of M3~MO are carried.
(2) M7~M4 \rightarrow M3~M0
(3) M11~M8 \rightarrow M7~M4
(4) M15~M12 \rightarrow M11~M8
(5) X3~X0 \rightarrow M15~M12

5 Applied Instructions and Basic Usage

Explanation
\mathbf{S} : Initial bit device which is moved; \mathbf{D} : Initial bit device which is moved; $\mathbf{n}_{\mathbf{1}}$: Number of bits which are moved; $\mathbf{n}_{\mathbf{2}}$: Number of bits forming a group
\qquad The states of the \mathbf{n}_{1} bit devices starting from \mathbf{D} are divided into groups (\mathbf{n}_{2} bits as a group), and these groups are moved leftwards. The states of the $\mathbf{n}_{\mathbf{2}}$ bit devices starting from \mathbf{S} are moved to the vacant devices in the devices starting from \mathbf{D}.
 Generally, the pulse instruction SFTRP is used.

- $1 \leq \mathrm{n}_{2} \leq \mathrm{n}_{1} \leq 1024$

Example

5 Applied Instructions and Basic Usage

Explanation

Example 1

- S: Initial word device which is moved; D: Initial word device which is moved; $\mathbf{n}_{\mathbf{1}}$: Number of values which are moved; \mathbf{n}_{2} : Number of values forming a group
- The values in the \mathbf{n}_{1} word devices starting from \mathbf{D} are divided into groups (\mathbf{n}_{2} values as a group), and these groups are moved rightwards. The values in the $\mathbf{n}_{\mathbf{2}}$ word devices starting from \mathbf{S} are moved to the vacant word devices in the word devices starting from \mathbf{D}.
- Generally, the pulse instruction WSFRP is used.
- If the operand \mathbf{S} is $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, the operand \mathbf{D} can be a counter, timer, or a data register. If the operand \mathbf{D} is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, the operand \mathbf{S} can be a counter, timer, or a data register.
- If the operand \mathbf{S} is $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, and the operand \mathbf{D} is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, Kn in $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ which is S and Kn in $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ must be the same.
- $1 \leq \mathrm{n}_{2} \leq \mathrm{n}_{1} \leq 512$
- When XO is turned from OFF to ON, the values in the sixteen word devices starting from D20 are divided into groups (four values as a group), and these groups are moved rightwards.
- The values in the word devices are moved rightwards in the order © © during a scan cycle.
(D23~D20 \rightarrow The values in D23~D20 are carried.
(2) D27~D24 \rightarrow D23~D20
(3) D31~D28 \rightarrow D27~D24
(4) D35~D32 \rightarrow D31~D28
© D13~D10 \rightarrow D35~D32

X0	WSFRP	D10	D20	K16

5 Applied Instructions and Basic Usage

Example 2

XO is turned from OFF to ON, the values in the sixteen bit devices starting from Y20 are divided into groups (eight values as a group), and these groups are moved rightwards.
The values in the word devices are moved rightwards in the order $\mathbf{0} \sim \boldsymbol{\Theta}$ during a scan cycle.
(1) Y27~Y20 \rightarrow The values in Y27~Y20 are carried.
(2) Y37~Y30 \rightarrow Y27~Y20
(3) $\mathrm{X} 27 \sim \mathrm{X} 20 \rightarrow \mathrm{Y} 37 \sim \mathrm{Y} 30$

If the operand \mathbf{S} is $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, and the operand \mathbf{D} is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}, \mathrm{Kn}$ in $\mathrm{KnX} / \mathrm{KnY/KnM/KnS}$ which is S and Kn in $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ must be the same.

5 Applied Instructions and Basic Usage

Explanation

Example

- S: Initial word device which is moved; D: Initial word device which is moved; \mathbf{n}_{1} : Number of values which are moved; $\mathbf{n}_{\mathbf{2}}$: Number of values forming a group
- The values in the \mathbf{n}_{1} word devices starting from \mathbf{D} are divided into groups (\mathbf{n}_{2} values as a group), and these groups are moved leftwards. The values in the $\mathbf{n}_{\mathbf{2}}$ word devices starting from \mathbf{S} are moved to the vacant word devices in the word devices starting from \mathbf{D}.
- Generally, the pulse instruction WSFLP is used.
- If the operand \mathbf{S} is $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, the operand \mathbf{D} can be a counter, timer, or a data register. If the operand \mathbf{D} is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, the operand \mathbf{S} can be a counter, timer, or a data register.
- If the operand S is $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, and the operand D is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, Kn in $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ which is S and Kn in $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ must be the same.
- $1 \leq \mathrm{n}_{2} \leq \mathrm{n}_{1} \leq 512$
- When XO is turned from OFF to ON, the values in the sixteen word devices starting from D20 are divided into groups (four values as a group), and these groups are moved leftwards.
- The values in the word devices are moved leftwards in the order $\mathbf{0} \sim \boldsymbol{\Theta}$ during a scan cycle.
© D35~D32 \rightarrow The values in D35~D32 are carried.
(2) D31~D28 \rightarrow D35~D32
(3) D27~D24 \rightarrow D31~D28
(4) D23~D20 \rightarrow D27~D24
© D13~D10 \rightarrow D23~D20

5 Applied Instructions and Basic Usage

API	SFWR				(S) D					Moving a value and writing it into a word device								Applicable model20PM										
38				P																								
										\checkmark																		
\bigcirc Bit device					Word device											16-bit instruction (9 steps)												
	X	Y	M		S	K	H	KnX	KnY									KnM	M KnS	T	C	D	V	Z	SFWR	Continuity	SFWRP	Pulse
S					*	*	*	*	*	*	*	*	*	*	*													
D								*	*	*	*	*	*			32-bit inst	truction											
n					*	*																						
- Note: The instruction supports \vee devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ is used, it is suggested that $\mathrm{X} /$ devices $/ \mathrm{Y}$ devices/ M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system).																M1808	$\begin{array}{r} \text { O100 } \\ \text { M1968 } \end{array}$	Zero flag										

Explanation

Example

Additional remark
\mathbf{S} : Device which is moved; D: Initial device; \mathbf{n} : Number of devices
The values in the \mathbf{n} word devices starting from \mathbf{D} are defined as first in, first out values, and \mathbf{D} is taken as a pointer. When the instruction is executed, the value of the pointer \mathbf{D} increases by one, and the value in \mathbf{S} is written into the device to which the pointer \mathbf{D} points. When the value of the pointer is greater than or equal to $n-1$, the instruction does not process the writing of the value, and a carry flag is ON.

- When the value of the pointer \mathbf{D} is greater than $\mathbf{n}-1$, the instruction does not process the writing of a value, and the carry flag M1022 is ON.
- Generally, the pulse instruction SFWRP is used.
- $2 \leq n \leq 512$
- The value of the pointer DO is cleared to 0 first. When X0 is turned from OFF to ON, the value in D20 is written into D1, and the value of D0 becomes 1. When X0 is turned from OFF to ON again, the value in D20 is written to D2, and the value in DO becomes 2.
- The value in D20 is moved and written into D1 in the way described below.
(1) The value in D20 is written into D1.
(2) The value of DO becomes 1 .

The instruction SFWR can be used with the instruction SFRD to write a value and read values.

5 Applied Instructions and Basic Usage

\mathbf{S} : Initial device; D: Device into which a value is written; \mathbf{n} : Number of devices
 The values in the \mathbf{n} word devices starting from \mathbf{S} are defined as first in, first out values, and \mathbf{S} is taken as a pointer. When the instruction is executed, the value in \mathbf{S} decreases by one, the value in $\mathbf{S}+\mathbf{1}$ is written into \mathbf{D}, the values in $\mathbf{S}+\mathbf{n}-1 \sim \mathbf{S}+2$ are moved rightwards, and the value in $\mathbf{S}+\mathbf{n}-1$ is unchanged. When the value in \mathbf{S} is equal to 0 , the instruction does not process the reading of the values, and a zero flag is ON.

- When the value in \mathbf{S} is equal to 0 , the instruction does not process the reading of the values, and the zero flag M1020 is ON.
- Generally, the pulse instruction SFRDP is used.
- $2 \leq n \leq 512$
- When X0 is turned from OFF to ON, the value in D1 is written into D21, the values in D9~D2 are moved rightwards, the value in D9 is unchanged, and the value in DO decreases by one.
- The value in D1 is moved and written into D21 in the way described below. (0) The value in D1 is written into D21.
(2) The values in D9~D2 are moved rightwards.
(3) The value in D0 decreases by one.

The value in D1 is read.

5 Applied Instructions and Basic Usage

Explanation

Example

- \mathbf{D}_{1} : Initial device which is reset; \mathbf{D}_{2} : Final device which is reset
- The instruction ZRST can be used to reset 16-bit counter and 32-bit counters.
- If the device number of D_{1} is greater than the device number of D_{2}, only D_{2} will be reset.
- When X0 is ON, the auxiliary relays M300~M399 are reset to OFF.
- When X 1 is ON, the 16-bit counters C0~C127 are reset. (The values of $\mathrm{C} 0 \sim \mathrm{C} 127$ are cleared to 0 , and the contacts and the coils are reset to OFF.)
- When X10 is ON, the timers T0~T127 are reset. (The values of T0~T127 are cleared to 0 . and the contacts and the coils are reset to OFF.)
- When X 2 is ON, the stepping relays S0~S127 are reset to OFF.
- When X3 is ON, the data registers D0~D100 are reset to 0 .
- When X4 is ON, the 32-bit counters C235~C254 are reset. (The values of C235~C254 are cleared to 0, and the contacts and the coils are reset to OFF.)

5 Applied Instructions and Basic Usage

API	DECO	P	(S) D	Decoder	Applicable model
41					20PM
41					\checkmark

	Bit device				Word device										
	X	Y	M	S	K	H	KnX	KnY	KnM	KnS	T	C	D	V	Z
S	*	*	*	*	*	*					*	*	*	*	*
D		*	*	*							*	*	*	*	*
n					*	*									

16-bit instruction (7 steps)				
DECO	Continuity instruction	DECO P		Pulse
:---				
instruction				

32-bit instruction

- Flag: None
- Note: The instruction supports V devices and Z devices. (If the 16-bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges.

5 Applied Instructions and Basic Usage

5 Applied Instructions and Basic Usage

API	ENCO				(S) D n					Encoder								Applica	ble model							
42				P									PM													
												\checkmark														
\bigcirc Bit device					Word device											16 -bit in	truction (7									
	X	Y	M		S	K	H	KnX	KnY							KnM	KnS	T	C	D	V	Z	ENCO	Continuity	ENCOP	Pulse
S	*	*	*	*													*	*	*	*	*					
D											*	*	*	*	*	$32 \text {-bit in }$	truction									
n					*	*																				
- Note: The instruction supports \vee devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges.																										

Explanation

Example 1
\mathbf{S} : Source device D: Device in which an encoding result is stored \mathbf{n} : Number of bits which are encoded
The low $2^{\mathbf{n}}$ bits in \mathbf{S} are encoded as the low \mathbf{n} bits in \mathbf{D}.

- If there are many bits which are 1 in \mathbf{S}, the first bit which is 1 from the left will be processed.
- Generally, the pulse instruction ENCOP is executed.
- If \mathbf{S} is a bit device, \mathbf{n} is in the range of 1 to 8 . If \mathbf{S} is a word device, \mathbf{n} is in the range of 1 to 4 .
When \mathbf{S} is a bit device, \mathbf{n} is in the range of 1 to 8 . If \mathbf{n} is 0 , or greater than 8 , an error will occur.
If \mathbf{n} is 8 , the maximum number of bits which can be decoded is $2^{8}=256$.
- When XO is turned from OFF to ON, the instruction ENCOP encodes the 8 bits in M0~M7 as the low 3 bits in D0, and b15~b3 in D0 become 0 .
- After the instruction ENCOP is executed, X0 will be OFF, and the data in \mathbf{D} will remain unchanged.

Bit 15~bit 3 in D0 become 0.

Example 2

When \mathbf{S} is a word device, \mathbf{n} is in the range of 1 to 4 . If \mathbf{n} is 0 , or larger than 4 , an error will occur.
If \mathbf{n} is 4 , the maximum number of bits which can be decoded is $2^{4}=16$.

- When XO is turned from OFF to ON, the instruction ENCOP encodes the 8 bits in D10 as the low 3 bits in D20, and b15~b3 in D20 become 0 . (Bit 8~bit 15 in D10 are invalid data.)
- After the instruction ENCOP is executed, X0 will be OFF, and the data in \mathbf{D} will remain unchanged.

X0	ENCOP	D10	D20	K3
HF				

5 Applied Instructions and Basic Usage

$$
\begin{aligned}
& \text { b15 } 11010101014 \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Bit 8~bit 18 in D10 are invalid data.

Bit 15~bit 3 in D20 become 0

5 Applied Instructions and Basic Usage

Explanation

- S: Source device; D: Destination device
\qquad
The number of bits which are 1 in \mathbf{S} is stored in \mathbf{D}.
- If the bits in \mathbf{S} are 0 , a zero flag will be ON.
- If the 32-bit instruction is used, \mathbf{D} will occupy two registers.
- When X20 is ON, the number of bits which are 1 in D0 is stored in D2.

Example

5 Applied Instructions and Basic Usage

API	D	BON			$\underset{n}{D}$				Checking the state of a bit									Applicable model20PM													
44				P																											
	Bit device				Word device											16-bit instruction (7 steps)															
S					*	*	*	*	*	*	*	*	*	*		BON	instructio	BONP	Pulse instruction												
D		*	*	*												32-bit instruction (13 steps)															
n					*	*					*	*	*	*		DBON	Continuity instruction	DBON P	Pulse instruction												
- Note: The instruction supports V devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32 -bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ is used, it is suggested that $\mathrm{X} /$ devices $/ \mathrm{Y}$ devices/M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system).	Note: The instruction supports V devices and Z devices. (If the 16-bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ is used, it is suggested that $\mathrm{X} /$ devices/Y devices/M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system).															- Flag: None															

Explanation
Example

- S: Source device; D: Device in which a check result is stored; \mathbf{n} : Bit whose state is judged
- The state of the $\mathbf{n}^{\text {th }}$ bit in \mathbf{S} is checked, and the result is stored in \mathbf{D}.
- 16-bit instruction: $\mathbf{n}=0 \sim 15$; 32-bit instruction: $\mathbf{n}=0 \sim 31$
- If the $15^{\text {th }}$ bit in DO is 1 when XO is ON, MO will be ON. If the $15^{\text {th }}$ bit in DO is 0 when XO is ON, MO will be OFF.
When XO is turned OFF, the state of MO remains unchanged.

b15 b0																$\mathrm{MO}=\mathrm{Off}$
0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	
D0																
b15																
1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	$\mathrm{MO}=\mathrm{On}$

5 Applied Instructions and Basic Usage

Explanation

Example

\mathbf{S} : Initial device; \mathbf{D} : Device in which a mean is stored; \mathbf{n} : Number of devices

- After the values in the \mathbf{n} devices starting from \mathbf{S} are added up, the mean of the sum is stored in \mathbf{D}.
- If a remainder appears in a calculation, it will be left out.
- If \mathbf{S} is not in a valid range, only the devices in the valid range will be processed.
- If \mathbf{n} is not in the range of 1 to 64 , an operation error will occur.
- $\mathbf{n = 1 \sim 6 4}$
- When X10 is ON, the values in the three registers starting from D0 are added up. After the values are added up, the sum will be divided by 3 . The quotient is stored in D10, and the remainder is left out.

5 Applied Instructions and Basic Usage

Explanation

Example

S: Timer; m: Time; D: Annunciator

- The instruction ANS is used to drive an annunciator.
- S: T0~T183
m: K1~K32,767 (Unit: 100 ms)
D: S912~S1023
See the explanation of ANR for more information.
- If X3 is ON for more than 5 seconds, the annunciator S 999 will be ON. Even if X3 is turned OFF, S999 will still be ON. (However, T10 will be reset to OFF, and the value of T10 will be 0.)

X3	ANS	T10	K50	S999

5 Applied Instructions and Basic Usage

Explanation

Example

- The instruction ANR is used to reset an annunciator.
- If more than one annunciator is ON simultaneously, the annunciator whose number is smallest will be reset.
- Generally, the pulse instruction ANRP is used.
- If X20 and X21 are ON for more than 2 seconds, the annunciator S 912 will be ON. If X20 and D21 are turned OFF, S912 will still be ON, T10 will be reset to OFF, and the value of T10 will be 0 .
- If X20 and X21 are not ON for 2 seconds, the value of T10 will become 0 .
- When X0.3 is turned from OFF to ON, the annunciator whose number is smallest in the annunciators which are driven is reset.
- When X0.3 is turned from OFF to ON again, the next annunciator whose number is smallest in the annunciators which are driven is reset.

5 Applied Instructions and Basic Usage

Additional

 remarkApplication of annunciators
X0=Forward switch X1=Backward switch
X2=Front position switch
X4=Resetting button
Y0=Forward
Y2=Indicator
S912=Forward annunciator S920=Backward annunciator

1. If YO is ON for more than 10 seconds, and X 2 is OFF, S912 will be ON.
2. If Y 1 is ON for more than 20 seconds, and X 3 is OFF, S 920 will be ON .
3. If $X 1$ and $Y 1$ are $O N, Y 1$ will not be OFF until $X 3$ is $O N$.
4. If an annuciator is driven, Y 2 will be ON .
5. When X 4 is turned from OFF to ON , the annunciator whose number is smallest in the annunciators which are driven is reset. When X 4 is turned from OFF to ON again, the next annunciator whose number is smallest in the annunciators which are driven is reset.

5 Applied Instructions and Basic Usage

API	D	SQR		\mathbf{P}	(S) D				Square root of a binary value									Applica	le model									
48										PM																		
	Bit device				Word device											16-bit instruction (7 steps)												
	X	Y	M		S	K	H	KnX									KnY	KnM	KnS	T	C	D	V	Z	SQR	Continuity	SQR P	Pulse
S											*																	
m					*											32-bit instruction												
D				*												SQR	instruction	DSQR	instruction									
- Note: All devices can not be modified by V devices and Z devices. Please refer to specifications for more information about device ranges.																- Flags Ox M1808 M1809 M1810 - Please	$\begin{array}{r} \text { O100 } \\ \text { M1968 } \\ \text { M1969 } \\ \text { M1970 } \end{array}$ refer to the	Zero flag Borrow flag Carry fla planation										

Explanation

Example

- S: Source device; \mathbf{D} : Device in which a result is stored
- The square root of the value in \mathbf{S} is calculated, and the result is stored in \mathbf{D}.
- The value in \boldsymbol{S} can only be a positive value. If the value in \boldsymbol{S} is a negative value, an error will occur, and the instruction will not be executed.
- The value stored in \mathbf{D} is an integer. The fractional part of a square root calculated is dropped. If the fractional part of a square root calculated is dropped, a borrow flag will be ON.
- If the value in \mathbf{D} is 0 , a zero flag will be ON.
- When $\times 20$ is ON, the square root of the value in D0 is calculated, and the result is stored in D12.

$$
\sqrt{\mathrm{DO}} \rightarrow \mathrm{D} 12
$$

5 Applied Instructions and Basic Usage

API	D	FLT			(S) D				Converting a binary integer into a binary floating-point value									Applic	le model
49																			PM
	Bit device				Word device											:16-bit instruction			
	X	Y	M	S	K	H	KnX	KnY	KnM	KnS	T	C	D	V	Z			-	-
S					*	*							*			32-bit inst	uction (6		
D													*			DFLT	Continuity instruction	DFLTP	Pulse instruction
- Note: Please refer to specifications for more information about device ranges. Only the 32-bit instructions DFLT and DFLTP are valid.- Flags Ox O100 M1808 M1968 Zero flag M1809 M1969 Borrow flag M1810 M1970 Carry flag - Please refer to the explanation below.																			

Explanation

Example 1

S: Source device; D: Conversion result
The instruction is used to convert a binary integer into a binary floating-point value.

1. If the absolute value of the converesion result is greater than the maximum floating-point value avaliable, a carry flag will be ON.
2. If absolute value of the conversion result is less than the mimum floating-point vlaue available, a borrow flag will be ON.
3. If the conversion result is 0 , a zero flag will be ON.

- When X11 is ON, the binary integer in (D1, D0) is converted into a binary floating-point value, and the conversion result is stored in (D21, D20).
- Suppose the value in the 32-bit register (D1, D0) is K100,000. When X11 is ON, K100,000 is converted into the 32-bit floating-point value H 4735000 , and H4735000 is stored in the 32-bit register (D21, D20).

- Users can use applied instructions to perform the following calculation.

Example 2

5 Applied Instructions and Basic Usage

1. The binary integer in (D11, D10) is converted into a binary floating-point value, and the conversion result is stored in (D101, D100).
2. The binary-coded decimal value in $X 7 \sim X 0$ is converted into a binary value, and the conversion result is stored in (D201, D200).
3. The binary integer in (D201, D200) is converted into a binary floating-point value, and the conversion result is stored in (D203, D202).
4. The constant K615 is divided by the constant K10, and the quotient which is a binary floating-point value is stored in (D301, D300).
5. The binary floating-point value in (D101, D100) is divided by the binary floating-point value in (D203, D202), and the quotient which is a binary floating-point value is stored in (D401, D400).
6. The binary floating-point value in (D401, D400) is multiplied by the binary floating-point value in (D301, D300), and the product which is a binary floating-point value is stored in (D21, D20).
7. The binary floating-point value in (D21, D20) is converted into a decimal floating-point value, and the conversion result is stored in (D31, D30).
8. The binary floating-point value in (D21, D20) is converted into a binary integer, and the conversion result is stored in (D41, D40).

5 Applied Instructions and Basic Usage

Explanation

Example 1

Example 2

Example 3

- D: Initial I/O device whose state is refreshed; \mathbf{n} : Number of I/O devices whose states are refreshed
- The states of I/O devices are not refreshed until the instruction END is executed. When the scan of a program starts, the states of external inputs are read, and stored in the input memory. After the instruction END is executed, the contents of the output memory will be sent to output terminals. Therefore, users can use this instruction when they need the latest I/O data in an operation process.
- D must be an I/O device whose number ends with 0, e.g. X0, X10, Y0 or Y10. The instruction can not be used to refresh the I/O devices in a digital extension module.
- D must be an I/O device in a PLC.

1. If \mathbf{D} is XO and \mathbf{n} is less than or equal to 8 , the states of $\mathrm{XO} \sim \mathrm{XO}$ will be refreshed. If \mathbf{n} is greater than 8 , the states of the input devices and the states of the output devices in the motion controller used will be refreshed.
2. If \mathbf{D} is $Y 0$, and \mathbf{n} is equal to 8 , the states of $Y 0 \sim Y 7$ will be refreshed. If \mathbf{n} is greater than 8 , the states of the input devices and the states of the output devices in the motion controller used will be refreshed.
3. If \mathbf{D} is X 10 or Y 10 , and \mathbf{n} is any number, the states of all the input devices except $\mathrm{X} 0 \sim \mathrm{X} 7$, and the states of all the output devices except $\mathrm{Y} 0 \sim \mathrm{Y} 3$ in the motion controller used will be refreshed.

- $\quad \mathbf{n}$ is in the range of 4 to the number of I/O devices in the motion control module used, and is a multiple of 4.
- When X0 is ON, the DVP-20PM series motion controller reads the states of X0~X7 immediately. The input signals are refreshed without any delay.

- When XO is ON, the states of YO~Y3 are sent to output terminals. The output signals are refreshed immediately without the need to wait for the execution of the instruction END.

- When X0 is ON, the states of the input terminals starting from X10, or the states of the output terminals starting from Y10 are refreshed.

Or

5 Applied Instructions and Basic Usage

Explanation

Example

- \mathbf{S}_{1} : Initial device involved in a comparison; \mathbf{S}_{2} : Value which is compared; \mathbf{D} : Initial device in which a comparison result is stored (5 consecutive devices are occupied.); \mathbf{n} : Number of values
- $\quad \mathbf{S}_{\mathbf{1}}$ is the initial register involved in a comparison, and \mathbf{n} is the number of values which are compared. The values in the \mathbf{n} registers starting from \mathbf{S}_{1} are compared with the value in $\mathbf{S}_{\mathbf{2}}$, and the comparison results are stored in the five registers starting from \mathbf{D}.
- If the 32 -bit instruction is used, $\mathbf{S}_{1}, \mathbf{S}_{2}, \mathbf{D}$, and \mathbf{n} will be 32-bit registers.
- 16-bit instruction: $\mathbf{n = 1 \sim 2 5 6 ;} \mathbf{n = 1 ~ 1 2 8}$ (32-bit instruction)
- When X0 is ON, the values in D10~D19 are compared with the value in D0, and the comparison results are stored in D50~D54. If none of the values in D10~D19 are equal to the value in D0, the values in D50~D52 will be 0 .
- A comparison is based on algebra ($-10<2$).
- The number of the minimum value is stored in D53, and the number of the maximum value is stored in D54. If there is more than one minimum value/maximum value, the number which is the biggest will be stored.

X0	SER	D10	D0	D50	K10

5 Applied Instructions and Basic Usage

	S_{1}	Value	Value which is compared	Number	Result	D	Value	Description
\rightarrow	D10	88	$\begin{gathered} \mathbf{S}_{2} \\ \mathrm{D} 0=\mathrm{K} 100 \end{gathered}$	0		D50	4	Number of values which are equal to the value in DO
	D11	100		1	Equal	D51	1	Number of the first value which is equal to the value in D0
n	D12	110		2		D52	8	Number of the last value which is equal to the value in D0
	D13	150		3		D53	7	Number of the minimum value
	D14	100		4	Equal	D54	9	Number of the maximum value
	D15	300		5				
	D16	100		6	Equal			
	D17	5		7	Minimum			
	D18	100		8	Equal			
\longrightarrow	D19	500		9	Maximum			

5 Applied Instructions and Basic Usage

Explanation

Example 1

Example 2
 -

Example 3

D: Destination device

- When the instruction ALT is executed, the state of \mathbf{D} alternates between ON and OFF.
- Generally, the pulse instruction ALTP is used.
- When XO is turned from OFF to ON for the first time, YO is ON. When XO is turned from OFF to ON for the second time, YO is OFF.

- In the beginning, M0 is OFF, and therefore YO is ON , and Y 1 is OFF. When X 10 is turned from OFF to ON for the first time, MO is ON . Therefore, Y 1 is ON , and YO is OFF. When X10 is switched from OFF to ON for the second time, MO is OFF. Therefore, $\mathrm{Y} O$ is ON , and Y 1 is OFF.

- When X20 is ON, T0 generates a pulse every two seconds. The output Y0 alternates between ON and OFF according to the pulses generated by TO .

5 Applied Instructions and Basic Usage

API	D	RAMP			$\begin{array}{ll} S_{1} & S_{2} \\ (D) & n \end{array}$				Ramp									Applicable model				
67											20PM											
\bigcirc Bit device	Bit device				Word device											16-bit instruction (9 steps)						
	X	Y	M	S	K	H	KnX	KnY								KnM	KnS	T	C	D	V	Z
S1													*									
S2													*						32-bit instruction (17 steps)			
D													*			$\text { D RAMP Continuity } \begin{aligned} & \text { instruction } \end{aligned}$						
N													*			- Flags: M1026 (Please refer to the additional remark below.) M1029						
- Note: All devices can not be modified by V devices and Z devices. Please refer to specifications for more information about device ranges.																						

- \mathbf{S}_{1} : Start a ramp; \mathbf{S}_{2} : End of a ramp; D: Duration of a ramp (2 consecutive devices are occupied.); \mathbf{n} : Number of scan cycles ($\mathbf{n}=1 \sim 32,767$)
- The instruction is used to get a slope. Whether a slope is linear or not has an absolute relationship with scan time. When users use the instruction, they have to specify scan time in advance.
- When the contact driving the instruction RAMP is turned from OFF to ON, the value in \mathbf{D} will increase from the value in $\mathbf{S}_{\mathbf{1}}$ to the value $\mathbf{S}_{\mathbf{2}}$, and the number of scan cycles is stored in $\mathrm{D}+1$.
- If the operand \mathbf{n} is a D device, the value in \mathbf{n} can not be changed until the execution of the instruction stops.
- If the instruction is used with an output of analog signals, the action of cushioning a start/stop can be executed.
- The start of a ramp is written into D10, and the end of the ramp is written into D11. When X20 is turned ON, the value in D12 increases from the value in D10 to the value in D11, and the number of scan cycles is stored in D13.
- After M1039 in a program is turned ON, the scan time for the program will be fixed. Users can write scan time into the special data register D1039 by means of the instruction MOV. If the scan time set is 30 milliseconds, and \mathbf{n} is K100, the time it takes for the value in D12 to increase from the value in D10 to the value in D11 will be 3 seconds (30 milliseconds $\times 100$).
- If X20 is turned OFF, the execution of the instruction will stop. If X20 is turned ON again, the value in D12 will become 0, and increase again.
- If M1026 is OFF, and M1029 is ON, the value in D12 will becomes the value in D10.

The number of scan cycle is stored in D13.

Additional remark

- If M1026 is turned ON/OFF, the value in D12 will change in the way described below.

5 Applied Instructions and Basic Usage

Explanation

Example

- S: Initial device in which original data is stored; $\mathbf{m}_{\mathbf{1}}$: Number of rows of data ($\mathbf{m}_{\mathbf{1}}$ $=1 \sim 32$); \mathbf{m}_{2} : Number of columns of data $\left(\mathbf{m}_{\mathbf{2}}=1 \sim 6\right)$; \mathbf{D} : Initial device in which a sorting result is stored; \mathbf{n} : Reference value ($\mathbf{n = 1 \sim m 2 \text {) (Data is sorted in }}$ algebraic order.)
- The data which is sorted is stored in the $\mathbf{m}_{\mathbf{1}} \times \mathbf{m}_{\mathbf{2}}$ registers starting from the register specified by \mathbf{D}. If \mathbf{S} and \mathbf{D} specify the same register, the sorting result gotten will be the same as the original data in the register specified by \mathbf{S}.
- It is better that the rightmost number of the device number of the register specified by \mathbf{S} is 0 .
- After the instruction is scanned m_{1} times, the sorting of data will be complete. After the sorting of data is complete, M1029 will be ON.
- The instruction can be used several times in a program, but one instruction is executed at a time.
- When X0 is turned ON, the data specified is sorted in ascending order. When the sorting of the data specified is complete, M1029 is ON. When the instruction is executed, the data specified can not be changed. If users want to sort the data specified again, they can turn X0 from OFF to ON again.

1. The data which will be sorted is shown below.

		m_{2} columns of data				
		Column				
		1	2	3	4	5
		Student number	Chinese	English	Math	Physics
\uparrow	1	(D0) 1	(D5) 90	(D10) 75	(D15) 66	(D20) 79
Э	2	(D1) 2	(D6) 55	(D11) 65	(D16) 54	(D21) 63
${ }_{0}^{0}$	3	(D2) 3	(D7) 80	(D12) 98	(D17) 89	(D22) 90
む	4	(D3) 4	(D8) 70	(D13) 60	(D18) 99	(D23) 50
\downarrow	5	(D4) 5	(D9) 95	(D14) 79	(D19) 75	(D24) 69

2. If the value in D100 is K3, users can get the sorting result shown below.

		m_{2} columns of data				
		Column				
		1	2	3	4	5
		Student number	Chinese	English	Math	Physics
4	1	(D50) 4	(D55) 70	(D60) 60	(D65) 99	(D70) 50
3	2	(D51) 2	(D56) 55	(D61) 65	(D66) 54	(D71) 63
\sum_{0}^{0}	3	(D52) 1	(D57) 90	(D62) 75	(D67) 66	(D72) 79
$\stackrel{\sim}{0}$	4	(D53) 5	(D58) 95	(D63) 79	(D68) 75	(D73) 69
\downarrow	5	(D54) 3	(D59) 80	(D64) 98	(D69) 89	(D74) 90

3. If the value in D100 is K5, users can get the sorting result shown below.

		Column				
		1	2	3	4	5
		Student number	Chinese	English	Math	Physics
4	1	(D50) 4	(D55) 70	(D60) 60	(D65) 99	(D70) 50
	2	(D51) 2	(D56) 55	(D61) 65	(D66) 54	(D71) 63
	3	(D52) 5	(D57) 95	(D62) 79	(D67) 75	(D72) 69
	4	(D53) 1	(D58) 90	(D63) 75	(D68) 66	(D73) 79
\downarrow	5	(D54) 3	(D59) 80	(D64) 98	(D69) 89	(D74) 90

5 Applied Instructions and Basic Usage

Explanation

Example

- $\mathbf{m}_{\mathbf{1}}$: Special module number ($\mathbf{m}_{\mathbf{1}}$ is in the range of 0 to 255 .); $\mathbf{m}_{\mathbf{2}}$: Control register number ($\mathbf{m}_{\mathbf{2}}$ is in the range of 0 to 499.); D: Device in which the data read will be stored; \mathbf{n} : Quantity of data which will be read (16-bit instruction: 1~(500-m $)_{2}$; 32-bit instruction: 1~(500-m m_{2} /2
- A DVP-10PM series motion controller can read the data in a control register in a special module by means of the instruction.
- Please refer to the additional remark on the instruction TO for more information about the numbering of special modules.
- The value in CR\#29 in special module 0 is read, and then stored in DO in the motion controller used. The value in CR\#30 in special module 0 is read, and then stored in D1 in the motion controller used. The two values are read at the same time.
- When XO is ON, the instruciton is executed. When XO is turned OFF, the instruction is not executed, and the values which are read remain unchanged.

5 Applied Instructions and Basic Usage

\mathbf{m}_{1} : Special module number (\boldsymbol{m}_{1} is in the range of 0 to 255 .); $\boldsymbol{m}_{\mathbf{2}}$: Control register number ($\boldsymbol{m}_{\mathbf{2}}$ is in the range of 0 to 499.); \mathbf{D} : Data which will be written into a control register; \mathbf{n} : Quantity of data which will be written (16-bit instruction: 1~(500-m m_{2}; 32-bit instruction: 1~(500-m m_{2} /2

- A DVP-20PM series motion controller can write data into a control register in a special module by means of the instruction.
The 32-bit instruction DTO is used. The value in (D11, D10) is written into (CR\#13, CR\#12) in special module 0 . One value is written at a time.
When XO is ON, the instruction is executed. When XO is turned OFF, the instruction is not executed, and the value which is written remains unchanged.

X0	DTO	K0	K12	D10	K1

Regulation of operands

1. $\mathbf{m}_{1}: \mathbf{m}_{1}$ is a special module number. It is the number of a special module connected to the DVP-10PM series motion controller used. The number of the first special module which is connected to the DVP-10PM series motion cotroller used is 0 . Eight special modules at most can be connected to the DVP-10PM series motion controller used, and they do not occupy I/O devices.
2. $\mathbf{m}_{\mathbf{2}}: \mathbf{m}_{\mathbf{2}}$ is a control register number. the 16 -bit memories in a special modules are called control registers. Control register numbers are decimal numbers. The operation of a special module and setting values are stored in the control registers in the special module.
3. If the instruction $\operatorname{FROM} / T O$ is used, one control register is taken as a unit for the reading/writing of data. If the instruction DFROM/DTO is used, two control registers are taken as a unit for the reading/writing of data.
High 16 bits Low 16 bits

CR \#10	CR \#9	- Control register number specified

4. \mathbf{n} which is 2 in a 16-bit instruction has the same meaning as \mathbf{n} which is $\mathbf{1}$ in a 32-bit instruction.

5 Applied Instructions and Basic Usage

- The application of the instruciton FROM/TO is described below.

Example 1

The characteristic curve of DVP04AD-H2 is adjusted. The offset for channel 1 is

Example 2
$0 \mathrm{~V}\left(\mathrm{KO}_{\mathrm{LSB}}\right)$, and the gain for channel 1 is $2.5 \mathrm{~V}\left(\mathrm{~K} 2,000_{\mathrm{LSB}}\right)$.

$\stackrel{\mathrm{M} 1002}{\mid-\vdash^{2}}$	TO	K0	K1	H0	K1
	то	Ko	K33	H0	K1
X0					
-14	то	K0	K18	Ko	K1
	то	Ko	K24	K2000	K1

1. HO is written into CR\#1 in the analog input module whose number is 0 , and channel 1 is set to mode 0 (voltage input: $-10 \mathrm{~V} \sim+10 \mathrm{~V}$).
2. H0 is written into CR\#33. Channel 1~channel 4 can be tuned.
3. When XO is turned from OFF to ON , the offset $\mathrm{KO}_{\text {LSB }}$ is writtedn into $\mathrm{CR} \# 18$, and the gain $\mathrm{K} 2,000_{\text {LSB }}$ is written into CR\#24.

- The characteristic curve of DVP04AD-H2 is adjusted. The offset for channel 2 is 2 mA (K400 ${ }_{\text {LSB }}$), and the gain for channel 2 is $18 \mathrm{~mA}\left(\mathrm{~K} 3,600_{\mathrm{LSB}}\right)$.

1. H18 is written into CR\#1 in the analog input module whose number is 0 , and channel 2 is set to mode 3 (current input: $-20 \mathrm{~mA} \sim+20 \mathrm{~mA}$).
2. HO is written into CR\#33. Channel 1~channel 4 can be tuned.
3. When XO is turned from OFF to ON , the offset $\mathrm{K} 40 \mathrm{O}_{\text {LSB }}$ is writtedn into CR\#19, and the gain $\mathrm{K} 3,600_{\text {LsB }}$ is written into $\mathrm{CR} \# 25$.

5 Applied Instructions and Basic Usage

Example 3

Example 4

The characteristic curve of DVP02DA-H2 is adjusted. The offset for channel 2 is $0 \mathrm{~mA}\left(\mathrm{KO}_{\mathrm{LSB}}\right)$, and the gain for channel 2 is $10 \mathrm{~mA}\left(\mathrm{~K} 1,000_{\mathrm{LSB}}\right)$.

| TO | K1 | K1 | H18 | K1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | TO K1 K33 H0 K1 | T0 K1 K22 K0 K1
 T0 TO K1 K28 K1000 | K1 |

1. H18 is written into CR\#1 in the analog output module whose number is 1 , and channel 2 is set to mode 3 (current output: $0 \mathrm{~mA} \sim+20 \mathrm{~mA}$).
2. HO is written into CR\#33. Channel 1~channel 2 can be tuned.
3. When XO is turned from OFF to ON , the offset $\mathrm{KO}_{\text {LSB }}$ is writtedn into $\mathrm{CR} \# 22$, and the gain $\mathrm{K} 1,000_{\mathrm{LSB}}$ is written into $\mathrm{CR} \# 28$.

- The characteristic curve of DVP02DA-H2 is adjusted. The offset for channel 2 is $2 \mathrm{~mA}\left(\mathrm{~K} 400_{\mathrm{LSB}}\right)$, and the gain for channel 2 is $18 \mathrm{~mA}\left(\mathrm{~K} 3,600_{\mathrm{LSB}}\right)$.

1. H10 is written into CR\#1 in the analog output module whose number is 1 , and channel 2 is set to mode 2 (current output: $+4 \mathrm{~mA} \sim+20 \mathrm{~mA}$).
2. HO is written into CR\#33. Channel 1~channel 2 can be tuned.
3. When XO is turned from OFF to ON , the offset $\mathrm{K} 400_{\text {LSB }}$ is writtedn into CR\#23, and the gain $\mathrm{K} \mathrm{K} 3,600_{\text {LSB }}$ is written into CR\#29.

5 Applied Instructions and Basic Usage

Explanation

Example

D: Device whose absolute value will be gotten

- When the instruction $A B S$ is executed, the absolute value of the value in \mathbf{D} is gotten.
- Generally, the pulse instructions ABSP and DABSP are used.
- When XO is turned from OFF to ON, the absolute value of the value in DO is gotten.

5 Applied Instructions and Basic Usage

Example 1
\mathbf{S}_{1} : Device address; \mathbf{S}_{2} : Data address; \mathbf{n} : Data length
The instruction MODRD is used to drive peripheral equipment in a Modbus ACII/RUT mode. The RS-485 ports on Delta VFD series AC motor drives (except VFD-A series AC motor drives) conform to a Modbus communication format. Users can read data from a Delta AC motor drive by means of the instruction MODRD.

- $\quad \mathbf{S}_{\mathbf{2}}$ is a data address. If the data address specified is illegal, the device which is connected will respond with an error message, an error code will be stored in D1130 in the DVP-20PM series motion controller used, and M1141 will be ON.
- The data which is sent by a peripheral is stored in D1070~D1085. After a DVP-20PM series motion controller receives the data sent by a peripheral, it will automatically check whether the data received is correct. If an error occurs, M1140 will be ON.
- If an ASCII mode is used, the data sent by a peripheral will be ASCII characters, and the DVP-10PM series motion controller used will convert the data received into values, and store the values in D1050~D1055. If an RTU mode is used, D1050~D1055 will be invalid.
- If a DVP-20PM series motion controller sends correct data to a peripheral after M1140 or M1141 is turned ON, and the data with which the peripheral responds is correct, M1140 or M1141 will be reset.
- A DVP-20PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF)

5 Applied Instructions and Basic Usage

Data transmission registers in the DVP-10PM series motion controller (message sent by the DVP-10PM series motion controller):

Register	Data		Description	
D1089 low	'0'	30 H	ADR 1	ADR (1,0): Address of the
D1089 high	'1'	31 H	ADR 0	drive
D1090 low	'0'	30 H	CMD 1	CMD (1,0): Command
D1090 high	'3'	33 H	CMD 0	
D1091 low	'2'	32 H	Starting data address	
D1091 high	'1'	31 H		
D1092 low	'0'	30 H		
D1092 high	'1'	31 H		
D1093 low	'0'	30 H	Quantity of data (count by the word)	
D1093 high	'0'	30 H		
D1094 low	'0'	30 H		
D1094 high	'6'	36 H		
D1095 low	'D'	44 H	LRC CHK 1	LRC CHK $(0,1)$: Checksum
D1095 high	'4'	34 H	LRC CHK 0	

Data reception reigsters in the DVP-10PM series motion controller (message with which the VFD-B series AC motor drive responds):

Register	Data		Description	
D1070 low	'0'	30 H	ADR 1	
D1070 high	'1'	31 H		
D1071 low	'0'	30 H	CMD 1	
D1071 high	'3'	33 H	CMD 0	
D1072 low	'0'	30 H	Quantity of data (count by the byte)	
D1072 high	'C'	43 H		
D1073 low	'0'	30 H	Contents of the address 2101 H	The DVP-10PM series motion controller automatically converts the ASCII characters into values, and store the values in D1050. (D1050=0100 H)
D1073 high	'1'	31 H		
D1074 low	'0'	30 H		
D1074 high	'0'	30 H		
D1075 low	'1'	31 H	Contents of the address 2102 H	The DVP-10PM series motion controller automatically converts the ASCII characters into values, and store the values in D1051. (D1051=1766 H)
D1075 high	'7’	37 H		
D1076 low	'6'	36 H		
D1076 high	'6'	36 H		
D1077 low	'0'	30 H	Contents of the address 2103 H	The DVP-10PM series motion controller automatically converts the ASCII characters into values, and store the values in D1052. (D1052=0000 H)
D1077 high	'0'	30 H		
D1078 low	'0'	30 H		
D1078 high	'0'	30 H		
D1079 low	'0'	30 H	Contents of the address 2104 H	The DVP-10PM series motion controller automatically converts the ASCII characters into values, and store the values in D1053.(D1053=0000 H)
D1079 high	'0'	30 H		
D1080 low	'0'	30 H		
D1080 high	'0'	30 H		

5 Applied Instructions and Basic Usage

Register	Data		Description		
D1081 low	'0'	30 H	Contents of the address 2105 H	The DVP-10PM series motion controller automatically converts the ASCII characters into values, and store the values in D1054.(D1054=0136 H)	
D1081 high	‘1’	31 H			
D1082 low	'3'	33 H			
D1082 high	'6’	36 H			
D1083 low	'0’	30 H	Contents of the address 2106 H	The DVP-10PM series motion controller automatically converts the ASCII characters into values, and store the values in D1055. (D1055=0000 H)	
D1083 high	'0'	30 H			
D1084 low	'0'	30 H			
D1084 high	'0'	30 H			
D1085 low	'3'	33 H	LRC CHK 1 LRC CHK 0		
D1085 high	'B'	42 H			

Example 2

DVP-10PM series motion controller \Rightarrow VFD-B series AC motor drive: The DVP-10PM series motion controller sends "01 0321020002 6F F7".
VFD-B series AC motor drive \Rightarrow DVP-10PM series motion controller: The DVP-10PM series motion controller receives "01 030417700000 FE 5C". Data transmission registers in the DVP-10PM series motion controller (message sent by the DVP-20PM series motion controller):

Register	Data	
D1089 low	01 H	Address
D1090 low	03 H	Function
D1091 low	21 H	Starting data address
D1092 low	02 H	
D1093 low	00 H	Quantity of Data (count by the word)
D1094 low	02 H	
D1095 low	6 F H	CRC CHK Low
D1096 low	F7 H	CRC CHK High

5 Applied Instructions and Basic Usage

Data reception registers in the DVP-10PM series motion controller (message with which the VFD-B series AC motor drive responds):

Register	Data	
D1070 low	01 H	Address
D1071 low	03 H	Function
D1072 low	04 H	Quantity of Data (count by the byte)
D1073 low	17 H	Contents of the address 2102 H
D1074 low	70 H	
D1075 low	00 H	Contents of the address 2103 H
D1076 low	00 H	
D1077 low	FE H	CRC CHK Low
D1078 low	5 CH	CRC CHK High

Example 3

Additional remark

If a communication timeout occurs, the data received is incorrect, or the values of parameters of the instruction MODRD are incorrect when a DVP-20PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF), the sending of data will be retried.
When XO is ON, the DVP-20PM series motion controller used reads the data in the data address H 2100 in the VFD-B series AC motor drive whose device address is 01, and store the data in D1070~D1085 in the form of ASCII characters. The DVP-10PM series motion controller will automatically convert the ASCII characters in D1070~D1085 into values, and store the values in D1050~D1055.

- If a communication timeout occurs, M1129 will be ON. If M1129 is ON, M1122 will be set to ON.
- If the data received is incorrect, M1140 will be ON. If M1140 is ON, M1122 will be set to ON.
- If the values of parameters of the instruction MODWR is incorrect, M1141 will be ON. If M1141 is ON, M1122 will be set to ON.

- LDP/ANDP/ORP and LDF/ANDF/ORF can not precede the instruction MODRD (function code: HO3), otherwise the data stored in data reception registers will be incorrect.
- The instruction can be used several times in a program, but one instruction is executed at a time.

5

Explanation
 Explanation

Example 1

- \mathbf{S}_{1} : Device address; \mathbf{S}_{2} : Data address; \mathbf{n} : Data which is written

The instruction MODWR is used to drive peripheral equipment in a Modbus ACII/RUT mode. The RS-485 ports on Delta VFD series AC motor drives (except VFD-A series AC motor drives) conform to a Modbus communication format. Users can write data into a Delta AC motor drive by means of the instruction MODWR.
$-\quad \mathbf{S}_{\mathbf{2}}$ is a data address. If the data address specified is illegal, the device which is connected will respond with an error message, an error code will be stored in D1130 in the DVP-10PM series motion controller used, and M1141 will be ON. For example, the data address 8000 H in a VFD-B series AC motor drive is illegal, and therefore M1141 is ON, and the value in D1130 is 2. Please refer to VFD-B User Manual for more information about error codes.

- The data which is sent by a peripheral is stored in D1070~D1076. After a DVP-10PM series motion controller receives the data sent by a peripheral, it will automatically check whether the data received is correct. If an error occurs, M1140 will be ON.
- If a DVP-10PM series motion controller sends correct data to a peripheral after M1140 or M1141 is turned ON, and the data with which the peripheral responds is correct, M1140 or M1141 will be reset.
- A DVP-20PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF)

5 Applied Instructions and Basic Usage

DVP-20PM series motion controller \Rightarrow VFD-B series AC motor drive: The DVP-20PM series motion controller sends "01060100 1770 71".
VFD-B series AC motor drive \Rightarrow DVP-20PM series motion controller: The DVP-20PM series motion controller receives "01060100 1770 71".
Data transmission registers in the DVP-20PM series motion controller (message sent by the DVP-20PM series motion controller):

Register	Data		Description	
D1089 low	'0'	30 H	ADR 1	ADR (1,0): Address of the
D1089 high	'1'	31 H	ADR 0	VFD-B series AC motor drive
D1090 low	'0'	30 H	CMD 1	
D1090 high	'6'	36 H	CMD 0	Command code
D1091 low	'0'	30 H	Data address	
D1091 high	'1'	31 H		
D1092 low	'0'	30 H		
D1092 high	'0'	30 H		
D1093 low	'1'	31 H	Data	
D1093 high	'7'	37 H		
D1094 low	'7'	37 H		
D1094 high	'0'	30 H		
D1095 low	'7'	37 H	LRC CHK 1	LRC CHK (0,1): Checksum
D1095 high	'1'	31 H	LRC CHK 0	

Data reception reigsters in the DVP-10PM series motion controller (message with which the VFD-B series AC motor drive responds):

Register	Data		Description
D1070 low	'0'	30 H	ADR 1
D1070 high	'1'	31 H	ADR 0
D1071 low	'0'	30 H	CMD 1
D1071 high	'6'	36 H	CMD 0
D1072 low	'0'	30 H	
D1072 high	'1'	31 H	
D1073 low	'0'	30 H	Data address
D1073 high	'0'	30 H	
D1074 low	'1'	31 H	
D1074 high	'7'	37 H	Dat
D1075 low	'7'	37 H	Da
D1075 high	'0'	30 H	
D1076 low	'7'	37 H	LRC CHK 1
D1076 high	'1'	31 H	LRC CHK 0

5 Applied Instructions and Basic Usage

Example 2

A DVP-20PM series motion controller is connected to a VFD-B series AC motor drive (RTU mode: M1143=ON)

DVP-20PM series motion controller \Rightarrow VFD-B series AC motor drive: The DVP-20PM series motion controller sends "01 06200000120207 ".
VFD-B series AC motor drive \Rightarrow DVP-20PM series motion controller: The DVP-20PM series motion controller receives "01 062000001202 07". Data transmission registers in the DVP-20PM series motion controller (message sent by the DVP-20PM series motion controller):

Register	Data	Description
D1089 low	01 H	Address
D1090 low	06 H	Function
D1091 low	20 H	Data address
D1092 low	00 H	
D1093 low	00 H	Data
D1094 low	12 H	
D1095 low	02 H	CRC CHK Low
D1096 low	07 H	CRC CHK High

Data reception reigsters in the DVP-10PM series motion controller (message with which the VFD-B series AC motor drive responds):

Register	Data	
D1070 low	01 H	Address
D1071 low	06 H	Function
D1072 low	20 H	Data address
D1073 low	00 H	
D1074 low	00 H	Data content
D1075 low	12 H	
D1076 low	02 H	CRC CHK Low
D1077 low	07 H	CRC CHK High

5 Applied Instructions and Basic Usage

Example 3

Example 4

- If a communication timeout occurs, the data received is incorrect, or the values of parameters of the instruction MODRD are incorrect when a DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF), the sending of data will be retried.
- When X0 is ON, the DVP-10PM series motion controller used write H1770 (K6000) into the data address H0100 in the VFD-B series AC motor drive whose device address is 01.
- If a communication timeout occurs, M1129 will be ON. If M1129 is ON, M1122 will be set to ON.
- If the data received is incorrect, M1140 will be ON. If M1140 is ON, M1122 will be set to ON.
- If the values of parameters of the instruction MODWR is incorrect, M1141 will be ON. If M 1141 is $\mathrm{ON}, \mathrm{M} 1122$ will be set to ON .

- If a communication timeout occurs, the data received is incorrect, or the values of parameters of the instruction MODRD are incorrect when a DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF), the sending of data will be retried. The number of times the sending of data is retired is stored in DO. The default value in DO is 3 . If communication is retried successfully, users can control the communication by means of triggering a condition.
- When X0 is ON, the DVP-10PM series motion controller used write H1770 (K6000) into the data address H 0100 in the VFD-B series AC motor drive whose device address is 01 .

5 Applied Instructions and Basic Usage

- If a communication timeout occurs, M1129 will be ON. If M1129 is ON, M1122 will be set to ON. The number of times the sending of data is retired is stored in D0. The default value in D0 is 3 .
- If the data received is incorrect, M1140 will be ON. If M1140 is ON, M1122 will be set to ON. The number of times the sending of data is retired is stored in D0. The default value in D0 is 3 .
- If the values of parameters of the instruction MODWR is incorrect, M1141 will be ON. If M1141 is ON, M1122 will be set to ON. The number of times the sending of data is retired is stored in D0. The default value in D0 is 3 .

Additional remark

5 Applied Instructions and Basic Usage

API 110	D	ECMP			P	(S1) S_{2}						Comparing binary floating-point values						Applicable model20PM			
	Bit device					Word device											16-bit instruction				
	X	Y	Y	M		S	F	H	KnX	KnY	KnM	KnS	T	C	D	V				Z	
S1						*								*			32 -bit instruction (9 steps)				
S2						*								*			DECMP Continuity	DECMPP	Pulse		
D		*	*	*	*												- Flag: None				
- Note: Please refer to specifications for more information about device ranges. Only the 32-bit instructions DECMP and DECMPP are valid. The operand D occupies three consecutive devices. F represents a floating-point value. There is a decimal point in a floating-point value.																					

Explanation

Example remark

- $\quad \mathbf{S}_{1}$: Binary floating-point value 1; \mathbf{S}_{2} : Binary floating-point value 2; D: Comparison result (D occupies three consecutive devices.)
The instruction is used to compare the binary floating-point value in $\mathbf{S}_{\mathbf{1}}$ with that in \mathbf{S}_{2}. The comparison result (>, $=$, or <) is stored in \mathbf{D}.
- If \mathbf{S}_{1} is a floating-point value, the instruction will be used to compare the \mathbf{S}_{1} with the binary floating-point value in $\mathbf{S}_{\mathbf{2}}$. If $\mathbf{S}_{\mathbf{2}}$ is a floating-point value, the instruction will be used to compare the binary floating-point value in \mathbf{S}_{1} with \mathbf{S}_{2}.
- If the operand D is M10, M10, M11, and M12 will be occupied automatically.
- When X0 is ON, the instruction DECMP is executed, and M10, M11, or M12 is ON. When XO is OFF, the execution of the instruction DECMP stops, and the states of M10, M11, and M12 remain unchanged.
- If users want to get the result that the value in (D1, D0) \geqq the value in (D101, D100), they have to connect M10 and M11 in series. If users want to get the result that the value in (D1, D0) \leqq the value in (D101, D100), they have to connect M11 and M12 in series. If users want to get the result that the value in (D1, D0) \neq the value in (D101, D100), they have to connect M10, M11, and M12 in series.
- If users want to reset M10, M11, or M12, they can use the instruction RST or ZRST.
If If In
- Please refer to section 5.3 for more information about performing operations on floating-point values.

5

API	D	EZCP		P	S1 S $S^{\text {d }}$							Binary floating-point zonal comparison					Applicable model 20PM											
111																												
	Bit device				Word device											16-bit instruction												
	X	Y	M	S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z													
S_{1}					*								*			32-bit instructio												
S_{2}					*								*			DEZCP Con	DEZCPP	Pulse										
S					*								*			- Flag: None		instruction										
D		*	*	*																								
- Note: The operand D occupies three consecutive devices. The value in S_{1} is less than the value in S_{2}. Please refer to specifications for more information about device ranges. F represents a floating-point value. There is a decimal point in a floating-point value. Only the 32-bit instructions DEZCP and DEZCPP are valid.																												

Explanation

Example

Additional remark

- \mathbf{S}_{1} : Minimum binary floating-point value; \mathbf{S}_{2} : Maximum binary floating-point value; S: Binary floating-point value; D: Comparison result (D occupies three consecutive devices.)
- The instruction is used to compare the binary floating-point value in \mathbf{S} with that in $\mathbf{S}_{\mathbf{1}}$, and compare the binary floating-point value in \mathbf{S} with that in $\mathbf{S}_{\mathbf{2}}$. The comparison result is stored in \mathbf{D}.
- If \mathbf{S}_{1} is a floating-point value, the instruction will be used to compare \mathbf{S}_{1} with the binary floating-point value in $\mathbf{S}_{\mathbf{2}}$. If $\mathbf{S}_{\mathbf{2}}$ is a floating-point value, the instruction will be used to compare the binary floating-point value in \mathbf{S}_{1} with \mathbf{S}_{2}.
- If the binary floating-point value in \mathbf{S}_{1} is greater than that in \mathbf{S}_{2}, the binary floating-point value in \mathbf{S}_{1} will be taken as the maximum/minimum value during the execution of the instruction EZCP.
- If the operand \mathbf{D} is $\mathrm{M} 0, \mathrm{MO}, \mathrm{M} 1$, and M 2 will be occupied automatically.
- When XO is ON, the instruction DEZCP is executed, and M0, M1, or M2 is ON. When XO is OFF, the execution of the instruction DEZCP stops, and the states of M0, M1, and M2 remain unchanged.
- If users want to reset M0, M1, or M2, they can use the instruction RST or ZRST.

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

Explanation
\square
Example

S: Source; D: Destination

- The operand \mathbf{S} can be a floating-point value.
- When the instruction is executed, the value in \mathbf{S} is transferred to \mathbf{D}. When the instruction is not executed, the value in \mathbf{D} is unchanged.
- When X0 is OFF, the value in (D11, D10) is unchanged. When X0 is ON, the value F1.2 is transferred to the data register (D11, D10).

5 Applied Instructions and Basic Usage

API116	D	RAD		P	(S) D						Converting a degree to a radian							Applica	ble model	
																		OPM		
	Bit device				Word device											16-bit inst	uction			
	X	Y	M		S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z			-	
S					*											32 bit inst	uction 6 s			
D																DRAD	Continuity instruction	DRADP	Pulse instruction	
- Note: Please refer to specifications for more information about device ranges. F represents a floating-point value. There is a decimal point in a floating-point value. Only the 32-bit instructions DRAD and DRADP are valid.- Flags Ox O100 M1808 M1968 Zero flag M1809 M1969 Borrow flag M1810 M1970 Carry flag - Please refer to the additional remark below.																				

Explanation

Example

Additional remark remark

-
- S: Source (degree); D: Conversion result (radian)

Radian $=$ Degree $\times(\pi / 180)$

- If the absolute value of a conversion result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of a conversion reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If a converseion result is 0 , a zero flag will be ON.
- When X0 is ON, the degree in (D1, D0) is converted into a radian, and the conversion result is stored in (D11, D10). The radian in (D11, D10) is a binary floating-point value.

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

Explanation
 explanation

Example

- $\quad \mathbf{S}$: Source (radian); D: Conversion result (degree)
- The equation below is used to convert a radian into a degree.

Degree $=$ Radian $\times(180 / \pi)$

- If the absolute value of a conversion result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of a conversion reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If a conversion result is 0 , a zero flag will be ON.
- When X0 is ON, the radian in (D1, D0) is converted into a degree, and the
\qquad conversion result is stored in (D11, D10). The degree in (D11, D10) is a binary floating-point value.

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

Explanation

Example 1

Example 2

Additional remark

- \mathbf{S}_{1} : Augend; \mathbf{S}_{2} : Addend; D: Sum

The binary floating-point value in $\mathbf{S}_{\mathbf{2}}$ is added to the binary floating-point value in $\mathbf{S}_{\mathbf{1}}$, and the sum is stored in \mathbf{D}.

- If \boldsymbol{S}_{1} is a floating-point value, the instruction will be used to add the binary floating-point value in $\mathbf{S}_{\mathbf{2}}$ to \mathbf{S}_{1}. If $\mathbf{S}_{\mathbf{2}}$ is a floating-point value, the instruction will be used to add \mathbf{S}_{2} to the binary floating-point value in \mathbf{S}_{1}.
- \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ can be the same register. If the instruction DEADD is used under the circumstances, the value in the register is added to itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DEADDP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When X0 is ON, the binary floating-point value in (D3, D2) is added to the binary floating-point value in (D1, D0), and the sum is stored in (D11, D10).

- When X0 is ON, F1234.0 is added to the binary floating-point value in (D11, D10), and the sum is stored in (D21, D20).

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

Explanation

Example 1

Example 2

Additional

 remark- \mathbf{S}_{1} : Minuend; $\mathbf{S}_{\mathbf{2}}$: Subtrahend; D: Difference
- The binary floating-point value in $\mathbf{S}_{\mathbf{2}}$ is subtracted from the binary floating-point value in $\mathbf{S}_{\mathbf{1}}$, and the difference is stored in \mathbf{D}.
- If \mathbf{S}_{1} is a floating-point value, the instruction will be used to subtract the binary floating-point value in $\mathbf{S}_{\mathbf{2}}$ from \mathbf{S}_{1}. If $\mathbf{S}_{\mathbf{2}}$ is a floating-point value, the instruction will be used to subtract \mathbf{S}_{2} from the binary floating-point value in \mathbf{S}_{1}.
$-\quad \mathbf{S}_{1}$ and \mathbf{S}_{2} can be the same register. If the instruction DESUB is used under the circumstances, the value in the register is subtracted from itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DESUBP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When XO is ON, the binary floating-point value in (D3, D2) is subtracted from the binary floating-point value in (D1, D0), and the difference is stored in (D11, D10).

- When X 2 is ON , the binary floating-point value in (D1, D0) is subtracted from F1234.0, and the difference is stored in (D11, D10).

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

API	D EMUL			P	(S1 S ${ }^{\text {d }}$						Binary floating-point multiplication						Applic	ble model	
122																	OM		
	Bit device				Word device											16-bit instruction			
	X	Y	M		S	F	H	KnX	KnY	KnM	KnS	T	C	D	V				Z
S_{1}					*								*			32 -bit instruction (9 steps)			
S_{2}					*								*			DEMULContinuity instruction	DEMULP	Pulse instruction	
D													*			- Flags Ox O100 M1810 M1970 Carry flag - Please refer to the additional remark below.			
- Note: Please refer to specifications for more information about device ranges. F represents a floating-point value. There is a decimal point in a floating-point value. Onlyt the 32-bit instructions DEMUL and DEMULP are valid.																			

Explanation

Example 2

Additional remark

- \mathbf{S}_{1} : Multiplicand; \mathbf{S}_{2} : Multiplier; D: Product
- The binary floating-point value in \mathbf{S}_{1} is multiplied by the binary floating-point value in $\mathbf{S}_{\mathbf{2}}$, and the product is stored in \mathbf{D}.
- If \mathbf{S}_{1} is a floating-point value, the instruction will be used to multiply \mathbf{S}_{1} by the binary floating-point value in \mathbf{S}_{2}. If $\mathbf{S}_{\mathbf{2}}$ is a floating-point value, the instruction will be used to multiply the binary floating-point value in \mathbf{S}_{1} by $\mathbf{S}_{\mathbf{2}}$.
$-\quad \mathbf{S}_{1}$ and $\mathbf{S}_{\mathbf{2}}$ can be the same register. If the instruction DEMUL is used under the circumstances, the value in the register is multiplied by itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DEMULP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When X1 is ON, the binary floating-point value in (D1, D0) is multiplied by the

- When X2 is ON, F1234.0 is multiplied by the binary floating-point value in (D1, D0), and the product is stored in (D11, D10).

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

API		EDIV			(S1 S ${ }_{\text {2 }}$ D						Binary floating-point division							Applic	ble model
123	D			P															OPM
	Bit device				Word device											16-bit instruction			
	X	Y	M	S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z				
S_{1}					*								*			32-bit instruction (9 steps)			
S_{2}					*											DEDIV	Continuity instruction	DEDIVP	Pulse instruction
D																- Flags			
- Note: Please refer to specifications for more information about deviceranges.F represents a floating-point value. There is a decimal point in afloating-point value.Only the 32-bit instructions DEDIV and DEDIVP are valid.																			

Explanation

Example 1

Example 2

Additional remark

- \mathbf{S}_{1} : Dividend; \mathbf{S}_{2} : Divisor; D: Quotient and remainder
- The binary floating-point value in $\mathbf{S}_{\mathbf{1}}$ is divided by the binary floating-point value in $\mathbf{S}_{\mathbf{2}}$, and the quotient is stored in \mathbf{D}.
- If \mathbf{S}_{1} is a floating-point value, the instruction will be used to divide \mathbf{S}_{1} by the binary floating-point value in \mathbf{S}_{2}. If $\mathbf{S}_{\mathbf{2}}$ is a floating-point value, the instruction will be used to divide the binary floating-point value in \mathbf{S}_{1} by \mathbf{S}_{2}.
- If the value in $\mathbf{S}_{\mathbf{2}}$ is 0 , an operation error will occur, the instruciton will not be executed, an operation error flag will be ON, and the error code HOE19 will appear.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When X 1 is ON, the binary floating-point value in (D1, D0) is divided by the binary floating-point value in (D11, D10), and the quotient is stored in (D21, D20).

1 O	DEDIV	D0	D10	D20

- When X 2 is ON, the binary floating-point value in (D1, D0) is divided by F1234.0, and the quotient is stored in (D11, D10).

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5

$\begin{aligned} & \text { API } \\ & \hline 124 \end{aligned}$	D	EXP		\mathbf{P}	(S) D						Exponent of a binary floating-point value							Applicable model		
	Bit device				Word device											16 -bit instruction				
	X	Y	M		S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z	-	-	-	-
S					*											:32-bit instrut	uction (6 s			
D																DEXP	Continuity instruction	DEXPP	Pulse instruction	
- Note: Please refer to specifications for more information about device ranges. F represents a floating-point value. There is a decimal point in a floating-point value. Only the 32-bit instructions DEXP and DEXPP are valid.- Flags OX O100 M1808 M1968 Zero flag M1809 M1969 Borrow flag M1810 M1970 Carry flag - Please refer to the additional remark below.																				

- \mathbf{S} : Source device; D: Device in which an operation result is stored

Explanation

Example

Additional remark
$E X^{[D+1, D]}=[\mathbf{S}+1, \mathbf{S}]$. e is a base (e=2.71828), and \mathbf{S} is an exponent.

- The value in \mathbf{S} can be a positive value or a negative value. \mathbf{D} must be a 32 -bit register, and the value in \mathbf{S} must be a floating-point value.
- The value in \mathbf{D} is $e^{\mathbf{s}}$. (e is 2.71828 , and \mathbf{S} represents a source value.)
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When M0 is ON, the value in (D1, D0) is converted into a binary floating-point value, and the conversion result is stored in (D11, D10).
- When M1 is ON, the exponentiation with the value in (D11, D10) as an exponent is performed. The result is a binary floating-point number, and is stored in (D21, D20).
- When M2 is ON, the binary floating-point value in (D21, D20) is converted into a decimal floating-point value, and the conversion result is stored in (D31, D30). (The value in D31 is the value in D30 to the power of 10.)

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

Additional remark

Example

- S: Source device; D: Device in which an operation result is stored
$\operatorname{Ln}[\mathbf{S}+1, \mathbf{S}]=[\mathbf{D}+1, \mathbf{D}]$
- The value in \mathbf{S} can only be a positive value. \mathbf{D} must be a 32 -bit register, and the value in \mathbf{S} must be a floating-point value.
- If the value in \mathbf{S} is not a positive value, an operation error will occur, the instruciton will not be executed, an operation error flag will be ON, and the error code HOE19 will appear.
$-\quad \mathrm{e}^{\mathrm{D}}=\mathbf{S} . \rightarrow$ The value in $\mathbf{D}=\ln \mathbf{S}$ (S: Source device)
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When MO is ON, the value in (D1, D0) is converted into a binary floating-point
value, and the conversion result is stored in (D11, D10)
- When M1 is ON, the natural logarithm of the floating-point value in (D11, D10) is calculated, and the operation result is stored in (D21, D20).
- When M2 is ON, the binary floating-point value in (D21, D20) is converted into a decimal floating-point value, and the conversion result is stored in (D31, D30). (The value in D31 is the value in D30 to the power of 10.)

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5
 Applied Instructions and Basic Usage

126	D	LOG		P	(S1 S2 D						Logarithm of a binary floating-point value							Applic	ble model	
																		OPM		
	Bit device				Word device											16-bit instruction				
	X	Y	M		S	F	H	KnX	KnY	KnM	KnS	T	C	D	V					Z
S_{1}					*								*			32-bit inst	uction (9			
S_{2}					*								*			DLOG	Continuity instruction	DLOGP	Pulse instruction	
D													*			- Flags				
- Note: Please refer to specifications for more information about device OX O100 ranges. M1808 M1968 Zero flag F represents a floating-point value. There is a decimal point in a M1809 M1969 Borrow flag floating-point value. M1810 M1970 Carry flag Only the 32-bit instructions DLOG and DLOGP are valid. • Please refer to the additional remark below.																				

Explanation

Example

- \mathbf{S}_{1} : Device in which the base is stored; \mathbf{S}_{2} : Source device; \mathbf{D} : Device in which an operation result is stored
- The logarithm of the value in $\mathbf{S}_{\mathbf{2}}$ with respect to the value in $\mathbf{S}_{\mathbf{1}}$ is calculated, and the operation result is stored in \mathbf{D}.
- The values in \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ can only be positive values. \mathbf{D} must be a 32-bit register, and the values in \mathbf{S}_{1} and \mathbf{S}_{2} must be floating-point values.
- $\mathbf{S}_{1}{ }^{\mathrm{D}}=\mathbf{S}_{2} \rightarrow \mathrm{D}=\log _{\mathrm{s}_{1} \mathbf{S}_{2}}$
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When M0 is ON, the values in (D1, D0) and (D3, D2) are converted into binary floating-point values, and the conversion results are stored in (D11, D10) and (D13, D12) respectively.
- When M1 is ON, the logarithm of the binary floating-point value in (D13, D12) with respect to the binary floating-point value in (D11, D10) is calculated, and the operation result is stored in (D21, D20).
- When M2 is ON, the binary floating-point value in (D21, D20) is converted into a decimal floating-point value, and the conversion result is stored in (D31, D30). (The value in D31 is the value in D30 to the power of 10.)

[^0]
5 Applied Instructions and Basic Usage

Explanation

Example 1

Example 2

Additional remark

- \mathbf{S} : Source device; \mathbf{D} : Device in which a result is stored
- The square root of the binary floating-point value in \mathbf{S} is calculated, and the result is stored in \mathbf{D}.
- If \mathbf{S} is a floating-point value, the instruction will be used to calculate the floating-point value.
- If an operation result is 0 , a zero flag will be ON.
- If the value in \mathbf{S} is not a positive value, an operation error will occur, the instruciton will not be executed, an operation error flag will be ON, and the error code HOE19 will appear.
- When X0 is ON, the square root of the binary floating-point value in (D1, D0) is calculated, and the result is stored in (D11, D10).

$$
\sqrt{(\mathrm{D} 1, \mathrm{D} 0)} \quad \rightarrow \quad(\mathrm{D} 11, \mathrm{D} 10)
$$

Binary floating-point number

Binary floating-point

number

- When X 2 is ON , the square root of F1234.0 is calculated, and the result is stored in (D11, D10).

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

Explanation

Example

Additional remark

- \mathbf{S}_{1} : Device in which a base is stored; $\mathbf{S}_{\mathbf{2}}$: Device in which a power is stored; \mathbf{D} : Device in which the operation result is stored
- The binary floating-point value in $\mathbf{S}_{\mathbf{1}}$ is raised to the power of the value in $\mathbf{S}_{\mathbf{2}}$, and the operation result is stored in \mathbf{D}.
$\mathrm{D}=\mathrm{POW}\left[\mathbf{S}_{1}+1, \mathbf{S}_{1}\right]^{[\mathbf{S 2}+1, \mathbf{s} 2]}$
$-\quad$ The value in \mathbf{S}_{1} can only be a positive value, whereas the value in \mathbf{S}_{2} can be a positive value or a negative value. \mathbf{D} must be a 32 -bit register, and the values in \mathbf{S}_{1} and \mathbf{S}_{2} must be floating-point values.
- If the values in \mathbf{S}_{1} and \mathbf{S}_{2} are invalid, an operation error will occur, the instruciton will not be executed, an operation error flag will be ON, and the error code H0E19 will appear.
- If the absolute value of an operation result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an operation reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0, a zero flag will be ON.
- When M0 is ON, the values in (D1, D0) and (D3, D2) are converted into binary floating-point values, and the conversion results are stored in (D11, D10) and (D13, D12) respectively.
- When M1 is ON, the binary floating-point value in (D11, D10) is raised to the power of the binary floating-point value in (D13, D12), and the operation result is stored in (D21, D20).
- When M2 is ON, the binary floating-point value in (D21, D20) is converted into a decimal floating-point value, and the conversion result is stored in (D31, D30). (The value in D31 is the value in D30 to the power of 10.)

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

Explanation

Example

- S: Source device; D: Conversion result
- The binary floating-point value in \mathbf{S} is converted into a binary value. The integer part of the binary value is stored in \mathbf{D}, and the fractional part of the binary value is dropped.
- The instruction is the opposite of API 49 DFLT.
- If a conversion result is 0 , a zero flag will be ON.

If the fractional part of a conversion result is dropped, a borrow flag will be ON. If a converesion result is not in the range of $-2,147,483,648$ to $2,147,483,647$, a carry flag will be ON.

- When X 1 is ON, the binary floating-point value in (D21, D20) is converted into a binary value. The integer part of the binary value is stored in (D31, D30), and the fractional part of the binary value is dropped.

5 Applied Instructions and Basic Usage

Explanation

S: Source value; D: Sine value

- Whether the source value in \mathbf{S} is a radian or a degree depends on the state of a radian/degree flag.
- If a radian/degree flag is OFF, the source value in \mathbf{S} is a radian.

Radian=Degree $\times \pi / 180$.

- If a radian/degree flag is ON, the source value in \mathbf{S} is a degree.
$\left(0^{\circ} \leqq\right.$ Degree $\left.\leqq 360^{\circ}\right)$
- If an operation result is 0 , a zero flag will be ON.
- The sine of the source value in \mathbf{S} is stored in \mathbf{D}.

The relation between radians and sine values is shown below.

Example 1

A radian/degree flag is reset to OFF. The binary floating-point value in (D1, D0) is a radian. When XO is ON , the sine of the binary floating-point value in (D1, D0) is stored in (D11, D10).

5 Applied Instructions and Basic Usage

Example 2

A radian/degree flag is OFF. A degree is set by means of X0 or X1. After the

Example 3

Additional remark

5
 Applied Instructions and Basic Usage

Explanation

Example 1
 (xamel

S: Source value; D: Cosine value

- Whether the source value in \mathbf{S} is a radian or a degree depends on the state of a radian/degree flag.
- If a radian/degree flag is OFF, the source value in \mathbf{S} is a radian.

Radian=Degree $\times \pi / 180$.

- If a radian/degree flag is ON , the source value in \mathbf{S} is a degree.
($0^{\circ} \leqq$ Degree $\leqq 360^{\circ}$)
- If an operation result is 0 , a zero flag will be ON.
- The cosine of the source value in \mathbf{S} is stored in \mathbf{D}.

The relation between radians and cosine values is shown below.

- Radian/Degree flag: If a radian/degree flag is OFF, the source value in \mathbf{S} is a radian. If a radian/degree flag is $\mathbf{O N}$, the source value in \mathbf{S} is a degree in the range of 0° to 360°.
- A radian/degree flag is reset to OFF. The binary floating-point value in (D1, D0) is a radian. When X0 is ON, the cosine of the binary floating-point value in (D1, D0) is stored in (D11, D10).

(D)

5 Applied Instructions and Basic Usage

Example 2
(range of 0° to 360°. When X0.0 is ON, the cosine of the value in (D1, D0) is stored in (D11, D10). The value in (D11, D10) is a binary floating-point value.

Additional remark

5 Applied Instructions and Basic Usage

API		TAN		(S) D	Tangent of a binary floating-point value	Applicable model
	D		P			20PM
132	D					\checkmark

- Note: $0^{\circ} \leqq$ Degree $\leqq 360^{\circ}$

Please refer to specifications for more information about device ranges.
F represents a floating-point value. There is a decimal point in a floating-point value.

Only the 32-bit instructions DTAN and DTANP are valid.

Explanation

Example 1

- S: Source value; D: Tangent value
- Whether the source value in \mathbf{S} is a radian or a degree depends on the state of a radian/degree flag.
- If a radian/degree flag is OFF, the source value in \mathbf{S} is a radian.

Radian=Degree $\times \pi / 180$.

- If a radian/degree flag is ON, the source value in \mathbf{S} is a degree.
($0^{\circ} \leqq$ Degree $\leqq 360^{\circ}$)
- If an operation result is 0 , a zero flag will be ON.
- The tangent of the source value in \mathbf{S} is stored in \mathbf{D}.

The relation between radians and tangent values is shown below.

- A radian/degree flag is reset to OFF. The binary floating-point value in (D1, D0) is a radian. When XO is ON, the tangent of the binary floating-point value in (D1, D0) is stored in (D11, D10).

5 Applied Instructions and Basic Usage

Example 2

 range of 0° to 360°. When $\mathrm{X0}$ is ON , the tangent of the value in (D1, D0) is stored in (D11, D10). The value in (D11, D10) is a binary floating-point value.

Additional remark

5 Applied Instructions and Basic Usage

API		ASIN	P	(S) D	Arcsine of a binary floating-point value	Applicable model
133	D					20PM
	D					\checkmark

	Bit device				Word device											16-bit instruction			
	X	Y	M	S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z				
S					*								*			32-bit instruction (6 steps)			
D													*			DASIN	Continuity	DASINP	Pulse
- Note: Please refer to specifications for more information about device ranges. Only the 32-bit instructions DASIN and DASINP are valid. F represents a floating-point value. There is a decimal point in a floating-point value.																			

Explanation

Example

Additional remark

\qquad

- S: Source value (binary floating-point value);

D: Arcsine value
Arcsine value $=\sin ^{-1}$
The relation between sine values and arcsine values is shown below.

- The decimal floating-point value into which the sine value in \mathbf{S} is converted can only be in the range of -1.0 to +1.0 . If it is not in the range, the instruction will not be executed, an operation error flag will be ON, and the error code HOE19 will appear.
- If a conversion result is 0 , a zero flag will be ON.
- When XO is ON, the arcsine of the binary floating-point value in (D1, D0) is

X0	DASIN	D0	D10			
	D 1	D 0	Binary floating-point value	(D)	D 11	D 10
:---	:---	\(\begin{aligned} \& Arcsine value 				

\& Binary floating-point value\end{aligned}\)

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

API	D	ACOS	P	(S) D	Arccosine of a binary floating-point value	Applicable model
						20PM
134						\checkmark

	Bit device				Word device										
	X	Y	M	S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z
S					*								*		
D													*		
- Note: Please refer to specifications for more information about device ranges. Only the 32-bit instructions DACOS and DACOSP are valid. F represents a floating-point value. There is a decimal point in a floating-point value.															

16-bit instruction			
-	-	-	-
32-bit instruction (6 steps)			
:DACOS	Continuity instruction	DACOSP	Pulse instruction
- Flags			
Ox	0100		
M1808	M1968	Zero flag	
M1793	M1953	Operation er	r flag
- Please refer to the additional remark below.			

Explanation

Example

Additional remark

- S: Source value (binary floating-point value); D: Arccosine value
- Arccosine value $=\cos ^{-1}$

The relation between cosine values and arccosine values is shown below.

- The decimal floating-point value into which the cosine value in \mathbf{S} is converted can only be in the range of -1.0 to +1.0 . If it is not in the range, the instruction will not be executed, an operation error flag will be ON, and the error code HOE19 will appear.
- If a conversion result is 0 , a zero flag will be ON.
- When XO is ON , the arccosine of the binary floating-point value in (D1, D0) is stored in (D11, D10).

D

D 11	D 10

Arccosine value Binary floating-point value

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

API135	D	ATAN		P	(S) D					Arctangent of a binary floating-point value								Applica	le model	
																		PM		
	Bit device				Word device											16 -bit inst	ruction			
	X	Y	M		S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z	-	-	-	-
S					*											32-bit inst	uction (6			
D													*			DATAN	Continuity instruction	DATANP	Pulse instruction	
- Note: Please refer to specifications for more information about device ranges. Only the 32-bit instrucitons DATAN and DATANP are valid. F represents a floating-point value. There is a decimal point in a floating-point value. - Flags Ox M1808 M100 M1968 \quad Zero flag																				

Explanation

\qquad
\qquad - If a conversion result is 0 , a zero flag will be ON .

Additional remark

Example

- S: Source value (binary floating-point value); D: Arctangent value
- Arctangent value $=\tan ^{-1}$

The relation between tangent values and arctangent values is shown below.

5 Applied Instructions and Basic Usage

$\begin{array}{\|c\|} \hline \mathrm{API} \\ \hline 136 \\ \hline \end{array}$	D	SINH		P	(S) D					Hyperbolic sine of a binary floating-point value								Applicable model20PM														
	Bit device				Word device											16 -bit instruction																
	X	Y	M	S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z			-	-													
S					*								*			32-bit inst	uction (6 s	ps)														
D													*			DSINH	Continuity	DSINHP	Pulse													
- Note: Please refer to specifications for more information about device ranges. Only the 32-bit instructions DSINH and DSINHP are valid. F represents a floating-point value. There is a decimal point in a floating-point value.- Flags OX O100 Zero flag M1808 M1968 Zerraction M1809 M1969 Borrow flag M1810 M1970 Carry flag - Please refer to the additional remark below.																																

Explanation

Example

- S: Source value (binary floating-point value); Hyperbolic sine value $=\left(e^{5}-e^{-5}\right) / 2$
- When XO is ON, the hyperbolic sine of the binary floating-point number in (D1, D0) is stored in (D11, D10).

- If the absolute value of a conversion result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of a conversion result is less than the minimum floating-point value available, a borrow flag will be ON.
- If a conversion result is 0 , a zero flag will be ON.
- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

137	D	COSH		P	(S) D					Hyperbolic cosine of a binary floating-point value								Applic	le model	
																		PM		
	Bit device				Word device											16-bit in	ruction			
	X	Y	M		S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z		-	-	
S					*											32-bit inst	ruction (6 s	eps)		
D													*			DCOSH	Continuity instruction	DCOSHP	Pulse instruction	
- Note: Please refer to specifications for more information about device ranges. Onlyt the 32-bit instructions DCOSH and DCOSHP are valid. F represents a floating-point value. There is a decimal point in a floating-point value.- Flags Ox O100 M1808 M1968 Zero flag M1809 M1969 Borrow flag M1810 M1970 Carry flag - Please refer to the additional remark below.																				

- S: Source value (binary floating-point value); D: Hyperbolic cosine value

Explanation
 Explanation

Example

Additional

 remark Hyperbolic cosine value $=\left(e^{5}+e^{-5}\right) / 2$- When XO is ON , the hyperbolic cosine of the binary floating-point number in
(D1, D0) is stored in (D11, D10).

- If the absolute value of a conversion result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of a conversion result is less than the minimum floating-point value available, a borrow flag will be ON.
- If a conversion result is 0 , a zero flag will be ON.
- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

- S: Source value (binary floating-point value); D: Hyperbolic tangent value

Explanation

Example

Additional remark

- Hyperbolic tangent value $=\left(e^{s}-e^{-s}\right) /\left(e^{s}+e^{-s}\right)$
- When X0 is ON, the hyperbolic tangent of the binary floating-point number in (D1, D0) is stored in (D11, D10).

- If the absolute value of a conversion result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of a conversion result is less than the minimum floating-point value available, a borrow flag will be ON.
- If a conversion result is 0 , a zero flag will be ON.
- Please refer to section 5.3 for more information about performing operations on floating-point values.

5
 Applied Instructions and Basic Usage

API	D	ADDR			S1 S ${ }_{\text {S }}$					Floating-point addition								Applica	ble model									
172										PM																		
										\checkmark																		
	Bit device								Wor									d dev						16-bit in	ruction			
	X	Y	M		S	F	H	KnX	KnY									KnM	KnS	T	C	D	V	Z		-	-	-
S1														*			32-bit in	ruction (13	teps)									
S2													*			DADDR	Continuity	DADDRP	Pulse									
D													*			- Flags												
- Note: Please refer to specifications for more information about device Ox O100 ranges. M1808 M1968 Zero flag Only the 32-bit instructions DADDR and DADDRP are valid. M1809 M1969 Borrow flag M1810 M1970 Carry flag - Please refer to the additional remark below.																												

Explanation

- \mathbf{S}_{1} : Augend; $\mathbf{S}_{\mathbf{2}}$: Addend; D: Sum
$-\mathbf{S}_{1}$ and \mathbf{S}_{2} can be floating-point values.
- \mathbf{S}_{1} and \mathbf{S}_{2} can be floating-point values (e.g. F1.2), or data registers in which floating-point values are stored.
- If $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ are data registers in which floating-point values are stored, the function of API 172 DAADR is the same as the function of API 120 DEADD.
- The floating-point value in $\mathbf{S}_{\mathbf{2}}$ is added to the floating-point value in \mathbf{S}_{1}, and the sum is stored in \mathbf{D}.
- $\quad \mathbf{S}_{1}$ and \mathbf{S}_{2} can be the same register. If the instruction DAADR is used under the circumstances, the value in the register is added to itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DADDRP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON. If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON. If an operation result is 0 , a zero flag will be ON.
- When X0 is ON, the floating-point value F2.200E+0 is added to the

Example 2

Example 1 floating-point value F1.200E +0 , and the sum F3.400E +0 is stored in (D11, D10). (The floating-point value F1.2 is represented by the scientific notation F1.200E+0 in a ladder diagram. The number of decimal places which are displayed can be set by means of the View menu in WPLSoft.)

D0	DADDR	F1.200E+0	F2.200E+0	D10

- When X0 is ON, the floating-point value in (D3, D2) is added to the floating-point value in (D1, D0), and the sum is stored in (D11, D10).

X0	DADDR	D0	D2	D10

5 Applied Instructions and Basic Usage

API		SUBR			$S_{1} S_{2}$ D					Floating-point subtraction								Applica	ble model				
173	D			P							PM												
\bigcirc					Word device											16-bit instruction							
	X			S	F	H	KnX	KnY	KnM									KnS	T	C	D	V	Z
S1													*							32-bit instruction (13 steps)			
S2													*			DSUBR	Continuity DSUBRPinstruction		Pulse				
D													*										
- Note: Please refer to specifications for more information about device Ox O100 ranges. M1808 M1968 Zero flag Only the 32-bit instructions DSUBR and DSUBRP are valid. M1809 M1969 Borrow flag M1810 M1970 Carry flag																							

Explanation

Example 1

Example 2

- \mathbf{S}_{1} : Minuend; \mathbf{S}_{2} : Subtrahend; D: Subtrahend
$-\mathbf{S}_{1}$ and \mathbf{S}_{2} can be floating-point values
- \mathbf{S}_{1} and \mathbf{S}_{2} can be floating-point values (e.g. F1.2), or data registers in which floating-point values are stored.
- If $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ are data registers in which floating-point values are stored, the function of API 172 DSUBR is the same as the function of API 121 DESUB.
- The floating-point value in $\mathbf{S}_{\mathbf{2}}$ is subtracted from the floating-point value in $\mathbf{S}_{\mathbf{1}}$, and the difference is stored in \mathbf{D}.
- $\quad \mathbf{S}_{1}$ and $\mathbf{S}_{\mathbf{2}}$ can be the same register. If the instruction DSUBR is used under the circumstances, the value in the register is subtracted from itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DSUBRP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON. If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON. If an operation result is 0 , a zero flag will be ON.
- When X0 is ON, the floating-point value F2.200E+0 is subtracted from the floating-point value $\mathrm{F} 1.200 \mathrm{E}+0$, and the difference $\mathrm{F}-1.000 \mathrm{E}+0$ is stored in (D11, D10). (The floating-point value F1.2 is represented by the scientific notation F1.200E+0 in a ladder diagram. The number of decimal places which are displayed can be set by means of the View menu in WPLSoft.)

X0	DSUBR	F1.200E+0	$F 2.200 E+0$	D10

- When X0 is ON, the floating-point value in (D3, D2) is subtracted from the floating-point value in (D1, D0), and the difference is stored in (D11, D10).

5 Applied Instructions and Basic Usage

174	D	MULR		P	$S_{1} S_{2}$ D					Floating-point multiplication								Applic	ble model									
										PM																		
	Bit device				Word device											16-bit instruction												
	X	Y	M		S	F	H	KnX	KnY									KnM	KnS	T	C	D	V	Z	32-bit instruction (13 steps) Continuity			
S1													*			Pulse instruction												
S2													*															
D													*				DMULR	Continuity instruction	DMULRP									
- Note: Please refer to specifications for more information about device Ox O100 ranges. M1808 M1968 Zero flag Only the 32-bit instructions DSUBR and DSUBRP are valid. M1809 M1969 Borrow flag M1810 M1970 Carry flag																												

Explanation

Example 1

Example 2

- \mathbf{S}_{1} : Multiplicand; \mathbf{S}_{2} : Multiplier; D: Product
- \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ can be floating-point values.
- \mathbf{S}_{1} and \mathbf{S}_{2} can be floating-point values (e.g. F1.2), or data registers in which floating-point values are stored.
- If \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ are data registers in which floating-point values are stored, the function of API 172 DMULR is the same as the function of API 122 DEMUL. ${ }^{\circ}$
- The floating-point value in \mathbf{S}_{1} is multiplied by the floating-point value in \mathbf{S}_{2}, and the product is stored in \mathbf{D}.
- $\quad \mathbf{S}_{1}$ and $\mathbf{S}_{\mathbf{2}}$ can be the same register. If the instruction DSUBR is used under the circumstances, the value in the register is multiplied by itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DMULRP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON. If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON. If an operation result is 0 , a zero flag will be ON.
- When X0 is ON, the floating-point value F1.200E+0 is multiplied by the floating-point value $\mathrm{F} 2.200 \mathrm{E}+0$, and the product $\mathrm{F} 2.640 \mathrm{E}+0$ is stored in (D11, D10). (The floating-point value F1.2 is represented by the scientific notation F1.200E +0 in a ladder diagram. The number of decimal places which are displayed can be set by means of the View menu in WPLSoft.)

- When X 1 is ON, the floating-point value in (D1, D0) is multiplied by the floating-point value in (D11, D10), and the product is stored in (D21, D20).

$\times 1$	DMULR	D0	D10	D20

5 Applied Instructions and Basic Usage

Explanation

Example 1

Example 2

- \mathbf{S}_{1} : Dividend; \mathbf{S}_{2} : Divisor; D: Quotient
- \mathbf{S}_{1} and \mathbf{S}_{2} can be floating-point values.
- \mathbf{S}_{1} and \mathbf{S}_{2} can be floating-point values (e.g. F1.2), or data registers in which floating-point values are stored.
- If \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ are data registers in which floating-point values are stored, the function of API 172 DDIVR is the same as the function of API 123 DEDIV.
- The floating-point value in \mathbf{S}_{1} is divided by the floating-point value in $\mathbf{S}_{\mathbf{2}}$, and the product is stored in \mathbf{D}.
- $\quad \mathbf{S}_{1}$ and $\mathbf{S}_{\mathbf{2}}$ can be the same register. If the instruction DSUBR is used under the circumstances, the value in the register is divided by itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DDIVRP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON. If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON. If an operation result is 0 , a zero flag will be ON.
- When X0 is ON, the floating-point value F1.200E is divided by the floating-point value F2.200E +0 , and the quotient $\mathrm{F} 0.545 \mathrm{E}+0$ is stored in (D11, D10). (The floating-point value F1.2 is represented by the scientific notation F1.200E +0 in a ladder diagram. The number of decimal places which are displayed can be set by means of the View menu in WPLSoft.)

| XO |
| :---: | :---: | :---: | :---: | :---: |

- When X1 is ON, the floating-point value in (D1, D0) is divided by the floating-point value in (D11, D10), and the quotient is stored in (D21, D20).

5 Applied Instructions and Basic Usage

Explanation
\mathbf{S}_{1} : Source device $1 ; \mathbf{S}_{\mathbf{2}}$: Source device 2
The instruction is used to compare the value in \mathbf{S}_{1} with that in \mathbf{S}_{2}. If the comparison result is not 0 , the condition of the instruction is met. If the comparison result is 0 , the condition of the instruction is not met.
The instruction LD\# can be connected to a busbar directly.

API No.	16-bit instruction	32-bit instruction	ON				OFF			
	LD\&	DLD\&	\mathbf{S}_{1}	$\&$	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	$\&$	\mathbf{S}_{2}	$=0$
216	LD	DLD	\mathbf{S}_{1}	l	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	\|	$\mathbf{S}_{\mathbf{2}}$	$=0$
217	LD^ $^{\wedge}$	DLD $^{\wedge}$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$=0$

- \&: Logical AND operation
- |: Logical OR operation
- $\quad \wedge_{:}$Logical exclusive OR operation
- If a 32-bit counter is used, the 32-bit insturciton DLD\# must be used. If a 32-bit counter and the 16 -bit instruction LD\# are used, a program error will occur, and the ERROR LED indicator on the DVP-20PM series motion controller used will blink. (C200~C255 are 32-bit counters.)

Example A logical AND operator takes the values in C0 and C10, and performs the logical AND operation on each pair of corresponding bits. If the operation result is not $0, Y 10$ will be $O N$.

- A logical OR operator takes the values in D200 and D300, and performs the logical OR operation on each pair of corresponding bits. If the operation result is not 0 and X 1 is $\mathrm{ON}, \mathrm{Y} 11$ will be set to ON .
- A logical operator XOR takes the values in C201 and C200, and performs the logical exclusive OR operation on each pair of corresponding bits. If the operation result is not 0 , or if M3 is $\mathrm{ON}, \mathrm{M} 50$ will be ON .

5 Applied Instructions and Basic Usage

Explanation

- $\quad \mathbf{S}_{1}$: Source device 1; \mathbf{S}_{2} : Source device 2

The instruction is used to compare the value in \mathbf{S}_{1} with that in $\mathbf{S}_{\mathbf{2}}$. If the comparison result is not 0 , the condition of the instruction is met. If the comparison result is 0 , the condition of the instruction is not met.

- The instruction AND\# is connected to a contact in series.

API No.	16-bit instruction	32-bit instruction	ON				OFF			
218	AND\&	DAND\&	\mathbf{S}_{1}	$\&$	$\mathbf{S}_{\mathbf{2}}$	$\neq 0$	\mathbf{S}_{1}	$\&$	\mathbf{S}_{2}	$=0$
219	AND\|	DAND	\mathbf{S}_{1}	\|	$\mathbf{S}_{\mathbf{2}}$	$\neq 0$	\mathbf{S}_{1}	\|	\mathbf{S}_{2}	$=0$
220	AND^ $^{\wedge}$	DAND^ $^{\wedge}$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$=0$

- \&: Logical AND operation
- |: Logical OR operation
- \quad : Logical exclusive OR operation
- If a 32-bit counter is used, the 32-bit instruction DAND\# must be used. If a 32-bit counter and the 16-bit instruction AND\# are used, a program error will occur, and the ERROR LED indicator on the DVP-10PM series motion controller used will blink. (C200~C255 are 32-bit counters.)

Example

 When X0 is ON, a logical AND operator takes the values in C0 and C10, and performs the logical AND operation on each pair of corresponding bits. If the operation result is not $0, \mathrm{Y} 10$ will be set to ON.- When X1 is OFF, a logical OR operator takes the values in D10 and D0, and performs the logical OR operation on each pair of corresponding bits. If the operation result is not $0, Y 1$ will be set to ON.
- When X2 is ON, a logical XOR operator takes the values in (D201, D200) and (D101, D100), and performs the logical exclusive OR operation on each pair of corresponding bits. If the operation result is not 0 , or if M3 is ON, M50 will be ON.

5
 Applied Instructions and Basic Usage

Explanation

Example
\mathbf{S}_{1} : Source device 1; \mathbf{S}_{2} : Source device 2

The instruction is used to compare the value in \mathbf{S}_{1} with that in \mathbf{S}_{2}. If the comparison result is not 0 , the condition of the instruction is met. If the comparison result is 0 , the condition of the instruction is not met.

- The instruction OR\# is connected to a contact in parallel.

API No.	16-bit instruction	32-bit instruction	ON				OFF			
221	OR\&	DOR\&	\mathbf{S}_{1}	$\&$	$\mathbf{S}_{\mathbf{2}}$	$\neq 0$	$\mathbf{S}_{\mathbf{1}}$	$\&$	$\mathbf{S}_{\mathbf{2}}$	$=0$
222	OR	DOR	$\mathbf{S}_{\mathbf{1}}$	\mid	$\mathbf{S}_{\mathbf{2}}$	$\neq 0$	$\mathbf{S}_{\mathbf{1}}$	\mid	$\mathbf{S}_{\mathbf{2}}$	$=0$
223	OR^ $^{\wedge}$	DOR^ $^{\wedge}$	$\mathbf{S}_{\mathbf{1}}$	\wedge	$\mathbf{S}_{\mathbf{2}}$	$\neq 0$	$\mathbf{S}_{\mathbf{1}}$	\wedge	$\mathbf{S}_{\mathbf{2}}$	$=0$

- \&: Logical AND operation
- |: Logical OR operation
- \quad : Logical exclusive OR operation
- If a 32-bit counter is used, the 32-bit instruction DOR\# must be used. If a 32-bit counter and the 16 -bit instruction OR\# are used, a program error will occur, and the ERROR LED indicator on the DVP-20PM series motion controller used will blink. (C200~C255 are 32-bit counters.)
- When X1 is ON, Y0 is ON. Besides, when a logical AND operator performs the logical AND operation on each pair of corresponding bits in C0 and C10, and the operation result is not $0, Y O$ is ON .
- When X2 and M30 are ON, M60 is ON. When a logical OR operator performs the logical OR operation on each pair of corresponding bits in the 32-bit register (D11, D10) and the 32-bit register (D21, D20), and the operation result is not $0, M 60$ is $O N$. Besides, when the logical XOR operator performs the logical exclusive OR operation on each pair of corresponding bits in the 32-bit counter C235 and the 32-bit register (D201, D200), and the operation result is not $0, \mathrm{M} 60$ is ON .

5 Applied Instructions and Basic Usage

Explanation

- \mathbf{S}_{1} : Source device 1; \mathbf{S}_{2} : Source device 2
- The instruction is used to compare the value in \mathbf{S}_{1} with that in \mathbf{S}_{2}. Take the instruction $\mathrm{LD}=$ for instance. If the comparison result is that the value in $\mathbf{S}_{\mathbf{1}}$ is equal to that in \mathbf{S}_{2}, the condition of the instruction is met. If the comparison result is that the value in \mathbf{S}_{1} is not equal to that in $\mathbf{S}_{\mathbf{2}}$, the condition of the instruction is not met.
- The instruction LD※ can be connected to a busbar directly.

API No.	16-bit instruction	32-bit instruction	ON	OFF
224	LD =	DLD =	$\mathrm{S}_{1}=\mathrm{S}_{2}$	$\mathrm{S}_{1} \neq \mathrm{S}_{2}$
225	LD >	DLD >	$\mathrm{S}_{1}>\mathrm{S}_{2}$	$\mathrm{S}_{1} \leqq \mathrm{~S}_{2}$
226	LD <	DLD <	$\mathrm{S}_{1}<\mathrm{S}_{2}$	$\mathrm{S}_{1} \geq \mathrm{S}_{2}$
228	LD < >	DLD < >	$\mathrm{S}_{1} \neq \mathrm{S}_{2}$	$\mathrm{S}_{1}=\mathrm{S}_{2}$
229	LD < =	DLD < =	$\mathrm{S}_{1} \leqq \mathrm{~S}_{2}$	$\mathrm{S}_{1}>\mathrm{S}_{2}$
230	LD > =	DLD > =	$\mathrm{S}_{1} \geqq \mathrm{~S}_{2}$	$\mathrm{S}_{1}<\mathrm{S}_{2}$

- If a 32-bit counter is used, the 32-bit insturciton DLD※ must be used. If a 32-bit counter and the 16-bit instruction LD※ are used, ,a program error will occur, and the ERROR LED indicator on the DVP-20PM series motion controller used will blink. (C200~C255 are 32-bit counters.)

Example

When the value in C10 is equal to $\mathrm{K} 200, \mathrm{Y} 10$ is ON .

- When the value in D200 is greater than K-30, and X1 is ON, Y11 is set to ON.
- When the value in C200 is less than K678,493, or when M3 is ON, M50 is ON.

5 Applied Instructions and Basic Usage

\mathbf{S}_{1} : Source device 1; \mathbf{S}_{2} : Source device 2
The instructions are used to compare the value in $\mathbf{S}_{\mathbf{1}}$ with that in \mathbf{S}_{2}. Take the instruction AND $=$ for instance. If the comparison result is that the value in \mathbf{S}_{1} is equal to that in \mathbf{S}_{2}, the condition of the instruction is met. If the comparison result is that the value in \mathbf{S}_{1} is not equal to that in $\mathbf{S}_{\mathbf{2}}$, the condition of the instruction is not met.

- The instruction AND※ is connected to a contact in series.

API No.	16-bit instruction	32-bit instruction	ON	OFF
232	AND $=$	DAND $=$	$\mathbf{S}_{1}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
233	AND $>$	DAND $>$	$\mathbf{S}_{1}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{1} \leqq \mathbf{S}_{\mathbf{2}}$
234	AND $<$	DAND $<$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{1} \geqq \mathbf{S}_{\mathbf{2}}$
236	AND $<>$	DAND $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{1}=\mathbf{S}_{\mathbf{2}}$
237	AND $<=$	DAND $<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
238	AND $>=$	DAND $>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

- If a 32-bit counter is used, the 32-bit insturciton DAND※ must be used. If a 32 -bit counter and the 16 -bit instruction AND※ are used, ,a program error will occur, and the ERROR LED indicator on the DVP-20PM series motion controller used will blink. (C200~C255 are 32-bit counters.)

Example

When $\mathrm{X0}$ is ON and the present value in C 10 is equal to $\mathrm{K} 200, \mathrm{Y} 10$ is ON .
When X 1 is OFF and the value in D0 is not equal to $\mathrm{K}-10$, Y 11 is set to ON .
When X2 is ON and the value in (D11, D10) is less than 678,493, or when M3 is $\mathrm{ON}, \mathrm{M} 50$ is ON .

5 Applied Instructions and Basic Usage

Explanation

Example

- $\quad \mathbf{S}_{1}$: Source device $1 ; \mathbf{S}_{2}$: Source device 2
- The instructions are used to compare the value in \mathbf{S}_{1} with that in \mathbf{S}_{2}. Take the instruction $\mathrm{OR}=$ for instance. If the comparison result is that the value in \mathbf{S}_{1} is equal to that in $\mathbf{S}_{\mathbf{2}}$, the condition of the instruction is met. If the comparison result is that the value in \boldsymbol{S}_{1} is not equal to that in \mathbf{S}_{2}, the condition of the instruction is not met.
- The instruction OR※ is connected to a contact in parallel.

API No.	$\begin{gathered} \hline \text { 16-bit } \\ \text { instruction } \end{gathered}$	$\begin{gathered} \hline \text { 32-bit } \\ \text { instruction } \end{gathered}$	ON	OFF
240	$\mathrm{OR}=$	DOR =	$\mathrm{S}_{1}=\mathrm{S}_{2}$	$\mathrm{S}_{1} \neq \mathrm{S}_{2}$
241	OR >	DOR >	$S_{1}>S_{2}$	$\mathrm{S}_{1} \leqq \mathrm{~S}_{2}$
242	OR <	DOR <	$\mathrm{S}_{1}<\mathrm{S}_{2}$	$\mathrm{S}_{1} \geqq \mathrm{~S}_{2}$
244	$\mathrm{OR}<>$	DOR < >	$\mathrm{S}_{1} \neq \mathrm{S}_{2}$	$\mathrm{S}_{1}=\mathrm{S}_{2}$
245	$\mathrm{OR}<=$	DOR < =	$\mathrm{S}_{1} \leqq \mathrm{~S}_{2}$	$S_{1}>S_{2}$
246	OR > =	DOR > =	$\mathrm{S}_{1} \geqq \mathrm{~S}_{2}$	$\mathrm{S}_{1}<\mathrm{S}_{2}$

- If a 32-bit counter is used, the 32-bit insturciton DOR $※$ must be used. If a

32-bit counter and the 16-bit instruction OR※ are used, , a program error will occur, and the ERROR LED indicator on the DVP-20PM series motion controller used will blink. (C200~C255 are 32-bit counters.)

- When X1 is ON, or when the present value in C10 is equal to K200, Y0 is ON.

When X2 and M30 are ON, or when the value in (D101, D100) is greater than or equal to K100,000, M60 is ON.

5 Applied Instructions and Basic Usage

Explanation

Example 1

Example 2

S: Source device
When the 16-bit instruction is executed, the high eight bits in \mathbf{S} are interchanged with the low eight bits in \mathbf{S}.

- When the 32-bit instruction is executed, the high eight bits in \mathbf{S} are interchanged with the low eight bits in \mathbf{S}, and the high eight bits in $\mathbf{S}+1$ are interchanged with the low eight bits in $\mathbf{S}+1$.
- Generally, the pulse instructions SWAPP and DSWAPP are used.
- When XO is ON, the high byte in DO is interchanged with the low byte in DO.

When XO is ON, the high eight bits in D11 are interchanged with the low eight bits in D11, and the high eight bits in D10 are interchanged with the low eight bits in D10.

D11

D10

5 Applied Instructions and Basic Usage

Explanation

Example

- \mathbf{S}_{1} : Minimum random value; \mathbf{S}_{2} : Maximum random value; \mathbf{D} : Result
- 16-bit instruction: The value in \mathbf{S}_{1} and the value in $\mathbf{S}_{\mathbf{2}}$ are in the range of $K 0$ to K32,767.
32-bit instruction: The value in \mathbf{S}_{1} and the value in \mathbf{S}_{2} are in the range of KO to K2,147,483,647.
- The value in \mathbf{S}_{1} must be less than the value in \mathbf{S}_{2}. If the value in \mathbf{S}_{1} is greater than the value in \mathbf{S}_{2}, an operation error will occur.
- When XO is ON, the instruction RAND is used to generate a random value in the range of the value in D0 to the value in D10, and the random value is stored in D20.

5 Applied Instructions and Basic Usage

$\begin{array}{\|l\|} \hline \text { API } \\ \hline 202 \\ \hline \end{array}$	SCAL			P		(S2)		(S3)	(D)		Scale							Applicable model								
											20PM															
											\checkmark															
	Bit device				Word device											16-bit instruction (9 steps)										
	X	Y	M		S	K	H		KnX	KnY						KnM	KnS	T	C	D	V	Z	SCAL	Continuity	SCALP	Pulse
S_{1}						*	*													*						
S_{2}					*	*							*			32-bit in	-		-							
S_{3}					*	*							*			Flag										
D													*													

Explanation

- \mathbf{S}_{1} : Source device; \mathbf{S}_{2} : Slope (Unit: 0.001); \mathbf{S}_{3} : Offset; \mathbf{D} : Destination device - The values in $\mathbf{S}_{1}, \mathbf{S}_{2}$, and $\mathbf{S}_{\mathbf{3}}$ must be in the range of -32767 to 32767 .
- Equation: $\mathrm{D}=\left(\mathbf{S}_{1} \times \mathbf{S}_{2}\right) \div 1000+\mathbf{S}_{3}$
- To obtain the value in \mathbf{S}_{2}, users have to use the slope equation below, round the result to the nearest integer, and get a 16 -bit integer. To obtain the value in \mathbf{S}_{3}, the users have to use the offset equation below, round the result to the nearest integer, and get a 16 -bit integer.
- Slope equation: $\mathbf{S}_{2}=[($ Maximum destination value-Minimum destination value) \div (Maximum source value-Minimum source value)] $\times 1,000$
- Offset equation: $\mathbf{S}_{3}=$ Minimum destination value-Minimum source value $\times \mathbf{S}_{2} \div 1,000$
- Output curve

Example $1 \quad \mathrm{XO}$ is ON, the instruction SCAL is executed, and a scale is stored in DO.

- Equation: $\mathrm{DO}=(500 \times 168) \div 1000+(-4)=80$

5 Applied Instructions and Basic Usage

Example 2

Additional

 remark- Suppose the values in $\mathbf{S}_{1}, \mathbf{S}_{2}$, and \mathbf{S}_{3} are 500, -168, and 534 respectively. When X10 is ON, the instruction SCAL is executed, and a scale value is stored in D10.
- Equation: D10=(500×-168) $\div 1000+534=450$

- Only when a slope and an offset are known can the instruction SCAL be used. If a slope and an offset are unknown, it is suggested that users should use the instruction SCLP.
- The value in $\mathbf{S}_{\mathbf{2}}$ must be in the range of $-32,768$ to 32,767 (The actual value in $\mathbf{S}_{\mathbf{2}}$ must be in the range of $-32,768$ to 32,767 .) If the value in $\mathbf{S}_{\mathbf{2}}$ is not in the range, please use the instruction SCLP instead.
- If users use the slop equation above, the maximum source value must be greater than the minimum source value, and the maximum destination value do not have to be greater than the minimum destination value.
- If the value in \mathbf{D} is greater than 32,767 , the value stored in \mathbf{D} will be 32,767 . If the value in \mathbf{D} is less than -32,768, the value stored in \mathbf{D} will be $-32,768$.

5 Applied Instructions and Basic Usage

Explanation

\mathbf{S}_{1} : Source device; \mathbf{S}_{2} : Parameter (Unit: 0.001); \mathbf{D} : Destination device
16-bit instruction: The setting of \mathbf{S}_{2} is described below.

Device number	Parameter	Setting range
$\mathbf{S}_{\mathbf{2}}$	Maximum source value	$-32768 \sim 32767$
$\mathbf{S}_{\mathbf{2}}+1$	Minimum source value	$-32768 \sim 32767$
$\mathbf{S}_{\mathbf{2}}+2$	Maximum destination value	$-32768 \sim 32767$
$\mathbf{S}_{\mathbf{2}}+3$	Minimum destination value	$-32768 \sim 32767$

- If the 16-bit instruction is used, $\mathbf{S}_{\mathbf{2}}$ will occupy four consecutive devices.
- 32-bit instruction: The setting of \mathbf{S}_{2} is decribed below.

Device number	Parameter	Setting range	
		Integer	Floating-point value
$\mathrm{S}_{2}, \mathrm{~S}_{2}+1$	Maximum source value	$\begin{aligned} & -2,147,483,648 ~ \\ & 2,147,483,647 \end{aligned}$	32-bit floating-point values available
$\mathbf{S}_{\mathbf{2}}+2, \mathbf{S}_{\mathbf{2}}+3$	Minimum source value		
$\mathbf{S}_{\mathbf{2}}+4, \mathbf{S}_{\mathbf{2}}+5$	Maximum destination value		
$\mathbf{S}_{\mathbf{2}}+6, \mathbf{S}_{\mathbf{2}}+7$	Minimum destination value		

- If the 32-bit instruction is used, \mathbf{S}_{2} will occupy eight consecutive devices.
- Equation: $\mathbf{D}=\left[\left(\mathbf{S}_{1}-\right.\right.$ Minimum source value $) \times($ Maximum destination
value-Minimum destination value)]*(Maximum source value-Minimum source value)+Minimum destination value
- Relation between the source value in \mathbf{S}_{1} and the destination value in \mathbf{D} : $y=k x+b$
$\mathrm{y}=$ Destination value (D)
$\mathrm{k}=$ Slope=(Maximum destination value-Minimum destination value) \div (Maximum source value-Minimum source value)
$\mathrm{x}=$ Source value (\mathbf{S}_{1})
$\mathrm{b}=$ Offset $=$ Minimum destination value-Minimum source value \times Slope
- After the parameters above are substituted for $\mathrm{y}, \mathrm{k}, \mathrm{x}$, and b in the equation $y=k x+b$, the equation below will be obtained.
$\mathrm{y}=\mathrm{kx}+\mathrm{b}=\mathrm{D}=\mathrm{k} \mathbf{S}_{1}+\mathrm{b}=$ Slope $\times \mathbf{S}_{1}+$ Offset $=$ Slope $\times \mathbf{S}_{1}+$ Minimum destination
value-Minimum source value \times Slope $=$ Slope $\times\left(\mathbf{S}_{1}-\right.$ Minimum source value) + Minimum destination value $=\left(\mathbf{S}_{1}-\right.$ Minimum source value $) \times($ Maximum destination value-Minimum destination value) \div (Maximum source value-Minimum source value) + Minimum destination value
If the value in $\mathbf{S}_{\mathbf{1}}$ is greater than the maximum source value, the value in $\mathbf{S}_{\mathbf{1}}$ will be equal to the maximum source value. If the value in \mathbf{S}_{1} is less than the minimum source value, the value in \mathbf{S}_{1} will be equal to the minimum source value. After input values and parameters are set, an output curve will be gotten.

5 Applied Instructions and Basic Usage

Example 1

Suppose the value in \mathbf{S}_{1} is 500 , the maximum source value in D0 is 3,000 , the minimum source value in D1 is 200, the maximum destination value in D2 is 500 , and the minimum destination value in D3 is 30 . When XO is ON, the instruction SCLP is executed, and a scale is stored in D10.
Equation: D10 $=[(500-200) \times(500-30)] \div(3,000-200)+30=80.35$
80.35 is rounded to the nearest integer, and becomes 80.80 is stored in D10.

 minimum source value in D1 is 200, the maximum destination value in D2 is 30, and the minimum destination value in D3 is 500 . When XO is ON , the instruction SCLP is executed, and a scale is stored in D10.

- Eequation: D10 $=[(500-200) \times(30-500)] \div(3,000-200)+500=449.64$
- 449.64 is rounded to the nearest integer, and becomes 450.450 is stored in D10.

5 Applied Instructions and Basic Usage

Additional remark

- Suppose \mathbf{S}_{1} is D100, the value in D100 is F500, the maximum source value in D0 is F3000, the minimum source value in D2 is F200, the maximum destination value in D4 is F500, and the minimum destination value in D6 is F30. When X0 is ON, M1162 is set to ON, the instruction DSCLP is executed, and a scale is stored in D10.
- Equation: D10=[(F500-F200)×(F500-F30)] $\div($ F3000-F200)+F30=F80.35 F80.35 is rounded to the nearest integer, and becomes F80. F80 is stored in D10.

16-bit instruction: The value in \mathbf{S}_{1} is in the range of the minimum source value and the maximum source value, i.e. the value in $\mathbf{S}_{\mathbf{1}}$ is in the range of $-32,768$ to 32,767 . If the value in \mathbf{S}_{1} exceeds the minimum source value/the maximum source value, the minimum source value/the maximum source value will be used.

- 32-bit instruction: The integer in \mathbf{S}_{1} is in the range of the minimum source value and the maximum source value, i.e. the integer in \mathbf{S}_{1} is in the range of $-2,147,483,648$ to $2,147,483,647$. If the integer in \mathbf{S}_{1} exceeds the minimum source value/the maximum source value, the minimum source value/the maximum source value will be used.
- 32-bit instruction: The floating-point value in \mathbf{S}_{1} is in the range of the minimum source value and the maximum source value, i.e. the floating-point value in $\mathbf{S}_{\mathbf{1}}$

5 Applied Instructions and Basic Usage

is a 32-bit floating-point value available. If the floating-point value in $\mathbf{S}_{\mathbf{1}}$ exceeds the minimum source value/the maximum source value, the minimum source value/the maximum source value will be used.
If users use the instruction, the maximum source value must be greater than the minimum source value, and the maximum destination value does not have to be greater than the minimum destination value.

5 Applied Instructions and Basic Usage

Explanation

- S: Pointer
- If the conditional contact connected to CJN is ON, the next address will be executed. If the conditional contact connected to CJN is not ON, the address to which S points will be executed.
- If some part of the main program O100 does not need to be executed, users can use CJN or CJNP to shorten the scan time. Besides, if a dual output is used, users can use CJ or CJP.
- If the program specified by a pointer is prior to the instruction CJN, a watchdog timer error will occur, and the main program 0100 will not be executed. Please use the instruction carefully.
- The instruction CJN can specify the same pointer repeatedly. The pointer specified by CJN can not be the same as the pointer specified by CALL, otherwise an error will occur.
- When the instruction CJN/CJNP in a program is executed, the actions of the devices in the program are as follows.

1. The states of the Y devices, the states of the M devices, and the states of the S devices in the program remain the same as those before the execution of the jump.
2. The 10 millisecond timers in the program stop counting.
3. The general counters in the program stop counting, and the general applied instructions in the program are not executed.
4. If the instructions which are used to reset the timers in the program are driven before the jump is executed, the timers will still be reset during the execution of the jump.

Example

- When X0 is OFF, the execution of the program jumps from address 0 to address N (P 1), and the addresses between address 0 and address N are skipped.
- When XOis ON, the execution of the program starts from address 0, and the instruction CJN is not executed.
(Negated conditional jump)

5 Applied Instructions and Basic Usage

Explanation

Example

- The function of JMP is similar to the function of CJ . CJ must be driven by a contact whereas JMP does not have to be driven by a contact.
- The pulse instruction JMPP is not supported.
- After address 0 is scanned, address N will be executed whether there is a conditional contact before the instruction JMP (and whether the conditional contact is ON or OFF), and the addresses between address 0 and address N (P1) will be skipped.

5 Applied Instructions and Basic Usage

API				Returning to a busbar	Applicable model
258	BRET				

Explanation

The instruction BRET does not have to be driven by a contact.

- After the instruction BRET is executed, the instructions which should be driven by a conditional contact will seem to be connected to a busbar, and will be executed.

Example

- In the general program shown below, the instructions are executed only when XO is ON .

- After the instruction BRET is added, the instructions which should be driven by a contact will seem to be connected to a busbar, and will be executed.

5 Applied Instructions and Basic Usage

Explanation

- S: Source device (16-bit device); D: Destination device (32-bit device) The value in the 16 -bit device \mathbf{S} is transferred to the 32-bit device \mathbf{D}. The sign bit in \mathbf{S} is duplicated, and stored in \mathbf{D}.
- When X23 is ON, the value in D4 is transferred to D6 and D7.

Example

Bit 15 is D4 is transferred to bit 15~ bit 31 in (D7, D6). The value in (D7, D6) becomes a negative value. (The value in D4 is also a negative value.)

5 Applied Instructions and Basic Usage

Explanation

- S: Source device (32-bit device); D: Destination device (16-bit device) Data in the 32-bit device \mathbf{S} is transferred to the 16 -bit device \mathbf{D}. The sign bit in \mathbf{S} is retained.

Example

When X 24 is ON, bit 31 in D7 is transferred to bit 15 in D4, bit 0~bit 14 in D6 are transferred, and bit 15~bit 30 in D6 and D7 are not transferred.

5 Applied Instructions and Basic Usage

5.7 Motion Control Function Block Table

Type	Name	Description	Page No.
Uniaxial motion control function blocks	Absolute single-speed motion	Starting absolute single-speed motion	5-152
	Relative single-speed motion	Starting relative single-speed motion	5-156
	Absolute two-speed motion	Starting absolute two-speed motion	5-160
	Relative two-speed motion	Starting relative two-speed motion	5-163
	Inserting single-speed motion	Inserting single-speed motion	5-166
	Inserting two-speed motion	Inserting two-speed motion	5-170
	JOG motion	Starting JOG motion	5-174
	Manual pulse generator mode	Enabling a manual pulse generator mode	5-177
	Electronic gear motion	Starting electronic gear motion	5-179
	Returning home	Starting motion of returning home	5-181
	Setting input sources for manual pulse generators/electronic gears	Setting input sources for manual pulse generators/electronic gears	5-183
	Stopping uniaxial motion	Stopping the motion of the axis specified	5-184
	Parameter setting 1	Setting motion parameters	5-186
	Parameter setting 2	Setting motion parameters	5-188
	Reading the present position/speed of an axis	Reading the present position/speed of an axis	5-190
	State of an axis	Reading and clearing the present erroneous state of an axis	5-192
	Setting the present position of an axis	Setting the present position of an axis	5-194
	Setting the polarities of input terminals	Setting the polarities of input terminals	5-195
	Uniaxial cyclic electronic cam motion	Uniaxial cyclic electronic cam motion	5-197
	Uniaxial noncyclic electronic cam motion	Uniaxial noncyclic electronic cam motion	5-202
	Multiaxial cyclic electronic cam motion	Multiaxial cyclic electronic cam motion	5-206
	Reading a cam point	Reading a particular point in a cam chart	5-210
	Writing a cam point	Modifying a particular point in a cam chart	5-212
	Calculating a synchronization ratio	Calculating a synchronization ratio	5-214
	Creating a cam curve	Creating a cam curve	5-217
	Updating a cam curve	Updating a cam curve	5-224
	Rotary cut	Creating a rotary cut curve, and executing electronic cam motion	5-226
	Flying shear	Creating a flying shear curve, and executing electronic cam motion	5-232
	Creating a curve for a wire winding machine	Creating a curve for a wire winding machine	5-239
Multiaxial motion control function blocks	Setting the parameters of G-code motion	Setting the parameters of G-code motion	5-243
	Executing G-code motion	Setting and executing an Ox motion subroutine	5-246
	Stopping G-code motion	Stopping the execution of an Ox motion subroutine	5-248
	Reading an M-code	Reading an M-code	5-250
Other motion control function blocks	High-speed counter	Starting a high-speed counter	5-252
	Setting high-speed comparison	Starting high-speed comparison	5-255
	Resetting high-speed comparison	Resetting high-speed comparison	5-257
	Setting high-speed capture	Starting high-speed capture	5-260
	High-speed masking	Starting high-speed masking	5-264
	Setting an interrupt	Setting the trigger for an interrupt subroutine	5-266

5
 Applied Instructions and Basic Usage

5.8 Introduction of the Pins in a Motion Control Function Block

5.8.1 Definitions of Input Pins/ Output Pins

Common input pins and output pins in motion control function blocks are listed below. The pins listed below do not appear in a single motion control function block. For example, a motion control function block only has one input pin, that is, it has either the Execute input pin or the Enable input pin.

Input pin			
Name	Description	Format	Setting value
Execute	Starting the motion control function block	BOOL	True/False
Enable	Starting the motion control function block	BOOL	True/False

Output pin			
Name	Description	Format	Setting value
Done	The execution of the function block is complete.	BOOL	There is a transition in the Done output pin's signal from low to high when the expeution of motion control function block is complete.
Valid	An output value is valid.	BOOL	There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	There is a transition in the Aborted output pin's signal from low to high when the execution of the motion control function block is interrupted by a command.
Error	An error occurs in a function block.	BOOL	There is a transition in the Error output pin's signal from low to high when an error occurs in the motion control function block.

A motion control function block has either the Execute input pin or the Enable input pin. The Execute input pin/The Enable input pin in a motion control function block is used to start the motion control function block. A motion control function block generally has the Busy output pin and the Done output pin. The Busy output pin and the Done output pin in a function block indicate the state of the motion control function block. If the execution of motion control function block is to be interrupted by another motion control function block, the Aborted output pin will be added to the motion control function block. Besides, the Error output pin in a motion control function block is used to indicate that an error occurs in the motion control function block when the motion control function block is executed.
A motion control function block has not only the Execute input pin/the Enable input pin, but also value/state input pins. The characteristics of the value/state input pins are described below.

- Use of input values
- If the input pin that a motion control function block has is the Execute input pin, values are used when there is a transition in the Execute input pin's signal from low to high. If a new value is created, it becomes valid when the Execute input pin is triggered again.
- If the input pin that a motion control function block has is the Enable input pin, values are used when there is a transition in the Enable input pin's signal from low to high. Compared with the Execute input pin, the Enable input pin is used more often when a value used is updated repeatedly.
- An input value exceeds a range.

After a motion control function block is started, the input values which are not in ranges allowed will be limited, or result in an error occurring in the motion control function block. If an error occurring in a motion control function block results in an error occurring in an axis, the motion control function block is applied incorrectly. Users should prevent incorrect values from being generated in an applied program.

- Output pins are mutually exclusive.
- If the input pin that a motion control function block has is the Execute input pin, only the Busy

5 Applied Instructions and Basic Usage

output pin, the Done output pin, the Aborted output pin, or the Error output pin can be set to True. If the Execute input pin is set to True, the Busy output pin, the Done output pin, the Aborted output pin, or the Error output pin must be set to True.
■ If the input pin that a motion control function block has is the Enable input pin, the Valid output pin and the Error output pin are mutually exclusive, and only the Valid output pin or the Error output pin can be set to True.

- Time when output data/states are valid

■ If the input pin that a motion control function block has is the Execute input pin, the Done output pin, the Error output pin, the Aborted output pin, and data output are reset when there is a transition in the Execute input pin's signal from high to low, but the execution of the function block does not stop when there is a transition in the Execute input pin's signal from high to low. Even if the Execute input pin in a motion control function block is reset before the execution of the motion control function block is complete, output states will still be generated and retained for one cycle. If a motion control function block is started again before the execution of the motion control function block is complete, the motion control function block will not give feedback to the Done output pin and the Aborted output pin, and an error will occur.

- If the input pin that a motion control function block has is the Enable input pin, the Valid output pin, the Busy output pin, and the Error output pin are reset when there is a transition in the Enable input pin's signal from high to low.
- Characteristic of the Done output pin

The Done output pin in a motion control function block will be set to True after the motion control function block is executed successfully.

- Characteristic of the Busy output pin
- If the input pin that a motion control function block has is the Execute input pin, the motion control function block uses the Busy output pin to indicate that the execution of the motion control function block is not complete, and new output states (values) are expected to be generated. The Busy output pin is set to True when there is a transition in the Execute input pin's signal from low to high. When the Done output pin, the Aborted output pin, and the Error output pin are set to True, the Busy output pin are reset.
- If the input pin that a motion control function block has is the Enable input pin, the motion control function block uses the Busy output pin to indicate that the execution of the motion control function block is not complete, and new output states (values) are expected to be generated. The Busy output pin in a motion control function block is set to True when there is a transition in the Enable input pin's signal from low to high, and is set to True when the motion control function block is executed. When the Busy output pin is set to True, output states (values) still change.
- Characteristic of the Aborted output pin

The Aborted output pin in a motion control function block is set to True when the execution of the motion control function block is interrupted by a command.

- Relation between the Enable input pin and the Valid output pin

If the input pin that a motion control function block has is the Enable input pin, the motion control function block uses the Busy output pin to indicate whether output data/states are valid. The Valid output pin is set to True only when the Enable input pin is set to true or output data/state are valid. If an error occurs in a motion control function block, output data/states will not be valid, and the Valid output pin will be set to False. The Valid output pin in a motion control function block will not be reset until the error occurring in the motion control function block is eliminated, and output data/states become valid.

5
 Applied Instructions and Basic Usage

5.8.2 Timing Diagram for Input/ Output Pins

Situation 1: The execution of the motion control function block is interrupted.
Situation 2: An error occurs in the motion control function block.
Situation 3: The execution of the motion control function block is complete normally.

(1) It may take some time.

Situation 1: The motion control function block is executed normally.
Situation 2: An error occurs in the motion control function block.

5.8.3 I ntroducing the Use of PMSoft

The use of the motion control function blocks in PMSoft is introduced below.
(1) Right-click Function Blocks in the system information area in PMSoft.

5 Applied Instructions and Basic Usage

Click Add Motion Control Function Blocks... on the context menu.
(2) The Add Function Block window appears.

Add Function Block		X
Selecte Function Blocks		
Function Block Info	Furction Blocks	
- F Function Blocks		
	Seleat All	Deseloct
	OK	Canol

Users can select motion control function blocks in the Add Function Block window. If the users click Select AII, all the motion control function blocks in the Add Function Block window will be selected. After users select motion control function blocks, they have to click OK.
(3) After the users click OK, the motion control function blocks selected in the Add Function Block window will be automatically added to Function Blocks in the system information area.

- The folders added to Function Blocks are shown below.

f SingleAxis † M MultiAxis \pm Others

- Definitions of the folders
- SingleAxis: Uniaxial motion (Uniaxial point-to-point motion, electronic gear synchronization, and electronic cam synchronization)
- MultiAxis: Multi-axis motion (G-code execution)
- Others: Other functions (measuring time, high-speed comparison, high-speed capture, and setting interrupts)

5 Applied Instructions and Basic Usage

(4) After the users drag motion control function blocks in folder, they can use them.

5.9 Delta-defined Parameter Table

Delta-defined parameters are for input pins in Delta motion control function blocks. Users can directly use
Delta-defined parameters to operate motion control function blocks without having to know the descriptions of the input pins in the motion control function blocks. Delta-defined parameters are described below.

Name	Type	Value	Motion control function block	Description
TRUE	BOOL	True	All motion control function blocks	Input pin
FALSE	BOOL	False		Input pin
mcRising	BOOL	True	T_TrSeg2, T_TrSeg1, T_HomeReturn	Transition in DOG's signal from low to high
mcFalling	BOOL	False		Transition in DOG's signal from high to low
mcPositive	BOOL	True	T_HomeReturn	Returning home in the positive direction
mcNegative	BOOL	False		Returning home in the negative direction
mcSCurve	BOOL	True	T_AxisSetting2	Speed curve: S curve
mcTrapezoid	BOOL	False		Speed curve: Trapezoid curve
mcNC	BOOL	True	T_InputPolatiry	Normally-closed contact
mcNO	BOOL	False		Normally-open contact
mcUp_Up	BOOL	True	T_HTmr	A high-speed timer becomes active when its signal goes from low to high.
mcUp_Down	BOOL	False		A high-speed timer becomes active when its signal goes from high to low.
mcCmpSet	BOOL	True	T_Compare	An output is set when the condition of a comparison is met.
mcCmpRst	BOOL	False		An output is reset when the condition of a comparison is met.
mcMotor	WORD	0	T_AxisSetting2	Motor unit
mcMachine	WORD	1		Mechanical unit,
mcComp	WORD	2		Compound unit
mcUD	WORD	0	T_AxisSetting2, T_HCnt	Counting up/down
mcPD	WORD	1		Pulses+Directions
mcAB	WORD	2		A/B-phase pulses
mc4AB	WORD	3		Four times the frequency of A/B-phase pulses
IntTimer	WORD	0	T_Interrupt	An interrupt signal is triggered by a time interval.
IntX00	WORD	1		The source of an interrupt signal is X 0 .
IntX01	WORD	2		The source of an interrupt signal is X 1 .
IntX02	WORD	3	T_Interrupt	The source of an interrupt signal is X2.

Name	Type	Value	Motion control function block	Description
IntX03	WORD	4	T_Interrupt	The source of an interrupt signal is X3.
IntX04	WORD	5		The source of an interrupt signal is X 4 .
IntX05	WORD	6		The source of an interrupt signal is X5.
IntX06	WORD	7		The source of an interrupt signal is X6.
IntX07	WORD	8		The source of an interrupt signal is $\mathrm{X7}$.
IntStart0	WORD	1		The source of an interrupt signal is Start0.
IntStop0	WORD	2		The source of an interrupt signal is Stop0.
IntStart1	WORD	3		The source of an interrupt signal is Start1.
IntStop1	WORD	4		The source of an interrupt signal is Stop1.
mcCmpAxis1	WORD	0	T_Compare	The source of a comparison is the present position of the first axis.
mcCmpAxis2	WORD	1		The source of a comparison is the present position of the second axis.
mcCmpAxis3	WORD	2		The source of a comparison is the present position of the third axis.
mcCmpAxis4	WORD	3		The source of a comparison is the present position of the fourth axis.
mcCmpC200	WORD	4		The source of a comparison is the value of C200.
mcCmpC204	WORD	5		The source of a comparison is the value of C204.
mcCmpC208	WORD	6		The source of a comparison is the value of C208.
mcCmpC212	WORD	7		The source of a comparison is the value of C212.
mcCmpCLR0	WORD	0	T_Compare	The device used for a comparison is CLR0.
mcCmpCLR1	WORD	1		The device used for a comparison is CLR1.
mcCmpY0	WORD	0		The device used for a comparison is Y 0 .
mcCmpY1	WORD	1		The device used for a comparison is Y1.
mcCmpY2	WORD	2		The device used for a comparison is Y2.
mcCmpY3	WORD	3		The device used for a comparison is Y3.
mcCmpRstC200	WORD	4		The device used for a comparison is C200.
mcCmpRstC204	WORD	5		The device used for a comparison is C204.
mcCmpRstC208	WORD	6		The device used for a comparison is C208.
mcCmpRstC212	WORD	7		The device used for a comparison is C212.
mcCapAxis1	WORD	0	T_Capture	The source of capture is the present position of the first axis.
mcCapAxis2	WORD	1		The source of capture is the present position of the second axis.
mcCapAxis3	WORD	2		The source of capture is the present position of the third axis.
mcCapAxis4	WORD	3		The source of capture is the present position of the fourth axis.
mcCapC200	WORD	4		The source of capture is the value of C200.
mcCapC204	WORD	5		The source of capture is the value of C204.
mcCapC208	WORD	6		The source of capture is the value of C208.
mcCapC212	WORD	7		The source of capture is the value of C212.
mcCapPG0	WORD	0	T_Capture	The source of a capture signal is PG0.
mcCapMPGB0	WORD	1		The source of a capture signal is MPGB0.
mcCapMPGA0	WORD	2		The source of a capture signal is MPGA0.
McCapLSN0	WORD	3		The source of a capture signal is LSN0.
McCapLSP0	WORD	4		The source of a capture signal is LSP0.
McCapDOG0	WORD	5		The source of a capture signal is DOG0.
mcCapStop0	WORD	6		The source of a capture signal is Stop0.
mcCapStart0	WORD	7		The source of a capture signal is Start0.
mcCapPG1	WORD	8		The source of a capture signal is PG1.
mcCapMPGB1	WORD	9		The source of a capture signal is MPGB1.
mcCapMPGA1	WORD	10		The source of a capture signal is MPGA1.
mcCapLSN1	WORD	11	T_Capture	The source of a capture signal is LSN1.

5
 Applied Instructions and Basic Usage

Name	Type	Value	Motion control function block	Description
mcCapLSP1	WORD	12	T_Capture	The source of a capture signal is LSP1.
McCapDOG1	WORD	13		The source of a capture signal is DOG1.
mcCapStop1	WORD	14		The source of a capture signal is Stop1.
mcCapStart1	WORD	15		The source of a capture signal is Start1.
mcX0	WORD	0		The source of a capture signal is X0.
mcX1	WORD	1		The source of a capture signal is X 1 .
mcX2	WORD	2		The source of a capture signal is X 2 .
mcX3	WORD	3		The source of a capture signal is X 3 .
mcX4	WORD	4		The source of a capture signal is X 4 .
mcX5	WORD	5		The source of a capture signal is X5.
mcX6	WORD	6		The source of a capture signal is X 6 .
mcX7	WORD	7		The source of a capture signal is X 7 .
mcX10	WORD	8		The source of a capture signal is X10.
mcX11	WORD	9		The source of a capture signal is X11.
mcX12	WORD	10		The source of a capture signal is X12.
mcX13	WORD	11		The source of a capture signal is X13.

5.10 Uniaxial Motion Control Function Blocks

5.10.1 Absolute Single-speed Motion

En	T_AbsSegl	Eno
Axis		Done
Execute		Busy
Position	Aborted	
Velocity		Error

1. Motion control function block

The motion control function block T_AbsSeg1 is used to start absolute single-speed motion. After absolute single-speed motion is started, the speed of the absolute single-speed motion will increase from the $V_{\text {BIAS }}$ set to the velocity set. The speed of the absolute single-speed motion will not decrease from the velocity set to the $\mathrm{V}_{\text {BIAS }}$ set until the present command position of the axis specified is near the target position set. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Position input pin, and the number of pulses per second is a unit for the Velocity input pin. The users can change the unit used by means of the motion control function block T_AxisSetting2.

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	DVP20PM00D: K1~K2 DVP20PM00M: K1~K3	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
Position	Absolute position	DWORD	K-2,147,483,648~ K2,147,483,647	The value of the Position input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity	Target speed	DWORD	K1~K2,147,483,647	When the motion control function block is executed, the value of the Velocity input pin is updated repeatedly.

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal when motion is complete.	There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.

5
 Applied Instructions and Basic Usage

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

The number of pulses is a unit for the Position input pin, and the number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Example

Purposes:

- After the first single-speed motion is complete, the second single-speed motion will be executed.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.
The motion control function block named FIRST is set so that the first axis moves at a speed of 2,000 pulses per second, and moves for 10,000 pulses. The motion control function block named SECOND is set so that the first axis moves at a speed of 3,000 pulses per second, and moves for 15,000 pulses.

- After the first single-speed motion is complete, the second single-speed motion will be executed.

5 Applied Instructions and Basic Usage

Steps:
(a) Set Execute1 to True.
(b) Wait for a transition in Done2's signal from low to high or a transition in Error2's signal from low to high.

- The second single-speed motion is executed before the execution of the first single-speed motion is complete.
Steps:
(a) Set Execute1 to True.
(b) Set Test to ON when Busy1 is set to True.
(c) Wait for a transition in Done2's signal from low to high or a transition in Error2's signal from low to high.
Timing diagram:

- After the first single-speed motion is complete, the second single-speed motion will be executed. After the execution of the motion control function block named FIRST is complete, the motion control function block named SECOND will be executed. The first axis moves for 25,000 pulses.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.
When Error2 is set to True, the first axis moves for 10,000 pulses. The motion control function block named SECOND is invalid.

5. Modules which are supported

The motion control function block T_AbsSeg1 supports DVP20PM00M and DVP20PM00D.

5
 Applied Instructions and Basic Usage

5.10.2 Relative Single-speed Motion

En	T_RelSegl	Eno
Axis		Done
Execute		Busy
Distance		Aborted
Velocity		Error

1. Motion control function block

The motion control function block T_RelSeg1 is used to start relative single-speed motion. After relative single-speed motion is started, the speed of the relative single-speed motion will increase from the $\mathrm{V}_{\text {BIAS }}$ set to the velocity set. The speed of the relative single-speed motion will not decrease from the velocity set to the $\mathrm{V}_{\text {BIAS }}$ set until the distance for which the relative single-speed motion moves is the distance set. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.

2. Input pins/Output pins

Input pin						
Name	Function	Data type	Setting value	Time when a value is valid		
Axis	Motion axis number	WORD	DVP20PMOOD: K1~K2 DVP20PM00M: K1~K3	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False			
Distance	Relative distance	DWORD	K-2,147,483,648~ K2,147,483,647	The value of the Distance input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
Velocity	Target speed	DWORD	K1~K2,147,483,647	When the motion control function block is executed, the value of the Velocity input pin is updated repeatedly.		

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal when motion is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

5 Applied Instructions and Basic Usage

4. Example

Purposes:

- After the first single-speed motion is complete, the second single-speed motion will be executed.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.
The motion control function block named FIRST is set so that the first axis moves at a speed of 2,000 pulses per second, and moves for 10,000 pulses. The motion control function block named SECOND is set so that the first axis moves at a speed of 3,000 pulses per second, and moves for 15,000 pulses.

- After the first single-speed motion is complete, the second single-speed motion will be executed. Steps:
(a) Set Execute1 to True.
(b) Wait for a transition in Done2's signal from low to high or a transition in Error2's signal from low to high.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.
Steps:
(a) Set Execute1 to True.
(b) Set Test to ON when Busy1 is set to true.
(c) Wait for a transition in Done2's signal from low to high or a transition in Error2's signal from low to high.

5 Applied Instructions and Basic Usage

Timing diagram:

- After the first single-speed motion is complete, the second single-speed motion will be executed. When the motion control function block named FIRST is executed, the first axis moves for 10,000 pulses. After the execution of the motion control function block named FIRST is complete, the motion control function block named SECOND will be executed. When the motion control function block named SECOND is executed, the first axis moves for 15,000 pulses.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.
When Error2 is set to True, the first axis moves for 10,000 pulses. The motion control function block named SECOND is invalid.

5. Modules which are supported

The motion control function block T_RelSeg1 supports DVP20PM00M and DVP20PM00D.

5
 Applied Instructions and Basic Usage

5.10.3 Absolute Two-speed Motion

En	T_AbsSeg2	Eno
Axis		Done
Execute		Busy
Positionl		Aborted
Velocityl		Error
Position2		
Velocity2		

1. Motion control function block

The motion control function block T_AbsSeg2 is used to start absolute two-speed motion. After absolute two-speed motion is started, the speed of the absolute two-speed motion will increase from the $\mathrm{V}_{\text {BIAS }}$ set to the V (I) set. The speed of the absolute two-speed motion will not increase/decrease from the $V(I)$ set to the $V(I I)$ set until the present command position of the axis specified is near the P (I) set. The speed of the absolute two-speed motion will not decrease from the V (II) set to the $\mathrm{V}_{\text {BIAS }}$ set until the present command position of the axis specified is near the P (II) set. The P (I) set must be between the present command position of the axis specified and the P (II) set. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Position1 input pin/the Position2 input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. The users can change the unit used by means of the motion control function block T_AxisSetting2.

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	$\begin{aligned} & \text { DVP2OPMOOD: } \\ & \text { K1~K2 } \\ & \text { DVP20PM00M: } \\ & \text { K1~K3 } \end{aligned}$	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
Position1	Absolute position of the first motion	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	The value of the Position1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity1	Target speed of the first motion	DWORD	K1~K2,147,483,647	The value of the Velocity1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Position1	Absolute position of the second motion	DWORD	K-2,147,483,648~ K2,147,483,647 (If the value of the Position1 input pin is greater than 0, the value of the Position2 input pin must be greater than or equal to the value of the Position1 input pin. If the value of the Position1 input pin is less than or equal to 0, the value of the Position2 input pin must be less than or equal to the value of the Position1 input pin.)	The value of the Position2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity2	Target speed of the second motion	DWORD	K1~K2,147,483,647	The value of the Velocity2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal when motion is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.

5 Applied Instructions and Basic Usage

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

The number of pulses is a unit for the Position1 input pin/the Position2 input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Example

Purposes:

- The motion control function block T_AbsSeg2 is used to start absolute two-speed motion of an axis. The first motion is set so that the first axis moves at a speed of 2,000 pulses per second, and moves for 10,000 pulses. The second motion is set so that the first axis moves at a speed of 3,000 pulses per second, and moves for 15,000 pulses.

5 Applied Instructions and Basic Usage

After the motion control function block is started, the first axis moves for 10,000 pulses at a speed of 2,000 pulses per second, and moves for 15,000 pulses at a speed of 3,000 pulses per second.
5. Modules which are supported

The motion control function block T_AbsSeg2 supports DVP20PM00D and DVP20PM00M.

5.10.4 Relative Two-speed Motion

En	T_RelSeg2	Eno
Axis		Done
Execute		Busy
Distancel		Aborted
Velocityl		Enror
Distance2		
Velocity2		

1. Motion control function block

The motion control function block T_RelSeg2 is used to start relative two-speed motion. After relative two-speed motion is started, the speed of the relative two-speed motion will increase from the $\mathrm{V}_{\text {BIAS }}$ set to the V (I) set. The speed of the relative two-speed motion will not increase/decrease from the V (I) set to the V (II) set until the number of pulses output is near the value of the Distance 1 input pin. The speed of the relative two-speed motion will not decrease from the \vee (II) set to the $V_{\text {BIAS }}$ set until the number of pulses output is near the value of the Distance2 input pin. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Distance1 input pin/the Distance 2 input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.

5
 Applied Instructions and Basic Usage

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	DVP20PM00D: K1~K2 DVP20PM00M: K1~K3	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
Distance1	Relative distance for which the first motion moves	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	The value of the Distance1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity1	Target speed of the first motion	DWORD	K1~K2,147,483,647	The value of the Velocity 1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Distance2	Relative distance for which the second motion moves	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$ (If the value of the Distance1 input pin is a positive value, the value of the Distance2 input pin must be a positive value. If the value of the Distance1 input pin is a negative value, the value of the Distance2 input pin must be a negative value.)	The value of the Distance 2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity2	Target speed of the second motion	DWORD	K1~K2,147,483,647	The value of the Velocity2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.

| Name | | Function | $\begin{array}{c}\text { Data } \\ \text { type }\end{array}$ | $\begin{array}{c}\text { Time when there is } \\ \text { a transition in an } \\ \text { output pin's signal } \\ \text { from low to high }\end{array}$ |
| :---: | :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}Time when there is a transition in an

output pin's signal from high to low\end{array}\right\}\)

5 Applied Instructions and Basic Usage

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

The number of pulses is a unit for the Distance1 input pin/the Distance 2 input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

5
 Applied Instructions and Basic Usage

4. Example

Purpose:

- The motion control function block T_AbsSeg2 is used to start relative two-speed motion of an axis. The first motion is set so that the first axis moves at a speed of 2,000 pulses per second, and moves for 10,000 pulses. The second motion is set so that the first axis moves at a speed of 3,000 pulses per second, and moves for 15,000 pulses.

After the motion control function block is started, the first axis moves for 10,000 pulses at a speed of 2,000 pulses per second, and moves for 15,000 pulses at a speed of 3,000 pulses per second.
5. Modules which are supported

The motion control function block T_RelSeg2 supports DVP20PM00D and DVP20PM00M.

5.10.5 Inserting Single-speed Motion

En	T_TrSegl	Eno
Axis		Done
Execute		Busy
DogEdge		Aborted
Distance		Error
Velocity		

1. Motion control function block

The motion control function block T_TrSeg1 is used to insert single-speed motion. The speed of motion increases from the $\mathrm{V}_{\text {BIAS }}$ set to the velocity set. After DOG's signal goes from low to high or from high to low, the DVP-10PM series motion controller used will continue sending pulses. The speed of the motion will not decrease from the velocity set to the $V_{\text {BIAS }}$ set until the number of pulses output is near the value of the Distance input pin. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity input pin. The users can change the unit used by means of the motion control function block T_AxisSetting2. If the value of the DogEdge input pin is mcRising, motion will be triggered by a transition in DOG's signal from low to high. If the value of the DogEdge input pin is mcFalling, motion will be triggered by a transition in DOG's signal from high to low.

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	$\begin{aligned} & \text { DVP20PM00D: } \\ & \text { K1~K2 } \\ & \text { DVP20PM00M: } \\ & \text { K1~K3 } \end{aligned}$	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
DogEdge	Transition in DOG's signal from low to high or from high to low	BOOL	mcRising (True)/ mcFalling (False)	The value of the DogEdge input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Distance	Distance for which motion moves after a transition in DOG's signal from low to high or from high to low	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	The value of the Distance input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity	Target speed	DWORD	K1~K2,147,483,647	The value of the Velocity input pin is valid when there is a transition in the Execute input pin's signal from low to high.

Name		Function	Data type	Time when there is a transition in an output pin's signal from low to high		
Done	The execution of the motion control function block is complete.	BOOL	Time when there is a transition in an output pin's signal from high to low			
- There is a						
transition in the						
Done output pin's						
signal when						
motion is						
complete.						-There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.
:---						

5
 Applied Instructions and Basic Usage

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2. If the value of the DogEdge input pin is mcRising, motion will be triggered by a transition in DOG's signal from low to high. If the value of the DogEdge input pin is mcFalling, motion will be triggered by a transition in DOG's signal from high to low.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Examples

Example 1:

- The motion control function block T_TrSeg1 is used to insert single-speed motion which is triggered by a transition in DOG's signal from high to low.
The motion control function block named T_TrSeg1_U1 is set so that the first axis moves at a speed of 3,000 pulses per second, and will move for 5,000 pulses after a transition in DOG's signal from high to low. After the first axis moves for 5,000 pulses, Done will be set to True.

5 Applied Instructions and Basic Usage

Example2:

- The motion control function block T_TrSeg1 is used to insert single-speed motion which is triggered by a transition in DOG's signal from low to high.
The motion control function block named T_TrSeg1_U1 is set so that the first axis moves at a speed of 3,000 pulses per second, and will move for 5,000 pulses after a transition in DOG's signal from low to high. After the first axis moves for 5,000 pulses, Done will be set to True.

5 Applied Instructions and Basic Usage

5. Modules which are supported

The motion control function block T_TrSeg1 supports DVP20PM00D and DVP20PM00M.

5.10.6 Inserting Two-speed Motion

En	T_TrSeg2	Eno
Axis		Done
Execute	Busy	
DogEdge	Aborted	
Velocityl	Error	
Distance		
Velocity2		

1. Motion control function block

The motion control function block T_TrSeg2 is used to insert two-speed motion. The speed of motion increases from the $\mathrm{V}_{\text {BIAS }}$ set to the $\overline{\mathrm{V}}(\mathrm{I})$ set. After DOG's signal goes from low to high or from high to low, the speed of the motion will increase/decrease from the $\mathrm{V}(\mathrm{I})$ set to the V (II) set. The motion will not stop until the number of pulses output is near the value of the Distance input pin. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. The users can change the unit used by means of the motion control function block T_AxisSetting2. If the value of the DogEdge input pin is mcRising, motion will be triggered by a transition in DOG's signal from low to high. If the value of the DogEdge input pin is mcFalling, motion will be triggered by a transition in DOG's signal from high to low.

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	$\begin{aligned} & \hline \text { DVP20PM00D: } \\ & \text { K1~K2 } \\ & \text { DVP20PM00M: } \\ & \text { K1~K3 } \end{aligned}$	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
DogEdge	Transition in DOG's signal from low to high or from high to low	BOOL	mcRising (True)/ mcFalling (False)	The value of the DogEdge input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity1	Target speed before a transition in DOG's signal from low to high or from high to low	DWORD	K1~K2,147,483,647	The value of the Velocity1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Distance	Distance for which motion moves after a transition in DOG's signal from low to high or from high to low	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	The value of the Distance input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity2	Target speed after a transition in DOG's signal from low to high or from high to low	DWORD	K1~K2,147,483,647	The value of the Velocity2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.

		Function	Data type	Time when there is a transition in an output pin's signal from low to high		
Done	The execution of the motion control function block is complete.	BOOL	Time when there is a transition in an output pin's signal from high to low			
- There is a						
transition in the						
Done output pin's						
signal when						
motion is						
complete.						-There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.
:---						

5
 Applied Instructions and Basic Usage

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2. If the value of the DogEdge input pin is mcRising, motion will be triggered by a transition in DOG's signal from low to high. If the value of the DogEdge input pin is mcFalling, motion will be triggered by a transition in DOG's signal from high to low.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

5 Applied Instructions and Basic Usage

4. Example

The motion control function block T_TrSeg2 is used to insert two-speed motion which is triggered by a transition in DOG's signal from low to high.
The motion control function block named T_TrSeg2_U1 is set so that the first axis moves at a speed of 3,000 pulses per second, and will move for 2,000 pulses at a speed of 1,000 pulses per second after a transition in DOG's signal from low to high.

After the first axis moves for 2,000 pulses, Done will be set to True.
5. Modules which are supported

The motion control function block T_TrSeg2 supports supports DVP20PM00D and DVP20PM00M.

5 Applied Instructions and Basic Usage

5.10.7 JOG Motion

En \quad T_Jog	Eno	
Axis		Busy
PositiveEnable	Aborted	
Negative Velocity	Enror	

1. Motion control function block

The motion control function block T_Jog is used to start JOG motion. The value of the Axis input pin indicates an axis number, and the value of the Velocity input pin indicates the speed of JOG motion. If the PositiveEnable input pin is set to True, positive JOG motion will be started. If the NegativeEnable input pin is set to True, negative JOG motion will be started. The number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	$\begin{gathered} \text { DVP2OPMOOD: } \\ \text { K1~K2 } \\ \text { DVP20PM00M: } \\ \text { K1~K3 } \\ \hline \end{gathered}$	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
PositiveEnable	Enabling positive JOG motion	BOOL	True/False	- If the PositiveEnable input pin and the NegativeEnable input pin are set to True simultaneously, positive JOG motion will be enabled, and the NegativeEnable input pin will be reset to False. - If the PositiveEnable input pin is set to True after the NegativeEnable input pin is set to True, the NegativeEnable input pin will be reset to False, the negative JOG motion will stop, and the positive JOG motion will be enabled.

5 Applied Instructions and Basic Usage

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
NegativeEnable	Enabling negative JOG motion	BOOL	True/False	- If the PositiveEnable input pin and the NegativeEnable input pin are set to True simultaneously, positive JOG motion will be enabled, and the NegativeEnable input pin will be reset to False. - If the NegativeEnable input pin is set to True after the PositiveEnable input pin is set to True, the PositiveEnable input pin will be reset to False, the positive JOG motion will stop, and the negative JOG motion will be enabled.
Velocity	Target speed	DWORD	K1~K2,147,483,647	When the motion control function block is executed, the value of the Velocity input pin is updated repeatedly.

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the PositiveEnable input pin's signal from low to high or when there is a transition in the NegativeEnable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when motion stops. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the PositiveEnable input pin's signal from high to low or when there is a transition in the NegativeEnable input pin's signal from high to low. - If the PositiveEnable input pin and the NegativeEnable are set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.

5
 Applied Instructions and Basic Usage

| Name | | Function | $\begin{array}{c}\text { Data } \\ \text { type }\end{array}$ | $\begin{array}{c}\text { Time when there is } \\ \text { a transition in an } \\ \text { output pin's signal } \\ \text { from low to high }\end{array}$ |
| :---: | :--- | :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}Time when there is a transition in an

output pin's signal from high to low\end{array}\right]\)

The number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Example

The motion control function block T_Jog is used to start JOG motion. Positive JOG motion is enabled by EnableP, and negative JOG motion is enabled by EnableN.
The first axis moves at a speed of 10,000 pulses per second. If EnableP is set to 1, the first axis will move in the positive direction. If EnableN is set to 1, the first axis will move in the negative direction.

When EnableP is set to 1 , the first axis moves at a speed of 10,000 pulses per second in the positive direction. When EnableN is set to 1, the first axis moves at a speed of 10,000 pulses per second in the negative direction. When EnableP and EnableN are not set to 1, the first axis stops moving.
5. Modules which are supported

The motion control function block T_Jog supports DVP20PM00D and DVP20PM00M.

5 Applied Instructions and Basic Usage

5.10.8 Manual Pulse Generator Mode

En	T_MPG	Eno
Axis		Valid
Enable		Busy
Reset		Aborted
RatioNum		Enror
RatioDen		InputPulses
		InputFreq

1. Motion control function block

The motion control function block T_MPG is used to enable a manual pulse generator mode. The value of the Axis input pin indicates an axis number. The motion of the axis specified follows the operation of a manual pulse generator. The relation between the position of the axis specified and the input pulses generated by the manual pulse generator used is determined by the RatioNum input pin and the RatioDen input pin. The speed at which the manual pulse generator used responds depends on the value of the Tacc input pin and the value of the Tdec input pin. Users can set the Tacc input pin and the Tdec input pin in the motion control function block T_AxisSetting1.

The input terminals which can be connected to manual pulse generators are shown below.

The terminals in the solid frame are for the first axis. The terminals in the dotted frame are for the second axis and the third axis. (DVP20PMOOM supports the third axis.)
2. Input pins/Output pins

Input pin					
Name	Function	Data type	Setting value	Time when a value is valid	
Axis	Motion axis number	WORD	DVP20PMOOD: K1~K2 DVP20PM00M: K1~K3	The value of the Axis input pin is valid when there is a transition in the Enable input pin's signal from low to high.	
Enable	Manual pulse generator mode	BOOL	True/False	True/False	
Reset	Resetting the manual pulse generator used	BOOL	The value of the Reset input pin is valid when there is a transition in the Enable input pin's signal from low to high.		
RatioNum	Numerator of an electronic gear ratio	DWORD	K0~K32,767	When the motion control function block is executed, the value of the RatioNum input pin is updated repeatedly.	
RatioDen	Denominator of an electronic gear ratio	DWORD	K1~K32,767	When the motion control function block is executed, the value of the RatioDen input pin is updated repeatedly.	

Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when motion stops. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Busy	The motion control function block is being executed.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - If the Enable input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Value output pin				
Name	Function	Data type	Output range	Update
InputPulses	Number of pulses generated by the manual pulse generator used	DWORD	K-2,147,483,648~ K2,147,483,647	When the motion control function block is executed, the value of the InputPulses output pin is updated repeatedly.
InputFreq	Frequency of pulses generated by the manual pulses generator used	DWORD	K0~K2,147,483,647	When the motion control function block is executed, the value of the InputFreq output pin is updated repeatedly.

5 Applied Instructions and Basic Usage

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Modules which are supported

The motion control function block T_MPG support DVP20PM00D and DVP20PM00M.

5.10.9 Electronic Gear Motion

En	T_GearIn	Eno
Axis		Valid
Enable		Busy
Reset		Aborted
RatioNum	Enror	
RatioDen	InputPulses	
		InputFreq

1. Motion control function block

The value of the RatioNum input pin is the numerator of an electronic gear ratio. The value of the RatioDen input pin is the denominator of an electronic gear ration. The Reset input pin is used to clear the number of input pulses. The speed at which the electronic gear used responds does not depend on the value of the Tacc input pin and the value of the Tdec input pin. The electronic gear used operates in accordance with the source of input. The input terminals for electronic gear motion are the same as the input terminals which can be connected to a manual pulse generator.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Slave axis number	WORD	$\begin{gathered} \text { DVP20PM00D: } \\ \text { K1~K2 } \\ \text { DVP20PM00M: } \\ \text { K1~K3 } \end{gathered}$	The value of the Axis input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	Enabling electronic gear motion	BOOL	True/False	-
Reset	Resetting the InputPulses output pin	BOOL	True/False	The value of the Reset input pin is valid when there is a transition in the Enable input pin's signal from low to high.
RatioNum	Numerator of an electronic gear ratio	DWORD	K-32,767~K32,767	When the motion control function block is executed, the value of the RatioNum input pin is updated repeatedly.
RatioDen	Denominator of an electronic gear ratio	DWORD	K1~K32,767	When the motion control function block is executed, the value of the RatioDen input pin is updated repeatedly.

5
 Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when motion stops. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Busy	The motion control function block is being executed.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - If the Enable input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Value output pin				
Name	Function	Data type	Output range	Update
InputPulses	Number of input pulses	DWORD	K-2,147,483,648~ K2,147,483,647	When the motion control function block is executed, the value of the InputPulses output pin is updated repeatedly.
InputFreq	Frequency of input pulses	DWORD	K 0~K 2,147,483,647	When the motion control function block is executed, the value of the InputFreq output pin is updated repeatedly.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Modules which are supported

The motion control function block T_Gearln supports DVP20PM00D and DVP20PM00M.

5 Applied Instructions and Basic Usage

5.10.10 Returning Home

En	T_HomeReturn
Axis	Eno
Execute	Done
Direction	Busy
DogEdge	Aborted
HomePosition	Error
VRT	
VCR	
Siznal_N	
Distance_P	

1. Motion control function block

The motion control function block T-HomeReturn is used to start motion of returning home. The value of the Axis input pin indicates an axis number, and the value of the Direction input pin indicates whether the axis specified returns home in the positive direction or in the negative direction. The value of the VRT input pin indicates the speed at which the axis specified returns home. The value of the DogEdge input pin indicates whether motion is triggered by a transition in DOG's signal from low to high or from high to low. The value of the VCR input pin indicates the speed to which the speed of the axis specified decreases. The value of the Signal_N input pin is the number of zero pulses. The value of the Distance_P is the number of supplementary pulses needed. After motion of returning home is complete, the value of the HomePosition input pin will be taken as the present position of the axis specified.
Motion of returning home is shown below.
Direction in which the axis

Position (1): Position [1] is at the right side of the home and DOG, and DOG is OFF.
Position (2): Position [2] is at the right side of the home, and DOG is ON.
Position (3): Position [3] is at the left side of the home and DOG. DOG is OFF, and LSN is OFF.
Position (4): Position [4] is at the left side of the home and DOG. DOG is OFF, and LSN is ON.
2. Input pins/Output pins

Input pin					
Name	Function	Data type	Setting value	Time when a value is valid	
Axis	Motion axis number	WORD	DVP20PM00D: K1~K2 DVP20PM00M: K1~K3	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False		

5
 Applied Instructions and Basic Usage

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Direction	Direction in which the axis specified returns home	BOOL	mcNegative (False)/ mcPositive (True)	The value of the Direction input pin is valid when there is a transition in the Execute input pin's signal from low to high.
DogEdge	Transition in DOG's signal from low to high or from high to low	BOOL	mcFalling (False)/ mcRising (True)	The value of the DogEdge input pin is valid when there is a transition in the Execute input pin's signal from low to high.
HomePosition	Home position	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	The value of the HomePosition input pin is valid when there is a transition in the Execute input pin's signal from low to high.
VRT	Speed at which the axis specified returns home	DWORD	K1~K1000000	The value of the VRT input pin is valid when there is a transition in the Execute input pin's signal from low to high.
VCR	Speed to which the speed of the axis specified decreases	DWORD	K1~VRT	The value of the VCR input pin is valid when there is a transition in the Execute input pin's signal form low to high.
Signal_N	Number of zero pulses	WORD	K0~K32,767	The value of the Signal_N input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Distance_P	Number of supplementary pulses	WORD	K-32768~K32,767	The value of the Distance_P input pin is valid when there is a transition in the Execute input pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal from low to high when motion of returning home is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is complete, the Done output pin will be set to False in the next cycle.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Modules which are supported

The motion control function block T-HomeReturn supports DVP20PM00D and DVP2OPM00M.

5.10.11 Setting Input Sources for Manual Pulse Generators/ Electronic Gears

En	T_MPGGearSource	Eno
Enable		Busy
Source		

1. Motion control function block

The motion control function block T_MPGGearSource is used to set input sources for manual pulse generators/electronic gears. If the Source input pin is set to True, the input sources for the first axis~the third axis will be $\mathrm{A} 0 \pm$ and $\mathrm{B} 0 \pm$. If the Source input pin is set to False, the input sources for the first axis

5
 Applied Instructions and Basic Usage

will be $\mathrm{A} 0 \pm$ and $\mathrm{B} 0 \pm$, and the input sources for the second axis and the third axis will be $\mathrm{A} 1 \pm$ and $\mathrm{B} 1 \pm$.
2. Input pins/Output pins

Name							Function	Data type	Setting value	Time when a value is valid
Enable	Enabling the setting of input sources for manual pulse generators/electron ic gears	BOOL	True/False							
Source	Input sources	BOOL	True/False	The value of the Source input pin is valid when there is a transition in the Execute input pin's signal from low to high.						

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

3. Modules which are supported

The motion control function block T_MPGGearSource supports DVP20PM00D and DVP20PM00M.

5.10.12 Stopping Uniaxial Motion

1. Motion control function block The motion control function block T_AxisStop is used to stop the motion of the axis specified. The value of the Axis input pin indicates an axis number.
2. Input pins/Output pins

Input pin						
Name	Function	Data type	Setting value	Time when a value is valid		
Axis	Motion axis number	WORD	DVP20PMOOD: K1~K2 DVP20PMOOM: K1~K3	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False			

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal from low to high when motion of returning home is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is complete, the Done output pin will be set to False in the next cycle.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The motion of the axis specified is not uniaxial motion, gear motion, or cam motion.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Example

The single-speed motion of an axis is started, and then the motion control function block T_AxisStop is used to stop the motion.
The motion control function block named First is used to start single-speed motion. It is set so that the first axis moves for 50,000 pulses at a speed of 10,000 per second. The motion control function block named Second is used to stop the motion of the first axis.

5 Applied Instructions and Basic Usage

The motion control function block named First is started. Before Done 1 is set to True, Execute2 is used to start the motion control function block named Second.

After the motion control function block named First is started, the first axis will move at a speed of 10,000 pulses per second. After the motion control function block named Second is started, Aborted1 will be set to True, Busy1 will be set to False, and the first axis will stop moving. When the motion control function block named Second is used to stop the motion of the first axis, no motion can be started. If any motion is started, an error will occur.
5. Modules which are supported

The motion control function block T_AxisStop supports DVP20PM00D and DVP20PM00D.

5.10.13 Parameter Setting I

En	T_AxisSettingl	Eno
Axis		Done
Execute		Ensy
Vmax		
Vbias		
Tacc		
Tdec		

1. Motion control function block

The motion control function block T_AxisSetting1 is used to set motion parameters. The value of the Axis input pin indicates an axis number. Users can set the maximum speed of the axis specified, the start-up speed of the axis specified, the time it takes for the start-up speed of the axis specified to increase to its maximum speed, and the time it takes for the maximum speed of the axis specified to decrease to its start-up speed. The setting of the Unit input pin in the motion control function block

5 Applied Instructions and Basic Usage

T_AxisSetting2 determines the unit for the Vmax input pin and the unit for the Vbias input pin.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	$\begin{aligned} & \text { DVP20PMOOD: } \\ & \text { K1-K2 } \\ & \text { DVP20PM00M: } \\ & \text { K1~K3 } \end{aligned}$	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
Vmax	Maximum speed	DWORD	K1~K2,147,483,647	The value of the Vmax input pin is valid when there is a transition in the Execute input pin's signal from low tot high.
Vbias	Start-up speed	DWORD	K0~K2,147,483,647	The value of the Vbias input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Tacc	Acceleration time (Unit: ms)	WORD	K0~K32,767	The value of the Tacc input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Tdec	Deceleration time (Unit: ms)	WORD	K0~K32,767	The value of the Tdec input pin is valid when there is a transition in the Execute input pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal from low to high when motion of returning home is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is complete, the Done output pin will be set to False in the next cycle.

5
 Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Modules which are supported

The motion control function block T_AxisSetting1 supports DVP20PM00D and DVP20PM00M.

5.10.14 Parameter Setting II

En	T_AxisSetting2
Axis	Eno
Execute	Done
Vcurve	Busy
OutputType	Error
Unit	
PuleRev	
DistanceRev	

1. Motion control function block

The motion control function block T_AxisSetting2 is used to set motion parameters. The value of the Axis input pin indicates an axis number. Users can set the velocity curve of the axis specified, an output type, and a unit. The setting of a unit requires the number of pulses it takes for a motor to rotate once and the distance for which the axis specified moves when the motor rotates once.
There are three types of units. They are motor units, compound units, and mechanical units. The setting of a unit requires the number of pulses it takes for a motor to rotate once (the value of the PulseRev input pin) and the distance for which the axis specified moves when the motor rotates once (the value of the DistanceRev input pin). The units for positions and speeds are as shown below.

	Motor unit	Compound unit	Mechanical unit
Position	pulse	$\mu \mathrm{m}$	$\mu \mathrm{m}$
	pulse	mdeg	mdeg
	pulse	10^{-4} inches	10^{-4} inches
Speed	pulse/second	centimeter/minute	pulse/second
	pulse/second	10 degrees/minute	pulse/second
	pulse/second	inch/minute	pulse/second

5 Applied Instructions and Basic Usage

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	$\begin{aligned} & \hline \text { DVP20PM00D: } \\ & \text { K1~K2 } \\ & \text { DVP20PM00M: } \\ & \text { K1~K3 } \end{aligned}$	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
Vcure	Velocity curve	BOOL	mcTrapezoid: False moSCurve: True	The value of the Vcurve input pin is valid when there is a transition in the Execute input pin's signal from low to high.
OutputType	Output type	WORD	mcUD: 0 mcPD: 1 mcAB: 2 mc4AB: 3	The value of the OutputType input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Unit	Unit	WORD	mcMotor: 0 mcMachine: 1 mcComp: 2	The value of the Unit input pin is valid when there is a transition in the Execute input pin's signal from low to high.
PulseRev	Number of pulses it takes for a motor to rotate once	WORD	K1~K2,147,483,647	The value of the PulseRev input pin is valid when there is a transition in the Execute input pin's signal from low to high.
DistanceRev	Distance for which the axis specified moves when the motor used rotates once	WORD	K1~K2,147,483,647	The value of the DistanceRev input pin is valid when there is a transition in the Execute input pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal from low to high when motion of returning home is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is complete, the Done output pin will be set to False in the next cycle.

5
 Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Modules which are supported

The motion control function block T_AxisSetting2 supports DVP20PM00D and DVP20PM00M.

5.10.15 Reading the Present Position/ Speed of an Axis

1. Motion control function block

The motion control function block T_MotionObserve is used to read the present position/speed of an axis. The value of the Axis input pin indicates an axis number. After the motion control function block is started, users can read the present position of the axis specified through the Position output pin, and the speed of the axis specified through the Velocity output pin.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	DVP20PM00D: K1~K2 DVP20PM00M: K1~K3	The value of the Axis input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	Manual pulse generator mode	BOOL	True/False	

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Error input pin's signal from low to high.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Value output pin						
Name	Function	Data type	Output range	Update		
Position	Present position (Pulse unit)	DWORD	K-2,147,483,648~ K2,147,483,647	When the motion control function block is executed, the value of the Position output pin is updated repeatedly.		
Velocity	Present speed (Pulse unit)	DWORD	K0~K2,147,483,647	When the motion control function block is executed, the value of the Velocity output pin is updated repeatedly.		

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Modules which are supported

The motion control function block T_MotionObserve supports DVP20PM00D and DVP20PM00M.

5
 Applied Instructions and Basic Usage

5.10.16 State of an Axis

1. Motion control function block

The motion control function block is T_AxisStatus is used to read and clear the present erroneous state of an axis. The value of the Axis input pin indicates an axis number. Users can clear the present erroneous state of the axis specified by means of the ClearError input pin. The value of the AxisErrorID output pin indicates the present erroneous state of the axis specified.
2. Input pins/Output pins

Input pin						
Name	Function	Data type	Setting value	Time when a value is valid		
Axis	Motion axis number	WORD	DVP20PM00D: K1~K2 DVP20PM00M: K1~K3	The value of the Axis input pin is valid when there is a transition in the Enable input pin's signal from low to high.		
Enable	Reading the present erroneous state of the axis specified.	BOOL	True/False			
ClearError	The erroneous state of the axis specified is cleared when there is a transition in the ClearError input pin's signal from low to high.	BOOL	True/False	The value of the ClearError input pin is valid when the motion control function block is executed.		

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Value output pin				
Name	Function	Data type	Output range	Update
Mode	Mode of motion	WORD	H0~H2O1 (*1)	When the motion control function block is executed, the value of the Mode output pin is updated repeatedly.
AxisReady	Ready flag for the axis specified	BOOL	True/False	When the motion control function block is executed, the value of the AxisReady output pin is updated repeatedly.
AxisError	Axis error flag	BOOL	True/False	When the motion control function block is executed, the value of the AxisError output pin is updated repeatedly.
AxisErrorID	Error code	WORD	H0002~HC4FF	When the motion control function block is executed, the value of the AxisErrorID output pin is updated repeatedly.

*1: Value of the Mode output pin

Value	Definition
H0	Idle
H100	Uniaxial motion is being stopped.
H101	Absolute single-speed motion
H102	Relative single-speed motion
H103	Absolute two-speed motion
H104	Relative two-speed motion
H105	Inserting single-speed motion
H106	Inserting two-speed motion
H107	JOG motion
H108	Manual pulse generator mode
H109	Motion of returning home
H10A	Electronic gear motion
H10B	Electronic cam motion
H10C	Uniaxial cyclic electronic cam motion
H10D	Uniaxial noncyclic electronic cam motion
H10E	Rotary cut
H10F	Flying shear
H200	G-code motion is being stopped.
H201	G-code motion

Please refer to appendix A in chapter 15 for more information about error codes.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

5
 Applied Instructions and Basic Usage

4. Modules which are supported

The motion control function block is T_AxisStatus supports DVP20PMOOD and DVP20PM00M.

5.10.17 Setting the Present Position of an Axis

En	T_SetPosition	Eno
Axis		Done
Execute		Eusy
Position	Error	

1. Motion control function block

The motion control function block T_SetPosition is used to set the present position of an axis. The value of the Axis input pin indicates an axis number. Users can set the present position of the axis specified by means of the Position input pin. Note: To prevent errors from occurring, please avoid using the motion control function block to set the present position of the master axis involved in cam motion or gear motion.
2. Input pins/Output pins

Input pin						
Name	Function	Data type	Setting value	Time when a value is valid		
Axis	Motion axis number	WORD	DVP20PM00D: K1~K2 DVP20PM00M: K1~K3	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False			
Position	Present position of the axis specified	DWORD	K-2,147,483,648~ K2,147,483,647	The value of the Position input pin is valid when there is a transition in the Execute input pin's signal from low to high.		

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- The writing of a position is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Modules which are supported

The motion control function block T_SetPosition supports DVP20PM00D and DVP20PM00M.

5.10.18 Setting the Polarities of I nput Terminals

En T	T_InputPolarity Eno
Enable	Valid
PGO	_PG0
MPGB0	_MPGB0
MPGA0	_MPGA0
LSNO	_LSNO
LSPO	_LSPO
DOGO	_DOG0
STOPO	_STOPO
STARTO	0 _STARTO
PGl	_PGl
MPGB1	_MPGB1
MPGA1	_MPGA1
LSN1	_LSN1
LSP1	_LSP1
DOGl	_DOGl
STOP1	_STOP1
STARTI	1 _STARTI
PG2	_PG2
LSN2	_LSN2
LSP2	_LSP2
DOG2	_DOG2
	Busy

1. Motion control function block

The motion control function block T_InputPolarity is used to set the polarities of input terminals on the DVP-20PM series motion controller used. Users can set the polarities of input terminals on the DVP-20PM series motion controller used by means of input pins.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Enable	Manual pulse generator mode	BOOL	True/False	-
Pg0	Polarity	BOOL	mcNO : False mcNC: True	When the motion control function block is executed, the values of the input pins are updated repeatedly.
MPGB0	Polarity	BOOL		
MPGA0	Polarity	BOOL		
LSN0	Polarity	BOOL		
LSP0	Polarity	BOOL		
DOG0	Polarity	BOOL		

5
 Applied Instructions and Basic Usage

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
STOP0	Polarity	BOOL	mcNO: False mcNC: True	When the motion control function block is executed, the values of the input pins are updated repeatedly.
START0	Polarity	BOOL		
PG1	Polarity	BOOL		
MPGB1	Polarity	BOOL		
MPGA1	Polarity	BOOL		
LSN1	Polarity	BOOL		
LSP1	Polarity	BOOL		
DOG1	Polarity	BOOL		
STOP1	Polarity	BOOL		
START1	Polarity	BOOL		
PG2*	Polarity	BOOL		
LSN2*	Polarity	BOOL		
LSP2*	Polarity	BOOL		
DOG2*	Polarity	BOOL		

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

5 Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Pgo	Polarity	BOOL	nals	- When input pins are set to True, and the input terminals are ON, there are transitions in these output pins' signals from high to low.
MPGB0	Polarity	BOOL		
MPGAO	Polarity	BOOL		
LSNO	Polarity	BOOL		
LSP0	Polarity	BOOL		
DOG0	Polarity	BOOL		
STOP0	Polarity	BOOL		
STARTO	Polarity	BOOL		
PG1	Polarity	BOOL		- When input pins are set to False, and the input terminals are OFF, there are transitions in these
MPGB1	Polarity	BOOL		
MPGA1	Polarity	BOOL		
LSN1	Polarity	BOOL		low.
LSP1	Polarity	BOOL		There are transitions in these
DOG1	Polarity	BOOL		output pins' signals from high to
STOP1	Polarity	BOOL		low when there is a transition in
START1	Polarity	BOOL		the Enable input pin's signal from
_PG2*	Polarity	BOOL		high to low.
LSN2*	Polarity	BOOL		
_LSP2*	Polarity	BOOL		
DOG2*	Polarity	BOOL		

*: The input pin is only for DVP20PM00M.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Modules which are supported

The motion control function block T_InputPolarity supports DVP20PM00D and DVP20PM00M.

5.10.19 Uniaxial Cyclic Electronic Cam Motion

En	T_Peri_SCamIn
Master	Eno
CAMTable	Valid
Enable	Busy
SlavePuleinType	Aborted
CycleStop	Enror
MasterOffset	EndOfProfile
MasterDelay	InputPulses
MasterScaling	InputFreq
SlaveScaling	

1. Motion control function block

The motion control function block T_Peri_SCamIn is used to start electronic cam motion. The value of the Master input pin indicates a master axis. The first axis is used as a slave axis. The motion of the slave axis specified follows the motion of the master axis specified. The value of the MasterOffset input pin indicates the starting angle of the master axis specified. The value of the MasterDelay input pin indicates the number of pulses the master axis specified sends before electronic cam motion is started. If the CycleStop input pin is set to True when the Enable input pin is reset, cam motion will not stop until a cycle is complete.

5 Applied Instructions and Basic Usage

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Master	Master axis number	WORD	K 1 : $\mathrm{A} 0 \pm$ and $\mathrm{BO} \pm$ K : $\mathrm{FP} \pm$ for the Y -axis (No external wiring is needed.) K 3 : $\mathrm{FP} \pm$ and $\mathrm{RP} \pm$ for the Y-axis (No external wiring is needed.)	The value of the Master input pin is valid when there is a transition in the Enable input pin's signal from low to high.
CAMTable	Cam chart	WORD	K0~K2	The value of the CAMTable input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	Enabling electronic cam motion	BOOL	True/False	-
SlavePulseInType	Pulse type	WORD	KO: mcUD K1: mcPD K2: mcAB K3: mc4AB	The value of the SlavePulseInType input pin is valid when there is a transition in the Enable input pin's signal from low to high.
CycleStop	Stopping a whole cycle	BOOL	True/False	The value of the CycleStop input pin is valid when there is a transition in the Enable input pin's signal from high to low.
MasterOffset	Starting angle of the axis specified (Unit: Pulse)	DWORD	K0~K2,147,483,647	The value of the MasterOffset input pin is valid when there is a transition in the Enable input pin's signal from low to high.
MasterDelay	Number of pulses the master axis specified sends before electronic cam motion is started. (Unit: Pulse)	DWORD	K0~K2,147,483,647	The value of the MasterDelay input pin is valid when there is a transition in the Enable input pin's signal from low to high.
MasterScaling	Ratio which is used to reduce/enlar ge the number of pulses sent by the master axis specified	FLOAT	$\begin{gathered} \text { 0.~650.00 } \\ \text { (two decimal places) } \end{gathered}$	The value of the MasterScaling input pin is valid when there is a transition in the Enable input pin's signal from low to high.
SlaveScaling	Ratio which is used to reduce/enlar ge the number of pulses sent by the slave axis specified	FLOAT	$\begin{gathered} \text { 0.~650.00 } \\ \text { (two decimal places) } \end{gathered}$	The value of the SlaveScaling input pin is valid when there is a transition in the Enable input pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when motion stops. - There is transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Busy	The motion control function block is being executed.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - If the Enable input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The cam chart created is incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
EndOfProfile	A cycle is complete.	BOOL	- A cam cycle is complete.	- There is a transition in the EndOfProfile output pin's signal from high to low when the next scan cycle begins.

Value output pin					
Name	Function	Data type	Output range	Update	
InputPulses	Number of input pulses	DWORD	K-2,147,483,648~ K2,147,483,647	When the motion control function block is executed, the value of the InputPulses output pin is updated repeatedly.	

5
 Applied Instructions and Basic Usage

Value output pin				
Name	Function	Data type	Output range	Update
InputFreq	Frequency of input pulses	DWORD	K0~K2,147,483,647	When the motion control function block is executed, the value of the InputFreq output pin is updated repeatedly.

CycleStop

If the Enable input pin is set to True, the slave axis specified will mesh with the master axis specified. If the Enable input pin is set to False after the CycleStop input pin is set to True, cam motion stops when a cycle is complete.

MasterOffset

Users can set the starting angle of the master axis specified by means of the MasterOffset input pin. If the value of the MasterOffset input pin is 0 , the starting angle of the master axis specified is the initial position of the master axis specified. If the value of the MasterOffset input pin is 25 , the starting angle of the master axis specified is the position to which the master axis specified will move after the master axis sends 25 pulses. If the value of the MasterOffset input pin is 50 , the starting angle of the master axis specified is the position to which the master axis specified will move after the master axis sends 50 pulses.

5 Applied Instructions and Basic Usage

MasterDelay

A system will execute cyclic electronic cam motion after it receives a signal which enables the cyclic electronic cam motion. If users do not want to start an electronic cam immediately, and want to delay the sending of pulses by the slave axis of the electronic cam, they can set the number of pulses the master axis specified sends before the electronic cam is started by means of the MasterDelay input pin. After a system receives a signal which enables electronic cam motion, the electronic cam motion will not be started until the number of pulses the master axis specified sends is equal to the value of the MasterDelay input pin.
The value of the MasterDelay input pin is 10.

The value of the MasterDelay input pin is 50 .
Displacement of the slave axis

MasterScaling

Users can set a ratio which is used to reduce/enlarge the number of pulses sent by the master axis specified by means of the MasterScaling input pin. In the figure below, the value of the MasterScaling input pin is $1 / 2$. After the slave axis specified meshes with the master axis specified, the number of pulses sent by the master axis specified will be $1 / 2$ times the original number of pulses sent by the master axis specified.

SlaveScaling

Users can set a ratio which is used to reduce/enlarge the number of pulses sent by the slave axis specified by means of the SlaveScaling input pin. In the figure below, the value of the SlaveScaling input pin is $1 / 2$. After the slave axis specified meshes with the master axis specified, the number of pulses sent by the slave axis specified will be $1 / 2$ times the original number of pulses sent by the slave axis specified.

5
 Applied Instructions and Basic Usage

EndofProfile

The steps of starting a cyclic electronic cam are as follows.

- At the time T1, the Enable input pin is set to True (a uniaxial cyclic electronic cam is started).
- After the time T2 elapses, the EndOfProfile output pin will be set to True. The value of the EndOfProfile output pin will be cleared after one scan cycle.
- During the time T3, the EndOfProfile output pin is set to True when an electronic cam cycle is complete, and the value of the EndOfProfile output pin will be cleared after one scan cycle.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Modules which are supported

The motion control function block T_Peri_SCamIn supports DVP20PM00D and DVP20PM00M.

5.10.20 Uniaxial Noncyclic Electronic Cam Motion

En	T_NonPeri_SCamIn
Master	Eno
CAMTable	Valid
Enable	Eusy
SlavePuleIntype	Aborted
Signal	Error
ExecuteTimes	Endofprofile
MasterOffset	InputPuleses
MasterDelay	InputFreq
MasterScaling	
SlaveScaling	

1. Motion control function block

The motion control function block T_NonPeri_SCamIn is used to start electronic cam motion. The value of the Master input pin indicates a master axis. The first axis is used as a slave axis. The motion of the slave axis specified follows the motion of the master axis specified. The value of the MasterOffset input pin indicates the starting angle of the master axis specified. The value of the MasterDelay input pin indicates the number of pulses the master axis specified sends before electronic cam motion is started.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Master	Master axis number	K1: A0 \pm and $\mathrm{BO} \pm$ K2: FP \pm for the Y-axis (No external wiring is needed.)	WORD The value of the Master input pin is valid when there is a transition in the Enable input pin's signal from low to KP \pm and RP \pm for the Y-axis (No external wiring is needed.)	high.

5 Applied Instructions and Basic Usage

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
CAMTable	Cam chart	WORD	K0~K2	The value of the CAMTable input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	Enabling electronic cam motion	BOOL	True/False	-
SlavePulseInType	Pulse type	WORD	K0: mcUD K1: mcPD K2: mcAB K3: mc4AB	The value of the SlavePulseInType input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Signal	Command used to start motion	WORD	$\begin{gathered} \text { K1: Start0 } \\ \text { K2: PG0 } \end{gathered}$	The value of the Signal input pin is valid when there is a transition in the Enable input pin's signal from low to high.
ExecuteTimes	Number of times noncyclic electronic cam motion is executed	WORD	K1~K32767 K32768: Same as uniaxial cyclic electronic cam motion	The value of the ExecuteTimes input pin is valid when there is a transition in the Enable input pin's signal from low to high.
MasterOffset	Starting angle of the axis specified (Unit: Pulse)	DWORD	K0~K2,147,483,647	The value of the MasterOffset input pin is valid when there is a transition in the Enable input pin's signal from low to high.
MasterDelay	Number of pulses the master axis specified sends before electronic cam motion is started. (Unit: Pulse)	DWORD	K0~K2,147,483,647	The value of the MasterDelay input pin is valid when there is a transition in the Enable input pin's signal from low to high.
MasterScaling	Ratio which is used to reduce/enlar ge the number of pulses sent by the master axis specified	FLOAT	0.~650.00 (two decimal places)	The value of the MasterScaling input pin is valid when there is a transition in the Enable input pin's signal from low to high.
SlaveScaling	Ratio which is used to reduce/enlar ge the number of pulses sent by the slave axis specified	FLOAT	0.~650.00 (two decimal places)	The value of the SlaveScaling input pin is valid when there is a transition in the Enable input pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when motion stops. - There is transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Busy	The motion control function block is being executed.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - If the Enable input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The cam chart created is incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
EndOfProfile	A cycle is complete.	BOOL	- A cam cycle is complete	- There is a transition in the EndofProfile output pin's signal from high to low when the next cycle begins.

Value output pin					
Name	Function	Data type	Output range	Update	
InputPulses	Number of input pulses	DWORD	K-2,147,483,648~K2, $147,483,647$	When the motion control function block is executed, the value of the InputPulses output pin is updated repeatedly.	

5 Applied Instructions and Basic Usage

Value output pin				
Name	Function	Data type	Output range	Update
InputFreq	Frequency of input pulses	DWORD	K0~K2,147,483,647	When the motion control function block is executed, the value of the InputFreq output pin is updated repeatedly.

Please refer to the description of the motion control function block T_Peri_SCamIn for more information about the MasterOffset input pin, the MasterDelay input pin, the MasterScaling input pin, the SlaveScaling input pin, and the EndOfProfile output pin.

Signal

The steps of stopping noncyclic electronic cam motion are as follows.
A. At the time T1, the Enable input pin is set to True (a noncyclic electronic cam is started).
B. After the time T2 elapses, the input terminal used to start noncyclic electronic cam motion will be set to ON. (If the value of the Signal input pin is K1, Start0 will be used to start noncyclic electronic cam motion. If the value of the Signal input pin is K2, PG0 will be used to start noncyclic electronic cam motion.) The value of the EndOfProfile output pin will be cleared after one scan cycle. After the noncyclic electronic cam motion is started, the motion of the slave axis specified will follow the motion of the master axis specified in accordance with the cam chart selected.
C. After the time T3 elapses, the EndOfProfile output pin will be set to True. The value of the EndOfProfile output pin will be cleared automatically after one scan cycle.
D. After the time T4 elapses, the input terminal used to start the noncyclic electronic cam motion will be set to ON. Users have to notice that more than 5 milliseconds elapses before PGO'signal or Start0's signal goes from low to high.

ExecuteTimes

The ExecuteTimes input pin is used to control the number of times noncyclic electronic cam motion is executed. If the value of the ExecuteTimes input pin is greater than H 8000 , there will be cyclic electronic cam motion. If the value of the ExecuteTimes input is 1, noncyclic electronic cam motion will be executed once. If the value of the ExecuteTimes input pin is 2 , noncyclic electronic cam motion will be executed twice.
The value of the ExecuteTimes input pin is 1.

The number of the ExecuteTimes input pin is 2.
Displacement of the slave axis

5
 Applied Instructions and Basic Usage

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Modules which are supported

The motion control function block T_NonPeri_SCamIn supports DVP20PMO0D and DVP20PM00M.

5.10.21 Multiaxial Cyclic Electronic Cam Motion

1. Motion control function block

The motion control function block T_Multi_CamIn is used to start electronic cam motion. The value of the Master input pin indicates a master axis. The first axis is used as a slave axis. The motion of the slave axis specified follows the motion of the master axis specified. The value of the MasterOffset input pin indicates the starting angle of the master axis specified. The value of the MasterDelay input pin indicates the number of pulses the master axis specified sends before electronic cam motion is started.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Master	Master axis number	WORD	$\mathrm{K} 1: \mathrm{AO} \pm$ and $\mathrm{BO} \pm$ K 2 : $\mathrm{FP} \pm$ for the Y -axis (No external wiring is needed.) K3: $\mathrm{FP} \pm$ and $\mathrm{RP} \pm$ for the Y -axis (No external wiring is needed.)	The value of the Master input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Slave_Y	Starting the Y-axis	BOOL	True/False	The value of the Slave_Y input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Slave_Z	Starting the Z-axis	BOOL	True/False	The value of the Slave_Z input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	Enabling electronic cam motion	BOOL	True/False	-
SlavePulseInType	Pulse type	WORD	K0: mcUD K1: mcPD K2: mcAB K3: mc4AB	The value of the SlavePulseInType input pin is valid when there is a transition in the Enable input pin's signal from low to high.

5 Applied Instructions and Basic Usage

Input pin						
Name	Function	Data type	Setting value	Time when a value is valid		
CycleStop	Stopping a whole cycle	WORD	K1: Start0 K2: PG0	The value of the CycleStop input pin is valid when there is a transition in the Enable input pin's signal from high to low.		
CAMout	Not meshing with the master axis specified	BOOL	True/False	The value of the CAMout input pin is used when the motion control function block is executed.		
MasterOffset	Starting angle of the axis specified (Unit: Pulse)	DWORD	K0~K2,147,483,647	The value of the MasterOffset input pin is valid when there is a transition in the Enable input pin's signal from Iow to high.		
Reverse	The slave axis specified rotates reversely as the master axis specified does.	BOOL	True/False	The value of the Reverse input pin is valid when there is a transition in the Enable input pin's signal from low to high.		

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
InCam	The slave axis specified meshes with the master axis specified.	BOOL	- There is a transition in the InCam output pin's signal from low to high when there is a transition in the CamOut input pin's signal from low to high.	- There is a transition in the InCam output pin's signal form high to low when there is a transition in the CamOut input pin's signal from high to high to low.
Valid	An output value is valid.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when motion stops. - There is transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.

Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - If the Enable input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The cam chart created is incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
X_EndOfProfile	A cycle of the X -axis is complete.	BOOL	- A cam cycle is complete.	- There is a transition in the X_EndofProfile output pin's signal from high to low when the next scan cycle begins.
Y_EndOfProfile	A cycle of the Y-axis is complete.	BOOL	- A cam cycle is complete.	- There is a transition in the Y_EndofProfile output pin's signal from high to low when the next scan cycle begins.
Z_EndOfProfile	A cycle of the Z -axis is complete.	BOOL	- A cam cycle is complete.	- There is a transition in the Z_EndofProfile output pin's signal from high to low when the next scan cycle begins.

Value output pin						
Name	Function	Data type	Output range	Update		
X_Index	Index of an X-axis point	WORD	K1~K2047	When the motion control function block is executed, the value of the X_Index output pin is updated repeatedly.		
Y_Index	Index of a Y-axis point	WORD	K1~K2047	When the motion control function block is executed, the value of the Y_Index output pin is updated repeatedly.		

5 Applied Instructions and Basic Usage

Value output pin				
Name	Function	Data type	Output range	Update
Z_Index	Index of a Z-axis point	WORD	K1 ~ K2047	When the motion control function block is executed, the value of the Z_Index output pin is updated repeatedly.
InputPulses	Number of input pulses	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	When the motion control function block is executed, the value of the InputPulses output pin is updated repeatedly.
InputFreq	Frequency of input pulses	DWORD	K0~K2,147,483,647	When the motion control function block is executed, the value of the InputFreq output pin is updated repeatedly.

Please refer to the description of the motion control function block T_Peri_SCamIn for more information about the MasterOffset input pin, the CycleStop input pin, and the EndOfProfile output pin.

Slave_Y and Slave_Z

If a DVP-20PM series motion controller executes multi-axis electronic cam motion, they can start three axes at most. The cam chart that the X -axis executes is Cam chart 0 , the cam chart that the Y -axis executes is cam chart 1 , and the cam chart that the Z -axis executes is cam chart 2 . The cam chart that an axis executes is fixed.
If the Slave_Y input is set to True, the motion of the Y -axis and the motion of the X -axis will follow the motion of the master axis specified. If the Slave_Z input pin is set to True, the motion of the Z-axis and the motion of the X-axis will follow the motion of the master axis specified. If the Slave_Y input pin and the Slave_Z input pin are set to False, the motion of the X-axis will follow the motion of the master axis specified.

CAMout

If the CAMout input pin is set to True when the Enable input pin is True, the slave axis specified will not mesh with the master axis specified, and the InCam output pin will be set to False. If the CAMout input pin is reset to False, the slave axis specified will mesh with the master axis specified, and the InCam output pin will be set to True.

5
 Applied Instructions and Basic Usage

Reverse

After the Reverse input pin is set to True, the slave axis specified will rotate reversely if the master axis specified rotate reversely. Users have to notice that 0 at the bottom of a cam chart needs to be deleted.

E Delta_S.txt - Notepad	-或
File Edit Format yew Help	
	\wedge
${ }_{200}^{100} \text { am }{ }_{400}^{200} \text { ata }$	
300600	
400800	
5001000	
$600 \quad 1200$	
7001400	
8001600	
9001800	
10002000	
11002200	
12002400	
13002600	
14002800	
15003000	
16003200	
17003400	
18003600	
19003800	
20004000	
	\checkmark

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Modules which are supported

The motion control function block T_Multi_CamIn supports DVP20PM00D and DVP20PM00M.

5.10.22 Reading a Cam Point

En	T_CamRead	Eno
Enable		Valid
CAMTable		Error
CamPointNo		MasterPosition
		SlavePosition

1. Motion control function block

The motion control function block T_CamRead is used to read a particular point in a cam chart. The value of the CAMTable input pin indicates the cam chart which is read. The value of the CamPoiontNo input pin indicates a cam point number. The value of the MasterPosition output pin indicates the position of the master axis specified, and the value of the SlavePosition output pin indicates the position of the slave axis specified.
2. Input pins/Output pins

Input pin						
Name	Function	Data type	Setting value	Time when a value is valid		
Enable	The reading of a cam point is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False			
CAMTable	Cam chart	WORD	K0~K2	The value of the CAMTable input pin is valid when there is a transition in the Enable input pin's signal from low to high.		

Input pin						
Name	Function	Data type	Setting value	Time when a value is valid		
CamPointNo	Cam point number	DWORD	K0~2047	When the motion control function block is executed, the value of the CamPointNo input pin is updated repeatedly.		

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - There is transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Value output pin						
Name	Function	Data type	Output range	Time when a value is valid		
MasterPosition	Position of the master axis specified	DWORD	K-2,147,483,647~ K2,147,483,647	When the motion control function block is executed, the value of the MasterPosition output pin is updated repeatedly.		
SlavePosition	Position of the slave axis specified	DWORD	K-2,147,483,647~ K2,147,483,647	When the motion control function block is executed, the value of the SlavePosition output pin is updated repeatedly.		

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Modules which are supported

The motion control function block T_CamRead supports DVP20PM00D and DVP20PM00M.

5
 Applied Instructions and Basic Usage

5.10.23 Writing a Cam Point

En	T_CamWrite
Execute	
Eno	
CAMTable	Done
CamPointNo	Busy
MasterPosition	Error
SlavePosition	

1. Motion control function block

The motion control function block T_CamWrite is used to modify a particular point in a cam chart. The value of the CAMTable input pin indicates a cam chart. The value of the CamPoiontNo input pin indicates a cam point number. The value of the MasterPosition indicates the position of the master axis specified, and the value of the SlavePosition indicates the position of the slave axis specified.
2. Input pins/Output pins

Name				
Function	Data type	Setting value	Time when a value is valid	
ExecuteThe writing of a cam point is enabled when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False		
CAMTable	Cam chart	WORD	K0~K2	The value of the CAMTable input pin is valid when there is a transition in the Execute input pin's signal from low to high.
CamPointNo	Cam point number	DWORD	Khe value of the CamPointNo input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
MasterPosition	Position of the master axis specified	DWORD	K-2,147,483,647~ K2,147,483,647	The value of the MasterPosition input pin is valid when there is a transition in the Execute input pin's signal from low to high.
SlavePosition	Position of the slave axis specified	DWORD	K-2,147,483,647~ K2,147,483,647	The value of the SlavePosition input pin is valid when there is a transition in the Execute input pin's signal from low to high.

State output pin						
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Done	The execution of the motion control function block is complete.	BOOL	There is a transition in the Done output pin's signal from low to high when the writing of a cam point is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.		

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signa from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The slave axis specified meshes with the master axis specified before the motion control function block is executed.	- There is transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Example

Users can modify a particular point in cam chart 0 . The slave axis specified has not meshed with the master axis specified. The three pairs of coordinates (16000, 10000), (32000, 0), and $(0,0)$ are written.

5 Applied Instructions and Basic Usage

- Set M80 to True. The pair of coordinates $(16000,10000)$ is written into cam point number 1.
- Set M81 to True. The pair of coordinates $(32000,0)$ is written into cam point number 2.
- Set M82 to True. The pair of coordinates $(0,0)$ is written into cam point number 3.
- Set M83 to True. Cam point number 1 and cam point number 2 are read. Check whether the values read are the same as the values written into cam point number 1 and cam point number 2.
- After cam chart 0 is modified, the chart displayed will be composed of the coordinates written into cam chart 0 .

4. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

5. Modules which are supported

The motion control function block T_CamWrite supports DVP20PM00D and DVP20PM00M.

5.10.24 Calculating a Synchronization Ratio

En	T_CamSyncRatio
Execute	Eno
M360Length	Done
M360Pulse	Eusy
S360Length	Error
S360Pulse	MRatio
	SRatio
	SyncRatio

1. Motion control function block

The motion control function block T_CamSyncRatio is used to calculate a synchronization ratio. A synchronization ration is calculated by means of the M360Length input pin, the M360Pulse input pin, the S360Length input pin, and the S360Pulse input pin. (The value of the M360Length input pin indicates physical quantity, and the value of the M360Pulse input pin indicates the number of pulses. The value of the S360Length input pin indicates physical quantity, and the value of the S360Pulse input pin indicates the number of pulses.)
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Execute	When there is a transition in the Execute input pin' signal from low to high, the calculation of a synchronization ratio is enabled.	BOOL	True/False	-
M360Length	Distance for which the master axis specified moves in a cycle	DWORD	K0~K2,147,483,647	The value of the M360Length input pin is valid when there is a transition in the Execute input pin's signal from low to high.
M360Pulse	Number of pulses for which the master axis specified moves in a cycle	DWORD	K0~K2,147,483,647	The value of the M360Pulse input pin is valid when there is a transition in the Execute input pin's signal from low to high.
S360Length	Distance for which the slave axis specified moves in a cycle	DWORD	K0~K2,147,483,647	The value of the S360Length input pin is valid when there is a transition in the Execute input pin's signal from low to high.
S360PULSE	Number of pulses for which the slave axis specified moves in a cycle	DWORD	K0~K2,147,483,647	The value of the S360Pulse input pin is valid when there is a transition in the Execute input pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal when motion is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.

5
 Applied Instructions and Basic Usage

Name		Function	Data type	Time when there is a transition in an output pin's signal from low to high
Error	An error occurs in the motion control function block.	BOOL	Input values are incorrect. The slave axis output pin's signal from high to low specified meshes with the master axis specified before the motion control function block is executed.	-
There is transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.				

Value output pin				
Name	Function	Data type	Output range	Time when a value is valid
MRatior	Ratio of the distance for which a master axis moves to the number of pulses for which the master axis moves	FLOAT	$\begin{gathered} 1.1755 \times 10^{-38} \sim \\ 3.4028 \times 10^{+38} \end{gathered}$	The value of the MRatio output pin is valid when there is a transition in the Done output pin's signal from low to high.
SRatio	Ratio of the distance for which a slave axis moves to the number of pulses for which the slave axis moves	FLOAT	$\begin{gathered} 1.1755 \times 10^{-38} \sim \\ 3.4028 \times 10^{+38} \end{gathered}$	The value of the SRatio output pin is valid when there is a transition in the Done output pin's signal from low to high.
SyncRatio	Synchronizati on ratio	FLOAT	$\begin{aligned} & 1.1755 \times 10^{-38} \sim \\ & 3.4028 \times 10^{+38} \end{aligned}$	The value of the SyncRatio output pin is valid when there is a transition in the Done output pin's signal from low to high.

3. Example

The circumference of the mechanism connected to the slave axis used is 1000 millimeters. The slave axis used sends 10000 pulses when the mechanism connected to the slave axis used rotates once. The circumference of the mechanism connected to the master axis used is 250 millimeters. The master axis used sends 10000 pulses when the mechanism connected to the master axis used rotates once.

5 Applied Instructions and Basic Usage

- The value of the M360Length input pin is 1000.
- The value of the M360Pulse input pin is 10000 .
- The value of the S360Length input pin is 250 .
- The value of the S360Pulse input pin is 10000 .
- MR=10 pulses $/ \mathrm{mm}$
- $\mathrm{SR}=4$ pulses $/ \mathrm{mm}$
- Sync=0.4

4. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

5. Modules which are supported

The motion control function block T_CamSyncRatio supports DVP20PM00D and DVP20PM00M.

5.10.25 Creating a Cam Curve

En	T_CamCurve
CAMTable	Eno
Execute	
MLength	Done
SLength	Busy
SSyncLength	Enor
SSyncRatio	EnNo
SMaxRatio	SyncEnd
AccCurve	
CCamCurve	
DynamicGen	
Concatenate	

1. Motion control function block

The motion control function block T_CamCurve is used to create a cam curve. It is mainly used to create rotary cut curves and flying shear curves. The value of the CAMTable input pin indicates a cam chart. The value of the MLength input pin, the value of the SLength input pin, the value of the SSyncRatio input pin, and the value of the SMaxRatio input pin indicate the physical quantity needed to generate a cam curve. The value of the AccCurve input pin and the value of the eCamCurve determine a cam curve type.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
CAMTable	Cam chart	WORD	K0	The value of the CAMTable input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	The creation of a cam curve is enabled when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	

5
 Applied Instructions and Basic Usage

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
MLength	Distance for which the master axis specified moves (Unit: Pulse)	DWORD	K1~K2,147,483,647	The value of the MLength input pin is valid when there is a transition in the Execute input pin's signal from low to high.
SLength	Distance for which the slave axis specified moves (Unit: Pulse)	DWORD	K1~K2,147,483,647	The value of the SLength input pin is valid when there is a transition in the Execute input pin's signal from low to high.
SSyncLength	Distance for which the slave axis specified is synchronized with the master axis specified (Unit: Pulse)	DWORD	K1~K2,147,483,647	The value of the SSyncLength input pin is valid when there is a transition in the Execute input pin's signal from low to high.
SSyncRatio	Synchronization ratio of the speed of the slave axis specified to the speed of the master axis specified	Float	$\begin{aligned} & 1.1755 \times 10^{-38} \sim \\ & 3.4028 \times 10^{+38} \end{aligned}$	The value of the SSyncRatio input pin is valid when there is a transition in the Execute input pin's signal from low to high.
SMaxRatio	Maximum ratio of the speed of the slave axis to the speed of the master axis specified	Float	$\begin{aligned} & 1.1755 \times 10^{-38} \sim \\ & 3.4028 \times 10^{+38} \end{aligned}$	-
AccCurve	Acceleration curve	WORD	K0~K3 (*1)	The value of the SSyncRatio input pin is valid when there is a transition in the AccCurve input pin's signal from low to high.
eCamCurve	Cam curve	WORD	K0~K5 (*2)	
DynamicGen	Changing a cam curve dynamically	BOOL	True/False	The value of the DynamicGen input pin is valid when there is a transition in the AccCurve input pin's signal from low to high.
Concatenate	Concatenation	BOOL	True/False	The value of the Concatenate input pin is valid when there is a transition in the AccCurve input pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal when motion is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is complete, the Done output pin will be set to False in the next cycle.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

Value output pin				
Name	Function	Data type	Output range	Time when a value is valid
ErrNo	Error code	K0: The creation of a cam curve is complete. K1: The conditions set can not be used to create a cam curve.	When the motion control function block is executed, the value of the ErrNo output pin is updated repeatedly.	
SyncBegin	Starting point of synchronization	DWORD	K0~K2,147,483,647	When the motion control function block is executed, the value of the SyncBegin output pin is updated repeatedly.
SyncEnd	Terminal point of synchronization	DWORD	K0~K2,147,483,647	When the motion control function block is executed, the value of the SyncEnd output pin is updated repeatedly.

5
 Applied Instructions and Basic Usage

*1: Value of the AccCurve input pin

5 Applied Instructions and Basic Usage

*2: Value of the eCamCurve input pin

KO: leftCAM	K1: midCAMall
K2: midCAMbegin	K3: midCAMend
K 5 : right CAM	

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
ErrorNo=K1: The conditions set can not be used to create a cam curve.	Check whether the values of the input pin are incorrect.

SSyncRatio

The SSyncRation input pin is the same as the CamSyncRatio output pin in the motion control function block T_CamSyncRatio. Users can write the value of the CamSyncRatio output pin in the motion control function block T_CamSyncRatio into the SSyncRation input pin.

SMaxRatio

The SMaxRation input pin is used to set the maximum ratio of the speed of the slave axis specified to the speed of the master axis specified. If there is no special requirement, the maximum ratio of the speed of the slave axis specified to the speed of the master axis specified will be 10.

eCamCurve

a. LeftCAM

Ratio of the speed of the slave axis specified to the speed of the master axis specified

After the slave axis specified is started, it will execute rotary cut. After the rotary cut is complete, the slave axis will stop for a while, and then continue executing the rotary cut.
CLRO will be ON after the slave axis moves to the synchronization zone designed. After the slave axis leaves the synchronization zone designed, CLRO will be OFF. When CLRO is ON, its external LED indicator will not be ON. If users want to check whether CLRO is ON, they can connect CLRO to any general input terminal.

5 Applied Instructions and Basic Usage

b. RightCAM

Ratio of the speed of the slave axis specified to the speed of the maste axis specified

After the slave axis specified is started, it will stop for a while, and then execute rotary cut. After the rotary cut is complete, the slave axis will stop for a while, and then continue executing the rotary cut.
CLRO will be ON after the slave axis moves to the synchronization zone designed. After the slave axis leaves the synchronization zone designed, CLRO will be OFF. When CLRO is ON, its external LED indicator will not be ON. If users want to check whether CLRO is ON, they can connect CLRO to any general input terminal.
c. midCAMbegin, midCAMall, and midCAMend: The three types of curves need to be used together.

The slave axis specified executes rotary cut four times, and then stops. There are five phases.

- Phase 1: The slave axis specified is at a standstill, and then begins to execute rotary cut until the first object is cut. The curve created is midCAMbegin.
- Phase 2: After the cutter used cuts the first object, it returns to its preparatory position, and then accelerates until it moves to its cutting position. The curve created is midCAMall.
- Phase 3 and phase 4: The motion in phase 2 is repeated.
- Phase 5: After an object is cut, the cutter used returns to its preparatory position. The curve created is midCAMend.
The three types of curves need to be used together, and the DynamicGen input pin needs to be set to True.
If users create a rotary cut curve in this way, CLRO will not be ON after the slave axis specified moves to the synchronization zone designed.

5 Applied Instructions and Basic Usage

DynamicGen

The DynamicGen input pin is used to modify the cam curve created after the slave axis meshes with the master axis specified. Users have to set the DynamicGen input pin to True before the Execute input is set to True. After the Execute input pin is set to True, the new cam curve created will be written into the cam chart selected in the next cycle. In the cycle following the next cycle, the slave axis specified will execute the new cam curve created.

Before the slave axis specified meshes with the master axis specified, the old cam curve in the cam chart selected will be changed to the new cam curve created whether the DynamicGen input is ON or not.

Concatenate

If users want to connect the new cam curve created to the old cam curve in the cam chart selected, they have to set the Concatenate input pin to True before the Execute input pin is set to True.
If the resolution of the original cam curve in the cam chart selected is 300, the resolution of the new cam curve must be at least 300 . After the new cam curve is connected to the original cam curve, the resolution gotten will be 600. As a result, users have to set the resolution of the cam chart selected to 600 before they download the cam chart selected.

4. Modules which are supported

The motion control function block T_CamCurve supports DVP20PM00D and DVP20PM00M.

5
 Applied Instructions and Basic Usage

5.10.26 Updating a Cam Curve

En	T_CamCurreUpdate
Execute	Eno
CAMTable	Done

1. Motion control function block The motion control function block T_CamCurveUpdate is used to update a cam chart so that the cam curve in the next can cycle is the cam curve created by means of the motion control function block T_CamCurve. The value of the CAMTable input pin indicates a cam chart.
2. Input pins/Output pins

Namput pin						
Execute	Function	Data type	Setting value	Time when a value is valid		
	When there is a transition in the Execute input pin's signal from low to high, the update of a cam curve is enabled.	BOOL	True/False			
CAMTable	Cam chart	WORD	K0~K2	The value of the CAMTable input pin is valid when there is a transition in the Enable input pin's signal from low to high.		

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signa from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The update of a cam curve is complete.	BOOL	- There is a transition in the Done output pin's signal when motion is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is complete, the Done output pin will be set to False in the next cycle.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

Using T_CamCurveUpdate and T_CamCurve

If users create a new cam curve by means of the motion control function block T_CamCurve when the slave axis specified meshes with the master axis specified, and want to update the cam chart selected by means of a condition instead of updating the cam chart selected immediately, they can use the motion control function block T_CamCurveUpdate.

Using T_CamCurveUpdate and T_CamWrite

If users use the motion control function block T_CamWrite to modify a point in the cam chart selected when the slave axis specified meshes with the master axis specified, the cam chart selected will not change after the point is modified. After the users update the cam chart selected by means of the motion control function block T_CamCurveUpdate, the cam chart created after the motion control function block T_CamWrite is used will be executed.

The cam is operating.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Modules which are supported

The motion control function block T_CamCurveUpdate supports DVP20PM00D and DVP20PM00M.

5
 Applied Instructions and Basic Usage

5.10.27 Rotary Cut

En	T_RotrayCut
Master	Eno
Enable	Valid
SlavePulseInT n	Absy
CycleStop	Error
MasterLength	EndOfProfile
MasterPule	InputPules
SlaveLength	InputFreq
SlavePule	
SynArea	
MaterialSize	
AccCurve	

1. Motion control function block

The motion control function block T_RotaryCut is used to create a rotary cut curve, and execute electronic cam motion. Users can modify the length of a cutting by means of the MaterialSize input pin. After the length of a cutting is modified, the new cam curve created will be executed in the second or the third cam cycle. The motion control function block is only applicable to thin materials.

Concept

In the application of rotary cut, the cutting roller of a rotary cutter rotates in a direction. A material is cut when the blade of the rotary cutter comes into contact with the material. The feeding roller of the rotary cutter continuously feeds materials at a uniform speed. The relation between rotary cut and the output generated is shown below.
(1) At first, the slave axis accelerates until it moves to the synchronization zone.
(2) The speed of the slave axis is equal to the speed of the master axis in the synchronization zone, and CLRO is ON.
(3) After the slave axis leaves the synchronization zone, it decelerates until it returns home. A cycle is complete when the slave axis is at home. Users can draw a speed relation chart.

(4) During the processing of cutting materials, synchronization is an important factor. When the bladed of a rotary cutter come into contact with a material, the speed of the blade must be the same as the speed of the material. If the speed of the blade of a rotary cutter is greater than the speed of a material when it comes into contact with the material, the force which pulls the material forward will appear, and the material will be cut smoothly. If the speed of the blade of a rotary cutter is less than

5 Applied Instructions and Basic Usage

the speed of a material when it comes into contact with the material, the material will be jammed.
(5) The design of a synchronization zone affects the operation of equipment. The bigger the synchronization zone is in a cycle, the less time it takes for the slave axis specified to accelerate/decelerate. If equipment needs to accelerate/decelerate in a short time, there will be a great impact on the electric machinery used and the blade used, and there will be an overcurrent passing through the servo used.
(6) Relation between the length of a cutting and the circumference of a blade: The speed of the master axis is equal to the speed of the slave axis.

- Length of a cutting<Length of the blade used: The speed of cutting roller used is the same as the speed of the feeding roller used in the synchronization zone designed. After the cutting roller used leaves the synchronization zone, the cutting roller will accelerate.

- Length of a cutting=Circumference of the blade used: The cutting roller used rotates at a uniform speed.

- One time the circumference of the blade used<Length of a cutting<Two times the circumference of the blade used: After the cutting roller used completes cutting in the synchronization zone designed, it will decelerate, and then accelerate until its speed is the same the speed of the feeding roller used.

- Length of a cutting>Two times the circumference of the blade used: The length of a cutting is greater than two times the circumference of the blade. (It is a common situation.) After the blade used completes cutting in a cycle, it will decelerate until it stops. After a material of a certain length is fed, the blade used will start cutting again.

Ratio of the speed of the slave axis to the speed of the master

5
 Applied Instructions and Basic Usage

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Master	Master axis number	WORD	K 1 : $\mathrm{AO} \pm$ and $\mathrm{BO} \pm$ K 2 : $\mathrm{FP} \pm$ for the Y -axis (No external wiring is needed.) K3: $\mathrm{FP} \pm$ and $\mathrm{RP} \pm$ for the Y -axis (No external wiring is needed.)	The value of the Master input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	Enabling electronic cam motion	BOOL	True/False	-
SlavePulselnType	Pulse type	WORD	KO: mcUD K1: mcPD K2: mcAB K3: mc4AB	The value of the SlavePulseInType input pin is valid when there is a transition in the Enable input pin's signal from low to high.
CycleStop	Stopping a whole cycle	WORD	BOOL	The value of the CycleStop input pin is valid when there is a transition in the Enable input pin's signal from high to low.
MasterLength	Circumferen ce of the master axis specified	WORD	K1~K2,147,483,647	The value of the MasterLength input pin is valid when there is a transition in the Enable input pin's signal from high to low.
MasterPulse	Number of pulses it takes for the master axis specified to rotate once (Unit: Pulse)	DWORD	K1~K2,147,483,647	The value of the MasterPulse input pin is valid when there is a transition in the Enable input pin's signal from high to low.
SlaveLength	Circumferen ce of the slave axis specified	DWORD	K1~K2,147,483,647	The value of the SlaveLength input pin is valid when there is a transition in the Enable input pin's signal from high to low.
SlavePulse	Number of pulses it takes for the slave axis specified to rotate once (Unit: Pulse)	DWORD	K1~K2,147,483,647	The value of the SlavePulse input pin is valid when there is a transition in the Enable input pin's signal from high to low.
SynArea	Synchroniza tion range (Unit: Pulse)	DWORD	K1~K2,147,483,647	The value of the SynArea input pin is valid when there is a transition in the Enable input pin's signal from high to low.
MaterialSize	Length of a cutting	DWORD	K1~K2,147,483,647	When the motion control function block is executed, the value of the MaterialSize input pin is updated repeatedly.
AccCurve	Acceleration curve	WORD	KO: Uniform curve K1: Uniform acceleration curve K2: SingleHypot curve K3: Cycloid	The value of the AccCurve input pin is valid when there is a transition in the Enable input pin's signal from high to low.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when motion stops. - There is transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Busy	The motion control function block is being executed.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - If the Enable input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The cam chart created is incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
EndofProfile	A cycle is complete.	BOOL	- A cam cycle is complete.	- There is a transition in the EndOfProfile output pin's signal from high to low when the next scan cycle begins.

Value output pin						
Name	Function	Data type	Output range	Update		
InputPulses	Number of input pulses	DWORD	K-2,147,483,648~ K2,147,483,647	When the motion control function block is executed, the value of the InputPulses output pin is updated repeatedly.		

5
 Applied Instructions and Basic Usage

Value output pin				
Name	Function	Data type	Output range	Update
InputFreq	Frequency of input pulses	DWORD	K0~K2,147,483,647	When the motion control function block is executed, the value of the InputFreq output pin is updated repeatedly.

Notes:

- If the motion control function block T_RotaryCut is used to create cam chart 0 and cam chart 1, the resolution of cam chart 0 must be $30 \overline{0}$, and the resolution of cam chart 1 must be 300 .
- If the slave axis specified moves to the synchronization zone designed when the motion control function block T_RotaryCut is used, CLRO will not be ON. The motion control function block T_RotaryCut needs to be used with the motion control function block T_Compare.

3. Example

In this example, the setting of the motion control function block T_RotaryCut is described. The master axis used and the slave axis used are connected to Delta ASDA-A2 series AC servo drives. The first axis in a DVP-20PM series motion controller sends pulses to the slave axis, and the second axis in the DVP-20PM series motion controller sends pulses to the master axis.

- Descriptions of the parameters in the system used
- Pulse type: A / B
- Diameter of the master axis: 150 mm
- Gear ratio for the mechanism used to decelerate the master axis: 1:10
- Gear ration for the master axis: 128/4 \rightarrow The number of pulses it takes for the AC servo drive connected to the master axis to rotate once is 10,000. (Take Delta ASDA-A2 series AC servo

5 Applied Instructions and Basic Usage

drive for instance.)

- Diameter of the slave axis: 200 mm
- Gear ratio for the slave axis: $128 / 4 \rightarrow$ The number of pulses it takes for the AC servo drive connected to the master axis to rotate once is 10,000 . (Take Delta ASDA-A2 series AC servo drive for instance.)
- Length of a cutting: 500 mm
- Setting the parameters in the motion control function block T_RotaryCut

■ MasterLength: $150 \times \pi=471 \rightarrow$ K471

- MasterPulse: Number of pulses it takes for the master axis specified to rotate once/Gear ratio for the mechanism used to decelerate the master axis specified \rightarrow 10000/0.1 $=100000 \rightarrow$ K100000
- SlaveLength: $200 \times \pi=628 \rightarrow K 628$
- SlavePulse: K10000
- SynArea: Approximately $1 / 3$ times the number of pulses it takes for the slave axis specified to rotate once \rightarrow K3000
■ MaterialSize: K500
- AccCurve=K3 (Cycloid)

Operation of the cam used
■ Set the parameters in the motion control function block T_RotaryCut. After MO is set to ON, the slave axis specified will mesh with the master axis specified.

- After M10 is set to ON, the master axis will operate, and the motion of the slave axis will follow the motion of the master axis.
■ Upload the cam chart in the DVP-20PM series motion controller used.

Length of a cutting<Length of the blade used: The speed of cutting roller used is the same as the speed of the feeding roller used in the synchronization zone designed. After the cutting roller used leaves the synchronization zone, the cutting roller will accelerate.

- Checking the length of a cutting: The length of a cutting is 500 mm . Convert the length of a cutting into the number of pulses which the master axis sends in a cycle. (A motor unit is used. 500/471×100000=106157.) Check whether the length of the cam curve in the cam chart uploaded is 106175 pulses. If the length of the cam curve in the cam chart uploaded is 106175 pulses, the parameters in the motion control function block T_RotaryCut are set correctly.

4. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
A cam curve can not be created.	Check whether the values of the parameters in the motion control block can be used to create a cam curve.

5
 Applied Instructions and Basic Usage

5. Modules which are supported

The motion control function block T_RotaryCut supports DVP20PM00D and DVP20PM00M.

5.10.28 Flying Shear

En	T_FlyingSaw
Master	Eno
Enable	Valid
SlavePukeInT	Absy
CycleStop	Abrted
MasterLength	Endofprofile
MasterFulse	InputPules
SlaveLength	InputFreq
SlavePulke	
SynArea	
SflySawLength	
RetumRatio	
MaterialSize	
AccCurve	

1. Motion control function block

The motion control function block T_FlyingSaw is used to create a flying shear curve, and execute electronic cam motion. Users can modify the length of a cutting by means of the MaterialSize input pin. After the length of a cutting is modified, the new cam curve created will be executed in the second or the third cam cycle.

Concept

5 Applied Instructions and Basic Usage

- Flying shear is applied to equipment which needs to move with processed objects, e.g. a tube cutter. The processing axis (slave axis) used accelerates at first so that it can catch up with a processed object. After the processing axis moves to the synchronization zone designed, the speed of the processing axis will be the same as the speed of the processed object. After the processing axis leaves the synchronization zone, it will return to its original position. The feeding axis (master axis) used always feed materials at a uniform speed.

- The movement of a flying shear is composed of catching up with an object and returning to the original position of the flying shear. The two distances for which the flying shear moves must be the same. In terms of the speed the flying shear, the positive area in which the flying shear moves must be equal to the negative area in which the flying shear moves.
- When the processing axis used process an object, the feeding axis used does not stop. The speed of the processing axis must be the same as the speed of the feeding axis. The time in which the processing axis is synchronized with the feeding axis must be long enough for the completion of the processing of an object and the movement of the object to a safe place.
- The length of the synchronization zone designed is the time it takes for the processing axis used to process an object. Besides, the design of a synchronization zone affects the operation of equipment. The bigger the synchronization zone is in a cycle, the less time it takes for the slave axis specified to accelerate/decelerate. If equipment needs to accelerate/decelerate in a short time, there will be a great impact on the electric machinery used and the blade used, and there will be an overcurrent passing through the servo used.

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Master	Master axis number	WORD	K 1 : $\mathrm{A} 0 \pm$ and $\mathrm{B} 0 \pm$ K 2 : $\mathrm{FP} \pm$ for the Y -axis (No external wiring is needed.) $\mathrm{K} 3: \mathrm{FP} \pm$ and $\mathrm{RP} \pm$ for the Y -axis (No external wiring is needed.)	The value of the Master input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	Enabling electronic cam motion	BOOL	True/False	-
SlavePulseInType	Pulse type	WORD	K0: mcUD K1: mcPD K2: mcAB K3: mc4AB	The value of the SlavePulseInType input pin is valid when there is a transition in the Enable input pin's signal from low to high.

5
 Applied Instructions and Basic Usage

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
CycleStop	Stopping a whole cycle	WORD	BOOL	The value of the CycleStop input pin is valid when there is a transition in the Enable input pin's signal from high to low.
MasterLength	Circumferen ce of the master axis specified (Unit: Millimeter)	WORD	$\begin{aligned} & \text { K } 1 \sim \text { K } \\ & 2,147,483,647 \end{aligned}$	The value of the MasterLength input pin is valid when there is a transition in the Enable input pin's signal from high to low.
MasterPulse	Number of pulses it takes for the master axis specified to rotate once (Unit: Pulse)	DWORD	K1~K 2,147,483,647	The value of the MasterPulse input pin is valid when there is a transition in the Enable input pin's signal from high to low.
SlaveLength	Circumferen ce of the slave axis specified	DWORD	K1~K 2,147,483,647	The value of the SlaveLength input pin is valid when there is a transition in the Enable input pin's signal from high to low.
SlavePulse	Number of pulses it takes for the slave axis specified to rotate once (Unit: Pulse)	FLOAT	K1~K2,147,483,647	The value of the SlavePulse input pin is valid when there is a transition in the Enable input pin's signal from high to low.
SynArea	Synchronizat ion range (Unit: Pulse)	FLOAT	K1~K2,147,483,647	The value of the SynArea input pin is valid when there is a transition in the Enable input pin's signal from high to low.
SflySwaLength	Distance for which the slave axis specified moves forward	DWORD	K1~ K2,147,483,647	The value of the SflySwaLength input pin is valid when there is a transition in the Enable input pin's signal from high to low.
ReturnRatio	Speed ratio for the slave axis which returns to its original position (Only the ratios which are integers are supported now.)	DWORD	K1~ K2,147,483,647	The value of the ReturnRatio input pin is valid when there is a transition in the Enable input pin's signal from high to low.
MaterialSize	Length of a cutting	DWORD	K1~ K2,147,483,647	When the motion control function block is executed, the value of the MaterialSize input pin is updated repeatedly.

5 Applied Instructions and Basic Usage

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
AccCurve	Acceleration curve	WORD	KO: Uniform curve K1: Uniform acceleration curve K2: SingleHypot curve K3: Cycloid	The value of the AccCurve input pin is valid when there is a transition in the Enable input pin's signal from high to low.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when motion stops. - There is transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Busy	The motion control function block is being executed.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - If the Enable input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The cam chart created is incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

5 Applied Instructions and Basic Usage

| Same | | Function | $\begin{array}{c}\text { Data } \\ \text { type }\end{array}$ | $\begin{array}{c}\text { Time when there is } \\ \text { a transition in an } \\ \text { output pin's signal } \\ \text { from low to high }\end{array}$ |
| :---: | :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}Time when there is a transition in an

output pin's signal from high to low\end{array}\right\}\)

Value output pin					
Name	Function	Data type	Output range	Update	
InputPulses	Number of input pulses	DWORD	K-2,147,483,648~K2, $147,483,647$	When the motion control function block is executed, the value of the InputPulses output pin is updated repeatedly.	
InputFreq	Frequency of input pulses	DWORD	K0~K2,147,483,647	When the motion control function block is executed, the value of the InputFreq output pin is updated repeatedly.	

Notes:

- If the motion control function block T_FlyingSaw is used to create cam chart 0 and cam chart 1, the resolution of cam chart 0 must be 600, and the resolution of cam chart 1 must be 600.
- If the slave axis specified moves to the synchronization zone designed when the motion control function block T_FlyingSaw is used, CLRO will be ON. If the slave axis specified leaves the synchronization zone designed, CLRO will be OFF.

3. Example

In this example, the setting of the motion control function block T_FlyingSaw is described. The master axis used and the slave axis used are connected to Delta ASDA-A2 series AC servo drives. The first axis in a DVP-20PM series motion controller sends pulses to the slave axis, and the second axis in the DVP-20PM series motion controller sends pulses to the master axis.

5 Applied Instructions and Basic Usage

- Descriptions of the parameters in the system used
- Pulse type: A/B
- Diameter of the master axis: 60 mm
- Gear ratio for the mechanism used to decelerate the master axis:1:10
- Gear ration for the master axis: $128 / 4 \rightarrow 128 / 4 \rightarrow$ The number of pulses it takes for the AC servo drive connected to the master axis to rotate once is 10,000. (Take Delta ASDA-A2 series AC servo drive for instance.)
- Pitch: 20 mm
- Distance for which the slave axis moves forward: 400 mm
- Gear ratio for the slave axis: $128 / 4 \rightarrow$ The number of pulses it takes for the AC servo drive connected to the master axis to rotate once is 10,000 . (Take Delta ASDA-A2 series AC servo drive for instance.)
- Length of a cutting: 1320 mm
- Setting the parameters in the motion control function block T_FlyingSaw
- MasterLength: $60 \times \pi=188 \rightarrow \mathrm{~K} 188$

■ MasterPulse: Number of pulses it takes for the master axis specified to rotate once/Gear ratio for the mechanism used to decelerate the master axis specified $\rightarrow 10000 / 0.1=100000 \rightarrow K 100000$

- SlaveLength: K20
- SlavePulse: K10000
- SynArea: Approximately $1 / 3$ times the distance for which the slave axis specified moves forward $\rightarrow 400 / 20 \times 10000 / 3=66667 \rightarrow \mathrm{~K} 66667$
- SflySwaLength: K400
- ReturnRatio: K2
- MaterialSize: K1320
- AccCurve = K3 (Cycloid)
- Operation of the cam used
- Set the parameters in the motion control function block T_FlyingSaw. After MO is set to ON, the slave axis specified will mesh with the master axis specified.
- After M10 is set to ON, the master axis will operate, and the motion of the slave axis will follow the motion of the master axis.
■ Upload the cam chart in the DVP-20PM series motion controller used.

5 Applied Instructions and Basic Usage

■ Checking the length of a cutting: The length of a cutting is 1320 mm . Convert the length of a cutting into the number of pulses which the master axis sends in a cycle. (A motor unit is used. 1320/188×100000=702127.) Check whether the length of the cam curve in the cam chart uploaded is 702127 pulses. If the length of the cam curve in the cam chart uploaded is 702127 pulses, the parameters in the motion control function block T_FlyingSaw are set correctly.
4. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
A cam curve can not be created.	Check whether the values of the parameters in the motion control block can be used to create a cam curve.

5. Modules which are supported

The motion control function block T_FlyingSaw supports DVP20PMOOD and DVP20PM00M.

5 Applied Instructions and Basic Usage

5.10.29 Creating a Curve for a Wire Winding Machine

En	T_Winding
Execute	Eno
Layer_N1	Done
Total_N2	Evsy
Coil_spacing_D	Wind_M1
MasterPulse	Wind_M2
SlaveLength	Wind_S1
SlavePulse	MasterTotal_P

1. Motion control function block

The motion control function block T-Winding is used to create a curve for a wire winding machine.

Concept

(C)

The winding of a coil is shown above. The slave axis specified turns clockwise in the right direction (A). The slave axis sends pulses until the number of rings forming a layer is reached (B). The slave axis turns counterclockwise in the negative position, and sends pulses until the number of rings forming a layer is reached (C). The number of rings which forms a layer when the slave axis turns clockwise in the right direction is equal to the number of rings which form a layer when the slave axis turns counterclockwise in the negative position. The slave axis turns clockwise in the right direction, and turns counterclockwise in the negative position. It winds wires around the master axis specified. As a result, the electronic cam curve created needs to show that the slave axis moves from one end of the master axis to the other end of the master axis, and then returns. The relation between the slave axis and the master axis can be shown by only three points in the electronic cam curve. The values of the parameters in the table below can be used to create an electronic cam curve.

5
 Applied Instructions and Basic Usage

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Execute	The creation of a cam curve is enabled when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
Layer_N1	Number of rings forming a layer	DWORD	K1~K2,147,483,647	The value of the Layer_N1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Total_N2	Total number of rings	DWORD	K1~K2,147,483,647	The value of the Total_N2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Coil_spacing_D	Space: Diameter of a wire+Interval between two wires ($\mu \mathrm{m}$)	DWORD	K1~K2,147,483,647	The value of the Coil_spacing_D input pin is valid when there is a transition in the Execute input pin's signal from low to high.
MasterPulse	Number of pulses it takes for the master axis specified to rotate once	DWORD	K1~K2,147,483,647	The value of the MasterPulse input pin is valid when there is a transition in the Execute input pin's signal from low to high.
SlaveLength	Circumference of the slave axis specified (mm)	DWORD	K1~K2,147,483,647	The value of the SlaveLength input pin is valid when there is a transition in the Execute input pin's signal from low to high.
SlavePulse	Number of pulses it takes for the slave axis specified to rotate once	DWORD	K1~K2,147,483,647	The value of the SlavePulse input pin is valid when there is a transition in the Execute input pin's signal from low to high.

		Function	Date output pin Name type	Time when there is a transition in an output pin's signal from low to high		
Done	The execution of the motion control function block is complete.	BOOL	Time when there is a transition in an output pin's signal from high to low			
There is a						
transition in the						
Done output pin's						
signal when						
motion is						
complete.					\quad	• There is a transition in the Done
:---						
output pin's signal from high to						
low when there is a transition in						
the Execute input pin's signal						
from high to low.						

5 Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

Note: Before the motion control function block T-Winding is used, users have to create cam chart 0 , and the resolution of cam chart 0 must be 4 .
3. Example

The use of the motion control function block T-Winding to create a cam curve is described.

5 Applied Instructions and Basic Usage

- Descriptions of the parameters in the system used

■ Number of rings forming a layer: 20

- Total number of rings: 100
- Space: 0.3 mm
- Number of pulses it takes for the master axis specified to rotate once: 1000 pulses
- Circumference of the slave axis specified: 10 mm

■ Number of pulses it takes for the slave axis specified to rotate once: 10,000 pulses
Setting the parameters in the motion control function block T-Winding
■ Layer_N1: K20

- Total_N2: K100
- Coil_spacing_D: $0.3 \mathrm{~mm}=300 \mathrm{um} \rightarrow \mathrm{K} 300$
- MasterPulse: K1,000
- SlaveLength: K10

■ SlavePulse: K10,000

5 Applied Instructions and Basic Usage

Operation of the cam used

- Set MO to ON, and then upload the cam chart in the DVP-20PM series motion controller used.

- After M100 is set to ON, the first axis will mesh with the second axis.
- After M200 is set to ON, the master axis will operate, and the motion of the slave axis will follow the motion of the master axis. First, the master axis sends 20,000 pulses until 20 rings forming the first layer are gotten. When the master axis sends 20,000 pulses, the slave axis sends 6,000 pulses. Next, the master axis sends another 20,000 pulses until another 20 rings forming the second layer are gotten. When the master axis sends another 20,000 pulses, the slave axis sends another 6,000 pulses. The process is repeated until the total number of pulses sent by the master axis is 100,000 and the number of rings gotten is 100 .

4. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

5. Modules which are supported

The motion control function block T-Winding supports DVP20PM00D and DVP20PM00M.

5.11 Multiaxial Motion Control Function Blocks

5.11.1 Setting the Parameters of G-code Motion

En \quad T_GcodeSetting	Eno
Execute	Done
ContIP	Busy
VelPercentage	Error

1. Motion control function block

The motion control function block T_GcodeSetting is used to set the parameters of G-code motion. The value of the ContIP input pin indicates the minimum speed to which the speed of continuous interpolation decreases. If the speed of G-code motion is less than the speed indicated by the value of the ContIP input pin, the G-code motion will move at the speed indicated by the value of the ContIP input pin. The value of the VelPercentage input pin indicates the percentage for the values of the speed parameters of G-codes.

- Continuous interpolation
- If users set the minimum speed to which the speed of continuous interpolation decreses by means of the ContIP input pin, the smaller speed will be taken as a turning point after the value of ContIP input pin is compared with the acutal speed to which the speed of continuous interpolation decreses. If the value of the ContIP input pin is greater than 0 , a continuous path can be created. The maximum value of the ContIP input pin is 500000 . If the value of the ContIP input pin is greater than 500000, the speed of continuous interpolation will decrese to 500 kHz .
- If the value of the ContIP input pin is K0 (there is no continuous interpolation), the speed of motion will decrease to 0 kHz no matter what the actual deceleration is.

5 Applied Instructions and Basic Usage

- The value of the ContIP input pin is K500 (there is continuous interpolation). After the value in D1796 is compared with the acutal deceleration, the smaller deceleration will be taken as a turning point. After the value of the ContIP input pin is compared with the acutal deceleration, the smaller deceleration will be taken as a turning point.

- If the ContIP input pin is not set, the path along which the X -axis moves and the path along which the Y -axis moves will be at right angles. If the ContIP input pin is set, the path along which the X -axis moves and the path along which the Y -axis moves will form a smooth curve. G01 X100 F1000; (Block A)
Y100; (Block B)

Block A: Path along which the X-axis moves; Block B: Path along which the Y -axis moves

- Percentage for the values of the speed parameters of G-codes
- Relation between the value of the VelPercentage input pin and the ratio for the values of the speed parameters of G-codes

Setting value of the VelPercentage input pin	Ratio
100	1
50	$1 / 2$
1000	10

If the value of the VelPercentage input pin is 100 , the speeds of the G-codes used will be the orginial speeds. If the value of the VelPercentage input pin is 1,000 , the speeds of the G-codes used will be multipled by 10 . If the value of the VelPercentage input pin is 50 , the speeds of the G-codes used will be half the original speed.
If the result gotten from the multiplication of the speed of a G-code by the value of the VelPercentage input pin is greater than 500000 Hz , the G-code will move the axes used at a speed of 500000 Hz .
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
	G-code motion stops when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	
ContIP	Minimum speed to which the speed of continuous interpolation decreases (Hz)	DWORD	K0~K500000	The value of the ContIP input pin is valid when there is a transition in the Execute input pin's signal from low to high.
VelPercentage	Percentage for the values of the speed parameters of G-codes	WORD	K0~K65,535	The value of the VelPercentage input pin is valid when there is a transition in the Execute input pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal when motion is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Modules which are supported

The motion control function block T_GcodeSetting supports DVP20PM00D and DVP20PM00M.

5
 Applied Instructions and Basic Usage

5.11.2 Executing G-code Motion

1. Motion control function block

The motion control function block T_GcodeRun is used to set and execute an Ox motion subroutine. The value of the OxNum indicates an Ox motion subroutine number.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
OxNum	Ox motion subroutine number	WORD	OX0~OX99: 0~99 SD card: 100~199	The value of the OxNum input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	G-code motion stops when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signa from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal when motion is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The slave axis specified meshes with the master axis specified before the motion control function block is executed.	- There is transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Example

Purposes:

- After the first G-code motion is complete, the second G-code motion will be executed.
- The second G-code motion is executed before the execution of the first G-code motion is complete. The motion control function block named FIRST and the motion control function block named SECOND are set so that two different Ox motion subroutines are executed.

- After the first G-code motion is complete, the second G-code motion will be executed. Steps:
(a) Set Execute1 to True.
(b) Wait for a transition in Done2's signal from low to high or a transition in Error2's signal from low to high.
- The second G-code motion is executed before the execution of the first G-code motion is complete. Steps:
(a) Set Execute1 to True.
(b) Set Test to ON when Busy1 is set to True.
(c) Wait for a transition in Done2's signal from low to high or a transition in Error2's signal from low to high.

5 Applied Instructions and Basic Usage

Timing diagram:

Number1 = Number2

5. Modules which are supported

The motion control function block T_GcodeRun supports DVP20PMOOD and DVP20PM00M.

5.11.3 Stopping G-code Motion

En	T_GcodeStop
Execute	Eno
Mode	Done

1. Motion control function block

The motion control function block T_GcodeStop is used to stop the execution of an Ox motion subroutine.
2. Input pins/Output pins

Input pin						
Name	Function	Data type	Setting value	Time when a value is valid		
Execute	G-code motion stops when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False			
Mode	Mode of stopping G-code Motion	WORD	K0~K2 (*1)	The value of the Mode input pin is valid when there is a transition in the Execute input pin's signal from low to high.		

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal from low to high when the execution of the motion control function block is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

*1: Value of the Mode input pin

Value	Definition
0	G-code motion is stopped immediately. It will be executed again next time the motion control function block T_GcodeRun is executed.
1	G-code motion is stopped immediately. The distance which remains will be completed next time the motion control function block T_GcodeRun is executed.
2	G-code motion is stopped immediately. The next G-code motion will be executed next time the motion control function block T_GcodeRun is executed.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Example

Purpose:

- Write KO into DO.
- The execution of the first G-code motion is stopped before it is complete.

The motion control function block named FB1 is set so that an Ox motion subroutine is executed. The motion control function block named FB2 is set so that the execution of the Ox motion subroutines stops.

Set Execute1 to True. Execute the G-codes in the Ox motion subroutine specified. Set Execute2 to True before the execution of the G-codes in the Ox motion subroutine specified is complete. The execution of the Ox motion subroutine specified is stopped, and Aborted1 is set to True.

5 Applied Instructions and Basic Usage

Timing diagram:
FB1

5. Modules which are supported

The motion control function block T_GcodeStop supports DVP20PM00D and DVP20PM00M.

5.11.4 Reading an M-code

En	T_Mcode	Eno
Enable		Valid
CLRMcode		Eusy
		Enror
		Vahie

1. Motion control function block

The motion control function block T_Mcode is used to read an M-code, and clear the M-code specified. The CLRMcode input pin is used to clear the M-code specified.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Enable	Enabling the reading of an M-code	WORD	True/False	-
CLRMcode	An M-code is cleared when there is a transition in the CLRMcode input pin's signal from low to high.	BOOL	True/False	The value of the CLRMcode input pin is valid when the motion control function block is executed.

5 Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	The Valid output pin is set to True when an M-code is executed.	BOOL	- There is a transition in the Valid output pin's signal from low to high when an M -code is executed.	- There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from low to high. - There is a transition in the CLRMcode input pin's signal from low to high when the Valid output pin is set to True. There is a transition in the Valid output pin's signal from high to low when there is a transition in the CLRMcode input pin's signal from low to high.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Value output pin						
Name	Function	Data type	Output range	Time when a value is valid		
Value	When the Valid output pin is set to True, the value of the Value output pin indicates the M-code which is executed.	WORD	KO ~ 4095	When the Valid output pin is set to True value of the Value output pin is updated repeatedly.		

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Example

Purpose:

- When the first G-code motion is executed, the motion control function block T_Mcode is used to check the status of an M-code. If an M-code is executed, the motion control function block T_Mcode will be used to clear the M-code.

5 Applied Instructions and Basic Usage

The motion control function block named FB1 is set so that an Ox motion subroutine is executed. The motion control function block named FB2 is set so that the status of an M-code is checked.
Set Execute to True. Execute the G-codes in the Ox motion subroutine specified. Set Execute1 to True before the execution of the G-codes in the Ox motion subroutine specified is complete. Check the status of the M-code which is being executed. When an M-code is executed, Valid is set to True. CLR is used to clear the M-code which is executed.

5. Modules which are supported

The motion control function block T_Mcode supports DVP20PM00D and DVP20PM00M.

5.12 Other Motion Control Function Blocks

5.12.1 High-speed Counter

En	T_HCnt	Eno
Charnel		Valid
Enable		Busy
ExtRstEN		Error
InputType	CountVahe	
InitialVabue		

1. Motion control function block

The motion control function block T_HCnt is used to start a high-speed counter. The value of the Channel input pin indicates a counter number, and the value of the InputType input pin indicates an input pulse type. The ExtRstEN input pin is used to set an external reset switch. The value of the InitialValue input pin is the initial value in the counter specified, and the value of the CountValue output pin is the value in the counter specified.
The input terminals for the high-speed counters in a DVP-20PM series motion controller are shown below.

$\stackrel{\text { ¢ }}{ }$		-		24G		+24V		S/S0		STOP0			LSP0		PG0-		S/S1	
L			N		-	S	STAR	RT0	0 D	DOG0		SN0			G0+	ST	RT1	DO
DVP-20PM																		
A0+		B0+	A1+		B1+			C.-R0+		CLR1+		+ FP0+			RP0+		FP1+	
AO-		B0-		A1-		B1		- CLRO-			CLR1-			FP0-		RP0-		FP

The input terminals in the solid frame are for high-speed counter 0 , and the input terminals in the dotted frame are for high-speed counter 1.

5 Applied Instructions and Basic Usage

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Channel	Counter number	WORD	0~1 (*1)	The value of the Channel input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-
InputType	Input pulse type	WORD	mcUD: 0 mcPD: 1 mcAB: 2 mc4AB: 3	When the motion control function block is executed, the value of the InputType input pin is updated repeatedly.
ExtRstEN	External reset switch	BOOL	True/False (*2)	The value of the ExtRstEN input pin is valid when there is a transition in the Enable input pin's signal from low to high.
InitialValue	Initial value in the counter specified (Pulse)	DWORD	K0~2,147,483,647	The value of the InitialValue input pin is valid when there is a transition in the Enable input pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The source specified has been occupied.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

5 Applied Instructions and Basic Usage

Value output pin				
Name	Function	Data type	Output range	Time when a value is valid
CountValue	Value in the counter specified	DWORD	K0~2,147,483,647	When the Valid output pin is set to True, the value of the CountValue output pin is updated repeatedly.

*1: Value of the Channel input pin

Value	Definition
0	C200
1	C204

*2: External terminals for resetting the high-speed counters in a DVP-20PM series motion controller

Counter number	Reset terminal
0	PG0
1	PG1

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The counter specified has been used.	Use another counter, or stop the counter which has been used.

4. Example

Purpose:

- The first axis sends pulses to high-speed counter 0 . Users can check whether the number of pulses output is the same as the number of pulses input. The external wiring required is shown below.

FPO is connected to AO . RPO is connected to $B 0$.

- The pulses output by the first axis are $A / B-p h a s e ~ p u l s e s . ~$
- After M21 is set to ON, high-speed counter 0 will be started.

5 Applied Instructions and Basic Usage

- The value of POS is 30,000 , and the value of VEL is 10,000 .
- After M20 is set to ON, the absolute single-speed motion set will be started.
- Compare the value in D0 (the value in high-speed counter 0) with the value in D2 when M3 is ON.

5. Modules which are supported

The motion control function block T_HCnt supports DVP20PM00D and DVP20PM00M.

5.12.2 Setting High-speed Comparison

En	T_Compare
Channel	Eno
Enable	
Source	Valid
CmpMode	Error
OutputDevice	
OutputMode	
Cmp Vabue	

1. Motion control function block

The motion control function block T_Compare is used to start high-speed comparison. The value of the Channel input pin indicates a comparator number, the value of the Source input pin indicates a source, the value of the CmpMode input pin indicates a comparison condition, and the value of the OutputDevice indicates an output device.
2. Input pins/Output pins

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Input pin}

\hline Name \& Function \& Data type \& Setting value \& Time when a value is valid

\hline Channel \& Comparator number \& WORD \& 0~7 \& The value of the Channel input pin is valid when there is a transition in the Enable input pin's signal from low to high.

\hline Enable \& The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high. \& BOOL \& True/False \& c

-

\hline Source \& Source \& WORD \& mcCmpAxis1: 0 mcCmpAxis2: 1 mcCmpAxis3: 2 mcCmpC200: 4 mcCmpC204: 5 \& The value of the Source input pin is valid when there is a transition in the Enable input pin's signal from low to high.

\hline CmpMode \& Comparison condition \& WORD \& $$
\begin{aligned}
& 1:= \\
& 2: \geqq \\
& 3: \leqq
\end{aligned}
$$ \& The value of the CmpMode input pin is valid when there is a transition in the Enable input pin's signal from low to high.

\hline OutputDevice \& Output device \& WORD \& mcCmpCLRO: 0 mcCmpCLR1:1 mcCmpY2: 2 mcCmpY3: 3 mcCmpRstC200: 4 mcCmpRstC204: 5 \& The value of the OutputDevice input pin is valid when there is a transition in the Enable input pin's signal from low to high.

\hline OutputMode \& Output mode \& BOOL \& mcCmpSet: True mcCmpRst: False \& The value of the OutputMode input pin is valid when there is a transition in the Enable input pin's signal from low to high.

\hline
\end{tabular}

Input pin						
Name	Function	Data type	Setting value	Time when a value is valid		
CmpValue	Value with which a source is compared	DWORD	K-2,147,483,647~ K2,147,483,647	The value of the CmpValue input pin is valid when there is a transition in the Enable input pin's signal from low to high.		

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The source specified has been occupied.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Please note that the number of high-speed comparators plus the number of high-speed capturers is 8 at most.

- Source
- mcCmpAxis1: Present position of the first axis
- mcCmpAxis2: Present position of the second axis
- mcCmpAxis3: Present position of the third axis (only applicable to DVP20PM00M)
- mcCmpC200: Present value in C200

■ mcCmpC204: Present value in C204
Output device

- mcCmpCLRO: CLRO
- mcCmpCLR1: CLR1
- mcCmpY2: Y2

■ mcCmpY3: Y3

- mcCmpRstC200: Resetting C200
- mcCmpRstC204: Resetting C204
- Output mode
- The device specified is CLR0, CLR1, Y2, or Y3.

McCmpSet: Enabling the output device specified
McCmpRst: Diabling the output device specified

5 Applied Instructions and Basic Usage

- The device specified is C200 or C204.

McCmpSet : The value in the counter specified is cleared.
McCmpRst: The counter specified counts.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The comparator specified has been used.	Use another comparator.

4. Modules which are supported

The motion control function block T_Compare supports DVP20PM00D and DVP20PM00M.

5.12.3 Resetting High-speed Comparison

En	T_CmpRstOut	Eno
Enable		Valid
CLRclr0		CmpCLRO
CLRclr1		CmpCLR1
CLRY2		CmpY2
CLRY3		CmpY3
CLRC200Rst	CmpC200	
CLRC204Rst	CmpC204	
	Eusy	

1. Motion control function block

The motion control function block T_CmpRstOut is used to reset high-speed comparison. CLRclrO, CLRcIr1, CLRY2, CLRY3, CLRC200Rst, and CLRC204Rst determine the output devices which will be reset. The values of the output pins indicate whether the output devices CLRO, CLR1, Y2, Y3, C200, and C204 are enabled or disabled.
2. Input pins/Output pins

Input pin				
Name	Name	Name	Name	Name
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-
CLRclr0	Resetting the output devices CLRO, CLR1, Y2, Y3, C200, and C204	BOOL	True/False	When the motion control function block is executed, the values of these input pins are updated repeatedly.
CLRcIr1				
CLRY2				
CLRY3				
CLRC200Rst				
CLRC204Rst				

5 Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The source specified has been occupied.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Value output pin				
Name	Function	Data type	Output range	Time when a value is valid
CmpCLR0	States of the output devices CLR0, CLR1, Y2, Y3, C200, and C204	BOOL	True/False	When the Valid output pin is set to True, the values of these output pins are updated repeatedly.
CmpCLR1				
CmpY2				
CmpY3				
CmpC200				
CmpC204				

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

5 Applied Instructions and Basic Usage

4. Example

Purpose:

- Two high-speed comparators are set. When the conditions set are met, users can check whether the output devices specified are set/reset. The external wiring required is shown below.

- If the program is executed, the pulses output by the first axis will be A/B-phase pulses, the motion control function block T_CmpRstOut will be started, and the states of output devices will be read.
- After M53 is set to ON, a high-speed counter will be started.
- After M1 is set to ON, high-speed comparator 0 will be started.

Setting high-speed comparator 0: If the number of pulses output by the first axis is greater than or equal to 50,000, Y2 will be set to ON.

- After M10 is set to ON, high-speed comparator 1 will be started.

Setting high-speed comparator 1: If the value in C200 is equal to 5,000 , the value in C 200 will be

5 Applied Instructions and Basic Usage

cleared to 0 .

- After M40 is set to ON, the first axis will move for 100,000 pulses.
- If the value in C200 is equal to 5,000 , and M31 is ON, the comparison condition set for high-speed comparator 1 is met, and the value in C200 is cleared to 0 . The value in C200 will be cleared to 0 next time the value in C200 becomes 5,000 . If M31 is not reset, high-speed comparator 1 will not act next time the comparison condition set for high-speed comparator 1 is met.
- If the number of pulses output by the first axis is 100,000 , the comparison condition set for high-speed comparator 0 is met, and Y 2 is set to ON . When Y 2 is set to ON , the users can check whether X0 is ON.
- If XO is ON , the comparison condition set for high-speed comparator 0 is met. The users can turn X0 OFF by means of M22.

5. Modules which are supported

The motion control function block T_CmpRstOut supports DVP20PM00D and DV-P20PM00M.

5.12.4 Setting High-speed Capture

En	T_Capture	Eno
Channel		Valid
Enable		Busy
Source	Error	
TrizgerDevice	CapVahe	
InitialVahue		

1. Motion control function block

The motion control function block T_Capture is used to start high-speed capture. The value of the Channel input pin indicates a capturer number. The value of the Source input pin indicates a source, the value of the TriggerDevice input pin indicates the device which triggers the capture of a value, the value of the InitialValue input pin is an initial value, and the value of the CapValue output pin is the value captured.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Channel	Capturer number	WORD	0~7	The value of the Channel input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-
Source	Source	WORD	mcCapAxis1: 0 mcCapAxis2: 1 mcCapAxis3: 2 mcCapC200: 4 mcCapC204: 5	The value of the Source input pin is valid when there is a transition in the Enable input pin's signal from low to high.

5 Applied Instructions and Basic Usage

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
TriggerDevice	Device which triggers the capture of a value	WORD	$\begin{gathered} \text { mcCapPG0: } 0 \\ \text { mcCapMPGB0: } 1 \\ \text { mcCapMPGA0: } 2 \\ \text { mcCapLSN0: } 3 \\ \text { mcCapLSP0: } 4 \\ \text { mcCapDOG0: } 5 \\ \text { mcCapStop0: } 6 \\ \text { mcCapStart0: } 7 \\ \text { mcCapPG1: } 8 \\ \text { mcCapMPGB1: } 9 \\ \text { mcCapMPGA1: } 10 \\ \text { mcCapLSN1: } 11 \\ \text { mcCapLSP1: } 12 \\ \text { mcCapDOG1: } 13 \\ \text { mcCapStop1: } 14 \\ \text { mcCapStart1: } 15 \\ \hline \end{gathered}$	The value of the TriggerDevice input pin is valid when there is a transition in the Enable input pin's signal from low to high.
InitialValue	Initial value	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	The value of the InitialValue input pin is valid when there is a transition in the Enable input pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The source specified has been occupied.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

5
 Applied Instructions and Basic Usage

Value output pin						
Name	Function	Data type	Output range	Time when a value is valid		
CapValue	Value which is captured	DWORD	K-2,147,483,648~ K2,147,483,647	When the motion control function block is executed, the value of the CapValue output pin is updated repeatedly. If there is no trigger, the value captured will remain unchanged.		

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The capturer specified has been used.	Use another capturer.

4. Example

Purpose:
Two high-speed capturers are used. If external terminals are turned ON, the present position of the first axis and the present value in C 200 will be captured. The motion control function block T_InputPolarity is used to set the polarity of the external terminal which triggers the capture of the present position of the first axis, and the polarity of the external terminal which triggers the capture of the present value in C200. The external wiring required is shown below.

FPO is connected to AO. RPO is connected to BO .

5 Applied Instructions and Basic Usage

- The pulses output by the first axis are A/B-phase pulses. After the motion control function block T_MotionObserve is enabled, the present position of the first axis and the present speed of the first axis will be read.
- After M53 is set to ON, a high-speed counter will be started.
- After M1 is set to ON, high-speed capturer 0 will be started.

Setting high-speed capturer 0: If PGO is turned ON, the present position of the first axis will be captured.

- After M10 is set to ON, high-speed capturer 1 will be started.

Setting high-speed capturer 1: If PG1 is turned ON, the present value in C200 will be captured.

- After M40 is set to ON, the positive JOG motion of the first axis will be started.
- If M100 is turned ON, PG0 will become a normally-closed contact, there will be a transition in PG0's signal from low to high, and the value in D0 will change.
- If M108 is turned ON, PG1 will become a normally-closed contact, there will be a transition in PG1's signal from low to high, and the value in D10 will change.

5. Modules which are supported

The motion control function block T_Capture supports DVP20PM00D and DVP20PM00M.

5
 Applied Instructions and Basic Usage

5.12.5 High-speed Masking

En	T_CapMask
Enable	Eno
MaskVahe	Busy

1. Motion control function block

The motion control function block T_CapMask is used to start high-speed masking. The MaskValue input pin determines the range which will be masked. After high-speed masking is started, if the relative difference between the value captured this time and the value captured last time is in the range which can be masked, the signal which triggers the capture of the value this time will be disregarded.

Value captured presently

The value in this range can not be captured.
2. Input pins/Output pins

Name				
	Function	Data type	Setting value	Time when a value is valid
Enable	The motion blontrol function block enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	
MaskValue	Range which is masked	DWORD	K0~2,147,483,647	When the motion control function block is executed, the value of the MaskValue input pin is updated repeatedly.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

		Function	Data type	Time when there is a transition in an output pin's signal from low to high		
Error	An error occurs in the motion control function block.	BOOL	Time when there is a transition in an output pin's signal from high to low			
Input values are						
incorrect.						
- The source						
specified has						
been occupied.						• There is a transition in the Error
:---						
output pin's signal from high to low						
when there is a transition in the						
Enable input pin's signal from high						
to low.						

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Example

A high-speed capturer and the motion control function block T_CapMask are used. If the present position of the first axis is in the range (the value of the CapValue output pin \pm the value of the MaskValue input pin) which is masked, it will not be captured after an external device is set to ON.

- After the program is executed, the present position of the first axis and the present speed of the first axis will be read.
- After the value in D20 is set to 0, and M20 is turned ON, the first axis will output 0 pulses
- Set the value in D12 to 100. After M1 is turned ON, high-speed capturer 0 will be started. Setting high-speed capturer 0: If PGO is turned ON, the present position of the first axis will be captured.
- Set the value in D10 to 500. After M10 is turned ON, the high-speed masking specified will be started.
- After M100 is set to ON, there will be a transition in PG0's signal from low to high, and the value of the CapValue output pin will still be 100.
- After the value in D20 is set to 500 , and M20 is turned ON. The first axis will output 500 pulses.
- After M100 is set to ON, there will be a transition in PG0's signal from low to high, and the value of the CapValue output pin will still be 100.
- After the value in D20 is set to 600, and M20 is turned ON. The first axis will output 600 pulses.
- After M100 is set to ON, there will be a transition in PG0's signal from low to high, and the value of

5 Applied Instructions and Basic Usage

the CapValue output pin will become 600.
5. Modules which are supported

The motion control function block T_CapMask supports DVP20PM00D and DVP20PM00M.

5.12.6 Setting an I nterrupt

En	T_Interupt	Eno
IntSrc		Valid
Enable		Busy
TimePeriod	Error	

1. Motion control function block

The motion control function block T_Interrupt is used to set the trigger for an interrupt subroutine. The value of the IntSCR input pin indicates the trigger for an interrupt subroutine. If the interrupt set is a time interrupt, the value of the TimePeriod input pin indicates the cycle of the interrupt.
2. Input pins/Output pins

Input pin					
Name	Function	Data type	Setting value	Time when a value is valid	
IntSCR	Setting an interrupt	WORD	IntTimer: 0 IntStart0: 1 IntStop0: 2 IntStart1: 3 IntStop1: 4	The value of the IntSrc input pin is valid when there is a transition in the Enable input pin's signal from low to high.	
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False		
TimePeriod	Cycle of a time interrupt (Unit: ms) (Not applicable to terminal interrupts)	WORD	K1~K65,535	When the motion control function block is executed, the value of the TimePeriod input pin is updated repeatedly.	

| Name | | Function | Data
 type | Time when there is
 a transition in an
 output pin's signal
 from low to high |
| :---: | :--- | :--- | :--- | :--- | | Time when there is a transition in an |
| :--- |
| output pin's signal from high to low |

5 Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The source specified has been occupied.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Example

A time interrupt and an external interrupt are used. Users can use the motion control function block T_InputPolarity to simulate the state of an external terminal.
IO:

I1:

O100:

- After M1000 is set to ON, the motion control function block T_InputPolarity will be started.
- After M30 is set to ON, the time interrupt 10 and the external interrupt 11 will be started.
- After the time interrupt 10 is started, it will be executed every three seconds, and the value in D9000 will increase by one every three seconds.
- After the external interrupt I1 is started, the users can simulate the state of START0 by setting M107. If M107 is turned from OFF to ON, the value in D9001 will increase by one.

5. Modules which are supported

The motion control function block T_Interrupt supports DVP20PM00D and DVP20PM00M.

6.1 Table of Motion Instructions and Table of G-codes

[10] Motion instructions

Type	Motion instruction number	Instruction code	Function	Applicable mode		Response time	Page number
				20D	20M		
	00	DRV	Rapid positioning (two axes)	\checkmark	\checkmark	20~25 ms	6-7
			Rapid positioning (three axes)		\checkmark	20~25 ms	6-7
	01	LIN	Linear interpolation (two axes) (The remaining distance can be considered.)	\checkmark	\checkmark	20~22 ms	6-10
			Linear interpolation (three axes) (The remaining distance can be considered.)		\checkmark	20~25 ms	6-10
	02	CW	Circular interpolation, clockwise (arc center) (The remaining distance can be considered.)	\checkmark	\checkmark	20~24 ms	6-13
			Helical interpolation, clockwise (arc center) (The remaining distance can be considered.)		\checkmark	20~25 ms	6-13
	03	CCW	Circular interpolation, counterclockwise (arc center) (The remaining distance can be considered.)	\checkmark	\checkmark	20~24 ms	6-13
			Helical interpolation, counterclockwise (arc center) (The remaining distance can be considered.)		\checkmark	20~25 ms	6-13
	04	CW	Circular interpolation, clockwise (radius) (The remaining distance can be considered.)	\checkmark	\checkmark	20~24 ms	6-19
			Helical interpolation, clockwise (radius) (The remaining distance can be considered.)		\checkmark	20~25 ms	6-19
	05	CCW	Circular interpolation, counterclockwise (radius) (The remaining distance can be considered.)	\checkmark	\checkmark	20~24 ms	6-19
			Helical interpolation, counterclockwise (radius) (The remaining distance can be considered.)		\checkmark	20~25 ms	6-19
	06	TIM	Dwell	\checkmark	\checkmark	-	6-23
	07	DRVZ	Returning home	\checkmark	\checkmark	20~25 ms	6-24
	08	SETR	Setting electrical zero	\checkmark	\checkmark	-	6-27
	09	DRVR	Returning to electrical zero	\checkmark	\checkmark	20~25 ms	6-28
	10	INTR	Two-axis single-Speed linear interpolation (The remaining distance is ignored.)	\checkmark	\checkmark	20~25 ms	6-29
	11	SINTR	Inserting a single speed	\checkmark	\checkmark	20~25 ms	6-30
	12	DINTR	Inserting two speeds	\checkmark	\checkmark	20~25 ms	6-32
	13	MOVC	Setting the offset of linear movement	\checkmark	\checkmark	-	6-34
	14	CNTC	Setting an offset for the center of an arc	\checkmark	\checkmark	-	6-35
	15	RADC	Setting an offset for a radius	\checkmark	\checkmark	-	6-36
	16	CANC	Canceling compensation	\checkmark	\checkmark	-	6-37
	17	ABST	Absolute programming	\checkmark	\checkmark	-	6-38
	18	INCT	Incremental programming	\checkmark	\checkmark	-	6-38
	19	SETT	Setting a present position	\checkmark	\checkmark	-	6-39

Additional remark: 20D=DVP20PM00D; 20M=DVP20PM00M

6 Basic Usage of Motion Instructions and G-codes

1 O pointers/M-codes

Instruction code	Function	Description	Applicable model		Page number
O	Program pointer	Main program: O100 Motion subroutines: Ox0~Ox99	20M	20D	\checkmark
M	M0~M65535 M0~M65535 M102: End of the main program O100 M2: End of a motion subroutine	\checkmark	\checkmark	$6-40$	

Additional remark: 20D=DVP20PM00D; 20M=DVP20PM00M

[1] G-codes

Type	G-code	$\begin{array}{\|c\|} \hline \text { Motion } \\ \text { instruction } \end{array}$code	Function	Applicable model		Page number
				20D	20M	
	00	DRV	Rapid positioning (two axes)	\checkmark	\checkmark	6-47
	00	DRV	Rapid positioning (three axes)		\checkmark	6-45
	01	LIN	Linear interpolation (two axes) (The remaining distance can be considered.)	\checkmark	\checkmark	6-49
	01	LIN	Linear interpolation (three axes) (The remaining distance can be considered.)		\checkmark	6-48
	02	CW	Circular interpolation, clockwise (arc center) (The remaining distance can be considered.)	\checkmark	\checkmark	6-49
	02	CW	Helical interpolation, clockwise (arc center) (The remaining distance can be considered.)		\checkmark	6-49
	03	CCW	Circular interpolation, counterclockwise (arc center) (The remaining distance can be considered.)	\checkmark	\checkmark	6-49
	03	CCW	Helical interpolation, counterclockwise (arc center) (The remaining distance can be considered.)		\checkmark	6-49
	02	CW	Circular interpolation, clockwise (radius) (The remaining distance can be considered.)	\checkmark	\checkmark	6-50
	02	CW	Helical interpolation, clockwise (radius) (The remaining distance can be considered.)		\checkmark	6-50
	03	CCW	Circular interpolation, counterclockwise (radius) (The remaining distance can be considered.)	\checkmark	\checkmark	6-50
	03	CCW	Helical interpolation, counterclockwise (radius) (The remaining distance can be considered.)		\checkmark	6-50
	04	TIM	Dwell	\checkmark	\checkmark	6-51
	17	NULL	XY plane selection		\checkmark	6-51
	18	NULL	ZX plane selection		\checkmark	6-51
	19	NULL	YZ plane selection		\checkmark	6-51
	90	ABST	Absolute programming	\checkmark	\checkmark	6-51
	91	INCT	Incremental programming	\checkmark	\checkmark	6-52

[^1]
6 Basic Usage of Motion Instructions and G-codes

6.2 Composition of a Motion I nstruction/ G-code

6.2.1 Motion Instruction

- A motion instruction is composed of an instruction name and operands.

Instruction name		Function which is executed
Operand	Indication of a function	Parameter mark (X, Y, Z, F, FX, FY, FZ, R, I, J, K)
	Setting of a parameter	Value of a parameter

- Users must type parameter marks.
- Setting of a parameter

1. If the value of a parameter is an arabic number or a 32-bit register, it must occupy 32 bits. Example: DRV X1000 FX1000 Y1000 FYDD1000
2. If the value of a parameter is composed of K/H/D and an arabic number, it must occupy 16 bits.
Example: DRV XK1000 FXH1000 YK1000 FYD1000
3. If the value of a parameter is an arabic number, and the value of another paramter is composed of K/H/D and an arabic number, they must occupy 16 bits and 32 bits respectively. Example: DRV X1000 FXHH1000 YK1000 FY1000
Size of a motion instruction

- A motion ionstruciton in the program in DVP20PM00D occupies one step. The motion instructions DRV, LIN, CW, CCW, and SETT individaully occupy one step in the program in DVP20PM00M.
- If the value of a paramter is an arabic number, it will occupy three steps in a program.
- If the value of a parameter is composed of K/H/D/DD and an arabic number, it will occupy two steps in a program.
- If the value of a parameter is composed of KK/HH and an arabic number, it will occupy three steps in a program.
- Format of a motion instruction

6 Basic Usage of Motion Instructions and G-codes

(5) Description of the function of the motion instruction
(6) Device types
(7) Device names
(8) The devices marked with ' *' can be used.
(9) The devices marked with ' *' displayed in grayscale can be modified by V devices and Z devices.
(10) Points for attention
(11) Applicable model

The model marked with ' \checkmark ' supports the motion instruction

- Typing a motion instruction

Some motion instructions are composed of instruction names, e.g. DRVZ, SETR, and ABS. Most motion instructions are composed of instruction names and operands. No conditional contact precedes a motion instruction.

- Setting parameters

Before a motion instruction is executed, the maximum speed $\left(V_{\text {MAX }}\right)$ at which the X -axis rotates, the maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the Y -axis rotates, and the maximum speed $\left(\mathrm{V}_{\text {max }}\right)$ at which the Z-axis rotates must be the same, the start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the X -axis rotates, the start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the Y -axis rotates, and the start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the Z -axis rotates must be the same, the time ($\mathrm{T}_{\mathrm{Acc}}$) it takes for the X -axis to accelerate, the time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the Y -axis to accelerate, and the time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the Z -axis to accelerate must be the same, and the time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the X -axis to decelerate, the time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the Y -axis to decelerate, and the time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the Z-axis to decelerate must be the same.
Take DVP20PM00M for instance. Before DRV is executed, the maximum speed $\left(\mathrm{V}_{\text {MAX }}\right)$ at which the X-axis rotates, the maximum speed $\left(\mathrm{V}_{\text {MAX }}\right)$ at which the Y -axis rotates, and the maximum speed $\left(\mathrm{V}_{\text {MAX }}\right)$ at which the Z -axis rotates must be the same, the start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the X -axis rotates, the start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the Y -axis rotates, and the start-up speed $\left(\mathrm{V}_{\text {BIAS }}\right)$ at which the Z-axis rotates must be the same, the time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the X -axis to accelerate, the time $\left(\mathrm{T}_{\mathrm{ACC}}\right)$ it takes for the Y -axis to accelerate, and the time ($\mathrm{T}_{\mathrm{Acc}}$) it takes for the Z -axis to accelerate must be the same, and the time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the X -axis to decelerate, the time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the Y -axis to decelerate, and the time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the Z-axis to decelerate must be the same.

	$\mathrm{V}_{\text {MAX }}$	$\mathrm{V}_{\text {BIAS }}$	$\mathrm{T}_{\text {ACC }}$	$\mathrm{T}_{\mathrm{DEC}}$
X-axis	500,000	1,000	10	15
Y-axis	500,000	1,000	10	15
Z-axis	500,000	1,000	10	15

6.2.2 G-code Instruction

- A G-code instruction is composed of an instruction name and operands.

Instruction name		Function which is executed
Operand	Indication of a function	Parameter mark (X,Y, Z, I, J, K, R, F)
	Setting of a parameter	Value of a parameter

- Users must type parameter marks.
- Setting of a parameter: If the value of a paramter is an arabic integer or an arabic decimal, it must occupy 32 bits.
Example 1: G00 X100 Y100
Example 2: G00 X100.0 Y100.0

6 Basic Usage of Motion Instructions and G-codes

- DVP20PM00M: The value of a parameter can be a 16 -bit register or a 32-bit register.

G0 XD11 YDD20 FDD25;
XDD30 YD40;
G1 X100.0 Y25.0 FD50;
G02 XD60 Y50.0 ID100 JDD80;
G03 YDD90 RD70 F300.0;

- If the value of a paramter is wrriten is a decimal, it is equal to 1,000 times the value.. Example: G00 X100.0 Y100.0 is equal to G00 X100000 Y100000.
- Size of a G-code
- A G-code in the porgram in DVP20PM00D occupies one step. G00, G01, G02, and G03 individaully occupy two steps in the program in DVP20PM00M, and the other G-code individaully occupy one step in the program in DVP20PM00M.
- If the value of a parameter is an arabic number, it will occupy three steps in a program.
- Format of a G-code instruction

(1) G-code instruction number
(2) Parameter mark
(3) Value of a parameter
(4) Description of the function of the G-code
- Typing a G-code instruction

Some G-code instructions are composed of instruction names, e.g. G90 and G91. Most G-code instructions are composed of instruction names and operands. No conditional contact precedes a G-code.

- Usage of a G-code
(a) Users can put several functions in a line.

Example: G91G01 X100.0 Y300.0 F500.0 M8 G04 X4.5;
(b) If G00, G01, G02, and G03 are in the same line, the last G-code will be executed.

Example: G02 G00 G03 G01 X100.0 Y300.0 F500.0; => G01 X100.0 Y300.0 F500.0;
(c) If GOO is used, users do not have to set the maximum speed ($\mathrm{V}_{\text {MAX }}$) at which an axis rotates. Example: G00 X100.2 Y500.0;
The maximum speeds at which the axes move are the maximum speeds set in the motion controller used.
(d) G00 and G01 can be extended to the next line.

N0000 G00 X500.0 Y125.0;
N0001 X-400.0 Y-500.0;
N0002 G01 X100.0 Y25.0 F200.0;
N0003 X-200.0 Y50.0;
=>G00 X-400.0 Y-500.0;
=>G01 X-200.0 Y50.0 F200.0;
(e) The speed parameter F for G01/G02/G03 can be extended to the next line. N0000 G01 X500.0 Y125.0 F200.0;
N0001 G03 X-40.0 Y-50.0 R100.0; $\quad=>G 03$ X-40.0 Y-50.0 R100. F200.0;
N0002 G02 X100.0 Y25.0 I400.5 F200.0;
N0003 G01 X-200.0 Y50.0;
=>G01 X-200.0 Y50.0 F200.0;
(f) G90 and G91 have high priority over the other G-codes.

G90 G01 X100.0 Y300.0 F500.0; $\quad=>G 90$ G01 X100.0 Y300.0 F500.0;
G01G90 X100.0 Y300.0 F500.0; $\quad=>G 90$ G01 X100.0 Y300.0 F500.0;
(g) Whether there are spaces in a program code, the program code can be identified.

G01G91X500.0 Y125.0F200.0; $\quad=>G 01$ G91 X500.0 Y125.0 F200.0;
(h) Coordinates and speeds are converted into 32-bit values.

G01 X-125.5 F200.0; $\quad=>G 01$ X-125500 F200000;
(i) If the value of a parameter is a decimal, it will be converted into an integer after it is multiplied by 1000.

G01 X100 Y-125.5 F200.0; $\quad=>G 01$ X100 Y-125500 F200000;
(j) Ten milliseconds are a unit of measurement for dwell duration. In the example below, the system used automatically ignores 9 in P2509. (Parameter X for G04: A second is a unit of measurement for dwell duration. Parameter P for G04: A millisecond is a unit of measurement for dwell duration.)
G04 X4.5 (Dwell duration: 4.5 seconds)
G04 X5 (Dwell duration: 5 seconds)
G04 P4500 (Dwell duration: 4.5 seconds)
G04 P2509 (Dwell duration: 2.5 seconds)
(k) The G-codes not supported are ignored and not read.

G21G54G01 X-125.5 F200.0; $\quad=>G 01$ X-125500 F200000;
G43G87G96 X250.5 F200.0; $\quad=>$ G01 X250500 F200000;
(I) The writing of instructions conforms to the writing of general G-codes. Users can arrange the parameter marks used in any order.
G0 X4.5 Z40.0 Y30.5 F200.2;

$$
\begin{aligned}
&=>G 00 \times 4.500 \text { Y30.500 Z40.000 F200.200 } \\
&=>G 00 \times 300.000 ~ Y 400.000 ~ Z 100.500 ~ \\
&=>G 01 \text { XD100 Y200.450 ZD300 FD400 } \\
&=>G 03 ~ X D 300 ~ Z D 100 ~ I 200.000 ~ F 50.600 ~ M 80 ~ \\
&=>G 03 ~ X 9999.900 \text { YD100 Z200.000 R777.700 } \\
& \text { FD800 }
\end{aligned}
$$

- Setting parameters

Before a G-code is executed, the maximum speed ($\mathrm{V}_{\mathrm{MAX}}$) at which the X -axis rotates, the maximum speed ($\mathrm{V}_{\mathrm{MAX}}$) at which the Y -axis rotates, and the maximum speed ($\mathrm{V}_{\mathrm{MAX}}$) at which the Z -axis rotates must be the same, the start-up speed ($\mathrm{V}_{\mathrm{BIAS}}$) at which the X -axis rotates, the start-up speed ($\mathrm{V}_{\mathrm{BIAS}}$) at which the Y-axis rotates, and the start-up speed $\left(V_{B I A S}\right)$ at which the Z-axis rotates must be the same, the time ($T_{A C C}$) it takes for the X-axis to accelerate, the time ($T_{A C C}$) it takes for the Y-axis to accelerate, and the time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the Z-axis to accelerate must be the same, and the time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the X-axis to decelerate, the time ($T_{D E C}$) it takes for the Y-axis to decelerate, and the time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the Z-axis to decelerate must be the same.
Take DVP20PM00M for instance. Before an Ox motion subroutine (containing G-code) is executed, the maximum speed $\left(\mathrm{V}_{\mathrm{MAX}}\right)$ at which the X -axis rotates, the maximum speed $\left(\mathrm{V}_{\mathrm{MAX}}\right)$ at which the Y -axis rotates, and the maximum speed ($\mathrm{V}_{\mathrm{mAx}}$) at which the Z -axis rotates must be the same, the start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the X-axis rotates, the start-up speed $\left(\mathrm{V}_{\mathrm{BIAS}}\right)$ at which the Y -axis rotates, and the start-up speed $\left(V_{B I A S}\right)$ at which the Z-axis rotates must be the same, the time ($T_{A C C}$) it takes for the X-axis to accelerate, the time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the Y -axis to accelerate, and the time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the Z-axis to accelerate must be the same, and the time ($T_{D E C}$) it takes for the X-axis to decelerate, the time ($T_{D E C}$) it takes for the Y-axis to decelerate, and the time ($T_{D E C}$) it takes for the Z-axis to decelerate must be the same.

	$\mathrm{V}_{\text {MAX }}$	$\mathrm{V}_{\text {BIAS }}$	$\mathrm{T}_{\text {ACC }}$	$\mathrm{T}_{\mathrm{DEC}}$
X-axis	500,000	1,000	10	15
Y-axis	500,000	1,000	10	15
Z-axis	500,000	1,000	10	15

6 Basic Usage of Motion Instructions and G-codes

6.3 Descriptions of Motion I nstructions

Motion	DRV		Rapid positioning	Applicable model
instruction number				20PM
00				\checkmark

	Word device			Double word device		
	K	H	D	KK	HH	DD
P_{1}	$*$	$*$	$*$	$*$	$*$	$*$
$\mathrm{~V}_{1}$	$*$	$*$	$*$	$*$	$*$	$*$
P_{2}	$*$	$*$	$*$	$*$	$*$	$*$
$\mathrm{~V}_{2}$	$*$	$*$	$*$	$*$	$*$	$*$
P_{3}	$*$	$*$	$*$	$*$	$*$	$*$
$\mathrm{~V}_{3}$	$*$	$*$	$*$	$*$	$*$	$*$

Note: The instruction supports devices. The devices supported can be modified by V devices can Z devices. Please refer to the specifications for the DVP-20PM series motion controller used for more information about the device ranges available. The instruction can be followed by an M-code instruction.

Explanation

- \mathbf{P}_{1} : Target position of the X-axis; \mathbf{V}_{1} : Speed at which the X -axis moves; \mathbf{P}_{2} : Target position of the Y -axis; V_{2} : Speed at which the Y -axis moves; \mathbf{P}_{3} : Target position of the Z -axis; V_{3} : Speed at which the Z -axis moves
- Maximum $\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}=\mathrm{V}_{\text {MAX }}$
- Range of parameters: (16-bit) K=-32,768~32,767; H=0~FFFF; D=0~9,999; (32-bit) KK=-2,147,483,648~2,147,483,647; HH=0~FFFFFFFF; DD=0~9,998
- Acceleration/deceleration time and bias speed can be set in special data registers.
- Acceleration/deceleration time increases or decreases in proportional to the setting of $\mathrm{V}_{\text {max }}$.
- Timing diagram

- 16-bit devices and 32-bit devices can be used together.
- If users set the moving speed on an axis, they have to set the target position on the axis. However, if they set the target position, it is not a must to set the moving speed.
- DVP200M00D supports two-axis (X-axis/Y-axis) high-speed positioning, and therefore there are 8 operand combinations for DRV.

No.	Motion instruction	Combination of operands
1	DRV	x (P_{1}
2		x (P_{1} FX V_{1}
3		$Y P_{2}$
4		$Y\left(P_{2}\right) \mathrm{FY} \mathrm{V}_{2}$
5		
6		X ($\left.P_{1}\right) \mathrm{Y} \mathrm{P}_{2} \mathrm{FY} \mathrm{V}_{2}$
7		
8		X (P_{1} FX V_{1} Y P_{2} FY V_{2}

- DVP20PM00M supports 3-axis (X-axis/Y-axis/Z-axis) high-speed positioning, and therefore there are 26 operand combinations for DRV.

No.	Motion instruction	Combination of operands
1	DRV	$x{ }^{(1)}$
2		x (P_{1} FX V_{1}
3		$\mathbf{Y} \mathrm{P}_{2}$
4		$Y\left(P_{2}\right) \mathrm{FY}^{\left(V_{2}\right.}$
5		$\left.\mathbf{X} P_{1}\right) \mathbf{Y} P_{2}$
6		X ($\left.P_{1}\right) Y\left(P_{2}\right) \mathrm{FY} \mathrm{V}_{2}$
7		X (P_{1} FX V_{1} Y ${ }^{(} P_{2}$
8		$\mathbf{X}\left(P_{1}\right) \mathrm{FX} \mathrm{V}_{1} \mathrm{Y} \mathrm{P}_{2} \mathrm{FY} \mathrm{V}_{2}$
9		$z\left(P_{3}\right.$
10		$x\left(P_{1}\right) \mathrm{z} \mathrm{P}_{3}$
11		
12		
13		$Y\left(P_{2}\right) \quad \mathrm{FY} \mathrm{V}_{2} \mathrm{Z}$ (P_{3}
14		$X P_{1}{ }^{1} \times P_{2} \quad Z P_{3}$
15		
16		
17		X (P_{1}) $\mathrm{FX} \mathrm{V}_{1} \mathrm{Y} \mathrm{P}_{2} \mathrm{FY} \mathrm{V}_{2} \mathrm{Z}$ (P_{3}
18		$\mathrm{Z} \mathrm{P}_{3}{\mathrm{FZ} \mathrm{V}_{3}}$
19		$\left.\underline{x} \mathrm{P}_{1}\right) \mathrm{Z}$ ($\mathrm{P}_{3} \mathrm{FZ} \mathrm{V}_{3}$
20		X (P_{1} FX $\mathrm{V}_{1} \mathrm{Z}$ ($\mathrm{P}_{3} \mathrm{FZ} \mathrm{V}_{3}$
21		
22		$\mathrm{Y}\left(\mathrm{P}_{2}\right) \mathrm{FY}\left(\mathrm{V}_{2}\right) \mathrm{Z}\left(\mathrm{P}_{3} \mathrm{FZ} \mathrm{V}_{3}\right.$
23		$\mathrm{X}\left(\mathrm{P}_{1}\right) \mathrm{Y}\left(\mathrm{P}_{2}\right) \mathrm{Z}\left(\mathrm{P}_{3}\right) \mathrm{FZ} \mathrm{V}_{3}$
24		$X\left(P_{1}\right) \quad Y\left(P_{2}\right) \quad \mathrm{FY}\left(\mathrm{V}_{2}\right) \mathrm{Z}\left(\mathrm{P}_{3}\right) \mathrm{FZ} \mathrm{V}_{3}$
25		
26		

- If users set the target position on the axis without setting the moving speed, the operation will run at $\mathrm{V}_{\text {max }}$.

6 Basic Usage of Motion Instructions and G-codes

Example
\section*{Additional remark}

- DRV XK12345 YH7567 FYKK40000;

The instruction performs high speed positioning on 2 axes to the target position (K12345, H7567). The target position can be an absolute coordinate or relative coordinate, which is determined by ABST/INCT (G90/G91) instruction above and closest to DRV. The moving speed on X axis is not set (i.e. output by $\mathrm{V}_{\text {MAX }}$), and Y axis outputs at 40 K pulses per second.

- Moving path

- Other valid combinations of operands:

DRV XKK-345289 FXD100 YDD10Z5 FYDD102
DRV XDD20 FXHH2345 YKK456 FYDDO Z567 Fz234
The above instructions are legal, and device D is the register storing the value to be set.

- Relevant special data registers

D1822, D1823 Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the X -axis rotates
D1824, D1825 Start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the X -axis rotates
D1836 Time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the X -axis to accelerate
D1837 Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the X -axis to decelerate
D1902, D1903 Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the Y -axis rotates
D1904, D1905 Start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the Y -axis rotates
D1916 Time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the Y -axis to accelerate
D1917 Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the Y -axis to decelerate
D1982, D1983 Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the Z -axis rotates
D1984, D1985 Start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the Z-axis rotates
D1996 Time ($\mathrm{T}_{\mathrm{Acc}}$) it takes for the Z-axis to accelerate
D1997 Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the Z-axis to decelerate

6 Basic Usage of Motion Instructions and G-codes

Motion instruction	LIN		Linear interpolation (The remaining distance can be considered.)	Applicable model
number				20PM
01				\checkmark

	Word device			Double word device		
	K	H	D	KK	HH	DD
P_{1}	$*$	$*$	$*$	$*$	$*$	$*$
P_{2}	$*$	$*$	$*$	$*$	$*$	$*$
P_{3}	$*$	$*$	$*$	$*$	$*$	$*$
F						
	$*$	$*$	$*$	$*$	$*$	$*$

Note: The instruction supports devices. The devices supported can be modified by V devices can Z devices. Please refer to the specifications for the DVP-20PM series motion controller used for more information about the device ranges available. The instruction can be followed by an M-code instruction.

Explanation

- \mathbf{P}_{1} : Target position of the X -axis; \mathbf{P}_{2} : Target position of the Y -axis; \mathbf{P}_{3} : Target position of the Z-axis; \mathbf{V} : Speed of linear interpolation
- Maximum $V=V_{\text {max }}$.
- Range of parameters: (16-bit) $\mathrm{K}=-32,768 \sim 32,767$; $\mathrm{H}=0 \sim F F F F ; \mathrm{D}=0 \sim 9,999$; (32-bit) KK=-2,147,483,648~2,147,483,647; HH=0~FFFFFFFF; DD=0~9,998
- Acceleration/deceleration time and bias speed can be set in special data registers.
- Acceleration/deceleration time increases or decreases in proportional to the setting of $\mathrm{V}_{\text {MAX }}$.
- Timing diagram

- The interpolation speed can be monitored by special data registers: D1850~D1851 are for the X-axis. D1930~D1931 are for the Y-axis. D2010~D2011 are for the Z-axis.
- D1865 is for setting a stop mode with the consideration on the remaining distance. (Please refer to the additional remark below for more information.)
- 16-bit devices and 32-bit devices can be used together.
- Target position is required, but moving speed could be left out.

6 Basic Usage of Motion Instructions and G-codes

- DVP20PM00 only supports two-axis (X-axis/Y-axis) synchronous interpolation positioning, and therefore there are 6 operand combinations for LIN instruction.

No.	Motion instruction	Combination of operands
1	LIN	x (${ }_{1}$
2		x P P_{1} F V
3		$Y P_{2}$
4		Y (P_{2} F V
5		$\mathbf{X} \mathbf{P}_{1} \mathbf{Y} \mathbf{P}_{2}$
6		$X P_{1} \quad Y$ P $P_{2} \mathrm{~F}$

- DVP20PM00M supports 3-axis (X, Y or Z) high-speed positioning, and therefore there are 14 operand combinations for LIN instruction.

No.	Motion instruction	Combination of operands
1	LIN	x (P_{1}
2		x P P_{1} F V
3		$\mathbf{Y} \mathrm{P}_{2}$
4		Y P $P_{2} \mathrm{~F}$
5		
6		
7		$\mathrm{Z} \mathrm{P}_{3}$
8		$Z P_{3} \mathrm{~F}$ V
9		$\mathbf{X} \mathbf{P}_{1} \mathbf{Z} \mathbf{P}_{3}$
10		X P $P_{1} \mathrm{Z} \mathrm{P}_{3} \mathrm{~F} \times \mathrm{V}$
11		Y (P_{2} Z P_{3}
12		$Y\left(P_{2}\right) Z P_{3} \quad F \times V$
13		$\mathbf{X} \mathbf{P}_{1} \mathrm{Y} \mathrm{P}_{2} \mathrm{Z}$ P3
14		

- If users set the target position on the axis without setting the moving speed, the operation will run at $\mathrm{V}_{\text {MAX }}$.
- LIN XK12345 YH7567 ZKK3280 FKK40000;

Example
The instruction performs linear interpolation on 3 axes to the target position (K12345, H7567, ZKK3280). The target position can be an absolute coordinate or relative coordinate, which is determined by the ABST/INCT (G90/G91) instructions above and closest to LIN. The linear movement operates at a speed of 40 kHz .

- Moving path

6 Basic Usage of Motion Instructions and G-codes

Additional remark

- Relevant special data registers: Please refer to chapter 3 for more information. D1822, D1823 Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the X-axis rotates D1824, D1825 Start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the X-axis rotates D1836 Time ($\mathrm{T}_{\text {AcC }}$) it takes for the X-axis to accelerate D1837 Time ($T_{\text {DEC }}$) it takes for the X -axis to decelerate D1865 Mode of stopping Ox0~Ox99 K1: The execution of Ox0~Ox99 will resume next time Ox0~Ox99 are started. (The remaining distance is considered.)
K2: The next instruction will be executed next time Ox0~Ox99 are started. Others: Ox0~Ox99 are executed again.
D1902, D1903 Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the Y -axis rotates
D1904, D1905 Start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the Y -axis rotates
D1916 Time ($\mathrm{T}_{\mathrm{AcC}}$) it takes for the Y -axis to accelerate
D1917 Time ($T_{\text {DEC }}$) it takes for the Y-axis to decelerate
D1982, D1983 Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the Z-axis rotates
D1984, D1985 Start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the Z-axis rotates
D1996 Time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the Z-axis to accelerate
D1997 Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the Z-axis to decelerate

6 Basic Usage of Motion Instructions and G-codes

Motion instruction	CW/CCW		Clockwise circular/helical interpolation	Applicable model
02			circular/helical interpolation	20PM
03			(arc center)	\checkmark

	Word device			Double word device		
	K	H	D	KK	HH	DD
P_{1}	$*$	$*$	$*$	$*$	$*$	$*$
P_{2}	$*$	$*$	$*$	$*$	$*$	$*$
P_{3}	$*$	$*$	$*$	$*$	$*$	$*$
P_{4}	$*$	$*$	$*$	$*$	$*$	$*$
P_{5}	$*$	$*$	$*$	$*$	$*$	$*$
P_{6}	$*$	$*$	$*$	$*$	$*$	$*$
V	$*$	$*$	$*$	$*$	$*$	$*$

Note: The instruction supports devices. The devices supported can be modified by V devices can Z devices. The instruction can be followed by an M-code instruction.

Explanation

- $\mathbf{P}_{\mathbf{1}}$: Target position of the X -axis; $\mathbf{P}_{\mathbf{2}}$: Target position of the Y -axis; $\mathbf{P}_{\mathbf{3}}$: Target position of the Z-axis; \mathbf{P}_{4} : Vector from the present position of the X-axis to an arc center; \mathbf{P}_{5} : Vector from the present position of the Y -axis to an arc center; \mathbf{P}_{6} : Vector from the present position of the Z-axis to an arc center; V: Speed of circular/helical interpolation
- $\mathbf{P}_{4}, \mathbf{P}_{5}$ and \mathbf{P}_{6} : Vectors from the present positions of an x-axis, a y-axis, and a z-axis to an arc center
- $\mathrm{V}_{\mathrm{MAX}}=500 \mathrm{kHz}$
- Range of parameters $\mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}, \mathbf{P}_{\mathbf{3}}, \mathbf{P}_{4}, \mathbf{P}_{5}, \mathbf{P}_{6}$: (16-bit) $\mathrm{K}=-32,768 \sim 32,767$; H=0~FFFF; D=0~9,999; (32-bit) KK=-2,147,483,648~2,147,483,647; HH=0~FFFFFFFF; DD=0~9,998
- Acceleration/deceleration time and bias speed can be set in special data registers.
- Acceleration/deceleration time increases or decreases in proportional to the setting of $\mathrm{V}_{\mathrm{MAX}}$.
- Timing diagram

- Two-axis arc interpolation: DVP20PM00D only supports circular interpolation on the XY plane. DVP20PM00M supports circular/helical interpolation on 3 planes by G-code instructions: G17 (XY plane selection), G18 (ZX plane selection) or G19 (YZ plane selection).

- Helical interpolation: Helical interpolation is applicable to DVP20PM00M. Three axes which are perpendicular to one another are used. They move synchronously. Helical interpolation is the extension of circular interpolation. If a helical interpolation instruction is used, and the change of height is zero, circular interpolation will be executed.
- If G17 is used, and the position of the Z-axis does not change, helical interpolation will be equivalent to circular interpolation.

CCW (Counterclockwise interpolation)

- If G18 is used, and the postion of the Y -axis does not change, helical interpolation will be equivalent to circular interpolation.

6 Basic Usage of Motion Instructions and G-codes

- If G19 is used, and the postion of the X-axis does not change, helical interpolation will be equivalent to circular interpolation.

- 16-bit devices and 32-bit devices can be used together.
- Principles of writing an instruction: (1) Users have to specify a target position, and an arc center. They do not have to specify the speed of interpolation. (2) If there is no vector from the present position of an axis to its target position, users do not need to specify the target position of the axis. (3) If there is not vector form the present position of an axis to its arc center, users do not need to specify the arc center of the axis. The circular/helical instrctions listed below are available.
- DVP20PM00 only supports 2-axis (the XY plane) circular interpolation, and according to the programming rule, there are 18 operand combinations for CW/CCW.

No.	Motion instruction	Combination of operands
1	CW/CCW	$\mathbf{X} \mathbf{P}_{1} \mathrm{I}^{\left(P_{3}\right.}$
2		
3		$\mathbf{X} \mathbf{P}_{1} \mathrm{~J}^{\left(P_{4}\right.}$
4		$x\left(P_{1}\right) J P_{4} \quad F \quad V$
5		$\mathbf{X}\left(P_{1}{ }^{\prime} P_{3} \mathrm{~J} \mathbf{P}_{4}\right.$
6		
7		$Y\left(P_{2}\right) P_{3}$
8		$Y\left(P_{2}\right) P_{3} \mathrm{~F} \times \mathrm{V}$
9		$Y P_{2}{ }^{\prime} P^{4}$
10		$Y\left(P_{2}\right) \quad P_{4} \quad F \quad V$
11		$\mathbf{Y} \mathbf{P}_{2} \mathrm{I} \mathrm{P}_{3} \mathrm{~J} \mathbf{P}_{4}$
12		$Y\left(P_{2}{ }^{\prime} P_{3} J P_{4} \mathrm{~F}, \mathrm{~V}\right.$
13		$\mathbf{X} \mathbf{P}_{1} \mathbf{Y} \mathbf{P}_{2} \mathbf{I} \mathbf{P}_{3}$
14		
15		
16		X (P_{1} Y $P_{2}{ }^{\text {J }} P_{4}$ F V
17		$X P_{1} \quad Y\left(P_{2} \quad 1 P_{3} \quad J \quad P_{4}\right.$
18		

- DVP20PM00M supports 3-axis circular/helical interpolation, and according to the programming rule, there are 78 operand combinations for CW/CCW instruction.

No.	Motion instruction	Combination of operands	G17	G18	G19
1	CW/CCW	$x P_{1}{ }^{1} P_{3}$	\checkmark	\checkmark	
2			\checkmark	\checkmark	
3		$x\left(P_{1}\right){ }^{(1)} P_{4}$	\checkmark		
4			\checkmark		
5			\checkmark		
6		$x\left(P_{1}\right)$ (P_{3} J $P_{4} \mathrm{~F} \times \mathrm{V}$	\checkmark		
7		$Y{ }^{(} P_{2}$, P_{3}	\checkmark		
8		$\left.Y\left(P_{2}\right) ~ I P_{3}\right) F \subset$	\checkmark		
9		$Y\left(P_{2}\right){ }^{(} P_{4}$	\checkmark		\checkmark
10		$Y\left(P_{2}\right) P_{4} \quad F \subset$	\checkmark		\checkmark
11		$Y\left(P_{2}\right) 1 P_{3}{ }^{\prime} P_{4}$	\checkmark		
12			\checkmark		
13		$\left.X P_{1}\right) Y\left(P_{2}\right) P_{3}$	\checkmark	\checkmark	
14		$x\left(P_{1}\right) Y\left(P_{2}\right), P_{3} \mathrm{~F} \subset$	\checkmark	\checkmark	
15		$X\left(P_{1}\right) Y\left(P_{2}\right) J P_{4}$	\checkmark		\checkmark
16		$X\left(P_{1}\right) Y\left(P_{2}\right) J\left(P_{4}\right) F \subset V$	\checkmark		\checkmark
17			\checkmark		
18			\checkmark		
19			\checkmark	\checkmark	
20			\checkmark	\checkmark	
21		$x P_{1} \geq P_{3}{ }^{\prime} P_{P_{4}}$	\checkmark		\checkmark
22			\checkmark		\checkmark
23			\checkmark		
24			\checkmark		
25		$Y\left(P_{2}\right) \quad \mathrm{Z}\left(\mathrm{P}_{3}\right) \mathrm{I} \mathrm{P}_{3}$	\checkmark	\checkmark	
26		$Y\left(P_{2}\right) Z\left(P_{3}\right) 1 P_{3} \mathrm{~F} \subset$	\checkmark	\checkmark	
27		$Y\left(P_{2}\right) Z\left(P_{3}\right) J P_{4}$	\checkmark		\checkmark
28		$Y\left(P_{2}\right) z\left(P_{3}\right) J\left(P_{4}\right) F \subset$	\checkmark		\checkmark
29			\checkmark		
30			\checkmark		
31			\checkmark	\checkmark	
32			\checkmark	\checkmark	
33		$X\left(P_{1}\right) Y\left(P_{2}\right) \quad Z\left(P_{3}\right) J P_{4}$	\checkmark		\checkmark
34		$X\left(P_{1}\right) Y\left(P_{2} \quad Z\left(P_{3}\right) J P_{4}\right) \quad F \subset$	\checkmark		\checkmark
35			\checkmark		
36			\checkmark		
37		$x\left(P_{1}\right) K P_{6}$		\checkmark	
38		$x\left(P_{1} \mathrm{~K} \mathrm{P}_{6} \mathrm{~F} \subset\right.$		\checkmark	

6 Basic Usage of Motion Instructions and G-codes

No.	Motion instruction	Combination of operands	G17	G18	G19
39	CW/CCW			\checkmark	
40		X (P_{1} I $P_{3} \mathrm{~K} \mathrm{P}_{6} \mathrm{~F} \times \mathrm{V}$		\checkmark	
41		Z ($\mathrm{P}_{3} \mathrm{I} \mathrm{P}_{3}$		\checkmark	
42				\checkmark	
43		Z ($\mathrm{P}_{3} \mathrm{~K} \mathrm{P}_{6}$		\checkmark	\checkmark
44		$Z P_{3} \mathrm{~K} \mathrm{P}_{6} \mathrm{~F} \times \mathrm{V}$		\checkmark	\checkmark
45		\mathbf{Z} (\mathbf{P}_{3} I $\mathbf{P}_{3} \mathrm{~K} \mathrm{P}_{6}$		\checkmark	
46		$Z\left(P_{3} 1 P_{3} \mathrm{~K} P_{6} \mathrm{~F}, \mathrm{~V}\right.$		\checkmark	
47		$\mathbf{X}\left(P_{1}\right) \mathbf{Z} P_{3} \mathbf{K} P_{6}$		\checkmark	\checkmark
48		$\mathrm{X} \mathrm{P}_{1} \mathrm{Z}$ (P3 $\mathrm{K} \mathrm{P}_{6} \mathrm{~F}, \mathrm{~V}$		\checkmark	\checkmark
49				\checkmark	
50		$X P_{1} \mathbf{Z} P_{3} 1 P_{3} \mathrm{~K} \mathbf{P}_{6} \mathrm{~F}, \mathrm{~V}$		\checkmark	
51		$\mathbf{X} \mathbf{P}_{1} \mathbf{Y} \mathrm{P}_{2} \mathrm{~K} \mathbf{P}_{6}$		\checkmark	\checkmark
52		$X\left(P_{1}\right) Y\left(P_{2}\right) K P_{6} \quad F \quad V$		\checkmark	\checkmark
53				\checkmark	
54		X ($P_{1} \mathrm{Y} \mathrm{P}_{2} \mathrm{I} \mathrm{P}_{3} \mathrm{~K} \mathrm{P}_{6} \mathrm{~F} \times \mathrm{V}$		\checkmark	
55		$Y\left(P_{2}\right) Z P_{3} \mathrm{~K} P_{6}$		\checkmark	\checkmark
56		Y ($P_{2} \mathrm{Z}$ ($P_{3} \mathrm{~K} \mathrm{P}_{6} \mathrm{~F} \times \mathrm{P}$		\checkmark	\checkmark
57		$Y P_{2} \mathrm{Z} \mathrm{P}_{3} \mathrm{I} \mathrm{P}_{3} \mathrm{~K} \mathrm{P}_{6}$		\checkmark	
58		$Y\left(P_{2} \mathrm{Z} \mathrm{P}_{3} \mathrm{I} \mathrm{P}_{3} \mathrm{~K} \mathrm{P}_{6} \mathrm{~F} \times \mathrm{P}\right.$		\checkmark	
59		$\mathbf{X} \mathbf{P}_{1} \mathrm{Y} \mathrm{P}_{2} \mathbf{Z} \mathrm{P}_{3} \mathrm{~K} \mathrm{P}_{6}$		\checkmark	\checkmark
60				\checkmark	\checkmark
61				\checkmark	
62				\checkmark	
63		Y ($P_{2} \mathrm{~K} \mathbf{P}_{6}$			\checkmark
64		Y (P_{2} K $P_{6} \mathrm{~F} \times \mathrm{V}$			\checkmark
65		$Y P_{2} J P_{4} \mathrm{~K} P_{6}$			\checkmark
66		Y ($P_{2} \mathrm{~J} \mathbf{P}_{4} \mathrm{~K} \mathbf{P}_{6} \mathrm{~F}$ V			\checkmark
67		$\mathrm{Z} \mathrm{P}_{3} \mathrm{~J} \mathrm{P}_{4}$			\checkmark
68		Z ($\mathrm{P}_{3} \mathrm{~J} \mathrm{P}_{4} \mathrm{~F} \times \mathrm{V}$			\checkmark
69		Z ($\mathrm{P}_{3} \mathrm{~J} \mathrm{P}_{4} \mathrm{~K} \mathrm{P}_{6}$			\checkmark
70		$Z\left(P_{3} \mathrm{~J} \mathrm{P}_{4} \mathrm{~K} \mathrm{P}_{6} \mathrm{~F} \times \mathrm{V}\right.$			\checkmark
71					\checkmark
72					\checkmark
73					\checkmark
74					\checkmark
75		$\mathbf{X} \mathbf{P}_{1} \mathrm{Z} \mathbf{P}_{3} \mathrm{~J} \mathrm{P}_{4} \mathrm{~K} \mathrm{P}_{6}$			\checkmark

6 Basic Usage of Motion Instructions and G-codes

No.	Motion instruction	Combination of operands	G17	G18	G19
76	CW/CCW	$\mathrm{X}\left(\mathrm{P}_{1} \mathrm{Z}\right.$ ($\mathrm{P}_{3} \mathrm{~J} \mathrm{P}_{4} \mathrm{~K} \mathrm{P}_{6} \mathrm{~F} \times \mathrm{V}$			\checkmark
77					\checkmark
78					\checkmark

- If users set the target position on the axis without setting the moving speed, the operation will run at $\mathrm{V}_{\text {MAX }}$.
- The path of circular interpolation can be a 360° arc. The path of helical interpolation which is viewed from the top can be a full circle.
- Example 1: Absolute coordinates are set, and CW is used. The arc start point set

Example

 is $(0,0)$, the arc end point set is $(5000,5000)$, and the vector from the arc start point to the arc center point set is $(2500,2500)$. The output speed set is 2000 Hz .

Program:

ABST;

CW XK10000 YK10000 IK2500 JK2500 FK2000;

- Absolute coordinates are set. G18 and CW are used. The arc end point set is $(-10,15,35)$ and the arc cent point set is $(-10,0,5)$. The output speed set is 2000 Hz.

Program:
ABS;
G18;
CW XK-10 YK15 ZK35 IK-30 JK0 (omissible) KK0 (omissible) FK2000;

6 Basic Usage of Motion Instructions and G-codes

Motion instruction number	$\begin{aligned} & \mathrm{CW} / \\ & \mathrm{CCW} \end{aligned}$	$\begin{gathered} x\left(P_{1} Y P_{2} z P_{3}\right. \\ R \subset F \subset V \end{gathered}$	Clockwise circular/helicalinterpolationCounterclockwise circular/helicalinterpolation(radius)	Applicable model
04				20PM
05				\checkmark

	Word device			Double word device		
	K	H	D	KK	HH	DD
P_{1}	$*$	$*$	$*$	$*$	$*$	$*$
P_{2}	$*$	$*$	$*$	$*$	$*$	$*$
P_{3}	$*$	$*$	$*$	$*$	$*$	$*$
L	$*$	$*$	$*$	$*$	$*$	$*$
V	$*$	$*$	$*$	$*$	$*$	$*$

Note: The instruction supports devices. The devices supported can be modified by V devices can Z devices. The instruction can be followed by an M-code instruction.

Explanation

- \mathbf{P}_{1} : Target position of the X -axis; \mathbf{P}_{2} : target position of the Y -axis; \mathbf{P}_{3} : target position of the Z -axis; L : Arc radius (If the angle subtended by an arc is less than 180°, the value of R is a positive value. If the angle subtended by an arc is greater than 180°, the value of R is a negative value.); V : Speed of circular/helical interpolation
- Maximum $\mathbf{V}=\mathrm{V}_{\text {MAX }}$.
- Range of parameters: (16-bit) K=-32,768~32,767; H=0~FFFF; D=0~9,999; (32-bit) KK=-2,147,483,648~2,147,483,647; HH=0~FFFFFFFF; DD=0~9,998
- Acceleration/deceleration time and bias speed can be set in special data registers.
- Acceleration/deceleration time increases or decreases in proportional to the setting of $\mathrm{V}_{\text {max }}$.
- 2-axis circular interpolation: DVP20PM00D only supports circular interpolation on the XY plane. DVP20PM00M supports circular/helical interpolation on 3 planes by G-code instructions: G17 (XY plane selection), G18 (ZX plane selection) or G19 (YZ plane selection).

G03 (Counterclockwise interpolation) G02 (Clockwise interpolation)

- Helical interpolation: Helical interpolation is applicable to DVP20PM00M. Three axes which are perpendicular to one another are used. They move synchronously. Helical interpolation is the extension of circular interpolation. If a helical interpolation instruction is used, and the change of height is zero, circular interpolation will be executed.

6

- If G17 is used, and the position of the Z-axis does not change, helical interpolation will be equivalent to circular interpolation.

Z-axis

CCW (Counterclockwise interpolation)

CW (Clockwise interpolation)

- If G18 is used, and the postion of the Y -axis does not change, helical interpolation will be equivalent to circular interpolation.

CCW (Counterclockwise interpolation)
CW (Clockwise interpolation)

- If G19 is used, and the postion of the X-axis does not change, helical interpolation will be equivalent to circular interpolation.

- 16-bit devices and 32 -bit devices can be used together.
- Principles of writing an instruction: (1) Users have to specify a target position, and an arc center. They do not have to specify the speed of interpolation. (2) If there is no vector from the present position of an axis to its target position, users do not need to specify the target position of the axis. The circular/helical instrctions listed below are available.

6 Basic Usage of Motion Instructions and G-codes

- DVP20PM00D only supports 2-axis (the XY plane) circular interpolation, and according to the programming rule, there are 6 operand combinations for CW/CCW.

No.	Motion instruction	Combination of operands
1	CW/CCW	$x\left(P_{1}\right) R$ L
2		$x\left(P_{1}\right) R$ L F (V)
3		$Y\left(P_{2}\right) R(L$
4		$Y\left(P_{2}\right) R \square L$
5		
6		X ($\mathrm{P}_{1} \mathrm{Y}$ P $\mathrm{P}_{2} \mathrm{R}$ (L F V

- DVP20PM00M supports 3-zxis circular/helical interpolation, and according to the programming rule, there are 14 operand combinations for CW/CCW instruction.

No.	Motion instruction	Combination of operands	G17	G18	G19
1	CW/CCW	x (P_{1} R L	\checkmark	\checkmark	
2		$X\left(P_{1} R\right.$, L V	\checkmark	\checkmark	
3		Y (P_{2} R L	\checkmark		\checkmark
4		Y (P_{2} R L L V	\checkmark		\checkmark
5		$X\left(P_{1}\right) Y\left(P_{2} R(L\right.$	\checkmark	\checkmark	\checkmark
6		$X\left(P_{1}\right) Y\left(P_{2}\right) R \square L$	\checkmark	\checkmark	\checkmark
7		$X\left(P_{1}\right) Z P_{3} \quad R \quad L$	\checkmark	\checkmark	\checkmark
8			\checkmark	\checkmark	\checkmark
9		Y (P_{2} Z P_{3} R L	\checkmark	\checkmark	\checkmark
10			\checkmark	\checkmark	\checkmark
11		X (P_{1} Z $P_{3} \mathrm{Y} \mathrm{P}_{2} \mathrm{R}$ (L	\checkmark	\checkmark	\checkmark
12			\checkmark	\checkmark	\checkmark
13		Z P P_{3} R L		\checkmark	\checkmark
14		$Z P_{3} \quad R$ L L		\checkmark	\checkmark

- If users set the target position on the axis without setting the moving speed, the operation will run at $\mathrm{V}_{\text {MAX }}$.
- Example 1: Absolute coordinates are set, and CW is used. The arc start point set is $(5000,5000)$, the arc end point set is $(10000,10000)$, and L is 5000 . The angle subtended by the arc is less than 180°, and therefore the value of R is a positive value. The axes move at a speed of 1,000 per second.

Program:

ABST;

CW XK10000 YK10000 RK5000 FK1000;

- Example 2: Absolute coordinates are set, and CCW is used. The arc start point set is (30, 0, 0), the arc end point set is ($0,30,15$), and L is 30.0. The angle subtended by the arc is less than 180°, and therefore the value of R is a positive value. The axes move at a speed of 100 per second.

Program:

ABST;

G17;

CCW XK0 YK30 ZK15 RK30 FK100;

- Please refer to the explanation of RADC for more information about setting a compensation value for a radius.
- The path of circular interpolation can not be a 360° arc. The path of helical interpolation which is viewed from the top can not be a full circle.

6 Basic Usage of Motion Instructions and G-codes

Motion instruction number	TIM			Applicable model
06	T Dwell			
				20PM

	Word device			Double word device		
	K	H	D	$K K$	$H H$	$D D$
T	$*$	$*$	$*$	$*$	$*$	$*$

Note: The instruction supports devices. The devices supported can be modified by V devices can Z devices. Please refer to the specifications for the DVP-20PM series motion controller used for more information about the device ranges available. The instruction can be followed by an M -code instruction.

Explanation

 second.)- A dwell period is a time interval between two instructions.

Motion instruction number	DRVZ	No operand	Returning home	Applicable model
				20PM
$\mathbf{0 7}$			\checkmark	

There is no operand. The instruction can be followed by an M-code instruction.

Explanation

- When DRVZ is executed, the X-axis, the Y-axis, and the Z-axis return home. Before enabling DRVZ, users have to first set the following parameters. (Please refer to the additional remark below for more information about special data registers.)

1. V_{RT} : Speed $\left(\mathrm{V}_{\mathrm{RT}}\right)$ at which an axis returns home
$V_{R T}$ cannot be modified during the execution.
Range: $0 \sim 500 \mathrm{kHz}$
Limitation: $V_{\text {MAX }}>V_{\text {RT }}>V_{\text {BIAS }}$
2. Speed $\left(V_{C R}\right)$ to which the speed of an axis decreases when the axis returns home: When a DOG signal is triggered, speed of the axis specified will decrease to the V_{CR} set. In order to accurately stop at its home, it is suggested the V_{CR} set should be a low speed.
Range: $0 \sim 500 \mathrm{kHz}$
Limitation: $\mathrm{V}_{\mathrm{CR}}<\mathrm{V}_{\mathrm{RT}}$
$V_{C R}$ cannot be modified during deceleration
3. Time it takes for the speed of an axis to increase to the $V_{R T}$ set.
4. Deceleration time: Time it takes for the V_{RT} set decrease to the V_{CR} set, and the time it takes for the V_{CR} set to 0 .
5. Number of PGO pulses for an axis: After DOG's signal is generated, the motor used will rotate for a specific number of PG0 pulses.
Range: 0~+32,767 pulses
6. Number of supplementary pulses for an axis: If the number of supplementary pulses for an axis is a positive number, the axis specified will move in the direction in which it returns home. If the v Number of supplementary pulses for an axis is a negative value, the axis specified will move in the direction which is opposite to the direction in which it returns home. Range: -32,768~32,767 pulses
7. Make sure that the flags used to disable the X -axis and the Y -axis from retuning home are set correctly.

- Parameters below should be set in special data registers. D1816 is for the X-axis, D1896 is for the Y-axis, and D1976 is for the Z-axis.

1. Direction in which the axis specified returns home:

Bit $8=0$: The value indicating the present command position of an axis specified decreases, and the axis returns home in the negative direction. Bit $8=1$: The value indicating the present command position of an axis specified increases, and the axis returns home in the positive direction.
2. Mode of returning home: Bit $9=0$: Normal mode; Bit $9=1$: Overwrite mode
3. Mode of triggering the return to home :

Bit 10=0: The return to home is triggered by a transition in DOG's signal from high to low
Bit 10=1: The return to home is triggered by a transition in DOG's signal from low to high.
4. If point 2 and point 3 are combined, there will be four modes of returning home. Please refer to section 3.12 for more information.

6 Basic Usage of Motion Instructions and G-codes

Example

Additional remark

- After XO is ON, DRVZ in OxO will be executed, and the Y-axis and the Z-axis will be disabled from returning home. The X -axis accelerates to the $\mathrm{V}_{\text {RT }}(500 \mathrm{kHz})$ in 100 ms , and operates at the $V_{\text {RT }}$ until DOG's signal goes from low to high. When DOG's signal goes from low to high, the X -axis decelerates to the $\mathrm{V}_{\mathrm{CR}}(10 \mathrm{kHz})$ in 100 ms . The mode of returning home is a normal mode. After the X-axis rotates for a specific number of PG0 pulses, and rotate for a specific number of supplementary pulses, it will stop. In the example, the number of PGO pulses and the number of supplementary pulses are 0 . After DOG's signal goes from high to low, the X -axis will stop.

Relevant flags: Please refer to chapter 3 for more information.
M1745 Disabling the X -axis from returning home in the Ox motion subroutine
M1825 Disabling the Y -axis from returning home in the Ox motion subroutine
M1985 Disabling the Z-axis from returning home in the Ox motion subroutine
M1074 Enabling the Ox motion subroutine specified

6

- Relevant special data registers

D1816
D1846
D1868
D1828, D1829
D1830, D1831 Speed (V_{CR}) to which the speed of the X -axis decreases when the X -axis returns home
D1832 Number of PG pulses for the X-axis (Generally, D1832 is used to set the umber of Z-phase signals which are sampled.)
D1833 Supplementary pulses for the X-axis (Generally, D1833 is used to set an Offset. Unit: Pulse)
D1836 Time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the X -axis to accelerate
D1837 Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the X -axis to decelerate
D1896 Setting the parameters of the Y -axis
D1908, D1909 Speed (V_{RT}) at which the Y -axis returns home
D1910, D1911 Speed (V_{CR}) to which the speed of the Y -axis decreases when the Y -axis returns home
D1912 Number of PG pulses for the Y-axis (Generally, D1912 is used to set the umber of Z-phase signals which are sampled.)
D1913 Number of Supplementary pulses for the Y-axis (Generally, D1913 is used to set an Offset. Unit: Pulse)
D1916 Time ($\mathrm{T}_{\mathrm{AcC}}$) it takes for the Y -axis to accelerate
D1917 Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the Y -axis to decelerate
D1976 Setting the parameters of the Z-axis
D1988, D1989 Speed (V_{RT}) at which the Z-axis returns home
D1990, D1991 Speed (V_{CR}) to which the speed of the Z-axis decreases when the Z-axis returns home
D1992 Number of PG pulses for the Z-axis (Generally, D1992 is used to set the umber of Z-phase signals which are sampled.)
D1993 Number of supplementary pulses for the Z-axis (Generally, D1993 is used to set an Offset. Unit: Pulse)
D1996 Time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the Z -axis to accelerate
D1997 Time ($\mathrm{T}_{\text {DEC }}$) it takes for the Z-axis to decelerate

6 Basic Usage of Motion Instructions and G-codes

Motion instruction number	SETR	No operand	Setting electrical zero	Applicable model
08				20PM

There is no operand. The instruction can be followed by an M-code instruction.

Explanation

Additional remark
Example

- When SETR is executed, users can set the present position of the X-axis/Y-axis/Z-axis as electrical zero, i.e. users can move the contents of the present command position register into the register for electrical zero. DVP20PM00D only supports the setting of electrical zero of the X-axis and the setting of electrical zero of the Y -axis. DVP20PM00M supports the setting of electrical zero of the X -axis, the setting of electrical zero of the Y -axis, the setting of electrical zero of the Z-axis.
- Program
- Relevant special data registers: Please refer to chapter 3 for more information.

D1848, D1849 Present command position of the X-axis
D1866, D1867 Electrical zero of the X-axis

D1928, D1929 Present command position of the Y-axis
D1946, D1947 Electrical zero of the Y-axis
D2008, D2009 Present command position of the Z-axis
D2026, D2027 Electrical zero of the Z-axis

6 Basic Usage of Motion Instructions and G-codes

Motion instruction number	DRVR	No operand	Returning to electrical zero	Applicable model
				20PM
$\mathbf{0 9}$				

There is no operand. The instruction can be followed by an M-code instruction.

Explanation

- When DRVR is executed, the X-axis, the Y-axis, and the Z-axis return to
- Moving path
$\xrightarrow{\text { P-axis }}$ Present position
$\xrightarrow{\text { P-axis }}$ Present position
- Program

Example

Additional remark
electrical zero at the $\mathrm{V}_{\text {MAX }}(0 \sim 500 \mathrm{kHz})$ set.

- Relevant special data registers: Please refer to chapter 3 for more information.

D1822, D1823 Maximum speed ($\mathrm{V}_{\mathrm{mAX}}$) at which the X-axis rotates
D1848, D1849 Present command position of the X-axis

D1866, D1867 Electrical zero of the X-axis
D1902, D1903 Maximum speed ($\mathrm{V}_{\text {max }}$) at which the Y -axis rotates
D1928, D1929 Present command position of the Y-axis
D1946, D1947 Electrical zero of the Y-axis
D1982, D1983 Maximum speed ($\mathrm{V}_{\text {max }}$) at which the Z -axis rotates
D2008, D2009 Present command position of the Z-axis
D2026, D2027 Electrical zero of the Z-axis

6 Basic Usage of Motion Instructions and G-codes

Motion instruction number	INTR	$\mathrm{X}\left(\mathrm{P}_{1} \mathrm{Y} \mathrm{P}_{2} \mathrm{~F} \subset\right.$	Two-axis single-Speed linear interpolation	Applicable model
10			(The remaining distance is	20PM
				\checkmark

	Word device			Double word device		
	K	H	D	KK	HH	DD
	$*$	$*$	$*$	$*$	$*$	$*$
P_{2}	$*$	$*$	$*$	$*$	$*$	$*$
V	$*$	$*$	$*$	$*$	$*$	$*$

Note: The instruction supports devices. The devices supported can be modified by V devices can Z devices. Please refer to the specifications for the DVP-20PM series motion controller used for more information about the device ranges available. The instruction can be followed by an M -code instruction.

Explanation

- \mathbf{P}_{1} : Target position of the X -axis; \mathbf{P}_{2} : Target position of the Y -axis; \mathbf{V} : Speed of two-axis linear interpolation
- Maximum V=V $\mathrm{V}_{\text {MAX }}$
- Range of parameters: (16-bit) K=-32,768~32,767; H=0~FFFF; D=0~9,999; (32-bit) KK=-2,147,483,648~2,147,483,647; HH=0~FFFFFFFF; DD=0~9,998
- Acceleration/deceleration time and bias speed can be set in special data registers.
- Acceleration/deceleration time increases or decreases in proportional to the setting of $\mathrm{V}_{\text {max }}$.
- Timing diagram

- The interpolation speed is monitored by special data registers: D1850~D1851 are for the X-axis. D1930~D1931 are for the Y-axis.
- The function of INTR is the same as the function of LIN. (If LIN is executed, a stop mode can be used, and the remaining distance can be considered.)
- A target position is required, but moving speed could be left out, and therefore there are 6 operand combinations for INTR.

No.	Motion instruction	Combination of operands
1	INTR	$\mathbf{x} \mathbf{P}_{1}$
2		x (P_{1} F ${ }^{\text {P }}$
3		$Y{ }^{\prime} P_{2}$
4		Y (P_{2} F $\mathrm{V}^{\text {P }}$
5		
6		\mathbf{x} ($P_{1} \mathbf{Y} \mathrm{P}_{2} \mathrm{~F} \subset$

Additional remark

- Relevant special data register: Please refer to the addition remark on LIN for more information.

6 Basic Usage of Motion Instructions and G-codes

Motion instruction	SINTR	$x\left(P_{1} / Y P_{2}\right)$	Inserting a single speed	Applicable model
number				20PM
11				\checkmark

	Word device			Double word device		
	K	H	D	KK	HH	DD
	$*$	$*$	$*$	$*$	$*$	$*$
P_{2}	$*$	$*$	$*$	$*$	$*$	$*$
V	$*$	$*$	$*$	$*$	$*$	$*$

Note: The instruction supports devices. The devices supported can be modified by V devices can Z devices. Please refer to the specifications for the DVP-20PM series motion controller used for more information about the device ranges available. The instruction can be followed by an M -code instruction.

- \mathbf{P}_{1} : Additional distance on the X-axis; $\mathbf{P}_{\mathbf{2}}$: Additional distance on the Y -axis; \mathbf{V} :

Operation speed

- Maximum $\mathrm{V}=\mathrm{V}_{\text {MAX }}$
- The first operand of SINTR can be either the X-axis or the Y-axis for single speed positioning with additional distance.
- Range of parameters: (16-bit) K=-32,768~32,767; H=0~FFFF; D=0~9,999; (32-bit) KK=-2,147,483,648~2,147,483,647; HH=0~FFFFFFFF; DD=0~9,998
- Acceleration/deceleration time and bias speed can be set in special data registers.
- Acceleration/deceleration time increases or decreases in proportional to the setting of $\mathrm{V}_{\text {max }}$.
- The 16 -bit devices and 32-bit devices can be used together.
- Timing diagram

- When SINTR is enabled, the operation speed will start from the $\mathrm{V}_{\text {BIAS }}$ set, accelerate to the $\mathrm{V}(\mathrm{I})$ set, and operate stably. When the execution encounters DOG's signal, it will follow the additional distance set by the instruction and complete the positioning process.
- Both additional distance and moving speed are required, and therefore there are 2 operand combinations for SINTR.

No.	Motion instruction	Combination of operands	
1	SINTR	$\mathrm{X} \mathrm{P}_{1}$	F
		V	
2		P_{2}	F

6 Basic Usage of Motion Instructions and G-codes

6 Basic Usage of Motion Instructions and G-codes

Motion instruction	DINTR	$\mathbf{X}\left(\mathrm{P}_{1} / \mathbf{Y} \mathrm{P}_{2}, \mathrm{~F} \mathrm{~V}_{1}\right) \mathrm{F} \mathrm{V}_{2}$	Inserting two speeds	Applicable model
				20PM
12				\checkmark

	Word device			Double word device		
	K	H	D	KK	HH	DD
P_{1}	$*$	$*$	$*$	$*$	$*$	$*$
P_{2}	$*$	$*$	$*$	$*$	$*$	$*$
$\mathrm{~V}_{1}$	$*$	$*$	$*$	$*$	$*$	$*$
$\mathrm{~V}_{2}$	$*$	$*$	$*$	$*$	$*$	$*$

Note: The instruction supports devices. The devices supported can be modified by V devices can Z devices. Please refer to the specifications for the DVP-20PM series motion controller used for more information about the device ranges available. The instruction can be followed by an M-code instruction.

Explanation

- $\mathbf{P}_{\mathbf{1}}$: Additional distance on the X -axis; $\mathbf{P}_{\mathbf{2}}$: Additional distance on the Y -axis; $\mathbf{V}_{\mathbf{1}}$:

First speed; \mathbf{V}_{2} : Second speed

- Maximum $\mathrm{V}_{1} / \mathrm{V}_{2}=\mathrm{V}_{\text {MAX }}$
- The first operand of DINTR can be either the X-axis or the Y-axis for double speed positioning with additional distance.
- Range of parameters: (16-bit) K=-32,768~32,767; H=0~FFFF; D=0~9,999; (32-bit) KK=-2,147,483,648~2,147,483,647; HH=0~FFFFFFFF; DD=0~9,998
- Acceleration/deceleration time and bias speed can be set in special data registers
- Acceleration/deceleration time increases or decreases in proportional to the setting of $\mathrm{V}_{\text {max }}$.
- The 16-bit devices and 32-bit devices can be used together.
- Timing diagram

- When DINTR is enabled, the operation speed will start from the $\mathrm{V}_{\text {BIAS }}$ set, accelerate to the $\mathrm{V}(\mathrm{I})$ set, and operate stably. When the execution encounters DOG's signal, it will further accelerate to the V (II) set, and then finish the additional distance set by the instruction.
- Both additional distance and moving speed are required, and therefore there are 2 operand combinations for SINTR.

No.	Motion instruction	Combination of operands		
1	DINTR	X	P_{1}	
		$\mathrm{~V}_{1}$	$\mathrm{~F} / \mathrm{V}_{2}$	
2		P_{2}	F	

6 Basic Usage of Motion Instructions and G-codes

Example

Additional remark

- If XO is ON , DINTR in OxO will be executed. The Y -axis accelerates to the first speed 250 kHz in 100 ms , and operates at the speed stably. When DOG's signal is triggered, it further accelerates to the second speed 500 kHz , and finishes the double speed positioning on the Y-axis with the additional 500,000 pulses.
- If XO is OFF, OxO and DINTR will be disabled.

- Relevant special data registers: Please refer to chapter 3 for more information.

D1836 Time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the X -axis to accelerate
D1837 Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the X -axis to decelerate
D1848, D1849 Present command position of the X -axis
D1916 Time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the Y -axis to accelerate
D1917 Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the Y -axis to decelerate
D1928, D1929 Present command position of the Y-axis

6 Basic Usage of Motion Instructions and G-codes

| Motion
 instruction
 number | MOVC | $x L_{1} \times L_{2}$ | Setting the offset of linear
 movement | Applicable model |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | 20PM |

	Word device			Double word device		
	K	H	D	KK	HH	DD
	$*$	$*$	$*$	$*$	$*$	$*$
$\mathrm{~L}_{2}$	$*$	$*$	$*$	$*$	$*$	$*$

Note: The instruction supports devices. The devices supported can be modified by V devices can Z devices. Please refer to the specifications for the DVP-20PM series motion controller used for more information about the device ranges available. The instruction can be followed by an M -code instruction.

Explanation

Additional remark

- \mathbf{L}_{1} : Offset for the target position of the X -axis; \mathbf{L}_{2} : Offset for the target position of the Y -axis
- Users can set only the offset value of the X-axis, e.g. MOVC XDDO.
- When MOVC is executed, the offset value is automatically written into special data registers: D1708~D1709 are for the X-axis. D1724~D1725 are for the Y-axis.
- The offset of linear movement can be adopted for DRV, LIN and INTR.
- If linear movement is executed after the offset value is written into special data registers, compensation will be carried out in accordance with the offset value.
- Range of parameters: (16-bit) K=-32,768~32,767; H=0~FFFF; D=0~9,999; (32-bit) KK=-2,147,483,648~2,147,483,647; HH=0~FFFFFFFF; DD=0~9,998
- The 16-bit parameter devices and 32-bit parameter devices can be used together.

No.	Motion instruction	Combination of operands
1	MOVC	$x L_{1}$
2		X (L_{1} Y L_{2}

- Relevant special data registers: Please refer to chapter 3 for more information.

D1708, D1709 Compensation value for the X -axis
D1724, D1725 Compensation value for the Y -axis

6 Basic Usage of Motion Instructions and G-codes

Motion instruction number	CNTC			
14				

	Word device			Double word device		
	K	H	D	KK	HH	DD
L_{1}	$*$	$*$	$*$	$*$	$*$	$*$
$\mathrm{~L}_{2}$	$*$	$*$	$*$	$*$	$*$	$*$

Note: The instruction supports devices. The devices supported can be modified by V devices can Z devices. Please refer to the specifications for the DVP-20PM series motion controller used for more information about the device ranges available. The instruction can be followed by an M-code instruction.

Explanation

- \mathbf{L}_{1} : Compensation value for the center of the arc created by the X -axis; L_{2} :

Compensation value for the center of the arc created by the Y -axis

- When CNTC is executed, the offset value is automatically written into special data registers: D1710~D1711 are for the X-axis. D1726~D1727 are for the Y -axis.
- The compensation value for the center of an arc can be adopted in CW and CCW.
- If circular movement is executed after the offset value is written into special data registers, compensation will be carried out in accordance with the offset value.
- Range of parameters: (16-bit) K=-32,768~32,767; H=0~FFFF; D=0~9,999; (32-bit) KK=-2,147,483,648~2,147,483,647; HH=0~FFFFFFFF; DD=0~9,998
- The 16-bit devices and 32-bit devices can be used together.
- Relevant special data registers: Please refer to chapter 3 for more information. D1710, D1711 Compensation value for the center of the arc created by the X -axis
D1726, D1727 Compensation value for the center of the arc created by the Y -axis

6 Basic Usage of Motion Instructions and G-codes

Motion instruction	RADC	R (L)	Setting an offset for a radius	Applicable model
number				20PM
15				\checkmark

Explanation

Additional remark

- L: Compensation value for a radius

When RADC is executed, the offset value is automatically written into special data registers: D1712~D1713.

- The compensation value for a radius can be adopted in CW and CCW instructions.
- If circular movement is executed after the offset value is written into special data registers, compensation will be carried out in accordance with the offset value.
- Range of parameters: (16-bit) K=-32,768~32,767; H=0~FFFF; D=0~9,999; (32-bit) KK=-2,147,483,648~2,147,483,647; HH=0~FFFFFFFF; DD=0~9,998
- The 16-bit devices and 32-bit devices can be used together.
- Relevant special data registers: Please refer to chapter 3 for more information. D1712, D1713 Compensation value for the radius

6 Basic Usage of Motion Instructions and G-codes

Motion instruction	CANC	No operand	Canceling compensation	Applicable model
				20PM
16				\checkmark

There is no operand. The instruction can be followed by an M-code instruction.

Explanation

- When CANC is executed, all motion compensation values are cancelled, i.e. the special data registers D1708~D1709, D1724~D1725, D1710~D1711, D1726~D1727, and D1712~D1713 are cleared automatically.

Additional remark

- Relevant special data registers: Please refer to chapter 3 for more information. D1708, D1709 Compensation value for the X -axis D1724, D1725 Compensation value for the Y -axis
D1710, D1711 Compensation value for the center of the arc created by the X-axis
D1726, D1727 Compensation value for the center of the arc created by the Y-axis
D1712, D1713 Compensation value for the radius

6 Basic Usage of Motion Instructions and G-codes

Motion instruction number ABST No operand Absolute programming
17

There is no operand. The instruction can be followed by an M-code instruction.

Explanation

- ABST enables an absolute coordinate system. An Absolute coordinate is a coordinate starting from 0 . If the target position of an axis is greater than the present position of the axis, the motor for the axis will rotate clockwise. If the target position of an axis is less than present position of the axis, the motor for the axis will rotate counterclockwise.
- INCT enables a relative coordinate system. A relative coordinate is relative movement from the present position of an axis. If the relative coordinates used are positive values, the motor used will rotate clockwise. If the relative coordinates used are negative values, the motor used will rotate counterclockwise.
- The center point (I, J), the radius (R), and the additional distances set by SINTR and DINTR are regarded as relative increments.
- If ABST and INCT are not in the program in a DVP-20PM series motion controller, Example the default setting for the program will be an absolute coordinate system after the STOP/RUN switch of the DVP-20PM series motion controller is turned form the "STOP" position to the "RUN" position. After INCT is executed, the motion instructions starting from the next row (e.g. DRV, LIN, CW, and CCW) will be operated in a relative coordinate system.

6 Basic Usage of Motion Instructions and G-codes

Motion instruction number	SETT					
19						

	Word device			Double word device		
	K	H	D	KK	HH	DD
P_{1}	$*$	$*$	$*$	$*$	$*$	$*$
P_{2}	$*$	$*$	$*$	$*$	$*$	$*$
P_{3}	$*$	$*$	$*$	$*$	$*$	$*$

Note: The instruction supports devices. The devices supported can be modified by V devices can Z devices. Please refer to the specifications for the DVP-20PM series motion controller used for more information about the device ranges available. The instruction can be followed by an M -code instruction.

- \mathbf{P}_{1} : Present position of the X -axis; \mathbf{P}_{2} : Present position of the Y -axis; \mathbf{P}_{3} : Present position of the Z-axis
- When SETT is executed, the present positions set in SETT are written automatically into present position registers: D1848~D1849 are for the X-axis. D1928~D1929 are for the Y-axis. D2008~D2009 are for the Z-axis.
- Range of parameters: (16-bit) K=-32,768~32,767; H=0~FFFF; D=0~9,999; (32-bit) KK=-2,147,483,648~2,147,483,647; HH=0~FFFFFFFF; DD=0~9,998
- The 16 -bit devices and 32 -bit devices can be used together.
- The values in the present position registers become the values specified by SETT when SETT is executed, and therefore mechanical zero and electrical zero are changed.
- At least one present position should be specified, and therefore there are 7 operand combinations for SETT.

No.	Motion instruction	Combination of operands	20D	20M
1	SETT	$\mathbf{X} \mathbf{P}_{1}$	\checkmark	\checkmark
2		$Y P_{2}$	\checkmark	\checkmark
3		X ($\mathbf{P}_{1} \mathrm{Y} \mathrm{P}_{2}$	\checkmark	\checkmark
4		Z P P_{3}	-	\checkmark
5		$X \mathbf{P}_{1} \mathbf{Z} \mathbf{P}_{3}$	-	\checkmark
6		$Y\left(P_{2}\right) Z P_{3}$	-	\checkmark
7		$\mathbf{X} \mathbf{P}_{1} \mathbf{Y} \mathbf{P}_{2} \mathbf{Z} \mathbf{P}_{3}$	-	\checkmark

- Program

Example

- After SETT is executed, the present position of the X-axis and the present position of the Y -axis will be changed, and the relevant position will also be changed.

6 Basic Usage of Motion Instructions and G-codes

Additional remark

Relevant special data registers: Please refer to chapter 3 for more information. D1848, D1849 Present command position of the X-axis D1928, D1929 Present command position of the Y-axis D2008, D2009 Present command position of the Z-axis

6.4 Descriptions of O Pointers/ M-code I nstructions

Instruction	Function	Applicable model
O	Program pointer	20 PM
		\checkmark

Description	Main program: O100 Motion subroutines: Ox0~Ox99

- O100 is a main program pointer. The motion subroutines Ox0~Ox99 are
- Ox0~Ox99 are motion subroutine pointers. Users can use them to create different motion paths. A subroutine number is stored in D1868 (CR72). If users want to store a subroutine number in D1868, they have to set bit 14 or bit 15 in D1868 to 1. After bit 12 in D1846 is set to ON or M1074 is set to ON, the execution of the Ox motion subroutine specified will start.
Example: Two steps to activate the motion subroutine Ox99 are as follows.
(1) Setting a number: D1868=H8063 (or H4063/HC063)
(2) Starting the execution of Ox99: D1846=H1000 or M1074=ON
- M2: End of a motion subroutine
- The main program O100 is composed of N0000~NO100, and the motion

Example subroutine Ox50 is composed of N0102~NO304.
Line number Program
N0000 0100
N0001 LD M1000
N0002 MOV H8063 D1868
N0007 OUT M1074

$:$	$:$
$:$	$:$

N0099 OUT Y30
N0100 M102
N0101 NOP
N0102 OX50
N0103 DRVZ
N0104 ABS
: :
:
N0304 M2

6 Basic Usage of Motion Instructions and G-codes

Instruction	Function	Applicable model
M	M-code instructions	20 PM
		\checkmark

Operand	MO~M65535 M102: End of O100 M2: End of a motion subroutine

- M-codes are used in motion subroutines, If an M-code is executed, the M-code will be stored in D1703, and M1794 will be automatically set to ON. If M1744 is ON, M1794 will be OFF, and the execution of an M-code is complete.
- A Y device can be controlled by the execution of an M-code in two ways. If the high byte in D1873 is 1, an output device can be set to ON. Users can set a Y device number in the low byte in D1873. If M1794 is ON (an M-code is executed), the Y device corresponding to the Y device number set in D1873 will be ON. If M1794 is OFF, the Y device corresponding to the Y device number set in D1873 will be OFF. Please refer to example 1 below for more information. The other way to control a Y device is using M1794 and D1703. Please refer to example 2 below for more information.
- M-codes are generally used in motion subroutines Ox0~Ox99.
- M codes can be used in two modes. They can be used in after mode or in with mode. The difference between the two modes lies in the time when an M-code is executed. Please refer to example 3 below for more information.
- After the execution of an M-code is complete, M1794 can be turned from ON to OFF in one of the two ways described blow.
(1) Users can set M1794 to OFF, and then M1794 is reset.
(2) Users can set M1744 to ON.

Additional remark

Example 1

- M102 indicates the end of O100, and M02 indicates the end of a motion subroutine. Users should avoid using M102 and M02.
- Display the present number of the M-code which is executed, e.g. M6, by the states of Y devices.
(1) First set the parameter in D1873

(2) Execute the M-code (M6). In this case, the DVP-20PM series motion controller used automatically writes K6 (0110) into D1703, and writes the value in D1703 into K2 Y_{N}. N is the start No. of a Y device.
MOV H6 D1703
MOV D1703 K2Y ${ }_{N}$
When the M-code is enabled, the instructions above run automatically. Users do not need to type instructions.
(3) The state of $\mathrm{K} 2 \mathrm{Y}_{\mathrm{N}}$ varies with the setting of N in D1873.

| D1873 | Y7 | Y6 | Y5 | Y4 | Y3 | Y2 | Y1 | Y0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H00ar | The Y device specified does not act. | | | | | | | |
| H0100 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| H0101 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | - |
| H0102 | 0 | 0 | 0 | 1 | 1 | 0 | - | - |
| H0103 | 0 | 0 | 1 | 1 | 0 | - | - | - |
| . | | | | | | | | |
| . | | | . | | | | | |

Example 2

- When an M-code in the motion program in a DVP-20PM series motion controller is executed, M1794 is ON. The M-code which is executed is stored in D1703. Users can use M1794 and D1703 to control Y devices. After an M-code in a motion subroutine is executed, M1744 can be set to ON, or M1794 can be set to OFF, otherwise the execution of the motion subroutine will stay at the M-code.

When M10 is executed, the system auto matically turn M1794 ON, and write 10 into D1703.

When M10 is executed, the system automtically turn M1794 ON, and write 50 into D1703.
(a) 0×0

(b) O 100

- The sequence control required is shown above.
- Step 1: When Ox0 is executed, M10 is executed.
(1) M1794 is turned ON, and 10 is written into D1703.
(2) The condition in network 00002 in O 100 is met, and therefore Y 3 is ON .
- Step 2: M1794 is turned ON.
(1) To in network 00004 in O 100 begins to count.
(2) When the value in T0 is $500, \mathrm{TO}$ is ON . In order to complete the execution of M10, M1744 in network 00005 is set to ON, or M1794 in network 00006 is set to OFF. Note: Network 0005 in O100 is disabled, and therefore is not downloaded to the DVP-20PM series motion controller used. Users can use one of the two ways to complete the execution of M10.

6 Basic Usage of Motion Instructions and G-codes

- Step 3: M50 in Ox0 is executed.
(1) M1794 is turned ON, and 50 is written into D1703.
(2) The condition in network 00003 in O 100 is met, and therefore Y 7 is ON .
- Step 4: M1794 is turned ON.
(1) T 0 in network 00004 in O 100 begins to count.
(2) When the value in TO is 500, T0 is ON. In order to complete the execution of M50, M1744 in network 00005 is set to ON, or M1794 in network 00006 is set to OFF.
- When an M-code in a program is executed, special auxiliary relays and a special data register are used to create the functions that the program need.

Example 3

After mode: If an M-code forms a line, it is used in after mode.
 The execution of LIN is complete.

After LIN is executed, the M-code M100 will be started automatically, and M1794 will be automatically turned ON. If users want to stop M100, they have to turn M1744 ON. If they want to start the M-code again, they can create a program that starts the M -code again.

- With mode: If an M-code is in back of a motion instruction, it is used in with mode.

When the execution of LIN is triggered, the M-code M100 is started automatically, and M1794 is automatically turned ON. If users want to stop M100, they have to turn M1744 ON. If they want o start the M-code again, they have to set parameters after the execution of LIN is complete, and create a program that starts the M-code again.

6 Basic Usage of Motion Instructions and G-codes

The M-codes in N0100 and N0304 are special M-codes. The M-code in N0105 is
Example 4 used in with mode, and the M-code in NO250 is used in after mode.

Line number	Program
N0000	O100
N0001	LD M1000

N0099	OUT Y30
N0100	M102

N0101 NOP

N0102 OX50
N0103 DRVZ

N0104 ABS
N0105 DRV XD10 FXD12 M20

N0250 M08

N0304 M2

6 Basic Usage of Motion Instructions and G-codes

6.5 Descriptions of G-code Instructions

G-code	G00	X P P_{1} P P_{2} P	Rapid positioning (three axes)	Applicable model
				20PM
				\checkmark

Explanation

- \mathbf{P}_{1} : Target position of the X -axis; \mathbf{P}_{2} : Target position of the Y -axis; \mathbf{P}_{3} : Target position of the Z-axis
- For DVP20PM00D, the target position of the Z-axis $\left(\mathrm{P}_{3}\right)$ is controlled by the built-in third axis. Please refer to page 6-51 for more information.
- Range of parameters: -2,147,483,648~2,147,483,647 (without a decimal point); $-2,147,483.648 \sim 2,147,483.647$ (with a decimal point)
- The operand parameters for DVP20PM00M can also be 16-bit registers or 32-bit registers.
- Please refer to the additional remark on DRV for more information about special data registers.
- The moving speed of GOO is the $\mathrm{V}_{\text {max }}$ set.
- The setting of a position has continuity. Please refer to the addition remark below for more information.
- Acceleration/deceleration time and bias speed can be set in special data registers.
- Acceleration/deceleration time and bias speed increase or decrease in proportional to the setting of $\mathrm{V}_{\text {max }}$.
- Timing diagram

- DVP20PM00D does not support three-axis positioning control. For third axis control, a DVP-01PU series single-axis positioning module is required. Therefore, users have to design two-axis high-speed positioning in the X -axis and the Y -axis and independent high-speed positioning for the Z -axis. For the safety of mechanical operation, if G00 is executed, Z -axis high-speed positioning will be executed first before the X -axis/ Y -axis high-speed positioning. That is to say, when a DVP-20PM series motion controller executes G00 with X-Z, Y-Z, and $X-Y-Z$ combinations, the program will automatically be divided.
G00 ZP_{3}
(A)

G00 $\quad \mathrm{XP}_{1} \quad \mathrm{YP}_{2}$
(B)

Please refer to the addition remark below for more information about (A) and (B).

Additional remark

- The setting of a position has continuity.

Example:
G00 X500.0 Y500.0 Z500.0;
X1000.0 Y1000.0 Z1000.0;
After the row with G00 is executed, the program will execute the next row. The second row in the program will reach the target position automatically by G00.

6 Basic Usage of Motion Instructions and G-codes

- DVP20PM00D: If G00 adopts the target position of the Z-axis (built-in third axis), the program required will be like the one shown below.
G00 X1000 Y1000 Z100;
The program will be compiled.
G00 Z100;
(A)

G00 X1000 Y1000; (B)
(A) is first executed, and at this time the operation fast moves to the position K100 on the Z-axis. (B) is next executed and the operation moves to the target position $(1000,1000)$ at the maximum speed.

6 Basic Usage of Motion Instructions and G-codes

G-code	G00	\mathbf{z} P	Rapid positioning		
(third axis control)				\quad	Applicable model
:---:					

Additional

 remark- DVP20PM00D does not support 3-axis positioning control. For third axis control, a DVP-01PU series single-axis positioning module is required.
- DVP20PM00D: If G00 adopts the target position of the Z-axis (built-in third axis), the program required will be like the one shown below.
G00 Z100; (A)
In step (A), the DVP-20PM series motion controller used writes the target position K100 on the Z-axis into the registers D1328 and D1329. The moving speed of G 00 is the maximum speed $\left(\mathrm{V}_{\text {MAX }}\right)$ set. Therefore, the PLC writes K-1 into D1330 and D1331 (K-1 refers to the positioning at the maximum speed). After this, the subroutine P255 is called and executed.
Operation of step (A):

P255 is a subroutine for controlling the third axis (e.g. a lift of a pen, clipping and releasing objects, and so on). If the target position is achieved by the control data set in DD1328 and DD1330, the operation in P255 will be executed.

Please avoid using D1328~D1331 and P255 repeatedly when the movement of the Z -axis is controlled.

G-code	G00		Rapid positioning (two axes)	Applicable model
				20PM
				\checkmark

- The G-code is mainly for DVP20PM00D. Please refer to the explanation of DRV explanation for more information.

6 Basic Usage of Motion Instructions and G-codes

G-code	G01		Linear interpolation(three axes)(The remaining distance canbe considered.)	Applicable model
				20PM
				\checkmark

Explanation

Additional remark

- \mathbf{P}_{1} : Target position of the X -axis; $\mathbf{P}_{\mathbf{2}}$: Target position of the Y -axis; \mathbf{P}_{3} : Target position of the Z -axis; \mathbf{V} : Speed of linear interpolation
- For DVP20PM00D, the target position of the Z-axis $\left(\mathbf{P}_{\mathbf{3}}\right)$ is controlled by the built-in third axis. Please refer to page 6-53 for more information.
- Range of the parameters $\mathbf{P}_{1}, \mathbf{P}_{2}$, and $\mathbf{P}_{3}:-2,147,483,648 \sim 2,147,483,647$ (without a decimal point); range of the parameter \mathbf{V} : 0~500,000 (without a decimal point); range of the parameters $\mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}$, and $\mathbf{P}_{3}:-2,147,483.648 \sim 2,147,483.647$ (with a decimal point); range of the parameter V: $0 \sim 500.0$ (with a decimal point)
- The operand parameters for DVP20PM00M can also be 16-bit registers or 32-bit registers.
- The speed of linear interpolation (V) has continuity. Please refer to the additional remark below for more information.
- Please refer to the explanation of LIN for more information about the positioning process of DVP20PM00M.
- DVP20PM00D does not support three-axis synchronous interpolation. For third axis control, a DVP-01PU series single-axis positioning module is required. Therefore, users have to design two-axis high-speed interpolation in the X -axis and the Y -axis and independent high-speed positioning for the Z -axis. For the safety of mechanical operation, if G01 is executed, Z -axis high-speed movement will be executed first before the X-axis $/ \mathrm{Y}$-axis interpolation. That is to say, when a DVP-20PM series motion controller executes G01 with $X-Z, Y-Z$, and $X-Y-Z$ combinations, the program will automatically be divided.
G01 $\mathrm{ZP}_{3} \mathrm{FV}$
(A)
G01 $\quad \mathrm{XP}_{1} \quad$ Y $\mathrm{P}_{2} \quad$ FV
(B)

Please refer to page 6-53 for more information about (A) and (B).

- The setting of speed has continuity.

Example:
G01 X100 Y100 Z400 F200;
X200 Y200;
After the row with G01 is executed, the program will execute the next row. The second row in the program will reach the target position automatically at the speed F200 set in the first row.

- DVP20PM00D: If G01 adopts the target position of the Z-axis (built-in third axis), the program required will be like the one shown below.
G01 X1000 Y1000 Z100 F200;
The program will be compiled.
G01 Z100 F200;...(A)
G01 X1000 Y1000 F200; ...(B)
(A) is first executed, and at this time the operation fast moves to the position K100 on the Z-axis. (B) is next executed and the operation moves to the target position $(1000,1000)$ at the speed of K200.

6 Basic Usage of Motion Instructions and G-codes

G-code	G01	$z\left(P_{3} \mathrm{~F} \times\right.$	Linear interpolation (three axes) (third axis control)	Applicable model
				20PM
				\checkmark

Additional remark

- DVP20PM00D does not support three-axis synchronous interpolation. For third axis control, a DVP-01PU series single-axis positioning module is required.
- DVP20PM00D: If G01 adopts the target position of the Z-axis (built-in third axis), the program required will be like the one shown below.

G01 Z100 F200;...(A)

In step (A), the DVP-20PM series motion controller used writes the target position K100 on the Z-axis into the registers D1328 and D1329. The moving speed of G01 is K200. K200 is written into D1330 and D1331. After this, the subroutine P255 is called and executed.
Operation of step (A):

P255 is a subroutine for controlling the third axis (e.g. a lift of a pen, clipping and releasing objects, and so on). If the target position is achieved by the control data set in DD1328 and DD1330, the operation in P255 will be executed.

Please avoid using D1328~D1331 and P255 repeatedly when the movement of the Z -axis is controlled.

G-code | G01 | $\times\left(\mathbf{P}_{1}\right)$ | Y |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |

- The G-code is mainly for DVP20PM00D. Please refer to the explanation of LIN

Explanation for more information.

G-code	$\begin{aligned} & \text { G02 } \\ & \text { G03 } \end{aligned}$		Clockwise circular/helical interpolation Counterclockwise circular/helical interpolation (arc center)	Applicable model
				20PM
				\checkmark

Explanation

\qquad

Additional remark

- \mathbf{P}_{1} : Target position of the X -axis; \mathbf{P}_{2} : Target position of the Y -axis; \mathbf{P}_{3} : Target position of the Z-axis; \mathbf{P}_{4} : Vector from the present position of the X -axis to an arc center; \mathbf{P}_{5} : Vector from the present position of the Y -axis to an arc center; $\mathbf{P}_{\mathbf{6}}$: Vector from the present position of the Z-axis to an arc center; \mathbf{V} : Speed of circular/helical interpolation
- $\mathbf{P}_{4}, \mathbf{P}_{5}$ and \mathbf{P}_{6} : Vectors from the present positions of an x-axis, a y-axis, and a z-axis to an arc center
- Range of the parameters $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{\mathbf{3}}, \mathbf{P}_{4}, \mathbf{P}_{5}$, and \mathbf{P}_{6} : $-2,147,483,648 \sim 2,147,483,647$ (without a decimal point); range of the parameter V: 0~500,000 (without a decimal point); range of the parameters $\mathbf{P}_{1}, \mathbf{P}_{\mathbf{2}}, \mathbf{P}_{3}, \mathbf{P}_{4}$, \mathbf{P}_{5}, and \mathbf{P}_{6} : $-2,147,483.648 \sim 2,147,483.647$ (with a decimal point); range of the parameter V: 0~500.0 (with a decimal point)
- The operand parameters for DVP20PM00M can also be 16-bit registers or 32-bit registers.
- The speed of circular/helical interpolation (V) has continuity. Please refer to the additional remark below for more information.
- Please refer to the explanations of CW and CCW for more information about the positioning process of a DVP-20PM series motion controller.
- The setting of speed has continuity.

Example:
G02 X0.0 Y100.0 10.0 J50.0 F100.0; G02 X0.0 Y0.0 $10.0 \quad \mathrm{~J} 50.0$;

- After the row with G02 is executed, the program will execute the next row. The second row in the program will reach the target position automatically at the speed F100.0 set in the first row.

G-code	$\begin{aligned} & \text { G02 } \\ & \text { G03 } \end{aligned}$	$\begin{gathered} x\left(P _ { 1 } Y \left(P_{2} Z\left(P_{3}\right)\right.\right. \\ R \subseteq \mathrm{~F} \subset \mathrm{~V} \end{gathered}$	Clockwise circular/helical interpolation Counterclockwise circular/helical interpolation (radius)	Applicable model
				20PM
				\checkmark

Explanation

- \mathbf{P}_{1} : Target position of the X -axis; \mathbf{P}_{2} : target position of the Y -axis; \mathbf{P}_{3} : target position of the Z -axis; L : Arc radius (If the angle subtended by an arc is less than 180°, the value of R is a positive value. If the angle subtended by an arc is greater than 180°, the value of R is a negative value.); V : Speed of circular/helical interpolation
- Range of the parameters $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{\mathbf{3}}$, and $\mathbf{R}:-2,147,483,648 \sim 2,147,483,647$ (without a decimal point); range of the parameter V: 0~500,000 (without a decimal point); range of the parameters $\mathbf{P}_{1}, \mathbf{P}_{\mathbf{2}}, \mathbf{P}_{\mathbf{3}}$, and \mathbf{R} : $-2,147,483.648 \sim 2,147,483.647$ (with a decimal point); range of the parameter \mathbf{V} : $0 \sim 500.0$ (with a decimal point)
- The operand parameters for DVP20PM00M can also be 16-bit registers or 32-bit registers.
- Please refer to the explanations of CW and CCW for more information about the positioning process of a DVP-20PM series motion controller.

6 Basic Usage of Motion Instructions and G-codes

| G-code | G 04 | Dwell | Applicable model |
| :---: | :---: | :---: | :---: | :---: |
| | | 20 PM | |

Explanation

- XT: Dwell time (Unit: 1 second)
$\mathrm{G} 4 \times 1$: The dwell time set is one second.
G4 X2: The dwell time set is 2.5 seconds.
- PT: Dwell time (Unit: 1 millisecond)

G4 P100: The dwell time set is 0.1 seconds.
G4 P4500: The dwell time set is 4.5 seconds.
The setting value of \mathbf{P} is a multiple of 10 milliseconds. If the setting value of \mathbf{P} is less than 10 milliseconds, it will be regarded as 0 milliseconds. If the setting value of \mathbf{P} is 23 milliseconds, it will be regarded as 20 milliseconds.

- The operand parameters for DVP20PM00M can also be 16-bit registers or 32-bit registers.
- Please refer to the explanation of TIM for more information.

G-code	G17		XY plane selection	Applicable model
	G18	No operand		ZX plane selection

Explanation | The three instructions determine the work planes for arc interpolation and helical |
| :--- |
| interpolation and have no effects on linear interpolation. |

- Users can switch the three planes during the execution of the instructions. If no work plane is selected, XY plane (G17) will be automatically selected as the work plane.
- Work planes:

| G-code | G90 | Absolute programming | Applicable model |
| :---: | :---: | :---: | :---: | :---: |
| | | | |

[^2]
6 Basic Usage of Motion Instructions and G-codes

| G-code | Go operand | Incremental programming | Applicable model |
| :---: | :---: | :---: | :---: | :---: |
| | | | \checkmark |

- Please refer to the explanation of INC for more information about the operation of G91.

7 Using a DVP－20PM Series Motion Controller as a Slave

7．1 Access between DVP－EH2，DVP－20PM（as a Master）and DVP－20PM （as a Slave）

When DVP－20PM is used as Slave，there is a data exchange area in DVP－20PM which corresponds to the control registers（CRs）in the Master．The data exchange area is consisted of consecutive special registers，and users can utilize the data exchange area for accessing data between Master and Slave as well as performing motion control functions through a Slave DVP－20PM．

7．1．1 Structure

－DVP－EH2 and Master DVP－20PM apply FROM／TO instructions to transmit commands to Slave DVP－20PM for executing motion control subroutines．
－DVP－EH2 and Master DVP－20PM apply FROM／TO instructions to access the control registers （CR\＃0～CR\＃199，corresponding to special registers D1500～D1699 in the Slave）in Slave DVP－20PM．

7．1．2 Example of Master－slave Data Exchange

－Set up：design the data exchange programs in Master and Slave respectively．
－Slave DVP－20PM：Move the data to be accessed by Master into the data exchange area through MOV instruction
－Master：Plan the CRs（on Slave）for Master to access．
－Example 1
【Control purpose】
－DVP－EH2 applies FROM／TO instructions to access special registers D1500～D1699 in Slave DVP－20PM and executes manual mode position control on X／Y axis．（For relative registers see 3．12．3）
【 Table for CRs in the Master and corresponding special registers in the Slave】

Master	Slave		Content	
	Planned internally	Planned by user		
CR\＃0	D1500	Set up by the system	Model code of Slave DVP－20PM	
CR\＃1	D1501	D1846	Operation commands for X axis	
CR\＃2～3	D1502～D1503	D1848～D1849	Current position of X axis CP（Pulse）	

7 Using a DVP-20PM Series Motion Controller as a Slave

Master	Slave		Content
	Planned internally	Planned by user	
CR\#4~5	D1504~D1505	D1850~D1851	Current speed of X axis (PPS)
CR\#6~7	D1506~D1507	D1860~D1861	MPG input frequency on X axis
CR\#8~9	D1508~D1509	D1862~D1863	Accumulated number of MPG input pulses at X axis

1. If you need to use other functions of Slave DVP-20PM, please refer to Chapter 3 and fill the relative special registers into the "Planned by user" column. After this you can add the relative registers to the example program, so that the desired motion control functions can be performed.
2. D1500~D1699 are the special registers planned internally in the Slave, among which D1500 is the read-only register for storing the model code of DVP-20PM (H'6260). Therefore, D1501~D1699 are the applicable registers.
【 Program in DVP-EH2 master】

Ladder diagram:

Operation:

```
When M aster DVP-EH2 is in RUN, read out CR\#0 of Slave, corres ponding to D1500 in Slave.
Write in CR\#1 of Slave, corresponding to D1501 in Slave, to STOP X axis in Slave.
Read out CR\#2 of Slave, corresponding to D1502 ~ D1503 in Slave.
Read out CR\#4 of Slave, corresponding to D1504 ~ D1505 in Slave.
Read out CR\#6 of Slave, corresponding to D1506 ~ D1507.
Read out CR\#8 of Slave, corresponding to D1508 ~ D1509.
When \(\mathrm{X} 0=\mathrm{ON}\), write in CR\#1 of Slave, corresponding to D1501 in Slave, to enable JOG+ operation on X axis in Slave.
When \(\times 1=O N\), write in CR\#1 of Slave, corresponding to D1501 in Slave, to enable JOG- operation on \(X\) axis in Slave.
When \(\times 2=O N\), write in CR\#1 of Slave, corresponding to D1501 in Slave, to enable zero return on \(X\) axis in Slave.
When X3 = ON, write in CR\#1 of Slave, corresponding to D1501 in Slave, to enable single-speed positioning on \(X\) axis in Slave.
```


7 Using a DVP-20PM Series Motion Controller as a Slave

When X4 = ON, write in CR\#1 of Slave, corresponding to D1501 in Slave, to enable 2-speed positioning on X axis in Slave.

When X5 = ON, write in CR\#1 of Slave, corresponding to D1501 in Slave, to enable single-speed positioning with additional distance on X axis in Slave.

When X6 = ON, write in CR\#1 of Slave, corresponding to D1501 in Slave, to enable 2-speed positioning with additional distance on X axis in Slave.

When $\times 7=$ ON, write in CR\#1 of Slave, corresponding to D1501 in Slave, to enable MP G input operation of X ax is in Slave.

When X0 ~ X7 = OFF, write in CR\#1 of Slave, corresponding to D1501 in Slave, to STOP X axis in Slave.

Program in DVP-20PM slave:

Ladder diagram:

Operation:

Enable O100 in Slave, and clear the current position of X axis as " 0 "

Clear the number of accumulated MPG pulses of X axis as " 0 ".
Set up the target position (I) of X axis $P(I)$

Set up the operation speed (I) of X axis $V(I)$

Set up the target position (II) of X axis P (II)

Set up the operation speed (II) of X axis V (II)

Move D1501, corresponding to CR\#1, to X axis for setting up operation commands.
Move the current position of X axis D1848~D1849 to D1502 ~ D1503, corres ponding to CR\#2 ~CR\#3.

Move the current speed of X axis D1850 ~ D1851 to D1504~D1505, corresponding to CR\#4 ~CR\#5.

Move MPG input frequency of X axis D1860 ~ D1861
to D1502 ~ D1503, corresponding to CR\#6 ~ CR\#7.
Move the number of MP G pulses of X axis D1862 ~ D1863 to D1508 ~ D1509, corresponding to CR\#8 ~ CR\#9.

Example 2

【Control purpose】

- DVP-EH2 applies FROM/TO instructions to access special registers D1500~D1699 in Slave

7 Using a DVP－20PM Series Motion Controller as a Slave

DVP－20PM and executes motion instructions in OX subroutines（see Chapter 6 for how to use motion instructions）．
【Table for CRs in the Master and corresponding special registers in the Slave】

Master	Slave		Content
	Planned internally	Planned by user	
CR\＃0	D1500	-	Model code of DVP－20PM Slave
CR\＃1	D1501	D1868	No．of OX subroutine
CR\＃2	D1502	D1846	Operation commands for X axis（OX）

【Program in DVP－EH2 master】

Ladder diagram：

Operation：

When DVP－EH2 Master is in RUN，read out CR\＃0 of Slave，corresponding to D1500 in Slave．

Write in CR\＃1 of Slave，corresponding to D1501 in Slave， to enable OX00 and execute DRV instruction in Slave．

Write in CR\＃2 of Slave，corresponding to D1502 in Slave， to enable OX subroutine in Slave．

Write in CR\＃1 of Slave，corresponding to D1501 in Slave， to enable OX01 and execute LIN instruction in Slave．

Write in CR\＃2 of Slave，corresponding to D1502 in Slave， to enable OX subroutine in Slave．

Write in CR\＃1 of Slave，corresponding to D1501 in Slave， to enable OX02 and execute CW instruction in Slave．

Write in CR\＃2 of Slave，corresponding to D1502 in Slave， to enable OX subroutine in Slave．

Write in CR\＃1 of Slave，corresponding to D1501 in Slave， to enable OX03 and execute CCW instruction in Slave．

Write in CR\＃2 of Slave，corresponding to D1502 in Slave， to enable OX subroutine in Slave．

Write in CR\＃1 of Slave，corresponding to D1501 in Slave， to enable OX04 and execute DRVZ instruction in Slave． Write in CR\＃2 of Slave，corresponding to D1502 in Slave， to enable OX subroutine in Slave．

When X0～X4＝OFF，write in CR\＃1 of Slave，corresponding to D1501 in Slave，to disable OX subroutine in Slave．

【 Program in DVP-20PM slave】
Instruction mode:
0100
LD M1002
DMOV K0 D1848
DMOV K0 D1928
LD M1000
MOV D1501 D1868
MOV D1502 D1846
M102

OX00
DRV X200000 FX100000 Y200000 FY100000
M2

OX01
LIN X100000 Y100000 F200000
M2

OX02
CW X0 Y100000 IO J50000 F200000
M2

OX03
CCW X0 Y100000 IO J50000 F200000
M2

OX04
BRET
DMOV K200000 D1828
DMOV K100000 D1830
DMOV K200000 D1908
DMOV K100000 D1910
DRVZ
M2

Operation:

Place the instructions for initializing current position of X / Y axis in O 100 main program. Enable O100 in Slave then call the motion subroutine.

Place motion instruction DRV in OX00 subroutine.

Place motion instruction LIN in OX01 subroutine.

Place motion instruction CW in OX02 subroutine.

Place motion instruction CCW in OX03 subroutine.

Place motion instruction DRVZ in OX04 subroutine, and set up relevant parameters for DRVZ.

8 Application Examples

8.1 Drawing Paths by Motion I nstructions and G-codes

8.1.1 Paths

Path 1

Path 2

8 Application Examples

Path 3

Path 4

8.1.2 Steps

1. Path 1: Set up the absolute coordinates of the four points $(-20,20),(60,20),(60,100)$ and $(-20$, 100). Start from (0,0).
2. Path 2: Set up the absolute coordinates of the four points $(-10,10),(20,10),(20,70)$ and $(-10,70)$. Start from (0, 0).
3. Path 3: Set up the absolute coordinates of the three points $(-25,25),(25,25)$ and $(0,85)$. Start from

8 Application Examples

(0,0).
4. Path 4: Set up the absolute coordinates of the seven points (10, 10), (10, 30), (10, 110), (10, 230), $(10,210),(10,130)$ and (10, 10). Start from (0,0).
5. Instruction list of motion instructions or G-codes

Instruction mode: Design instructions for initializing the present status of the X -axis $/ \mathrm{Y}$-axis and enabling OXO motion subroutine.

O100		
LD	M1002	
DMOV	K0	D1848
DMOV	K0	D1928
RST	M1074	
MOV	H8000	D1868
SET	M1074	
M102		

OX0 subroutine: Call pointer P0 in subroutine
OXO
BRET
CALL PO
M2
Example of motion instructions for path 1
P0

ABST			
DRV	X-20000	Y20000	
LIN	X60000	Y20000	F20000
LIN	X60000	Y100000	F20000
LIN	X-20000	Y100000	F20000
LIN	X-20000	Y20000	F20000

O100 main program
Set the current position of X axis to 0
Set the current position of Y axis to 0
Disable OX motion subroutine
Write the No. (0) of OX to be enabled Enable OX motion subroutine

OX motion subroutine
Return to bus line
Call PO subroutine

P0 subroutine
Set up absolute coordinate
Fast move to designated position
Move to designated position by linear interpolation. Can also be written as LIN X60000 F20000
Move to designated position by linear interpolation. Can also be written as LIN Y100000
Move to designated position by linear interpolation. Can also be written as LIN X-20000
Move to designated position by linear interpolation. Can also be written as
LIN Y20000

SRET
Example of G-code instructions for path 1: Design a motion program in a pointer

P0
G90
G00 X-20.0 Y20.0
G01 X60.0 Y20.0 F20.0

G01 X60.0 Y100.0 F20.0

G01 X-20.0 Y100.0 F20.0

G01
$X-20.0 \quad Y 20.0$
F20.0

PO subroutine
Set up absolute coordinate
Fast move to designated position
Move to designated position by linear interpolation. Can also be written as G01 X60.0 F20.0
Move to designated position by linear interpolation. Can also be written as G01 Y100.0
Move to designated position by linear interpolation. Can also be written as G01 X-20.0
Move to designated position by linear interpolation. Can also be written as G01 Y20.0

SRET
Example of motion instructions for path 2
P0

ABST			
DRV	X-10000	Y10000	
LIN	X20000	Y10000	F40000
CCW	X20000	Y70000	J30000
LIN	X-10000	Y70000	F20000
CCW	X-10000	Y10000	J-30000

SRET
Example of G-code instructions for path 2
PO
G90
G00 X-10.0 Y10.0
$\begin{array}{llll}\text { G01 } & \text { X20.0 } & \text { Y10.0 } & \text { F40.0 }\end{array}$
$\begin{array}{llll}\text { G03 } & \text { X20.0 } & \text { Y70.0 } & \text { J30.0 }\end{array}$

G01	X-10.0	Y70.0	F20.0
G03	X-10.0	Y10.0	J-30.0

SRET
Example of motion instructions for path 3
P0
INCT

DRV	X-25000	Y25000	
LIN	X50000	Y0	F20000
LIN	X-25000	Y60000	F20000

LIN X-25000 Y-60000 F20000

DRV X25000 Y-25000
SRET
Example of G-code instructions for path 3
P0
G91

P0 subroutine
Set up absolute coordinate
Fast move to designated position Move to designated position by linear interpolation. Can also be written as LIN X20000 F40000
F20000 Move to designated position by arc interpolation. Can also be written as CCW Y70000 J30000 F20000
Move to designated position by linear interpolation. Can also be written as LIN X-10000
F20000 Move to designated position by arc interpolation. Can also be written as CCW Y10000 J-30000

P0 subroutine
Set up absolute coordinate
Fast move to designated position Move to designated position by linear interpolation. Can also be written as G01 X20.0 F40.0
F20.0 Move to designated position by arc interpolation. Can also be written as G03 Y70.0 J30.0 F20.0
Move to designated position by linear interpolation. Can also be written as G01 X-10.0
F20.0 Move to designated position by arc interpolation. Can also be written as G03 Y10.0 J-30.0

P0 subroutine
Set up relative coordinate
Fast move to designated position Move to designated position by linear interpolation.
Move to designated position by linear interpolation. Can also be written as LIN X-25000 Y60000
Move to designated position by linear interpolation. Can also be written as LIN X-25000 Y-60000
Fast move to designated position

P0 subroutine
Set up relative coordinate
$\left.\begin{array}{lllll}\text { G00 } & \text { X-25.0 } & \text { Y25.0 } & & \begin{array}{l}\text { Fast move to designated position } \\ \text { Move to designated position by linear } \\ \text { G01 }\end{array} \\ \text { X50.0 } & \text { Y0 } & \text { F20.0 } & & \begin{array}{l}\text { Move to designated position by linear } \\ \text { interpolation. Can also be written as } \\ \text { G01 X-25.0 Y60.0 }\end{array} \\ \text { G01 } & \text { X-25.0 } & \text { Y60.0 } & \text { F20.0 } & \\ \text { Move to designated position by linear } \\ \text { Interpolation. Can also be written as }\end{array}\right\}$

8 Application Examples

G03	X10.0	Y130.0	J-40.0	F15.0	Move to designated position by arc interpolation. Can also be written as G03 Y130.0 J-40.0
G02	K10.0	Y10.0	R60.0	F20.0	Move to designated position by arc interpolation. Can also be written as
				G02 Y10.0 R60.0 F20.0	

SRET
6. If M1072 in a DVP-20PM series motion controller is ON, the DVP-20PM series motion controller will be made to run, and the positioning instructions above will be executed.

8.2 Applying Application Examples in PMSoft

Users can apply the application example "motionSample" to draw English letters, any graph or text. If the users wish to apply this function to any two-axis control equipment, they can modify the example program below for them to realize more diverse control purposes. Path: Open PMSoft => File => Open Examples => select "motionSample_26Letter" file to open the example program.

8.2.1 Program Structure

In order to apply DVP-20PM for drawing, users need to convert letters or graphs into G-Codes (i.e. NC code) before designing the main control program. In addition, DVP-20PMOOD only offers X-axis/Y-axis interpolation, the users have to apply additional Z-axis control for the "pen-lifting" function. In this example, DVP-EH is used to complete the third axis control. (Other controllers are also applicable). The program structure designed is shown below.

8 Application Examples

8.2.2 Designing an Example Program

To design the example program, users can divide the program into four sections including OXO~M2, O100~M102, P255~SRET and P0~SRET explained below.

1. OX0~M2: Setting the function parameters of X-axis and Y-axis

When DVP-20PM runs and motion subroutine (OX) is ready (M1792 = ON), set ON X0 to enable OXO motion subroutine. OXO will set up parameters for zero return, JOG speed, and input terminal polarity on X -axis/Y-axes.
Next, enable zero return and move to (-200000, -200000) on X-axis/Y-axis by 100 kHz then reset the current position to 0 and call PO subroutine. OXO subroutine will end when the execution of PO subroutine is completed.
If users need to set up other control modes, please refer to explanations on special registers in Chapter 3.

Ladder diagram:

Operation:

Zero return speed (VRT) of the X -axis $=200 \mathrm{kHz}$
Zero return deceleration speed (VCR) of the X -axis $=200 \mathrm{kHz}$

Zero return speed (VRT) of the Y -axis $=200 \mathrm{kHz}$
Zero return deceleration speed (VCR) of the Y-axis $=200 \mathrm{kHz}$

JO G speed of the X-axis $=100 \mathrm{kHz}$
JO G speed of the Y-axis $=100 \mathrm{kHz}$
Set up input terminal polarity of the X-axis $/ Y$-axis
Enable zero return on the X -axis/Y-axis

Move to $(-200000,-200000)$ on the X-axis/Y-axis by 100 kHz .
Clear the current position of the X -axis to 0 .

Clear the current position of the Y -axis to 0 .
Call the subroutine PO.
2. O100~M102: Main program control

O100 main program controls whether to enable OXO subroutine. When X0 (drive contact for enabling OXO) and M1792 (indicating ready status of OX) in the program are ON, OXO subroutine will be enabled. You can further place other operations in the main program.

Ladder diagram:

Operation:
When OX is ready (M1792 = ON), OXO motion subroutine can be enabled by $\mathrm{X0}$.

Enable OX0 motion subroutine
Other operations
Other operations

Other operations

8 Application Examples

3. P255~SRET: Setting the third axis (Z-axis) control system

The third axis control will activate according to the parameter setting of G00 and G01 instructions. When G00/G01 sets target position of the Z-axis (D1328), P255 will be enabled to drive Y7 (third axis control signal) and enable DVP-EH to control the lift or drop of a pen (i.e. up/down movement of the Z-axis). For more details, please refer to G00 and G01 instructions in Chapter 6.

Ladder diagram:

Operations:

Y7 (control signals for pen lifting) is controlled by the target position (D1328) of the Z-axis.

Pause for 0.1 second

The third-axis control signal (Y7) in P255 of DVP-20PM drives the input contact X1 of DVP-EH. If X 1 is ON , the step motor controlled by pulses will lift the pen through DDRVI. If X 1 is OFF, the step motor will drop the pen through DDRVI.
Program in DVP-EH:

Connect the input devices Y0 and Y1 in DVP-EH to the pulse input terminals on the step motor.
4. PO~SRET: Two-axis (X-axis/Y-axis) interpolation control

After converting the letters or graphs into G-codes (NC-codes), place the G-code into OXO subroutine but into PO subroutine in order to simplify the program. Operate the PO~SRET section with the three sections above and the drawing of letters or graphs can be performed. Ladder diagram: Operations:

G-codes (NC-codes) which draw paths

When program section 1~program section 4 are completed, drawing of letters, graphs or any texts by DVP-20PM can be performed by DVP-20PM.

8.3 Planning Variable Speed Operation

This section introduces how to trigger many segments of speed (variable speed) in a fixed route by using single-speed positioning mode.

8.3.1 Program Structure

1. Trigger condition 1: External input signal. $X 0 \sim X 3$ switch to the second speed \sim the fifth speed.
2. Trigger condition 2: Comparison results of the present position. M0~M3 switch to the second speed~the fifth speed.
3. Trigger condition 3: The variable speed is controlled by time. T0~T3 switch to the second speed~the fifth speed.

DD1838 (total number of output pulses)=Number of pulses in segment 1+Number of pulses in segment $2+\ldots+$ Number of pulses in segment 5

8 Application Examples

8.3.2 Designing Programs

Ladder diagram of trigger condition 1:

Ladder diagram for trigger condition 2:

Operation:
Setting the bias speed of the X-axis $\left(V_{\text {вия }}\right)$
Setting the acceleration time of the X -axis ($\mathrm{T}_{\text {Acc }}$)
Setting the deceleration time of the X -axis ($\mathrm{T}_{\text {DEC }}$)
Clearing the present position of the X -axis to 0
Setting the total distance of all segments for the X -axis

Setting the operation speed for the first segment on the X-axis
XO=ON: Modify ing the operation speed into $20,000 \mathrm{~Hz}$
X1=ON: Modifying the operation speed into $9,000 \mathrm{~Hz}$
X2=ON: Modify ing the operation speed into $18,000 \mathrm{~Hz}$
X3=ON: Modifying the operation speed into $7,000 \mathrm{~Hz}$.
Pulse output will be finished in this segment.
$\mathrm{X} 7=\mathrm{ON}$: Enabling the single speed postioning mode of the X -axis.

Operation:

Setting the bias speed of the X -axis $\left(\mathrm{V}_{\text {вй }}\right)$
Setting the acceleration time of the X -axis $\left(\mathrm{T}_{\mathrm{ACC}}\right)$

Set up the deceleration time of the X-axis ($T_{\text {DEC }}$)
Clearing the current position of the X-axis to 0
Setting the total distance of all segments for the X -axis

Setting the operation speed for the first segment on the X -axis

Comparing K15000 with the present position MO=ON: Modifying the operation speed into $20,000 \mathrm{~Hz}$

Comparing K30000 with the present position M1=ON: Modifying the operation speed into $9,000 \mathrm{~Hz}$

Comparing K50000 with the present position
M2 $=$ ON: Modifying the operation speed into $18,000 \mathrm{~Hz}$

Comparing K80000 with the current position
M3=ON: Modifying the operation speed into $7,000 \mathrm{~Hz}$. Pulse output will be finished in this segment.

X7 = ON: Enabling the single speed positioning mode of the X -axis

Ladder diagram for trigger condition 3:

Operation:

Setting the bias speed of X axis $\left(V_{\text {BIAS }}\right)$
Setting the acceler ation time of X axis $\left(T_{A C C}\right)$

Setting the deceleration time of X axis $\left(T_{D E C}\right)$
Clearing the present position of the X-axis to 0

Setting the total distance of all segments for the X-axis
Setting the operation speed for the first segment on the X-axis
$X 7=O N$: The single speed positioning mode on the X-axis is enabled. TO begins to count, and prepares to switch to the second segment.

T0 $=$ ON: The operation speed is modified into $20,000 \mathrm{~Hz}$. T1 begins to count, and prepares to switch to the third segment.

T1=ON: The operation speed is modified into $9,000 \mathrm{~Hz}$. T2 begins to count, and prepares to switch to the fourth segment.

T2=ON: The operation speed is modified into $18,000 \mathrm{~Hz}$. T3 begins to count, and prepares to switch to the fifth segment.

T3= ON: The operation speed is modified into $7,000 \mathrm{~Hz}$.
Pulse output will be finished in this segment.

8.4 Connecting DVP20PM00D (as a Master) and DVP01PU-H2 (as a Slave) for Controlling the Third Axis

Operation:

1. Enable O100 and execute OXO.
2. When the execution encounters G01 Z-25000 F10000 in OXO subroutine, the program calls P255
3. In P255, when D1328 < 0, drive DVP01PU-H2 to control the $3^{\text {rd }}$ axis. Move to target position K1,000 in operation speed K10,000.
4. Return to OXO after the execution of P 255 is completed. Wait for 10 seconds.
5. When the execution encounters G01 Z10000 F20000 in OXO subroutine, the program will call P255.
6. In P255, when D1328 > 0, drive DVP01PU-H2 to control the $3^{\text {rd }}$ axis. Move to target position K2,000 in operation speed K20,000.
7. Return to OXO after the execution of P255 is completed.

Instruction List of O 100 and subroutines:
Instruction mode: Design instructions for initializing the present status of the X -axis $/ \mathrm{Y}$-axis and enabling OXO motion subroutine.
O100 main program
(O100)
LD M1002
MOV H8000 D1868
SET M1074
M102
OX0 subroutine
(OXO)

O100 main program
Write in the No. (0) of OX to be enabled Enable OX motion subroutine

8 Application Examples

G01	Z-25000	F10000			G01 third axis control
TIM	K1000				Pause for 10 seconds
G01	Z10000	F20000			G01 third axis control
M2					
P255 subroutine					
(P255)					P255 subroutine
BRET					
TO	K0	K31	H2	K1	Stop DVP01PU
DLD>=	K0	D1328			Compare 0 with D1328
DTO	K0	K23	K1000	K1	Set up DVP01PU target position
DTO	K0	K25	D1330	K1	Set up DVP01PU operation speed
TO	KO	K32	H1	K1	Set up DVP01PU single speed positioning mode
TO	K0	K31	H100	K1	Enable DVP01PU
DLD<	K0	D1328			Compare 0 with D1328
DTO	K0	K23	K2000	K1	Set up DVP01PU target position
DTO	K0	K25	D1330	K1	Set up DVP01PU operation speed
TO	K0	K32	H1	K1	Set up DVP01PU single speed positioning mode
TO	K0	K31	H100	K1	Enable DVP01PU
SRET K					

9.1 Introduction of Electronic Cams

A traditional mechanical cam is composed of a cam, a follower, and a support.

- A mechanical cam is a rotating sliding piece with irregular shape. In general, it is an input object which rotates at a uniform speed. It makes a follower move regularly by coming into contact with the follower.
- A follower is a part driven by a mechanical cam. In general, it is an output object which generates motion which is not uniform, sequential, and regular motion.
- A support is a piece that which is used to support a mechanical cam and a follower.

Compared with a traditional cam, an electronic cam has the following advantages.

- Friendlier user interface
- Different products require different cam curves. Users can modify the electronic cam data in an electronic cam in software. They do not need to modify a mechanism.
- High acceleration
- Smoother operation

9 Electronic Cam

9.2 Operation of an Electronic Cam

- Structure

- Steps

Step 1	Step 2	Step 3
Initial setting	Setting a master axis	Starting/Stopping an electronic cam
(1) Creating electronic cam data (2) Setting terminals (3) Setting an input/output pulse type	Servo encode for the master axis specified Pulse signals sent by the master (4) Setting an input/output ratio Setting a starting angle	(7) Starting/Stopping a cam which operates cyclically
	(6) Starting a virtual axis	(8) Starting/Stopping a cam which does not operate cyclically

9.2.1 I nitial Setting

9.2.1.1 Creating Electronic Cam Data

There are two methods of creating electronic cam data.
Method 1: Use DTO instruction to create electronic cam data directly
Method 2: Use the electronic cam chart in PMSoft to draw the cam curve Please refer to section 9.4 for more information.

9.2.1.2 Setting Terminals

- Input terminals

1. MPGAO/MPGBO: Pulse input terminal for Master. Max allowable frequency: 200 kHz
2. STARTO/PGO: Input terminal for enabling noncyclic electronic cam

- Output terminals

1. FP/RP: Output terminal for pulse output of electronic cam. Max output frequency: 500 kHz
2. CLRO/CLR1: Output terminal for electronic cam synchronized output signal. When D1839, D1838 (PI) \leqq CP (Current Position) of Master (X axis) \leqq D1843, D1842 (PII), CLR0/CLR1 will be ON. (For special application of CLRO/CLR1, please refer to section 9.3.)

■ Input terminal polarity setting
The polarity of input terminals is set by the corresponding bits of D1799. bit \#=ON sets the input terminal as NO contact while OFF sets the input terminal as the NC contact. For example, to set MPGA0/MPGB0 as NO contacts, users have to set ON b1 and b2 of D1799, i.e. specify D1799=6.

D1799 (Input terminal polarity)

Bit\#	X-axis input terminal polarity
0	PGO
1	MPGB0
2	MPGA0
7	STARTO

- Input terminal digital Filter

D1806 High Byte: Filter coefficient of MPG0/MPG1. D1806 Low Byte: Filter coefficient of other input points other than X points. Filter frequency: $85000 / 2^{\mathrm{N}+4}(\mathrm{kHz})$.

N	kHz	N	kHz
1	2656.25	11	2.593994
2	1328.125	12	1.296997
3	664.0625	13	0.648499
4	332.0313	14	0.324249
5	166.0156	15	0.162125
6	83.00781	16	0.081062
7	41.50391	17	0.040531
8	20.75195	18	0.020266
9	10.37598	19	0.010133
10	5.187988		

9.2.1.3 Setting an Input/ Output Pulse Type

When Virtual Master is applied or the input pulses for Master are from Y axis of PM, settings of D1864 (MPG pulse input type) and D1816/D1896/D1976 (pulse output type) should match with each other, i.e. if the source of Master is set as single phase (P/D), the output pulse type of Y axis should be single phase as well. For wirings, simply connect MPGAO (A0+, A0-) with Y axis output terminals (FP1+, FP1-) and the setting is completed.
■ Setting an input pulse type
MPG pulse input type setting: D1864

b9	b8	Input pulse type (positive logic)	Description
0	0		Counting up/down
0	1		Pulses+Directions
1	0	FP A-phase pulses \square \square \square \square \square \square RP B-phasepulses \qquad \square \square \square \square \square \square \square	A/B-phase pulses
1	1		Four times the frequency of A/B-phase pulses

9 Electronic Cam

- Setting an output pulse type

Pulse output type setting: D1816, D1896, and D1976

b5	b4	Output pulse type (positive logic)	Description
0	0	FP Clockwise pulses RP Counterclockwise pulses	Counting up/down
0	1	$\underset{\text { RPD Pirections }}{\operatorname{FP} \text { Pulses }} \underset{\text { Clockwise }}{\substack{\text { Counterclockwise }}}$	Pulses+Directions
1 1	0	FP A-phase pulses \square \square 4 \square - \square RP B-phasepulses \qquad \square \square \square \square \square \square \square \qquad	A/B-phase pulses

9.2.1.4 Setting an Input/ Output Ratio

DVP-20PM provides electronic cam data magnification function. When users input electronic cam data as the below diagram, electronic cam data can be magnified or minified by setting b0/b1 of D1816 (unit setting) as well as DD1858 (Electronic Gear Ratio), respectively controlling the output magnification and the input magnification.

D1816		
b1	b0	Unit
0	1	Mechanical unit
1	0	Compound unit
1	1	

Slavemax=180×D1819.D1818 (Pulsesper revolution)
D1821.D1820 (Displacement per revolution)
(Pulses) $=$ o Output ratio

$\frac{\text { Mastermax }=360 \times \text { D1858 Num erator of electronic gear ratio }}{\text { D1859 Denominator of electronic gear ratio }}(\mathrm{P}$ ulses $)=$ Input ratio

9.2.1.5 Setting a Starting Angle

Users can set M1752=ON to enable electronic cam activation at non-zero position, and write the start position of Master in D1862, D1863.

9 Electronic Cam

9.2.2 Setting a Master Axis

There are 3 methods to obtain Master position.
Method 1: Obtain Master position from the encoder of Master servo. Receive the signals from the encoder then convert the signals into Master position.

Method 2: Obtain Master position from the pulses sent by Master. Process the pulse signals sent by Master then convert the signals into Master position.

9 Electronic Cam

Method 3: Apply Virtual Master
In virtual Master mode, users can catch the output signals from internal Y axis as the signal source of Master for X axis or Z axis. In this case, users don't have to apply additional wirings. To apply virtual Master mode, set ON M1909 and A0 will be internally linked with FP of Y axis; set ON M1910 and B0 will be internally linked with RP of Y axis. After the 2 flags are ready, DVP-20PM will automatically apply the internal counter C200 as the source of counting pulses for virtual Master. However, when M1909 is OFF and M1910 is ON, the source of Master will be the FP1 signals of Y axis on the previous MPU (DVP-20PM).
In addition, care should be taken when setting the pulse type of MPG and the pulse type of Y axis.
Pulse types of the two sides should be the same. Please refer to 9.2.1.3 for the setting.

M1909=ON, M1910=OFF
The source signal of X axis is from FP1 (Y axis as virtual Master), and the source signal of Y, Z axis is from A1, B1 input of MPG1.

The source signal of X, Y, Z axis is from $A 0, B 0$ input of MPG0.

The source signal of X, Z axis is from FP1 (Y axis as virtual Master), and the source signal of Y axis is from A1, B1 input of MPG1.

- M1909=ON, M1910=ON

The source signal of X axis is from FP1, RP1 (Y axis as virtual Master), and the source signal of Y, Z axis is from A1, B1 input of MPG1.

The source signal of X, Z axis is from FP1, RP1 (Y axis as virtual Master), and the source signal of Y axis is from A1, B1 input of MPG1.

Setting a slave: M1909=Off, M1910=On
Take the FP signals of the master station as the sources of the master axis signals through communication. If M1910 is ON, signals will be sent to the slave station in accordance with the setting of the virtual axis in the master station.
Example 1: If M1910 is ON, and M1910 is ON, FP1 and RP1 on the Master station will send signals to C200 in the slave station as the sources of the master signals.
Example 2: If M1910 is ON, and M1910 is OFF, FP1 and RP1 on the master station will send signals to C200 in the slave station as the sources of the master signals.

【Note】 According to the statistics below, there will be a delay of a 500 kHz pulse (2us) if 29 DVP-20PM series motion controllers are connected. Besides, the signal passing through each DVP-20PM series motion controller is not weakened.

Two DVP-20PM series motion controllers: There is a delay of 0.148 us .

One DVP-20PM series motion controller: There is a delay of 0.07 us.

9
 Electronic Cam

9.2.3 Starting/ Stopping an Electronic Cam

9.2.3.1 Starting/ Stopping a Cyclic Electronic Cam

If an electronic cam operates cyclically, the slave axis of the electronic cam moves in accordance with electronic cam data when the master axis of the electronic cam moves. Electronic cam data defines only one cycle. The relation between the positions of a master axis and the positions of a slave axis is the repeated extension of electronic cam data.

Electronic cam data

- Starting a cyclic electronic cam

The steps of starting a cyclic electronic cam are as follows.

1. In T1, D1846 bit 13=ON, cyclic electronic cam is enabled.
2. After the initialization interval of $\mathrm{T} 2, \mathrm{M} 1812=\mathrm{ON}$ to indicate the completion of electronic cam initialization.
3. In T3, cyclic operation starts after M1812=ON. Slave executes with Master constantly according to the electronic cam data.
4. At the same time, CLRO outputs according to the synchronized output range. When M1813=ON, an electronic cam cycle is completed. User has to reset the flag for indicating the completion of other electronic cam cycles.

－Stopping a cyclic electronic cam
The steps of stopping a cyclic electronic cam are as follows．
1．When D1846 bit 13 （enabling cyclic electronic cam）＝OFF，the X－axis of electronic cam stops immediately．
2．When M1748（indicate electronic cam completion）is ON during electronic cam execution，Slave of electronic cam will stop until the current electronic cam cycle is completed．

Example

【Function】

The figure shown below is electronic cam data．
Electronic cam cycle：Master position 0～50000
Control unit：Motor system
Sync output：Master position 20000～30000
CLRO＝ON：Control signal．
Please refer to section 9.4 for more information about creating electronic cam data．Connect the Y －axis pulse output terminals（FP＋，FP－，RP＋，RP－）to the X －axis MPG input terminals（ $\mathrm{AO}+\mathrm{A}, \mathrm{AO}$－， $B 0^{+}, B 0-$ ）．In this case，the input signals of the master axis are from output signals of the Y－axis．

In this example，the electronic cam data is created by PMSoft．Please refer to section 9.4 for more information about creating electronic cam data．Connect the Y －axis pulse output terminals（FP＋，FP－， RP＋，RP－）to the X －axis MPG input terminals（ $\mathrm{A} 0+$ ， $\mathrm{A} 0-\mathrm{B}, \mathrm{B}+\mathrm{B}, \mathrm{BO}$－）．In this case，the input signals of the master axis are from output signals of the Y－axis．

【Steps】

1．Set special registers．The parameters set are as follows．
（1）Clear the content in registers D1848，D1849，D1862，D1863，D1868．
（2）Set up input pulse type as A／B phase（D1864＝H200）
（3）Set up pulse output type of Y axis as A / B phase（ H 30 ）
（4）Set up D1799（input terminal polarity setting）＝6．MPGA／MPGB are NO contacts
（5）Set up operation speed of Y axis variable speed operation（in this case Y axis outputs

9 Electronic Cam

signals as input signals of Master).
(6) Set up lower bound of CAM sync output D1839, D1838=20000 and upper bound D1843, D1842=30000. Between Master position 20000~30000 (can be monitored by D1862), CLR0 is ON. However, the CLR LED on the MPU will not respond to it. To monitor CLR signal, users can connect CLRO- to 0 V , connect CLRO+ to Xn input contact, connect S/S2 to 24 V , and then monitor the ON/OFF status of Xn input.
2. Set MO to ON to enable cyclic electronic cam. When MO is rising-edge triggered, Master starts to receive the variable speed pulses from Y axis, and Slave operates according to the above electronic cam data curve. In addition, CLRO=ON during Master position 20000~30000.
3. Reset MO.

【 Program】

9.2.3.2 Starting/ Stopping a Noncyclic Electronic Cam

In noncyclic electronic cam, Master and Slave operate according to the user-defined electronic cam data only when electronic cam start signal (START0/PGO) is triggered. Unlike cyclic electronic cam, noncyclic electronic cam operates only one cycle for each triggered signal, i.e. electronic cam data operates only once for one triggered signal.
Before selecting START0 as the start signal, M1035 has to be set ON for setting STOP0/START0 as the external input. After M1746=OFF START0 will be enabled as the start signal of noncyclic electronic cam rather than PG0.

Electronic cam data

Starting a noncyclic electronic cam
The steps of starting a noncyclic electronic cam are as follows.

1. In T1, D1846 bit 14=ON, noncyclic electronic cam is enabled
2. After the initialization interval of T2, M1812=ON to indicate the completion of electronic cam initialization. At this time Slave is still not activated.
3. In T3, noncyclic operation starts after STARTO/PGO (Input terminal for enabling noncyclic electronic cam) is ON. When M1746=ON, PG0 is the start signal of noncyclic electronic cam; when M1746=OFF and M1035=ON, START0 is the start signal of noncyclic electronic cam. In this case Slave starts to operate a cycle according to the electronic cam data. ("M1035=ON" enables STARTO/STOPO as the external input point).
4. When the cycle is completed at T4, DVP-20PM will clear the state of M1812=ON. In addition, users can also confirm the electronic cam completion by ON state of M1813.
5. In T5, users can decide whether to set ON M1812 for confirming the next electronic cam completion.
6. In T6 and T7, actions of T3~T4 will be repeated. Please note that the interval for enabling noncyclic electronic cam should be longer than 5 ms .
7. CLRO outputs according to the upper/lower bound of sync output during each electronic cam cycle.

9 Electronic Cam

－Stopping a noncyclic electronic cam
1．When D1846 bit 14 （enabling noncyclic electronic cam）＝OFF，Slave of electronic cam stops immediately．

2．When M1748（indicate electronic cam completion）is ON during electronic cam execution，Slave of electronic cam will stop until the current electronic cam cycle is completed．

－Example

【 Function】

The figure shown below is electronic cam data．
Electronic cam cycle：Master position 0～100000
Control unit：Motor system
Every time when STARTO is triggered，execute 3 noncyclic electronic cam data（D1832＝2）
In this example，the electronic cam data is created by PMSoft．Please refer to section 9.4 for more information about creating electronic cam data．Connect the Y－axis pulse output terminals（FP＋，FP－， $R P+, R P-$ ）to the X －axis MPG input terminals（A0＋，A0－，B0＋， $\mathrm{BO}-$ ）．In this case，the input signals of the master axis are from output signals of the Y－axis．

【Steps】

1．Set special registers．The parameters set are as follows．
（1）Clear the content in registers D1848，D1849，D1862，D1863，D1868．
（2）Set up input pulse type as A／B phase（D1864＝H200）．
（3）Set up pulse output type of Y axis as A / B phase（D1896＝H30）
（4）Set up D1799（input terminal polarity setting）＝6，MPGA0 and MPGB0 are NO contacts．
（5）Set M1035＝ON to enable STOP0／START0 as external input point．
（6）Set M1746＝OFF to enable START0 as the start signal of noncyclic electronic cam．
(7) Set D1832=2 (Repeat electronic cam data for two times)
(8) Set up operation speed of Y axis variable speed operation (in this case Y axis outputs signals as input signals of Master).
2. Set ON MO to enable noncyclic electronic cam. When D1846=H4000, Y axis variable speed operation is enabled but X axis is not yet executed.
3. Trigger STARTO. X axis will be activated and executes the electronic cam data for 3 cycles.
4. Reset MO. When MO is reset during the execution of electronic cam, X axis will be stopped.

【Program】

9.3 Registers for Electronic Cam Motion

- Electronic cam max frequency

1. D1841, D1840 (VI): Electronic cam max frequency. If the registers are not set up properly, output function will not operate normally.
2. M1749: Electronic cam max frequency control

M1749=OFF, the Slave frequency will follow the Master frequency, but the max frequency will be 300 kHz.

Master

Slave

9 Electronic Cam

M1749=ON, the max frequency of Slave will be specified by D1841, D1840 (VI).

Slave

- Enabling cyclic electronic cam/Completion of cyclic electronic cam

1. D1846: Enabling cyclic electronic cam. Bit 13=ON, cyclic electronic cam is enabled; bit 13=OFF, cyclic electronic cam is disabled.
2. M1813: Completion of cyclic electronic cam. M1813 will be ON when cyclic electronic cam is completed. To restart the cyclic electronic cam, the user needs to reset this flag.

- Enabling noncyclic electronic cam

D1846: bit 14=ON, noncyclic electronic cam enabled; bit 14=OFF, noncyclic electronic cam disabled.
■ Lower/Higher bound of electronic cam synchronized output function

1. Operation Process when M1756=ON: In flying shear/rotary cut application, set M1756=ON to enable reference function. When Master position enters synchronized output section between PI and PII, CLRO will be ON. When X0 is ON later, CLRO switches off while CLR1 switches on. After this when X 1 is ON, CLR1 will be OFF.
2. When M1756 is OFF with the condition: "D1839, D1838 (PI) \leqq CP of Master \leqq D1843, 1842 (PII)", CLRO will be ON.

- Completion of electronic cam initialization

When electronic cam is enabled, DVP-20PM will initialize the settings for electronic cam operation and M 1812 will be ON when initialization is completed. The flag needs to be reset by the user.

- D1832: Setting the number of times noncyclic electronic cam motion is repeated

Users can set the number of times noncyclic electronic cam motion is repeated by means of D1832. If the value in D1832 is greater than H8000 (bit 15=1), there will be cyclic electronic cam motion. If the value in D1832 is 0, noncyclic electronic cam motion will not be repeated. If the value in D1832 is 1 , noncyclic electronic cam motion will be repeated once.
D1832=0

D1832=1
Slave position

- D1833: Number of remaining pulses sent by the master axis of an electronic cam

If the number of pulses sent by the master axis of an electronic cam is not divisible by the number of pulses per ccycle, users can divide the number that is left by setting D1833. If the value in D1832 is 4 , and the value in D1833 is 2 , one pulse will be added to the first cycle and the second cycle.
(Note: The value in D1833 can not be greater than the value in D1832.)

- D1834: Number of pulses sent by the master axis of the electronic cam before the electronic cam is started
Users can delay the sending of pulses by the slave axis of a noncyclic electronic cam by setting D1834. When the number of pulses sent by the master of a noncyclic electronic cam sends is equal to the value in D1834, the slave axis of the noncyclic electronic cam sends pulses.

- Selecting the start signal of noncyclic electronic cam

1. When M1746 is OFF, the start signal of noncyclic electronic cam will be START0; when M1746 is ON, PGO will be the start signal of noncyclic electronic cam.

9 Electronic Cam

2. Before selecting START0 as the start signal, M1035 has to be set ON for setting STOP0/START0 as the external input. After M1035 is set OFF, M1746=OFF will enable START0 as the start signal of noncyclic electronic cam rather than PG0.

- Indicating electronic cam completion

When M1748=ON, electronic cam stops immediately when electronic cam data is completed.

- Position and frequency of Master and Slave

Number of accumulated MPG input pulses/Master position: DD1862
MPG input frequency/Master frequency: DD1860
Current position/Slave position: DD1848

- Selecting electronic cam chart

1. Every electronic cam chart includes a set of electronic cam data. There are 3 electronic cam electronic cam charts available for 3 sets of electronic cam data.
2. Before electronic cam executes, set up D1868 to select the electronic cam chart 0~2 to be used.
3. electronic cam chart-0: D1868=0; electronic cam chart-1: D1868=H'8001; electronic cam chart-2: D1868=H'8002

- Noncyclic electronic cam immediate stop function (Stop signal: DOG)

Noncyclic electronic cam immediate stop function can be used together with M1755 for performing cutting with equal deceleration speed and correct stop position at DOG. When M1753 is ON, noncyclic electronic cam stops at DOG signal and CLRO will be ON to clear the error of servo. Users have to reset M1813, so that CLRO will be reset for next cutting operation.

- Switching the source of Master of noncyclic electronic cam

For noncyclic electronic cam, the source of Master can be switched to Y axis during the execution by setting up M1755. With M1755=ON, source of Master will be switched automatically when Master position (DD1862) is bigger than the switching position (DD1866). Source of Master will be switched back to MPG0 after noncyclic electronic cam cycle is completed. (Not applicable for virtual Master mode: M1909/M1910). The function is generally used for obtaining equal deceleration speed as well as correct stop position, regardless of the error resulted from Master speed or the characteristics of photo sensor.

Slave speed

D1867, D1866

- Remaining current speed until meeting limit switch

When M1757 is ON, Slave will remain current speed and continue operation until the right/left limit is reached.

9.4 Creating Electronic Cam Data

Electronic cam data defines the relation between the positions of a master axis and the positions of a slave axis.

1. Before users create a cam chart in PMSoft, they have to know the relation between the positions of a master axis and the position a slave axis. There are two methods of getting the relation between the positions of a master axis and the positions of a slave axis.

- Method 1: Function that relates the positions of a master axis to the positions of a slave axis
- Method 2: Measuring the relation between the positions of a master axis and the positions of a slave axis at work
After electronic cam data defines the relation between the positions of a master axis and the positions of a slave axis, users can get the positions of the slave axis by means of the positions of the master axis.

9
 Electronic Cam

9.4.1 Creating a Cam Chart in PMSoft

9.4.1.1 Function Relating the Position of a Master Axis to the Position of a Slave Axis

After users create a project in PMSoft, right-click CAM Chart in the system information area, and click Add CAM Chart on the context menu, the CAM Chart-0 window will appear.

${ }^{9}$ Project

The CAM Chart-0 window is shown below.

(1) Displacement: The relation between the master axis and the slave axis is described in terms of displacement.
(2) Velocity: The relation between the master axis and the slave axis is described in terms of speed.
(3) Acceleration: The relation between the master axis and the slave axis is described in terms of
acceleration.
(4) Data setting area:

- Resolution: Users can set the number of data points required in the electronic cam chart. The number of data points must be in the range of 10 to 2047.
- Velocity: The maximum speed of the slave axis and the minimum speed of the slave axis are shown in this section. They are calculated by the system according to the data related to displacement. Users can change the maximum speed of the slave axis and the minimum speed of the slave axis by themselves.
- Acc: The maximum acceleration of the slave axis and the minimum acceleration of the slave axis are shown in this section. They are calculated by the system according to the data related to displacement. Users can change the maximum acceleration of the slave axis and the minimum acceleration of the slave axis by themselves.
- Data Setting...: The description of the relation between the master axis and the slave axis in terms of displacement is shown in the Data Setting window. The displacement resolution set in the data setting area will be brought into the Data Setting window after the Data Setting window is opened. If users click the Apply B-spline checkbox in the data setting area, B-spline will be automatically selected in the Data Setting window.
- Import: Importing the description of the relation between the master axis and the slave axis in terms of displacement
- Export: Exporting the description of the relation between the master axis and the slave axis in terms of displacement
- Import Speed Data: Importing the description of the relation between the master axis and the slave axis in terms of speed
After the users click Data Setting... in the CAM Chart-0 window, the Data Setting window will appear.
The Data Setting window is composed of sections. The users can set a section of a cam curve in every section. A complete cam curve is composed of several sections. The users can set 360 sections at most. An electronic cam cycle is composed of the sections created by the users.

(1) Users can define the relation between the master axis and the slave axis in every section.
- Master Axis: Users can set the displacement of the master axis. A pulse is a unit of the measurement for displacement. The values that the users type in the Master Axis (pulse) column must be greater than 0, and must be in numerical order.
- Slave Axis: Users can set the displacement of the master axis. A pulse is a unit of the measurement for displacement. The values that the users type in the Slave Axis (pulse) column can be positive values or negative values.
- CAM Curve: The functions which can be selected are Const Speed, Const Acc., Single Hypot., Cycloid, and B-Spline. If users click the Apply B-spline checkbox in the CAM Chart-0 window, B-spline will be automatically selected in the Data Setting window.
- Resolution: Users can set the number of data points used in a section. The number of data points must be in the range of 10 to 2047. If the users do not set resolutions for

9 Electronic Cam

sections, the number of data points left will be equally distributed to the sections. The users have to set resolutions according to equipment's requirements. The higher the resolutions set are, the more smoothly the equipment used operates. Besides, the size of the electronic cam data gotten is big if the resolutions set are high.
(2) After sections of a cam curve are created, users can click Save, Load, Clear, Draw, OK, Cancel, or set the initial position of the slave axis.

- Save: Saving the data set in sections
- Load: Loading the data which was saved
- Clear: Clearing all the data in sections
- Draw: Compiling the data set in sections, and drawing the electronic cam data gotten on the electronic cam chart created
- OK: Compiling the data set in sections, drawing the electronic cam data gotten on the electronic cam chart created, and closing the Data Setting window
- Cancel: Closing the Data Setting window.
- Initial Setting: Setting the initial position of the slave axis

After the users click "Export" in the CAM Chart-0 window, the displacement chart, the velocity chart, and the acceleration chart in the CAM Chart-0 window will be saved in the CAMData folder in the folder in which PMSoft is installed. There are three files in the CAMData folder.

- <Folder in which PMSoft is installed>1CAMDatalData_S.txt: Displacement
- <Folder in which PMSoft is installed>ICAMDatalData_V.txt: Velocity
- <Folder in which PMSoft is installed>1CAMDatalData_A.txt: Acceleration

Data_S.txt, Data_V.txt, and Data_A.txt are shown below.
Displacement chart
Path: <Folder in which PMSoft is installed>1CAMDatalData_S.txt

Velocity chart
Path: <Folder in which PMSoft is installed>1CAMDatalData_V.txt

Acceleration chart
Path: <Folder in which PMSoft is installed>1CAMDatalData_A.txt

9.4.1.2 Measuring the Relation between the Position of a Master Axis and the Position of a Slave Axis at Work

Users can store the relation between the positions of the master axis specified and the positions of the slave axis specified in a file in the CAMData folder, and then import the relation into a cam chart in PMSoft. The steps of importing the relation between the positions of the master axis specified and the positions of the slave axis specified into a can chart in PMSoft are as follows.

1. Store data about displacement in Data_S.txt in the folder in the CAMData folder.

2. Open a CAM Chart window in PMSoft, and then type a value in the Resolution box.

9 Electronic Cam

3. After Import is clicked, PMSoft will read Data_S.txt and draw a displacement chart in the CAM Chart window, and a velocity chart and an acceleration chart will be drawn in accordance with the contents of Data_S.txt.

Displacement Resolution	Vebocity Y Max	$\begin{aligned} & \text { Acc } \\ & \text { Y_Max } \end{aligned}$
300	172774829964502	0.542733728888651
Γ Apply B-Spline	$\mathrm{Y}_{\text {M Min }}$	Y, Min
DataSetting...	-1727482986402	[0.542733728885641]
Import	ImportSpeed Data	Export

4. After Import Speed Data is clicked, PMSoft will read Data_S.txt and draw a velocity chart in the CAM Chart window, and a displacement chart and an acceleration chart will be drawn in accordance with the contents of Data_S.txt

Disphacement Resolution	Vebcity Y_Max	Acc Y Max
300	1100	172774829864502
Г Apply B-Spline	Y.Min	Y_Mis
Data Seting...	-1100	17.2774829864502
Import	Impoot Spood Data	Export

9.4.2 Using DTO/ DFROM to Create Electronic Cam Data

DVP-20PM is designed with 3 virtual modules exclusively for electronic cam 0~electronic cam 2, and the numbers of each electronic cam chart are K100, K101 and K102. Through DTO/DFROM instructions, users can set up or modify the electronic cam data in the user program. Electronic cam Data created by PMSoft has been converted into floating point format because electronic cam data
operates in floating point format. Therefore, the real-time modification data should be converted into binary floating point value first by DFLT instruction. In addition, floating point format should also be adopted when monitoring electronic cam data in Monitor Table.
The format of DFROM/DTO instruction for setting up electronic cam data is as below. In electronic cam application, electronic cam 0~electronic cam 2 is regarded as \#100~\#102 special modules, i.e. for accessing electronic cam 0 , operand \mathbf{m}_{1} has to be set as K100. Operand \mathbf{m}_{2} represents the starting CR number, and the total number of $C R$ will be a multiple of 4 . Operand \mathbf{S} refers to the starting number of designated source device. Operand \mathbf{n} refers to the number of records to be written into CR. Every record of data consists of 2 words, and the set value of \mathbf{n} should be a multiple of 2 . Please note that the 16 -bit TO/FROM instructions are not supported currently.

- CR table of electronic cam

CR\#	Function	Data type	Data length
$0 \sim 9999$	Creating/Modifying single electronic cam data	DWord	1
10000	Creating rotary cut electronic cam data	DWord	10
10001	Reading electronic cam status	DWord	7
10002	Electronic cam chart real-time change	DWord	1
10003	Smooth curve interpolation	DWord	3
10005	Reading electronic cam status in capture mode	DWord	5

- Explanations of control registers

CR\#0~9999: Creating/Modifying single electronic cam data

[Description]
DVP-20PM is built in with 3 sets of electronic cam charts: Electronic cam chart 0~electronic cam chart 2. Every electronic cam chart supports electronic cam data of 10,000 points and is set up by CR\#0~9999. One set of electronic cam data consists of 2 points including Master and Slave position, and the unit of every point is Dword. For example, 2 sets of electronic cam data include 4 Master/Slave points which requires 8 CRs as the below structure. In addition, for details about single-data real time modification, please refer to 9.4.2.1.

CR\#10000: Creating rotary cut electronic cam data

[Description]
DVP-20PM provides CR\#10000 exclusively for creating rotary cut electronic cam. The user can create and apply the rotary-cut electronic cam by setting up the related machinery parameters according to actual needs. Parameters for rotary-cut electronic cam are as below.

Parameter	Data	Format	Explanation
P1	Length of Master	Integer	Length of the material feeding axis Unit: mm
P2	Length of Slave	Integer	Length of the cutting axis (cutter length included) Unit: mm
	Sync start position		When sync function is enabled, the register sets up the sync start position.
P3	Length of sync area	Integer	Length of sync area Unit: mm
	Sync end position		When sync function is enabled, the register sets up the sync end position.
P4	Magnification ratio	Floating point	The speed of master and slave is synchonized in sync area. Calculation method of magnification ratio: $\begin{aligned} & V_{1}=V_{2} \Rightarrow \frac{F_{1} \times 3.14 \times D_{1}}{R_{1}}=\frac{F_{2} \times 3.14 \times D_{2}}{R_{2}} \Rightarrow \frac{F_{2}}{F_{1}}=\frac{R_{2} / D_{2}}{R_{1} / D_{1}} \\ & \mathrm{~V}_{1}\left(\mathrm{~V}_{2}\right)=\text { Master(Slave) speed (}(\mathrm{mm} / \mathrm{sec}) ; \\ & \mathrm{F}_{1}\left(\mathrm{~F}_{2}\right)=\text { Master }(\text { Slave }) \text { frequency }(\mathrm{Hz}) ; \\ & \mathrm{D}_{1}\left(\mathrm{D}_{2}\right)=\text { Master(Slave) diameter; } \\ & \mathrm{R}_{1}\left(\mathrm{R}_{2}\right)=\text { Master(Slave) pulses of single round } \end{aligned}$
P5	Max magnification ratio	Floating point	
P6	Acceleration curve (Low word)	Integer	Electronic cam acceleration setting: 0: Uniform curve 1: Uniform acceleration curve 2: SingleHypot curve 3: Cycloid
	Cam curve (High word)	Integer	Cam curve selection for different sections in sync area, e.g. start, end: 0 : leftCAM: Sync area is on the left side of cam curve 1: midCAMall 2: midCAMbegin 3: midCAMend (If the curve is selected, electronic cam stops automatically when completed.) 5: rightCAM: Sync area is on the right side of cam curve. Note: If 2 or 3 is selected, the length of the master axis will be $1 / 2$ times the length of the slave axis.
			Sync area setting $b[13]=1$: Create sync area setting. When the function is enabled, P2 and P3 should be filled with start and end position of sync area. $\mathrm{b}[14]=1$: Changing data dynamically is not allowed. $b[15]=1$: Borrow the data setting of previous electronic cam.
P7	Result	Integer	Display the rotary cut electronic cam creating results (when read back). 0: OK 1: Input data is not proper.

P6 sets up the rotary cut acceleration curves and the electronic cam curves, and the examples of each curve are as below.
Acceleration curves

0 : Uniform curve

2: SingleHypot curve

1: Uniform acceleration curve

3: Cycloid

9 Electronic Cam

Cam curves

For detailed explanation of creating rotary cut electronic cam curves, please refer to 9.4.2.3. The rotary cut electronic cam data can be used for general rotary cut applications. However, for thick material cutting application, the cutting angle and the cutter speed should be additionally considered on setting electronic cam. DVP-20PM provides parameters for thick material cutting application as below.

Parameter	Data	Format	Explanation
P1	Thick-material cutting format	Integer	Thick-material cutting format setting: 0 : divide non-sync area (when pulses can be equally divided by the drop times of cutter) 1: specify non-sync area (when pulses can NOT be equally divided by the drop times of cutter) $b[2]=1$: Specify the number of data points in sync area $b[3]=1$: Borrow the data setting of previous electronic cam $b[4]=1$: Non-smooth acceleration/deceleration for fixing the resolution.
P2	Pulses per round of Master	Integer	Unit: Pulse
P3	Length per round of Master	Integer	Unit: mm
P4	Pulses per round of Slave	Floating point	Unit: Pulse
P5	Length per round of Slave	Floating point	Unit: mm
P6	Sync start angle of Slave	Integer	Set range: 180~360 degrees
P7	Sync end angle of Slave	Integer	Set range: 180~360 degrees
P8	Length of cutting process on Master	Integer	Unit: mm
P9	Number of cutters on Slave	Integer	Number of cutters applied in rotary cut application
P10	Length of Master before sync area	Integer	When P1 is set as 1 , the parameter sets the length of Master before sync area.
P11	Angle between start position and sync start: angle θ_{1} (degree)	Integer	When P1 is set as 1, the parameter sets the angle before Sync Start.

Parameter	Data	Format	Explanation
P12	Number of data points in sync area	Integer	When b[2] of P1 is 1, the parameter sets the number of data points in sync area.

For detailed explanation of creating thick material cutting electronic cam curves, please refer to 9.4.2.4.

CR\#10001: Reading electronic cam status

[Description]
The function is used to read current electronic cam status when electronic cam is executing. Only DFROM instruction is applicable for this function. The read data will be as shown below.

Parameter	Data	Format	Explanation
P1	Current position of Master	Integer	Reset at DOG signal
P2	Length of Master 1	Integer	DOG signal to DOG signal Single cam: Length of the master axis after the triggering of DOG
P3	Current electronic cam curve	Integer	Integer
P4	Current position of Slave	Updated at DOG signal Single cam: Present length of the master axis after the triggering of DOG	
P5	Error of Slave	Integer	Error between DOG signal and the end point of CAM cycle.
P6	Current position of Master	Integer	START0/PG0 signal to START0/PG0 signal
P7	Error of Master	Integer	Error between START0, PG0 signal and the end point of CAM cycle

The function of reading electronic cam status can be applied in offset compensation to Slave error. For the methods of Slave error compensation, please refer to 9.4.2.5.

CR\#10002: Electronic cam chart real-time change

[Description]
There are 3 built-in electronic cam charts in PMSoft: Electronic cam chart-0~electronic cam chart-2. If users need to conduct real-time change of electronic cam chart during program execution, set up this register to designate the electronic cam chart to be enabled in the next cycle. Care should be taken on the number of electronic cam charts, which should be as least 2 sets available for the change. The instruction below is the application example. Set D0=K10002 before the electronic cam chart real time change. When $\mathrm{XO}=\mathrm{ON}$, set value $(0,1,2)$ in D100 indicating the cam chart to be selected (electronic cam chart-0~electronic cam chart-2) will be written into DVP-20PM.

X0	DTO	K100	D0	D100	K1

CR\#10003: Smooth curve interpolation

[Description]
When the original data points are not sufficient for a smoother operation, users can apply Smooth
Curve Interpolation. The detailed content of smooth curve interpolation will be explained in 9.4.2.2.
Parameters for setting up the function are listed as below.

Parameter	Data	Format	Explanation
P1	Maximum length of Master	Integer	
P2	Original data points	Integer	
	Total points to be inserted	Integer	

Parameter	Data	Format	Explanation
P3	Smoothing coefficient	Integer	Times of smoothing curve operation 3: 3 times 4: 4 times 5: 5 times 6: 6 times Other: 3 times
	Cycloid type	Integer	0: Uniform B-spline 1: Non Uniform B-spline 2: C-spline (original data points should be less than 20 points) 3: CC Spline 4: Cycloid

CR\#10005: Reading electronic cam status in capture mode

[Description]

Parameter	Data	Format	Explanation
P1	Slave position	Integer	Caught at DOG signal
P2	Slave position	Integer	Caught at end of cycle
P3	Master position	Integer	Caught at DOG signal
P4	Master position	Floating point	Caught at end of cycle
P5	Master position	Floating point	Caught at START0 (M1746=OFF) or PG0 (M1746=ON)

$\xrightarrow{\text { D1849, D1848 Current position of X-axis }}$

The function of reading electronic cam status in capture mode should be used with M1757 (Remain current speed), and can be applied for checking the cutter position in flying shear applications. For details please refer to 9.4.2.6.

9.4.2.1 Creating/ Modifying Electronic Cam Data

After users create electronic cam data in a cam chart in PMSoft, the cam data will be downloaded to a DVP-20PM series motion controller. If the users modify the electronic cam data in PMSoft, they have to download the new electronic cam data created to the DVP-20PM series motion controller again after they modify the electronic cam data. A DVP-20PM series motion controller allow users to modify electronic cam data. The users can modify electronic cam data when the program in the DVP-20PM series motion controller is executed.
Data length of electronic cam data can be real-time modified. When 4 words of one point (set) of electronic cam data are all 0 and identified, DVP-20PM will take it as electronic cam completion. Therefore, if users want to modify 10 points electronic cam data into 5 points, DTO instruction can be applied to write 0 into the 4 words of the sixth point.

Example

【Function】

Users can modify a particular point in a cam chart．In figure（a），there is an original cam chart．There may be data or no data in the cam chart which will be modified．In the figure（b），the three pairs of coordinates（16000，10000），（32000，0），and（ 0,0 ）are written．

（a）Original cam chart

（b）Three pairs of coordinates in a cam chart
【Steps】
1．Set M80 to convert the 4－point electronic cam data（3－point data with an additional point 0 ）into binary floating point format，and store the results in D0～D15．
2．Set M81 to write the data in D0～D15 into electronic cam chart－0（K100）．
3．Set M82 to read the written data back into D100～D115 so as to confirm the data is correctly written into electronic cam chart－0．
4．Use Monitor Table to confirm the data read back in D100～D115．Data format（Radix）of D100～D115 should be set as floating point．

【Program】

9 Electronic Cam

9.4.2.2 Creating a Smooth Curve

Smooth curve interpolation conducts interpolation and magnification on data points of Master, so as to smoothen the modified curve with higher resolution. The interpolation results will elevate the stability and smoothness for machine operation. In the sample below, the original data points are 24 points, and the modified length of Master will be 10,000 points. In this case, the magnification rate of point-to-point section will be 10,000/23=434. On this basis, PMSoft will automatically calculate the data of the inserting points according to the number of inserting points and the smoothing coefficient. After this, the modified 10,000 points electronic cam curve will be drawn according to the calculated results in the same proportion of the previous electronic cam curve.

Original data points: 24

After the interpolation, the original points of Master $0 \sim 23$ are modified as 10,000 points as below.

The below diagram illustrates the difference between the original curve and the curve with interpolation.

9 Electronic Cam

With higher smoothing coefficient, the generated curve will be smoother as well. The below diagrams show the results of 3 -times and 5 -times interpolation respectively.

- Example

【Function】

Conducting smooth curve interpolation on the original curve of electronic cam chart-0:
Original data points: 24
Length of Master: 10,000
Total points to be inserted: 200 points
Smoothing coefficient: 5 times
Cycloid type: Uniform B-spline.
The original curve is as below.

【Steps】

1．Create a 23－point electronic cam curve in electronic cam chart－0．Use the import function to set up the electronic cam data as below．For the set up methods please refer to section 9．4．

x	y	x	y	x	y	x	y
0	0	6	-68.332	12	-93.672	18	-22.86
1	-0.036	7	-70.44	13	-92.556	19	-0.396
2	-0.288	8	-70.98	14	-91.224	20	0.288
3	-47.196	9	-70.052	15	-91.152	21	0.072
4	-62.604	10	-70.756	16	-91.044	22	0
5	-65.16	11	-71.496	17	-46.08	23	0.036

2．Set the resolution of electronic cam chart－0．The resolution should be equal or bigger than ＂Original data points＋Total points to be inserted＂．
3．Set M0 to write the parameters for smooth curve interpolation into registers D100～D105．
4．Set M1 to write in the data in D100～D105 for executing smooth curve interpolation．
5．Execute the program and monitor the electronic cam curve in electronic cam chart－0．The curves after interpolation will be as below．

【Program】

9.4.2.3 Creating Rotary Cut Data

There are two steps of creating a rotary cut curve.

1. Creating a cam chart: Users have to create a blank cam chart in PMSoft, and then set resolution in accordance with the number of rotary cut curves. In order to create a rotary cut curve, the users need to type 300 in the Resolution box. Download the cam chart to a DVP-20PM series motion controller. When the DVP-20PM series motion controller operates, electronic cam data is stored in the cam chart.

2. Setting CR\#10000: Users have to set the parameters related to a rotary cutter, including the distance for which the master axis specified moves, the distance for which the slave axis specified is synchronized with the master axis specified, and the synchronization ratio of the speed of the slave axis specified to the speed of the master axis specified. After CR\#10000 in the special module K100 operates, a rotary cut curve will be created.

- Example 1

【Function】

The steps of creating a rotary cut curve by means of CR\#10000are described below.
Distance for which the master axis specified moves=1000
Distance for which the slave axis specified moves=500
Distance for which the slave axis specified is synchronized with the master axis specified=300
Synchronization ratio of the speed of the slave axis specified to the speed of the master axis specified=1.0
In addition, set $\mathrm{b}[14]$ of high word of $\mathrm{P} 6=1$ for electronic cam curve setting, indicating only single data real-time modification is applicable. This is to prevent rotary cut curves from being modified during program execution. The rotary cut curve created and the values of parameters are shown below.

Parameter	Setting value
Distance for which the master axis specified moves	1000
Distance for which the slave axis specified moves	500
Distance for which the slave axis specified is synchronized with the master axis specified	300
Synchronization ratio of the speed of the slave axis specified to the speed of the master axis specified	1.0
Max magnification ratio	10.0
Acceleration curve	0
Cam curve	Only single data real-time modification is applicable
Cam curve setting	0
Result	

【Steps】

1. Open a CAM Chart window in PMSoft, and then type 300 in the Resolution box.
2. Download the program created to a DVP-20PM series motion controller, and then execute the program.
3. Set M1 to write the parameters into D100~D112 and K10000 into D0.
4. Set M0 to write the data in D0~D15 into the special register K10000. After M0 is set to ON, a rotary cut curve will be created.
5. Stop the DVP-20PM series motion controller, and then upload the program in the DVP-20PM series motion controller.
6. View the first curve in the CAM Chart-0 window. The curve is a rotary cut curve which is created automatically.

9 Electronic Cam

【Program】

－Example 2

【Function】

Flying shear operation can be performed by applying 2 rotary cut electronic cam curves．First，users need to create the first electronic cam curve for rotary cut．Second，design the second electronic cam curve，in which length of Slave is specified with a negative value of the previous electronic cam curve．In addition，set up the $6^{\text {th }}$ data（D111 in this example）to borrow the previous electronic cam data setting and combine the 2 electronic cam curves，so that a reciprocating flying shear operation can be performed．
To create the above flying shear cam curve， 2 blank electronic cam data spaces of resolution 300 （Total 600 points）should be created before running the program．The set values of the 2 electronic cams are as below．

Parameter	Setting value of the first rotary cut curve	Setting value of the second rotary cut curve
Length of Master	1000	1000
Length of Slave	500	-500
Length of sync area	200	200
Magnification ratio	1.0	1.0
Max magnification ratio	10.0	10.0
Acceleration curve	0	0
Cam curve	0	0
Cam curve setting	Only single data real－time modification is applicable	$1 .$Only single data real－time modification is applicable Borrow the previous electronic cam data setting Result$\quad 0$

【Steps】
1．Open a CAM Chart window in PMSoft，and then type 600 in the Resolution box．
2．Download the program created to a DVP－20PM series motion controller，and then execute the
program.
3. Set M0 to write the parameters into D100~D112 and K10000 into D0. Write the data in D100~D112 into special register CR\#10000 to generate the first rotary cut curve.
4. Set M1 to change the data in D102, D104 and D111. Write the new data into CR\#10000 in the special register K100 to generate the second rotary cut curve.
5. Stop the DVP-20PM series motion controller, and then upload the program in the DVP-20PM series motion controller.
6. View the first curve in the CAM Chart-0 window. The curve is a rotary cut curve which is created automatically.

【Program】

－Example 3

【Function】

In multi－cutter application，such as rotary cut with 3 cutters，the pulses per round of Slave can not be evenly distributed to each cutter and the error of Slave will increase as the execution times increase．In this case，the cam data of each cutter should be designed respectively and the sum of the data length of 3 cutters should equal to total pulses per round．
To meet this requirement，users only need to design the data setting of the first electronic cam once and set up the associated register for borrowing the data setting from the previous electronic cam curve．By this function，the 3 cam curves can be well connected and the pulses per round of Slave can be fulfilled．
The setting of parameters is shown below．

Parameter	Setting value of the first rotary cut curve	Setting value of the second rotary cut curve	Setting value of the third rotary cut curve
Length of Master	1000	1000	1000
Length of Slave	333	333	334
Length of sync area	200	200	200
Magnification ratio	1.0	1.0	1.0
Max magnification ratio	10.0	10.0	10.0
Acceleration curve	0	0	0
Cam curve	0	0	0
Cam curve setting	Only single data real－time modification is applicable	Borrow the previous electronic cam data setting	Borrow the previous electronic cam data setting
Result	0	0	0

【Steps】

1．Open a CAM Chart window in PMSoft，and then type 900 in the Resolution box．
2．Download the program created to a DVP－20PM series motion controller，and then execute the program．
3．Set M100 to write the parameters into D100～D112 and K10000 into D0．Write the data in D100～D112 into special register CR\＃10000 to generate the first rotary cut curve．
4．Set M101 to change the data in D111．Write the new data into CR\＃10000 in the special register K100 to generate the second rotary cut curve．
5．Set M102 to change the data in D102 and D111．Write the new data into CR\＃10000 in the special register K100 to generate the third rotary cut curve．
6．Stop the DVP－20PM series motion controller，and then upload the program in the AH500 series motion control module．
7．View the first curve in the CAM Chart－ 0 window．The curve is an electronic cam curve which is created automatically．

【Program】

9.4.2.4 Electronic Cam Data for Cutting Thick Material

In above rotary cut application, there is only one contact point for the cutter and the material, regardless of the thickness of the material. In this way, only one synchronizing point is required when designing the electronic cam. For thick material cutting, such as soap or steel plate, the velocity relationship between cutter dropping and the material moving should be considered. When the material enters the sync area, the material moving speed will equal to the moving speed of cutter, ensuring that the cutting plane is flat and vertical to the conveyor. The below diagram illustrates the operation angles between the cutter the material. V1 is the material moving speed; V2 is the cutter dropping speed; and the grey curves indicate sync area (cutting area). When the thickness of material is equal, the contact angle between the cutter and the material (angle θ) is a fixed value. In addition, the cutting angle α varies during the cutting process. The velocity relationship can be described by the equation below: $\frac{V 2}{V 1}=\frac{1}{\sin (\alpha+\theta)}$.
According to the diagram below, the cutter rolls through non-sync area and syn area. In sync area, the horizontal moving distance (L) of the cutter should be the same as the moving distance of the material, and the horizontal moving distance can be obtained by the equation: $L=R \cos \theta-R \sin \alpha$. In non-sync

9 Electronic Cam

area, users can set up the acceleration/deceleration speed according to the cut length of material.

Horizontal moving distance: L

Furthermore, the starting position (angle) of the cutter should also be considered by the number of cutters on the cutting axis. If the total pulses of cutting axis can be equally divided by the cutters, i.e. even number of cutters shares even number of pulses, the pulses required for single cutter can be obtained. Convert the obtained pulses into degrees and the starting position as well as the end position can be obtained, which are the required parameters for setting thick material cutting. On the other hand, if the total pulses of cutting axis can not be equally divided by the cutters, i.e. even number of pulses for odd number of cutters, angle θ and the length of Master before sync area for single cutter should be set up respectively to obtain the starting and end position of each cutter.
Also, care should be taken on setting the contact angle, which is related to the thickness of the material and the vertical position of the cutting device. When setting the contact angle, make sure the contact angle is a little smaller or equal to the actual contact angle otherwise an arc cutting plane will be generated. On the other hand, the sync end angle should also be a little bigger or equal to the actual sync end angle for ensuring that a smooth and flat cutting plane can be obtained.

- Pulses can be equally divided.

For even number of cutters, select "Equally divide non-sync area" function by bit0 of Data 1, and DVP-20PM will automatically calculate the required pulses for each cutter. As the below diagram, in actual settings only 2 parameters including "Sync start angle" and Sync end angle" are required for calculating the angle of sync area α and the angle of non-sync area θ.
$\alpha=$ Sync end angle of Slave -Sync start angle of Slave
$\theta=\left(\frac{360}{\text { Pulses per round }}\right) \times\left(\frac{\text { Pulses per round }}{\text { Number of cutters }}-\alpha \cdot \frac{\text { Pulses per round }}{360}\right) \div 2$

The actual adjustment steps are: 1. Selecting the sync start and sync end angle; 2. Aligning the cutter with the start position of the cutter; 3. Executing electronic cam operation; 4. Inspecting the cutting plane on material
If the cutting plane is bended, conduct fine tuning on the sync start/end angle until the cutting plane is flat and smooth.

- Pulses can not be equally divided.

If the total pulses of Slave can not be equally divided by the cutters, angle θ_{1} and the length of Master before sync area should be specified respectively in electronic cam setting, so that the starting and end position of each cutter can be obtained. As the diagram below, parameters including angle θ_{1}, length of Master before sync area, sync start angle and sync end angle should be specified respectively. In addition, the pulses required for each cutter should also be specified in electronic cam setting. When the above parameters are ready, run the thick material cutting electronic cam and conduct fine-tuning on the parameters of each cutter until the best results are obtained.

- Example

【Function】

The example is the application of using DTO instruction for creating thick material cutting electronic cam. The required parameters are listed in the table below. Users assume that the diameter of material feeding axis is $170(\mathrm{~mm})$, diameter of cutting axis is $240(\mathrm{~mm})$, number of cutters: 4 , pulses per round: 200,000, sync start angle of Slave: $\theta 1=210$ degrees, and sync end angle of Slave: $\theta 2=250$ degrees. The cutting length can be calculated according to the parameters above: $170 \times 314 \div 4=13345$. Parameters for thick-material cutting are listed as below.

Parameter	Setting value
Electronic cam format	0
Pulses per round of Master	200000
Length per round of Master	53380
Pulses per round of Slave	200000
Length per round of Slave	75360
Sync start angle of Slave:180~360	210
Sync end angle of Slave:180~360	250
Length of cutting process on Master	13345
Number of cutters on Slave	4
Length of Master before sync area	-
Angle of Slave between start position and sync start: angle θ_{1} (degree)	-
Number of data points in sync area	-

9 Electronic Cam

【Steps】

1．Open a CAM Chart window in PMSoft，and then type 407 in the Resolution box．
2．Download the program created to a DVP－20PM series motion controller，and then execute the program．
3．Set M0 to write the parameters into D100～D116 and K10000 into D0．Write the data in D100～D116 into CR\＃10000 in the special module K100 to generate a thick material cutting electronic cam curve．
4．Stop the DVP－20PM series motion controller，and then upload the program in the DVP－20PM series motion controller．
5．View the first curve in the CAM Chart－0 window．The curve is a thick material cutting electronic cam curve which is created automatically．

【Program】

9．4．2．5 Offset Compensation for a Slave Error

In field application，errors occur between the actual output position on device and the target output position on electronic cam curve．In addition，the error could be larger as the increase of execution times．Aiming at this problem users need to apply offset compensation according to the error value between DOG signal and the end point of Slave position（D108）．First，backup the initial value of D108 （Figure A）．Second，compare the value in backup register（D128）with D108，which has errors to the initial value（Figure B and Figure C）．Third，take the difference between the 2 registers as the reference value for offset compensation．

（A）

（B）

（C）

Application method：
1．Read initial Slave error．The initial error is the value obtained by subtracting the captured value at DOG with the captured value at electronic cam completion．
2．When the Slave error increases in the next cycle，subtract the increased Slave error with the initial Slave error，and users can have the real Slave error．
3．Subtract Length per round of Slave，which is one of the electronic cam parameter，with the real Slave error and users can have the real error between the results of electronic cam output and the device output．When the real error is between＂\pm half of Slave length＂，or when the real error exceeds＂\pm half of Slave length＂，users conduct offset compensation for the error．
4．Compensation
$\{$ Real error $>1 / 2$ length of Slave \Rightarrow Offset $=($ Real error－length of Slave $) \times$ Offset ratio
Real error $<-1 / 2$ length of Slave \Rightarrow Offset $=($ Real error + length of Slave $) \times$ Offset ratio
5．In the next cycle，input the modified length of Slave（with offset）by DTO instruction and the offset compensation is completed．
－Example

【Function】

The example is used for judging if real error between DOG switch and electronic cam completion exists．When error occurs，calculate offset value for compensation on the length of Slave．In this case，D302 refers to the modified length of Slave．

【Steps】

1．Run the program and read the electronic cam status by DFROM instruction．Read the data in CR\＃10001 of special module K100 to D100～D108．
2．Set M3 to write the length of Slave into D126 and the initial Slave error into D128．Calculate the real error，i．e．difference between the increased error and the initial error，and take the half of Slave length as the reference．
3．Real error $>1 / 2$ length of Slave \rightarrow Offset $=($ Real error－Length of Slave）\times Offset ratio
4．Real error $<1 / 2$ length of Slave \rightarrow Offset $=($ Real error＋Length of Slave）\times Offset ratio
5．Set M4 to calculate the modified length of Slave with offset compensation．
6．When M4 is reset，fill the original length of Slave back to D302．

9 Electronic Cam

【Program】

※ Users can modify the offset ratio ($0.5 *$ D138 in this example) according to actual needs.
※ D302 has to be applied in DTO instruction for creating rotary cut E-CAM Data with offset compensation.

9．4．2．6 Application of a Flying Shear－Checking the Position of a Cutter

In flying shear application，it is important to check if the cutter is back in designated position when moving back．If the cutter is not at designated position，it should remain current speed until limit switch is met，otherwise the mechanical system might be damaged during the moving back process of cutter． M1757 can be applied to remain current speed of Slave and continue operation until the limit．Users can compare the designated position with Master position in current cycle to decide if M1757 needs to be enabled．Master position in current cycle can be obtained by subtracting＂Master position captured at the end of cycle＂from accumulated Master position（DD1862）．Master position captured at end of cycle can be read out by using DFROM instruction（D0＝K10005，Capture mode）．
－Example

【Function】

Check whether the cutter position is correct and automatically determine the execution of M1757．

【Steps】

1．Run the program and read the electronic cam status in capture mode by DFROM instruction． Read the data in CR\＃10005（Capture mode）of special module K100 to D300～D308 at the end of cycle．
2．Subtract the captured Master position（D306）from the number of accumulated MPG input pulses（D1862），and users can obtain the actual Master position in current cycle（D350）．
3．Compare the actual Master position（D350）with the target position（D1842）．If the actual Master position is bigger than the target position and the limit switch has not been triggered，execute M1757 then stop the CAM operation．

【Program】

9．5 Multi－axis Cam

Single－axis electronic cam can be executed in cyclic operation and noncyclic operation．Unlike single－axis electronic cam，multi－axis cam can only be executed in cyclic operation．For multi－axis cam， only one set of electronic cam charts can be applied，i．e．cam chart 0～cam chart 2 correspond to the X －axis，the Y －axis，and the Z －axis．

9 Electronic Cam

Same as single-axis cyclic electronic cam, multi-axis cam is enabled by setting b13 of D1846 as ON. In addition to setting D1846, work modes of each axis should also be set up and enabled, and C200 should be activated for counting pulses of Master.

1. D1846

Set b13 of D1846 to ON (D1846 =H'2000) to enable multi-axis cam.
2. Set up work modes (X-D1847 Y-D1927 Z-D2007)

For multi-axis cam, b12 and b11 in D1847 should be set to 01 (bit11=1). When the Y-axis and the Z-axis are applied, bit11 in D1927 and D2007 should also be set to 1 .
3. C200/C204

Enable C200/C204 after setting up counting mode of C200/C204. Multi-axis E-CAM applies C200/C204 as the input signal of Master. Counting mode of C200/C204 should match the pulse input pattern of Master.
Modes of counting for C200/C204

Device	Mode of counting for C200	Device	Mode of counting for C204
$M 1200=0, M 1201=0$	U/D* *	$\mathrm{M} 1204=0, \mathrm{M} 1205=0$	U/D
$\mathrm{M} 1200=1, \mathrm{M} 1201=0$	P/D*	$\mathrm{M} 1204=1, \mathrm{M} 1205=0$	P/D
M1200=0, M1201=1	A/B* (One time the frequency of A/B-phase inputs)	$\mathrm{M} 1204=0, \mathrm{M} 1205=1$	A/B (One time the frequency of A/B-phase inputs)
M1200=1, M1201=1	4A/B (Four times the frequency of A/B-phase inputs)	M1204=1, M1205=1	4A/B (Four times the frequency of A/B-phase inputs)

M1908=Off: The input signals for C200 are controlled by $\mathrm{A} 0 \pm / \mathrm{BO} \pm$, and the reset signals for C200 are controlled by PG0. The input signals for C204 are controlled by A1 $\pm / \mathrm{B} 1 \pm$, and the reset signals for C204 are controlled by PG1.

M1908=On: C200 are for the X-axis, the Y-axis, and the Z-axis. The input signals for C 200 are controlled by $\mathrm{A} 0 \pm / \mathrm{BO} \pm$, and the reset signals for C 200 are controlled by PGO.

There are 2 execution patterns of a multi-axis cam

1. Point-to-point switching pattern

In multi-axis cam, users can separate an M-point electronic cam data into several sections for realizing real-time cam data switching between sections. Only one section will be executed for one time and users can add new data into the next section. For switching to next section, insert an additional point of $(0, n 1)$ between the sections. When Master position is detected as 0 , set value $n 1$ of Slave position will be the target number for point-to-point switching. When single section is completed, M1813/M1893/M2053 will be ON and has to be clear by user for Indicating next completion. In the below diagram users use an N -point electronic cam data and separate the beginning 202 points into 2 sections.

When value of Master is 0 , switch to the number set in Slave.

2

Set value of Slave in No. 100 and No. 201 indicates the target number for next execution. Therefore, before the switching point is reached users can insert or modify the data in the next section. However, care should be taken on setting the starting value of the second section. For second section, if the starting value of Master (M101) is set as 0, Slave will continue the execution based on the ending value of previous section, i.e. the starting value will be Master position: M99+M102, and Slave position: S99+S101.On the other hand, if the starting value of Master is not " 0 ", the starting value of Slave will be based on " 0 ", i.e. Master position: M99+M102 and Slave position: 0+S101.

9 Electronic Cam

In addition, for point-to-point switching pattern, if electronic cam max frequency (DD1840) is set as 0 Hz and the value of deceleration time $\mathrm{T}_{\mathrm{DEC}}$ (D1837) is specified, electronic cam will decelerate to stop. The below diagram indicates the difference between normal stop operation and stop operation with deceleration.

2. Forward /Reverse running Pattern

To enable forward/reverse running pattern, bit 12, 11 of D1847/D1927/D1927 (work mode setting) should be set ON (K3). In forward/reverse running pattern of multi-axis cam, the execution of Slave will be in the same direction as Master. In reverse running operation, the execution will start again from the end of the data when Master position 0 is reached. Therefore, please note that forward/reverse running pattern can not be used with point-to-point switching pattern otherwise error will occur. The below diagrams illustrate the execution of 2 electronic cam charts.

In forward/reverse running pattern, master position 0 other than the start point should not exist.

Delta_S.txt - Notepad	$\square \square$
Eile Edit Format view Help	
00	^
100 200	
209 -11400	
300600	
$400 \quad 800$	
$500 \quad 1000$	
$600 \quad 1200$	
$700 \quad 1400$	
$800 \quad 1600$	
$900 \quad 1800$	
10002000	
11002200	
12002400	
13002600	
14002800	
15003000	
16003200	
17003400	
18003600	
19003800	
20004000	
$\begin{array}{ll}0 \\ 0 & 0 \\ 0\end{array}$	
	v

9.6 Practical Application of an Electronic Cam

9.6.1 Application of a Winding Machine

In this application example users apply DVP-20PM for controlling the automatic high-speed winding machine, which can be used on winding air-cored coils of different specifications such as drive coils, speaker coils, antenna coils and other common coils. The winding system with DVP-20PM has better reliability and is highly automated with high working speed and efficiency as well. Therefore, it can achieve high quality results of batch production of coils. Here are some of the coils.

Normal winding machines apply small PLCs with built-in pulse function. Though high speed input points, the PLC receives pulses from the encoder of winding shaft, and roughly synchronizes the speed between the winding shaft and the coil shaft. Due to the possible delay of CPU operation, this kind of winding process has lower accuracy on speed synchronization. Therefore, the coil winding quality could be significantly lowered because the uneven winding results. For example, generally PLC executes the reverse winding operation through interruption when the set up position from the winding shaft is reached. In this case, error will occur due to the delay of CPU operation. In low speed situation, the basic demanded quality could be fulfilled. However, in high speed and multi-layered winding situation, the surface of coil will become uneven and the winding quality will drop down.
DVP-20PM is designed specifically for motion control applications. DVP-20PM applies duo CPU structure with one CPU exclusively processing motion control algorithm. Therefore, motion control operations such as trajectory drawing, linear/arc interpolation can be well performed with common logical control. In this high speed winding application users apply the electronic cam function to solve the switching delay problem of reverse winding situation explained above.

9 Electronic Cam

9.6.1.1 Operation of a High-speed Winding Device

There are 9 parts of devices in a high speed winding system as below.

(1) Machine stand

The machine stand consists of steel angle frames and stainless platform with castors at the bottom. When the machine stand is located in proper position, users can lower the bottom stands to fix the machine stand.
(2) Tensioning device

Tensioning device is installed in wire-feeding component to provide proper tension for coil winding. Tension can be modified by the knobs on the device. Tension will be automatically adjusted after the modification is completed.
(3) Winding device

Winding device mainly consists of Delta ASDA-B type servo motor (200W), timing belt and winding flyer and is the winding shaft (Master) of electronic cam operation. Copper wires are winded on the coil die through the winding flyer. Winding device is the major part of winding operation.
(4) Coil device

Coil device mainly consists of Delta ASDA-B type servo motor (100W), precise ball screw, guide rail and pneumatic sliding forks and is the coil shaft (Slave) of electronic cam operation. Coil device follows the winding device and reciprocates to perform the coil spacing action. Coil device is also the major part of winding operation.
(5) Work stage

Work stage mainly consists of index stepping motor, rotation stage, wire fork and coil die. The work stage supports multi-task processing, executing die preheating, wire cutting heating, mold releasing while coil winding is in process.
(6) Cutting device

Cutting device is pneumatic device used in cutting off the wires on the two ends of the completed coil.
(7) Die releasing device

Die releasing device consists of index stepping motor and pneumatic die releasing device, taking the completed coil off the coil die.
(8) Hot air system

Hot air system has 2 temperature adjustable 220 V heat guns. Users can preheat the coil die before winding and heat up the completed coil to release the coil from the coil die.
(9) Electric control system

Electric control system has an electric control box and usually a touch panel. In electric control box users apply DVP-20PMOOD as the core of motion control, the touch panel as the human-machine interface and the servo motor as working device. By this combination, users can perform precise motion control between winding shaft and the coil shaft, so that the accuracy of coil winding can be obtained.

High speed winding on master shaft and slave shaft can be performed by executing single speed positioning on winding device (3), together with electronic cam operation on coil device (4). Other operations are similar to general sequential ladder control and can be executed by general functions of PLC.
The movement of winding shafts and coil shafts are explained as below. The coil shaft (Slave) follows the winding shaft (Master) and reciprocates within the range of single layer in certain proportion with winding shaft. At the beginning, Slave starts at the left end and moves one coil space as diagram (A). When Slave moves to the right end of the single layer range as indicated in diagram (B), the moving direction of Slave reverses as diagram (C). When Slave reaches the left end of single layer range, the moving direction of Slave reverses again.

From the above winding movements, there are 3 major input parameters: 1. rounds per layer, 2. total rounds of winding, and 3 . coil spacing (The value of coil spacing is calculated by adding coil diameter with the space between each round). In addition, Mechanical parameter ($\mathrm{mm} / \mathrm{pulses}$) is required for obtaining the Master/Slave (winding shaft/coil shaft) proportion. Mechanical parameter consists of mechanism parameter and servo parameter. Mechanism parameter is the moving distance per round ($\mathrm{mm} /$ revolution) and servo parameter is the pulses per round (pulses/revolution) obtained by multiplying the electronic gear ratio. Mechanism parameter ($\mathrm{mm} / \mathrm{revolution}$) divided by servo parameter (pulses/revolution) equals the mechanical parameter ($\mathrm{mm} / \mathrm{pulses}$). After the parameters are ready, apply cyclic electronic cam on X axis (Slave) because the coil shaft reciprocates cycle by cycle, and single speed positioning on Y axis (Master) because the winding shaft moves on in the same direction.

9 Electronic Cam

9.6.1.2 Wiring Hardware

In above wiring diagram, users connect output terminal of Y axis (FP1+, FP1-) to the MPG input terminals (A0+, A0-) as the source of Master. By this wiring method, winding operation of coil shaft (Slave) will not be influenced no matter the winding direction of winding shaft (Master) is clockwise or counter-clockwise. Therefore, in this case users only connect single direction for Master.

9.6.1.3 Creating an Electronic Cam Curve

Create the electronic cam chart shown below in PMSoft.

To create electronic cam data, import the file "Data_S.txt".

Firstly in this file users set the base unit of electronic cam by specifying SlaveMax=1 and MasterMax=1. Second, select motor unit for electronic cam operation by setting up b1/b0 of D1816. Third, specify the magnification of electronic cam data according to the input parameters below. In addition, users can also select motor unit then real-time modify the SlaveMax/MasterMax value by DTO instruction. When input parameters are ready, users can obtain 2 settings: 1 . Pulses of Winding shaft, 2.
SlaveMax/MasterMax. The below table explains how to obtain the 2 settings.

	Rounds per lay		N1
	Total rounds of	winding	N2
	Coil spacing (m		D
Input	Winding shaft (Master/Y axis)	Mechanism parameter (mm/revolution)	There is no actual moving distance of Master because winding shaft is directly driven by signals. The winding principle is that Slave moves certain distance when Master rotates a round, therefore mechanism parameter of Master can be regarded the same as that of Slave. $\mathrm{A}_{\text {Master }}=\mathrm{A}_{\text {Slave }}$
		Servo parameter (pulses/revolution)	$\mathrm{B}_{\text {Master }}$
		Mechanical parameter ($\mathrm{mm} / \mathrm{pulses}$)	$\mathrm{C}_{\text {Master }}=\mathrm{A}_{\text {Master }} / \mathrm{B}_{\text {Master }}$
		Mechanism parameter ($\mathrm{mm} /$ revolution)	$\mathrm{A}_{\text {Slave }}$
	Coil shaft (Slave/X axis)	Servo parameter (pulses/revolution)	$\mathrm{B}_{\text {Slave }}$
		Mechanical parameter (mm/pulses)	$\mathrm{C}_{\text {Slave }}=\mathrm{A}_{\text {slave }} / \mathrm{B}_{\text {slave }}$
	Winding shaft (Master/Y axis)	Length of single speed positioning (pulses)	$=\mathrm{N} 2 \times \mathrm{B}_{\text {Master }}$
Setting	Coil shaft	Master $_{\text {max }}$ (pulses)	$=2 \times N 1 \times B_{\text {Master }}$ " 2 " indicates double layer winding.
		Slave $_{\text {max }}$ (pulses)	=N1xD/C ${ }_{\text {Slave }}$

9 Electronic Cam

Here are 2 examples of obtaining the settings of Master and Slave

- Example 1

	Rounds per laye		N1=10
	Total rounds of	inding	N2=80
	Coil spacing (mm)		$\mathrm{D}=0.2$
Input	Winding shaft (Master/Y axis)	Mechanism parameter ($\mathrm{mm} / \mathrm{revolution}$)	There is no actual moving distance of Master because winding shaft is directly driven by signals. The winding principle is that Slave moves certain distance when Master rotates a round, therefore mechanism parameter of Master can be regarded the same as that of Slave. $\mathrm{A}_{\text {Master }}=$ A $_{\text {Slave }}$
parameters		Servo parameter (pulses/revolution)	$\mathrm{B}_{\text {Master }}=3600$
		Mechanical parameter (mm/pulses)	$\mathrm{C}_{\text {Master }}=\mathrm{A}_{\text {Master }} / \mathrm{B}_{\text {Master }}$
		Mechanism parameter ($\mathrm{mm} /$ revolution)	$A_{\text {Slave }}=10$
	Coil shaft (Slave/X axis)	Servo parameter (pulses/revolution)	$B_{\text {Slave }}=10000$
		Mechanical parameter (mm/pulses)	$\mathrm{C}_{\text {Slave }}=\mathrm{A}_{\text {Slave }} / \mathrm{B}_{\text {Slave }}$
	Winding shaft (Master/Y axis)	Length of single speed positioning (pulses)	$=\mathrm{N} 2 \times \mathrm{B}_{\text {Master }}=80 \times 3600=288000$
Setting	Coil shaft	Master $_{\text {Max }}$ (pulses)	$\begin{aligned} & =2 \times N 1 \times B_{\text {Master }}=2 \times 10 \times 3600=72000 \\ & \text { " } 2 \text { " indicates double layer winding. } \end{aligned}$
	(Slave/X axis)	Slave $_{\text {max }}$ (pulses)	$\begin{aligned} & =\mathrm{N} 1 \times \mathrm{D} / \mathrm{C}_{\text {Slave }}=10 \times 0.2 /(0.1 / 100) \\ & =2000 \end{aligned}$

- Example 2

	Rounds per laye		N1=20
	Total rounds of	inding	N2=100
	Coil spacing (mm)		$\mathrm{D}=0.3$
	Winding shaft (Master/Y axis)	Mechanism parameter ($\mathrm{mm} /$ revolution)	There is no actual moving distance of Master because winding shaft is directly driven by signals. The winding principle is that Slave moves certain distance when Master rotates a round, therefore mechanism parameter of Master can be regarded the same as that of Slave. $\mathrm{A}_{\text {Master }}=\mathrm{A}_{\text {Slave }}$
parameters		Servo parameter (pulses/revolution)	$\mathrm{B}_{\text {Master }}=3600$
		Mechanical parameter (mm/pulses)	$\mathrm{C}_{\text {Master }}=\mathrm{A}_{\text {Master }} / \mathrm{B}_{\text {Master }}$
		Mechanism parameter ($\mathrm{mm} /$ revolution)	$A_{\text {Slave }}=10$
	Coil shaft (Slave/X axis)	Servo parameter (pulses/revolution)	$B_{\text {Slave }}=10000$
		Mechanical parameter (mm/pulses)	$\mathrm{C}_{\text {Slave }}=\mathrm{A}_{\text {Slave }} / \mathrm{B}_{\text {Slave }}$
	Winding shaft (Master/Y axis)	Length of single speed positioning (pulses)	$=\mathrm{N} 2 \times \mathrm{B}_{\text {Master }}=100 \times 3600=360000$
Setting	Coil shaft	Master ${ }_{\text {Max }}$ (pulses)	$\begin{aligned} & =2 \times N 1 \times B_{\text {Master }}=2 \times 20 \times 3600=144000 \\ & \text { " } 2 \text { " indicates double layer winding. } \end{aligned}$
	(Slave/X axis)	Slave $_{\text {max }}$ (pulses)	$\begin{aligned} & =N 1 \times D / C_{\text {Slave }}=20 \times 0.3 /(0.1 / 100) \\ & =6000 \end{aligned}$

9.6.2 Application of a Rotary Cutter

In the application of cutting materials on a feeding belt, a traditional approach is that a cutting roller will rotate after a feeding roller rotates for a certain length, and the alternation of feeding materials and cutting the materials is repeated. The disadvantage of this approach is that the acceleration/deceleration needed in order for a feeding roller to rotate/stop decreases production efficiency. As a result, a new approach is that materials are fed continuously. There are two ways of cutting materials on a feeding belt. They are rotary cut and flying shear. Flying shear is reciprocating motion, while rotary cut is unidirectional motion. The cam curve for rotary cut is different from the cam curve for flying shear. In addition, thick material cutting also works in the same direction as rotary cut. The difference between think material cutting and rotary cut is the electronic cam curve variation in cutting process. Unlike the constant proportion curve of rotary cut's sync area, the electronic cam curve of thick material cutting varies during the cutting process between the start and the end of cutting. The 3 electronic cam applications are explained as below.

9.6.2.1 Operation of a Rotary Cutter

When the rotary cutter performs cutting action, the feeding conveyor does not slow down and stop. When the cutter touches the material, the moving speed of cutter should be the same as that of the feeding conveyor. If the cutter is slower than the conveyor, the material will be squeezed and piled; if the cutter is faster than the conveyor, the material will be extended and damaged.
The operation and simple wiring of rotary cut is illustrated as below. Positions 1, 2, 3 and 4 respectively indicate starting position, middle position, end position and ready position of speed synchronization. When Master (Y axis) executes, Slave (X axis) accelerates from position 4 to position 1, reaching the synchronizing speed. The sync speed is maintained from position 1 to position 3. After position3, Slave decelerates and returns to position 4 . The cycle repeats for continuous rotary cut operation.

9 Electronic Cam

9.6.2.2 Creating an Electronic Cam Curve

In electronic cam design process, PMSoft creates electronic cam data by operating displacement data to generate the velocity data and the acc data. However, in this case users need to control the velocity between Slave and Master. To obtain the velocity, users can input the velocity data in the displacement table for creating the velocity curve. After the velocity curve is created with displacement and acc curve, export the velocity data by clicking "Export" and import the velocity data by clicking "Import Speed Data", so that the velocity relationship between Slave and Master can be obtained.

1. Set the max resolution as 200.

Displacement
Resolution
200
2. Input the velocity data in the displacement table.

Position 1: 100 degrees
Position 2: 200 degrees
Position 3: 300 degrees

Data Setting...

Click "Draw" and the displacement data can be obtained as below.

3. Click "Export" then "Import Speed Data" and the velocity relationship between Slave and Master can be obtained.
Evport \rightarrow Import Speod Data \rightarrow

According to the above electronic cam chart, users can calculate the pulses per round of Slave (Slavemax $=200$) by the square measure of velocity data.
$\left(1 * 100 / 2+1^{*}(200-100)+1^{*}(300-200) / 2\right)=200$
Pulses per round of Master equal to the cut length. Users can apply input /output magnification setting at 9.2.1.4 in this chapter to obtain the proper set value.
The below diagram is another application on synchronizing conveyers. The electronic cam operation of the example is similar to flying shear. However, care should be taken on setting the cam curve of Slave. Constant speed for Slave is recommended. If the cam curve is set the same as the flying shear, the vertical conveyor can not keep smooth moving speed due to the acceleration and deceleration process of flying shear.

9.6.3 Application of a Flying Shear

When the flying cutter performs cutting action, the feeding conveyor does not slow down and stop, and the moving speed of cutter should be the same as that of the feeding conveyor. In addition, the synchronizing time should be long enough for the cutter to finish the cutting process and return to the safe position. The Slave (electronic cam) controls the cutter as well as the whole cutting device to move forward and back and synchronize with the Master (conveyor) during cutting process.

9 Electronic Cam

9.6.3.1 Operation of a Flying Shear

The operation and simple wiring of flying shear is illustrated as below. Positions 1, 2, 3 and 4 respectively indicate starting position, sync-start position, sync-end position and ready position. When Master (Y axis) executes, Slave (X axis) accelerates from position 1 to position 2, reaching the synchronizing speed. The sync speed is maintained from position 2 to position 3. After position3, Slave decelerates in reverse direction and returns to position 4 (Same as position 1). The cycle repeats for continuous flying shear operation.

9.6.3.2 Creating an Electronic Cam Curve

In electronic cam design process, PMSoft creates electronic cam data by operating displacement data to generate the velocity data and the acc data. However, in this case users need to control the velocity between Slave and Master. To obtain the velocity, users can input the velocity data in the displacement table for creating the velocity curve. After the velocity curve is created with displacement and acc curve, export the velocity data by clicking "Export" and import the velocity data by clicking "Import Speed Data", so that the velocity relationship between Slave and Master can be obtained.

1. Set the max resolution as 200.
```
Displacement
Resolution
200
```

2. Input the velocity data in the displacement table.

In the figure in section 9.6.3.1:
Position 2: 100 degrees
Position 3: 200 degrees
Position 4: 700 degrees.

Data Setting...

4 Data Setting						\times
	Sect. No.	Master Axis (pulse)	Slave Axis (pulse)	CAM Curve	Resolution	
		0	0	NA	NA	-
	1	100	1	Const Speed		
	2	200	1	Const Speed		
	3	300	0	Const Speed		
	4	400	0	Const Speed		
	5	500	-1	Const Speed		
	6	600	-1	Const Speed		
-	7	700	0	Const Speed		
	8					
	9					
	10					\checkmark
		Save	Draw	Initial Setting Slave Axis (pulse) 0		
		Load	OK			
		Clear	Cancel			

Click "Draw" and the displacement data can be obtained as below.

9 Electronic Cam

3. Click "Export" then "Import Speed Data" and the velocity relationship between Slave and Master can be obtained.

According to the above electronic cam chart, users can calculate the pulses per round of Slave (Slavemax=200) by the square measure of velocity data.
Positive square measure:
$\left(1 * 100 / 2+1^{*}(200-100)+1^{*}(300-200) / 2\right)=200$
Negative square measure:
$\left((-1) * 100 / 2+(-1) *(200-100)+(-1)^{*}(300-200) / 2\right)=-200$
In addition, for pulses per round of Master users can apply input /output magnification setting to obtain the proper set value. Different from the setting of rotary cut, lower/higher bound of electronic cam synchronized output section should be specified. Also, to save the time of operation cycle users can set a higher speed for the process when cutter returns to position 4 in the figure in section 9.6.3.1. See below example.

In this example, modify the angle of position 4 in the figure in section 9.6.3.1 from 700 to 600 degrees and set the stroke at section 5 as -2 , indicating doubling the reverse running speed. In this case, 100 pulses (700-600) can be reduced at operation speed 100 kHz , i.e. approximately 1 ms can be saved from the whole operation cycle. However, please note that the square measure of positive pulses should be the same as that of the negative pulses if the ready position (position 4) is required to match starting position (position 1).
Positive square measure:
$\left(1^{*} 100 / 2+1^{*}(200-100)+1^{*}(300-200) / 2\right)=200$

Negative square measure:
$\left(-2^{*}(600-400) / 2\right)=-200$

The below diagram is another flying shear application: liquid filling machine. The electronic cam operation of the example is similar to the above case of flying shear. The only difference is that the cutter is replaced by the injector. See the simple wiring diagram as below.

Filling machine
PMSoft provides B-Spline function for cam curve setting. B-Spline can smooth the cam curve as well as the positioning process. By selecting B-Spline as the cam curve, users can reduce the abrasion of the mechanism and extend its life span. The B-Spline in PMSoft ensures the smoothness and continuity of

9 Electronic Cam

the designed cam curve in $2^{\text {nd }}$ order differentiation, i.e. selecting B-Spline for displacement curve also ensures the continuity of velocity cure and acc curve. The results of the same electronic cam data with 2 different cam curves are as below. Red curve indicates Const Speed and blue curve indicates B-Spline.

The property of B-Spline is to modify only partial curve rather than the whole curve, i.e. if additional points between 2 Master positions are inserted, only the curve in the section is modified, and the curve besides the section remains in the same shape. Here is the example of inserting 210, 250, and 290 between Master position 200 and 300 . Users can observe the curve variation of each point.

The above example illustrates the horizontal variation of inserting different Master positions. Here is another example explaining the vertical variation of inserting different Slave positions1, 5, 10 and 15.

MEMO

Details about G-code instructions are explained in previous chapters. In this chapter, we will focus on G-code applications which improve the usability by various G-code download methods and enhance the operation stability by advanced G-code application (mainly used on dispensing machine).
The CNC (Computer Numerical Control) machines applying G-codes have the same operation methods and functions, therefore the PLC program for CNC machine do not need to be modified for different CNC machines.
Users only need to preset the source of G-codes: When the source is preset, the users can select one of the 3 sources (HMI , memory card or PC) by HMI and perform the control requirement.

1. HMI: Editing and storing G-codes on HMI
2. Memory card: Converting the file on CAM software into G-codes, storing the G-codes in a memory card and inserting the card into the slot on a CNC machine,
3. PC (NB): Directly downloading the G-codes into a CNC machine from a PC (NB).

10.1 Downloading a Program with PEP

When programs are downloaded to DVP20PM00M, the DVP20PM00M programs without PEP protection will be cleared first then the new program will be downloaded to the program area without PEP protection as below [Ox0 in (A), (B)]. Motion subroutines (G-codes) in DVP20PM00M are directly called by O100 main program or P subroutines which are called by O 100 main program. Therefore, to prevent O100 or P subroutines from being cleared and making G-codes invalid, PEP settings are usually enabled on O100 and P subroutine to protect the constant programs.
(A) No PEP protection

Original DVP20PMOOM programs

(B) With PEP protection

Original DVP20PM00M programs

Download new Ox

Download new Ox

With PEP protection as above, constant programs O100 and P are maintained in DVP20PMOOM, and OxO (G-codes) which needs to be constantly updated is downloaded in the general program area without PEP protection.

10 Application of G-codes

10.2 Methods of Downloading G-codes

In this section, we will introduce G-code download methods by applying PMGDL software or HMI.

1. Use PMGDL to download G-codes to DVP-PM.
2. Use Delta HMI and convert G-codes through D registers.

10.2.1 PMGDL Software

G-codes can be downloaded through PMGDL by two modes.

1. Common mode: Download G-codes to a DVP-20PM series motion controller then execute Oxn motion subroutines.
2. DNC mode: Execute Oxn subroutines while file transmission is processing.

The application of Common mode and DNC mode is mainly decided according to the G-code file size. In Common mode, G-codes will be completely downloaded to PM before executing Oxn motion subroutine. In DNC mode, generally applied for huge G-code files, transmission proceeds while motion subroutine executes. In diagram (A), PMGDL in Common mode downloads all G-codes into Ox0, Ox1 in DVP20PM00M. In diagram (B), PMGDL in DNC mode transmits G-codes while motion subroutines in DVP20PM00M are operating. Users should set up PEP protection for O100 main program before download O100 to 20PM00M. After this, executes O100 to set up COM1 (RS232) or COM2 (RS485) for communication with PMGDL, and PMGDL will download the G-codes.
Note: Please note that PMSoft supports ASCII mode only, and PMGDL software supports RTU mode only.
(A) Common mode G-code download

(B) DNC mode G-code download

- Common mode

Step 1: Edit O100 main program. M-code (G-code) processing and COM port (COM1/COM2) should be set up in O100 to communicate with PMGDL. Communication format: 115200, 8, N, 1(RTU).
(A) Program for setting up COM1

(B) Program for setting up COM2

Step 2: Set up PEP settings in PMSoft to enable protection on O100 or other constant programs and download the program to DVP20PM00M as below.
(A) Set up PEP settings on programs.

(B) Click Download Program.

(C) Download settings.

(D) Result

Step 3: Execute PMGDL software and set up COM Port (between PC and DVP20PM00M COM port) as below. Communication format 115200, 8, N, 1 should not be changed.

Step 4: Click "Open" to view the G-code file to be downloaded. In the bottom-left corner, File CRC will be displayed. Click "Send" to download the G-code file.
(A) Click Open to view the G-code file to be downloaded.

DYP20PM00D/M Gcode Dovnloader, Brild Jol 112009	x	Click "Open" to view the G-code file to be downloaded
```1% O0000 (PROGRAM NAME - DETLA LOG ) (DATE=DD-MM-YY - 05-02-09 TIME=HH:MM - 17:15 5 N1OO G21 6 N102 GO G17 G40 G49 G80 G90 7 3. BALL ENDMILL TOOL - 237 DIA. OFF. - 2 N104 T237 M6 N N106 GO G90 G54 X-12.99 Y-7.5 AO. S10000 H3 10 N108 G43 H237 28.325 11 N110 Z6.325 12 N112 G1 Z5.325 F1000. 13 N114 X-12.904 25.401 14 N116 G18 G3 X12.99 Z5.325 I12.903 K-14.9 15 N118 G1 X12.546 Y-6.731 Z6.057 16 N120 X12.182 Y-6.101 Z6.597 17 N122 X11.8 Y-5.437 27.114 18 N124 X11.338 Y-4.638 27.668 19 N126 X10.91 Y-3.897 28.123 20 N128 X10.512 Y-3.208 Z8.501```	ComSetting   Open   Send   SendNext   Cancel   OXno   0   Start   PMCRC   Stop   Execute Line	
0\% File CRC - H8F09 -betoktodive		$R C$ value of this file

(B) Click Send to download the G-code file.

(C) Download completed.


Step 5: The users can click PMCRC to calculate the CRC value and compare the CRC value with File CRC. The download is succeeded if the two CRC values are the same. Step 5 can be skipped if Download OK message was showed in step 4.


## 10 Application of G-codes

Step 6: PMGDL can download multiple G-code files to DVP20PMOOM. Click Send and the file will be downloaded to OxO. Click Send Next, and the file will be downloaded to Oxn (n increases 1 at a time). If only OxO is required, the step can be skipped.

P.S.: Next time when G-codes need to be updated, only steps after step 3 are required.

- DNC mode

DNC mode is applied for G-code file with over 5000 rows of instructions. In DNC mode, O100 do not need to be executed for calling OxO motion subroutine. When DNC mode is select by PMGDL, a DVP-20PM series motion controller will automatically execute Ox0 when G-codes are downloaded to the DVP-20PM series motion controller.
Step 1: The program downloaded to a DVP-20PM series motion controller should contain Ox0 motion subroutine, and G-codes do not need to be designed in OxO. To create OxO, click $\mathbf{O X}$ in the system information area in PMSoft. Double click at $\mathbf{0}$ and the $\mathbf{O X O}$ editing window will pop up automatically. After OxO is created, follow step 1 of Common mode to set up O100.
Step 2: Same as Step 2 of Common mode
Step 3: same as Step 3 of Common mode
Step 4: (1) Select the DNC mode checkbox. (2) Click Open to view the G-code file to be downloaded. (3) Click Send to download the G-code file. Ox0 will automatically be enabled if download is succeeded.
(A) Select the DNC mode checkbox.

(B) Click Open to view the G-code file to be downloaded.

(C) Click Send to download the G-code file.


Step 5: On PMSoft, users can monitor D1733 for number of rows of received G-code on the DVP-20PM series motion controller used, and (D1702, D1701) for currently executed rows of G-code. Check if the content of the registers increases and OxO executes automatically as below.

圆 MonitorTable0			$\square \square$	
Devioe No.	Radix	Value	Cormment	$\wedge$
D1733	d16s	169	Number of rows of reeved Goode	
D1701	d16s	39	Cunently executed rows of Goode	
D1796	d32u	500000		
D1798	d168	20000		
M1704	bit	0		
M1074	bit	1	Enabling OX motion subroutine	$\checkmark$

## 10 Application of G-codes

Step 6: If the users want to stop the operation in DNC mode, click Cancel. G-codes will stop when the executed rows equal to the received rows. If the users need to reset and download the file again, stop O100 and activate O100 again. The step can be skipped if there is no need for stopping the operation.


Step 7: When the G-code operation is completed, the executed rows will be the same as the received rows in monitor table. In addition, the number of received rows also equals to the number of rows displayed in PMGDL. Also, Ox0 stops automatically when the operation is finished as below.


Step 8: If the users want to execute other G-codes, repeat the steps from step 4.

## 10 Application of G-codes

### 10.2.2 Converting the G-codes in Data Registers

Users can also download G-codes by HMIs other than B-type. Set up the recipe on HMI and design the user program for receiving G-codes on a DVP-20PM series motion controller. When both sides are ready, the G-codes can be downloaded through HMI directly.
The G-code download program designed in a DVP-20PM series motion controller should operate in below steps: 1. initialize download process, 2 . design the size of recipe according to the recipe format set up in HMI , 3. execute the program and the G-codes will be downloaded to designated registers in a PLC according to the recipe set up in a HMI. Please note that the recipe sets up the total number of G-codes but the whole G-code file requires several times of transmission for a complete download process. Therefore, in actual application the G-code file will be separated into many groups, and only one group will be transmitted by one time. File conversion will be executed every time when one group of G-code is received. If the conversion results are correct, the filtered G-codes will be displayed in the designated register. If an error in file conversion, the error code 0xffff and the error row number will be displayed in designated registers.
After one group are received, the DVP-20PM series motion controller used sends another value to change the group number and repeats the above process until all groups of G-code file are received, which is indicated by 20H (K32) in D3002 and D3003. When all G-codes are downloaded, the conversion results will be checked again. Before the download begins, a blank motion subroutine should be created for storing the received G-codes. In addition, PEP protection should also be enabled on O100 main program, so that the original O 100 on the PC will not be cleared after uploading the program from the DVP-20PM series motion controller.

1. Setting up a recipe on HMI

Step 1: Set up the recipe in Screen Editor. The below diagrams indicates the recipe setting in both Recipe and Screen Editor. The format of Length and Group in Screen Editor is specified with 500 words and 200 groups corresponding to Recipe size and Max Recipe Count in Recipe software.



## 10 Application of G-codes

Step 2: Designate registers for commanding recipe and setting recipe group number in Screen Editor. The designated registers correspond to the registers on the DVP-20PM series motion controller. As the diagram below, the DVP-20PM series motion controller sends recipe commands, such as read/write recipe, by sending values to the control register D65. Sending value to D65 will change the recipe group number.

2. Designing a program

The special module K255 is used to converting G-codes. Users can convert G-code and monitor the result gotten by means of reading K255 and writing data to K255. Registers related to the conversion of G-codes are described below.

CR number	Function	Data type	Length
0	Initializing the conversion of G-codes	Word	1
1	Result of converting G-codes	Word	1
2	Carrying out the conversion of G-codes	Word	n

Descriptions of control registers
CR\#0: Initializing the conversion of G-codes
[Description]
Before a DVP-20PM series motion controller received G-codes form a human-machine interface or another device, they can use the control register to initialize the conversion of codes.

## CR\#1: Result of converting G-codes

[Description]
If no G-code needs to be sent by a human-machine interface, data will be written into the control register, and the conversion of G-codes will end. After To K255 k1 k0 k1 is used, Oxffff will appear in position 1 and the number of the line where an error occurs will appear in position 2 in the control register if the error occurs. After To K255 k1 k0 k1 is used, the values starting from the value in position 2 in CR\#2 to the last G-code will be ASCII codes if the conversion of G-codes is correct.

## CR\#2: Carrying out the conversion of G-codes

[Description]
The control register is used to specify the position in which the data gotten from conversion is stored. It is described below.

Position	Data	Data   type	Description
Length 1	Number of data registers   for a line of G-codes	Integer	
Length 2	Number of rows of G-codes	Integer	
Length 3	Data gotten from   conversion	Length of the data gotten from   conversion=(Number of G-codes in a   line×Number of rows)+1   After G-codes are converted, Oxffff will   appear in position 1 and the number of the   line where an error occurs will appear in   position 2 if the error occurs.   After G-codes are converted, the values   starting from the value in position 3 to the   value in position n are data gotten from the   conversion if the conversion of the G-codes   is correct,	

- Instructions for receiving G-codes

The below example explains the instructions for receiving G-codes. Specify length of recipe with 50 words and groups of recipe with 10. Execute file conversion and check the conversion results. If the conversion results are correct, the downloaded file will be stored in D3002~D3501. If errors occur, 0xffff will be recorded in D3000, and the number of error group (row) will be displayed in D3001. After uploading the program to PMSoft, users can check OxO motion subroutine for the received G-codes.
Step1: Move K1 to D66 to designate the recipe group number. Initialize the file conversion process and setting the format of recipe according to the recipe setup in Screen Editor.


## 10 Application of G-codes

Step2: HMI reads the value in D65 as the command to control the recipe. D65 = 1 indicates changing the recipe group number.


Step3: When recipe group number is changed, the value in D65 becomes 0. After this, write in the recipe command to download next group and increase the recipe group number in D66.


Step4: The value in D65 will be cleared as 0 every time when modified. When one group of recipe is received, conduct file conversion to convert the received data into ASCII codes and store the converted data inD3002~D3502. When the above process is completed, repeat the step to download the next group.


Step5: If errors occur in file conversion, D3000 will store the error code 0xffff. Users can stop the next download by monitoring D3000.


Step6: When the values in D3002 and D3003 are both 20H (K32), the complete recipe download process are finished. Check the completed conversion results by To instruction as below.


### 10.3 Applying G-codes to a Dispenser

For G-code application in automatic dispensers, DVP20PM00M provides a specific function which performs smooth movement with equal speed, avoiding pauses which lead to uneven dispensing results during operation.
The function utilizes CAM charts for storing the G-codes/M-codes and applies E-CAM operation to execute the data in CAM charts. A DVP-20PM series motion controller is designed with three CAM charts storing 3 sets of G-code/M-code programs including OxO, Ox1 and Ox2. Max 2048 points are allowed for each CAM chart, and each CAM chart should accommodate displacement and speed data of 3 axes. In addition, only G00, G01, G04 and M-codes applied in "With mode" are supported in this function. Therefore, the total available instruction capacity for G-codes (G00/G01/G04) and M-codes in single CAM chart is 680, excluding the beginning and ending instructions.
There are four operation steps. They are described below.

1. Parameter setting on servo: If a Delta's servo is applied, set the parameter p1-08 as 5~8 according to the mechanism.
2. Creating a blank CAM chart: Create a blank CAM chart with proper resolution. For example, if OxO for dispensing operation requires 500 points including G04 and M-codes, the resolution of CAM chart-0 should be set as 1506 as below. The same rule also applies on Ox1 and Ox2.


## 10 Application of G-codes

3. Loading data into CAM chart: Load the G-codes/M-codes in Oxn (n: 0~2) into corresponding CAM charts.


To load the data into CAM charts, work modes of 3 axes should be set up first, and then Oxn should be called.
(A) Setting up work modes of 3 axes

	X-axis	Y-axis	Z-axis
Work mode (bit 12)	D1847 $=$ H1000	D1927 $=$ H1000	D2007 $=$ H1000

(B) Calling Oxn: Call Oxn to load the G-codes/M-codes in corresponding CAM charts, without executing Oxn. When the G-codes/M-codes are loaded, M1792 will be rising-edge triggered. The below diagrams are examples demonstrating how to call Oxn subroutines.
a. Calling the OxO subroutine

b. Calling the Ox1 subroutine

c. Calling the Ox 2 subroutine

P.S.: Do not set up M1036 (continuous interpolation) before this step, otherwise the loaded data will be G-codes/M-codes with continuous interpolation.

## 10 Application of G-codes

4. Enabling the dispensing operation: Execute the G-codes/M-codes in CAM chart. Work modes of 3 axes should be set up first and select the CAM chart to be executed. Set D1846=H2000 to enable cyclic E-CAM. When the operation in CAM chart is completed, M1792 will be rising-edge triggered.
(A) Setting up work modes of 3 axes: If the work modes are set up as H1000 already, skip this step.

	X-axis	Y-axis	Z-axis
Work mode (bit 12)	D1847 $=\mathrm{H} 1000$	D1927 $=\mathrm{H} 1000$	D2007 $=\mathrm{H} 1000$

(B) Enabling the dispensing operation by executing the Oxn subroutine
a. Calling the OxO subroutine

b. Calling the Ox 1 subroutine

c. Calling the Ox 2 subroutine


When the function is not used, make sure the work mode is set as 0 (D1847 = 0, D1927 = 0 and D2007 = 0), otherwise errors will occur if executing single speed positioning.
Example: Executing the motion subroutine Ox0

(A) Ox0 subroutine

(B) O 100


The program in O 100 is as figure (B).
Step 1: When M1 is ON, the work modes of three axes are set.
a. D1847=H1000
b. D1927=H1000
c. D2007=H1000

Step 2: When M2 is ON, the data in OXO is loaded into CAM chart-0.
a. When the value in D1868 is H400, Ox0 is selected.
b. Load the data in OXO into CAM chart-O.

Step 3: When M7 is ON, Ox0 is executed. (The data source is in CAM chart-0)
a. When the value in D1868 is H4000, cam chart 0 is selected.
b. Enable cyclic electronic cam.

### 10.4 Storing G-codes/ M-codes

In this function, data in OXn is loaded to the corresponding CAM chart, and only G00, G01, G04 and M -codes applied in "With mode" are supported for this function. The below diagram explains the data allocation in CAM chart.


## 10 Application of G-codes

The example program uses CAM chart-0 with max resolution 1500. The below program are applied for reading the data of 3 axes in CAM chart.

P.S.: Note: In the instruction DFROM (DTO) K100 K0 D4000 K40, K100 indicates access in CAM chart-0. If K101 is set, it indicates access in CAM chart-1. If K102 is set, it indicates access in CAM chart-2.


Conclusions drawn from the data above:

1. The first data of each axis is 0 .
2. G01: The upper data is speed; the lower data is position. "-1" will be set if the speed data is not specified.
3. G00: Speed data is fixed as 500 K . The lower data is position. "-1" will be set if the speed data is not specified.
4. Stopping G00/G01: Write -1 into the speed data of G00/G01 on specific axis, and the instruction on the axis will be stopped.
5. G04: The value -4 in upper data indicates G04. The lower data is pause time. Unit: 10 ms .
6. M-code: The value -2 indicates an M -code. The lower data is an M -code number.
7. End of the data: -2 and 2 indicates MO2, which is the end of the CAM data.
8. G04 can only be placed in $X$ axis.
9. An M-code instruction should be placed in all axes.

### 11.1 Introduction of DVP-FPMC: CANopen Communication Card

DVP-FPMC is a CANopen communication card for a DVP-10PM series motion controller to conduct data exchange. The functions of DVP-FPMC are as follows.

- It conforms to the CANopen standard protocol DS301 v4.02.
- It supports an NMT protocol.
- It supports an SDO protocol.
- It supports the CANopen standard protocol DS402 v2.0. Four motion axes at most are supported.
- Motion axes support a profile position mode.


### 11.2 Specifications

- CANopen connector

Item	Specifications
Transmission method	CAN
Electrical isolation	500 V DC
Type	Removable connector $(5.08 \mathrm{~mm})$
Transmission cable	2 communication cables, 1 shielded cable, and 1 ground

- Ethernet connector

Item	
Transmission method	Ethernet
Electrical isolation	500 V DC
Type	Removable connector (5.08 mm)
Transmission cable	2 communication cables, 1 shielded cable, and 1 ground

- Communication

Item	Specifications
Protocol type	PDO, SDO, SYNC (synchronous object), EMCY (emergency object), NMT,   Heartbeat
Serial transmission speed	500 kbps, 1 Mbps (bits per second)
Product code	254
Equipment type	0 (Non-profile)
Company ID	477 (Delta Electronics, Inc.)

- Electrical specifications

Item	Specifications
Supply voltage	24 V DC (-15~20\%)   (A DVP-20PM series motion controller supplies power through its internal bus.)
Electric energy   consumption	1.7 W
Insulation voltage	500 V
Weight	Approximately 66 g

- Environmental specifications

Item	Specifications
Noise immunity	ESD (IEC 61131-2, IEC 61000-4-2): 8 kV air discharge, 4 kV contact discharge EFT (IEC 61131-2, IEC 61000-4-4): Power line: 2 kV ; Digital I/O: 1 kV ; Analog \& Communication I/O: 1 kV   Damped-Oscillatory Wave: Power line: 1 kV ; Digital I/O: 1 kV   RS (IEC 61131-2, IEC 61000-4-3): $80 \mathrm{MHz} \sim 1000 \mathrm{MHz}, 1.4 \mathrm{GHz} 2.0 \mathrm{GHz}, 10 \mathrm{~V} / \mathrm{m}$
Operation/Storage	Operation: $0^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}$ (Temperature), 50~95\% (Humidity), pollution degree 2 Storage: $-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ (Temperature), 5~95\% (Humidity)
Vibration/Shock resistance	International standards IEC 61131-2, IEC 68-2-6 (TEST Fc)/IEC 61131-2 \& IEC 68-2-27 (TEST Ea)
Standard	IEC 61131-2

## 11 cANopen Communication Card

### 11.3 Product Profile and I nstallation

Product profile:

(1) CANopen connector
(2) Ethernet connector
(3) CANopen indicator
(4) Ethernet indicator
(5) Communication connector

Installing DVP-FPMC on a DVP-20PM series motion controller, and connecting it to a communication cable:


### 11.4 Parameters for Control Registers

- Normal mode: Common parameters

CR   number	Function	Attribute	Data   type	Length
$\# 001$	Firmware version of DVP-FPMC	R	Word	1
$\# 052$	CANopen synchronous packet sending setting	$\mathrm{R} / \mathrm{W}$	Word	1
$\# 053$	CANopen node ID setting	$\mathrm{R} / \mathrm{W}$	Word	1
$\# 054$	CANopen transmission speed setting	$\mathrm{R} / \mathrm{W}$	Word	1
$\# 055$	CANopen SDO/NMT timeout	$\mathrm{R} / \mathrm{W}$	Word	1
$\# 056$	DVP-FPMC error status	$\mathrm{R} / \mathrm{W}$	Word	1
$\# 059$	Network IP address and port setting for DVP-FPMC	$\mathrm{R} / \mathrm{W}$	Word	3
$\# 062$	Ethernet connection command and status	$\mathrm{R} / \mathrm{W}$	Word	1
$\# 063$	IP address and port setting for an Ethernet master	$\mathrm{R} / \mathrm{W}$	Word	3
$\# 064$	Length of data to be transmitted through Ethernet	$\mathrm{R} / \mathrm{W}$	Word	1
$\# 065$	Data to be transmitted through Ethernet	$\mathrm{R} / \mathrm{W}$	Word	512
$\# 066$	Length of data to be received through Ethernet	R	Word	1
$\# 067$	Data to be received through Ethernet	$\mathrm{R} / \mathrm{W}$	Word	512
$\# 070$	Node ID of an SDO server	$\mathrm{R} / \mathrm{W}$	Word	1
$\# 071$	SDO access command and status	$\mathrm{R} / \mathrm{W}$	Word	1
$\# 072$	SDO OD index	$\mathrm{R} / \mathrm{W}$	Word	512
$\# 073$	SDO OD transmission/reception register 1	$\mathrm{R} / \mathrm{W}$	Word	512
$\# 074$	SDO OD transmission/reception register 2	$\mathrm{R} / \mathrm{W}$	Word	512
$\# 075$	SDO OD transmission/reception register 3	$\mathrm{R} / \mathrm{W}$	Word	1
$\# 076$	SDO OD transmission/reception register 4			
$\# 080$	NMT command			

- A2 mode: Four-axis parameters

CR number	Function	Attribute	Data type	Length
\#010	CANopen bus scan	R/W	Word	1
\#020	CANopen bus communication status	R	Word	1
\#040	Error status of a server	R	Word	1
\#050	CANopen bus control command	R/W	Word	1
\#090	Data written into a DVP-FPMC QBuffer	R/W	Word	32
\#091	Address of the data written into a DVP-FPMC QBuffer	R/W	Word	32
\#092	Data read from a DVP-FPMC QBuffer	R/W	Word	32
\#093	Address of the data read from a DVP-FPMC QBuffer	R/W	Word	32
\#n00	Node ID	R	Word	1
\#n01	Manufacturer ID	R	Word	1
\#n02				
\#n03	Product ID	R	Word	1
\#n04				
\#n05	Firmware version	R	Word	1
\#n06				
\#n07	Product type	R	Word	1
\#n08				
\#n09	CANopen node communication status	R	Word	1
\#n10	Emergency error code	R	Word	1
\#n11	Manufacturer's error code	R	Word	1
\#n12				
\#n20	Servo drive status	R	Word	1
\#n21	Present motion mode of a servo drive	R	Word	1
\#n22	Servo drive position	R	Word	1
\#n23				
\#n40	Node control command	R/W	Word	1
\#n50	SDO access command and status	R/W	Word	1
\#n51	SDO OD (object dictionary) index	R/W	Word	1
\#n52	SDO transmission/reception register 1	R/W	Word	512
\#n53	SDO transmission/reception register 2	R/W	Word	512
\#n54	SDO transmission/reception register 3	R/W	Word	512
\#n55	SDO transmission/reception register 4	R/W	Word	512
\#n60	Servo drive control	R/W	Word	1
\#n61	Motion mode selection	R/W	Word	1
\#n70	Target position of a profile position mode	R/W	Word	1
\#n71				
\#n72	Target speed of a profile position mode	R/W	Word	1
\#n73				
\#n74	Acceleration time of a profile position mode (ms)	R/W	Word	1
\#n75				
\#n76	Deceleration time of a profile position mode (ms)	R/W	Word	1
\#n77				
\#n78	Profile position settings	R/W	Word	1
\#n80	Homing method	R/W	Word	1
\#n81	Home offset	R/W	Word	1
\#n82				
\#n83	Homing speed	R/W	Word	1
\#n84				

## 11 CANopen Communication Card

$\begin{gathered} \text { CR } \\ \text { number } \end{gathered}$	Function	Attribute	Data type	Length
\#n85	Speed at which motion homes after a transition in a DOG signal	R/W	Word	1
\#n86				
\#n87	Homing acceleration time	R/W	Word	1
\#n88				
\#n89	Enabling a homing mode	R/W	Word	1
\#n90	Target position of an interpolation mode	R/W	Word	1
\#n91				
\#n92	Enabling an interpolation mode	R/W	Word	1

- CANopen common mode

CR   number	Function	Attribute	Data type	Length
$\# 500$	CANopen mode switch	$\mathrm{R} / \mathrm{W}$	Word	1
$\# 504$	Enabling a heartbeat protocol	$\mathrm{R} / \mathrm{W}$	Word	1
$\# 505$	Execution status of a heartbeat protocol	R	Word	1
$\# 506$	Heartbeat statuses	R	Word	1

- Object dictionary parameters

CR number	Function	Attribute	Data type	Length
\#H'1006	Synchronization cycle setting	R/W	DWord	1
\#H'1017	DVP-FPMC heartbeat cycle setting	R/W	Word	1
\#H'1400~\#H'143F	Parameter settings for a RPDO	R/W	Word	3
\#H'1600~\#H'163F	Parameter settings for RPDO data mapping	R/W	DWord	4
\#H'1800~\#H'183F	Parameter settings for a TPDO	R/W	Word	3
\#H'1A00~\#H'1A3F	Parameter settings for TPDO data mapping	R/W	Dword	4
\#H'2000~\#H'207F	PDO data registers	R/W	Word	4

### 11.5 Descriptions of Control Registers

- Normal mode: Common parameters


## CR\#001: Firmware version of DVP-FPMC

[Description]
The firmware version of DVP-FPMC is displayed in a hex value, e.g. H'8161 indicates that the data of issuing the firmware of DVP-FPMC is "Afternoon, August 16 ".

CR\#052: CANopen synchronous packet sending setting
[Description]
The control register has two functions.

- The low byte of CR052 sets up a CANopen synchronous function. If the value of the low byte is 1 , DVP-FPMC will send out a synchronous packet. If the value is 0 , the function will be disabled.
- The high byte of CR052 sets up a synchronous cycle. Setting value $\times 5=$ Value in D1040. If the value of the high byte is greater than 0 , the synchronization between the DVP-10PM series motion controller used and DVP-FPMC will be enabled.

Bit	Bit [15:8]	Bit [7:0]
Value	Synchronous cycle	Enabling the sending of a synchronous packet

## CR\#053: CANopen node ID setting

[Description]
The control register is used to set a CANopen node ID. A CANopen node ID is in the range of 5 to 127 . Default value: 127

## 11 cANopen Communication Card

## CR\#054: CANopen transmission speed setting

## [Description]

The control register is used to set a CANopen transmission speed. The setting status is indicated by bit 15. If bit 15 is 1 , the setting is in progress. If bit 15 is 0 , the setting is completed. For example, if the CANopen transmission speed required is $1000 \mathrm{~kb} / \mathrm{s}$, users can write K1000 into CR\#054.

Bit	Bit [15]	Bit [14:0]
Setting   value	Setting status   $0:$ Completed   $1:$ In progress	1000: CANopen speed $=1000 \mathrm{~kb} / \mathrm{s}$
$500:$ CANopen speed $=500 \mathrm{~kb} / \mathrm{s}$		

## CR\#055: CANopen SDO/NMT timeout

## [Description]

The control register is used to set a CANopen SDO/NMT timeout.
Unit: Millisecond
Default value: 1000

## CR\#056: DVP-FPMC error status

## [Description]

The control register is used to display the error status of DVP-FPMC. Please refer to the table below for more information.

Error status	Value	Resolution
CANopen connection error	C1	Check the CANopen nodes of the present slaves.
Ethernet connection error	E1	Check the connection between the communication   module and Ethernet.

CR\#059: Network IP address and port setting for DVP-FPMC
[Description]
The control register is used to set an IP address and a port number for DVP-FPMC.
Data length: 3 words
Default IP address: 192.168.0.100
Port number: 1024
Please refer to the example below. (IP address: 192.168.0.100; Port number: 1024)

Word 0		Word 1		Word 2
H-byte	L-byte	H-byte	L-byte	
192	168	0	100	

## CR\#062: Ethernet connection command and status

## [Description]

The control register is used to set an Ethernet connection command, and obtain a connection status.

- H'0: Disconnected
- H'30: Connected
- H'10: Sending a connection command
- H'20: Sending a disconnection command


## 11 cANopen Communication Card

CR\#063: IP address and port setting for an Ethernet master
[Description]
The control register is used to set an IP address and a port number for an Ethernet master.
Data length: 3 words
Please refer to the table below for more information.

Word 0		Word 1		Word 2
H-byte	L-byte	H-byte	L-byte	
192	168	0	100	

## CR\#064~CR\#67: Length of data to be transmitted/received through Ethernet/Data to be transmitted/received through Ethernet

## [Description]

The control register is used to set the data to be accessed through Ethernet. The maximum capacity is 1024 bytes.

- Sending data: After users write a data length data into CR\#064, and data into CR\#65, DVP-FPMC will automatically clear values in the two control registers to 0 .
- Receiving data: Users read the contents of CR\#066 first, and then read the data in CR\#067.

CR\#070: Node ID of an SDO server
[Description]
The control register is used to set the node ID of an SDO server. A node ID is in the range of 1 to 127 .

CR\#071: SDO access command and status
[Description]
The control register is used to set an SDO access command, and obtain a status. Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:4]	Bit [3]	Bit [2:0]
Setting value	Subindex of a target OD index	Data length (Unit: Byte)   Range: 1~8   If users want to write data, they have to specify a data length.	$\begin{aligned} & \text { Error } \\ & \text { flag } \end{aligned}$	Command:   0: Completed   1: Writing (including a check)   2: Reading (including a check)   3: Writing (not including a check)   4: Reading (not including a check)

## Example: SDO data transmission

1. Specify the OD index of an SDO server (CR\#070) in CR\#072.
2. Set the data to be transmitted in CR\#073~CR\#076.
3. Refer to the table above. Specify a subindex in bit 15~bit 8 in CR\#071, and an SDO access command.


## CR\#072: SDO OD index

[Description]
The control register is used to specify a target OD index.
Range: H'0000~H'FFFF.

## CR\#073~CR\#76: SDO OD transmission/reception register 1~SDO OD transmission/reception register 4

## [Description]

The data to be accessed through an SDO protocol is stored in the four control registers. The maximum capacity is 1024 bytes. If an error occurs during SDO data transmission, an error code will be stored in CR\#073 and CR\#074. If CR\#073~CR\#076 are used at a time, CR\#073 functions as the LSB and CR\#076 functions as the MSB.

## CR\#080: NMT command

[Description]
If DVP-FPMC is a master, an NMT command can be used to change a network status. Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:0]
	Network management command   Setting   value	1: Enabling node communication   2: Disabling node communication   128: Switch an operation mode   129: Resetting node communication

- Parameters for an A2 mode

An A2 mode is one of the applications of DVP-FPMC specifically for Delta ASDA-A2 series servo drives. In an A2 mode, CANopen node ID 1~CANopen ID 4 are for ASDA-A2 series servo drives, and CR\#100~CR\#499 correspond to servo parameters. CR\#100~CR\#199 are control registers for node ID 1, CR\#200~CR\#299 are control registers for node ID 2, CR\#300~CR\#399 are control registers for node ID 3, CR\#400~CR\#499 are control registers for node ID 4. n in a control register number represents the digit in the hundreds place of the control register number. It is in the range of 1 to 4. Control registers for ASDA-A2 application are applicable only in an A2 mode.

## CR\#010: CANopen bus scan

## [Description]

The control register is used to scan CANopen node ID 1~CANopen node ID 4. Bit 0~bit 3 in CR\#010 correspond to node 1~node 4. If a bit is 1 , its corresponding node will be scanned, and the contents of the control register will be cleared automatically. Please refer to the table below for more information.

Bit	Bit [15:4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]
Node   number	Reserved	Node 4	Node 3	Node 2	Node 1

## 11 cANopen Communication Card

## CR\#020: CANopen bus communication status

[Description]
Two consecutive bits in the control register are used to display a node communication status.
00: Disconnected
01: Connected
11: Ready
Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:6]	Bit [5:4]	Bit [3:2]	Bit [1:0]
Node   number	Reserved	Node 4	Node 3	Node 2	Node 1

CR\#040: Error status of a server
[Description]
The control register is used to display the error status of a servo drive. Bit 0~bit 3 in CR\#010 correspond to node 1~node 4. If an error occurs, its corresponding bit will be 1. If an error reset command is executed, the contents of the register will be cleared automatically. Please refer to the table below for more information.

Bit	Bit [15:4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]
Node   number	Reserved	Node 4	Node 3	Node 2	Node 1

## CR\#050: CANopen bus control command

[Description]
The control register is used to send bus control commands to the nodes connected successfully in a CANopen network. If the value in the control register is 1 , the servos which have been connected are ON. If the value in the control registers is 128 , the servos which have been connected are OFF. If the value in the control register is 129, the errors which appear are cleared. After the setting of the control register is completed, the contents of the register will be cleared automatically. Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:0]
Value	Reserved	1: All servos are ON.
		128: All servos are OFF.
	129: All errors are cleared.	

CR\#090~CR\#093: Data written into/read from a DVP-FPMC QBuffer/Address of the data written into/read from a DVP-FPMC QBuffer

## [Description]

A QBuffer is designed for accessing several inconsecutive control registers by means of executing TO/FROM once. PLC scan time can be reduced by decreasing the number of times TO/FROM is executed. QBuffer access operation is described below.
For example, after the inconsecutive control register numbers CR\#170, CR\#171, CR\#280, CR\#289, and CR\#376 are written into the QBuffer address CR\#91, DVP-FPMC will connect the data in CR\#170, CR\#171, CR\#280, CR\#289, and CR\#376 with CR\#90 automatically. Users only need to access CR\#90, and the data in CR\#170, CR\#171, CR\#280, CR\#289, and CR\#376 can be modified.
Registers in a DVP-20PM series motion controller


CR\#91 QBuffer address

1	170
2	171
3	280
4	289
5	376
6	


32	



CR\#376 Data E

## CR\#n00: Node ID

[Description]
The control register is used to display the node ID of a servo drive in a CANopen network.
Node ID=1: CR\#100=1
Node ID=2: CR\#200=2
Node ID=3: CR\#300=3
Node ID=4: CR\#400=4

## CR\#n01~CR\#n02: Manufacturer ID

## [Description]

The control registers are used to display the manufacturer ID of an ASDA-A2 series servo drive.
Data type: Double word

## CR\#n03~CR\#n04: Product ID

[Description]
The control registers are used to display the product ID of an ASDA-A2 series servo drive.
Data type: Double word

## CR\#n05~CR\#n06: Firmware version

## [Description]

The control registers are used to display the firmware version of an ASDA-A2 series servo drive.
Data type: Double word

## 11 cANopen Communication Card

## CR\#n07~CR\#n08: Product type

[Description]
The control registers are used to display the product type of an ASDA-A2 servo drive.
Data type: Double word

CR\#n09: CANopen node communication status
[Description]
The control register is used to display a node communication status in a CANopen network. Please refer to the table below for more information.

Status	Value
Disconnected	H'1 $^{\prime}$
Connected	H'$^{\prime}$
Operation mode	H'5 $^{\prime}$
Error	$\mathrm{H}^{\prime} 6$
Reset	$\mathrm{H}^{\prime} 7$

## CR\#n10: Emergency error code

[Description]
The control register is used to display an error code defined by a CANopen protocol when an error occurs in a certain node.

## CR\#n11~CR\#n12: Manufacturer's error code

[Description]
The control registers are used to display an error code defined by a manufacturer when an error occurs in an ASDA-A2 series servo drive. Please refer to Delta ASDA-A2 User Manual for more information about error codes.

CR\#n20: Servo drive status

## [Description]

The value in the control register indicates the present status of an ASDA-A2 series servo drive. Please refer to the table below for more information.


- RS: The servo drive is ready. After the initialization of the servo drive is completed, the bit will be 1 .
- SO: The servo drive is ON. The bit will be 1 if the servo drive is ON.
- FT : It is an error flag. If an error occurs in the servo drive, the bit will be 1 .
- QS: If the bit is 1 , the servo drive can be stopped urgently.
- WR: It is a warning flag. If the servo drive sends a warning message, the bit will be 1.
- RM: If the bit is 1 , remote monitoring can be executed.
- TR: If the execution of a motion command is completed, the bit will be 1.
- OM [14:12]: The bits indicate the statuses of motion modes. Please see the table below for more information.

	Profile position mode	Homing mode	Interpolation mode
OM [12]	A target position has   been set successfully.	A homing mode is being   executed.	An interpolation mode is   being executed.
OM [13]	Following error	Homing error	X


	Profile position mode	Homing mode	Interpolation mode
$\mathrm{OM}[14]$	X	X	Enabling synchronization

CR\#n21: Present motion mode of a servo drive
[Description]
The control register is used to display the present motion mode of a servo drive.

Value	Motion mode
$0 \times 01$	Profile position mode
$0 \times 06$	Homing mode
$0 \times 07$	Interpolation mode

## CR\#n22~CR\#n23: Servo drive position

## [Description]

The control registers are used to display the present position of a servo drive.
Data type: Double word
CR\#n40: Node control command
[Description]
The control register is used to send a node control command to the node connected. If the value in the control register is 1 , the servo which has been connected is ON. If the value in the control registers is 128 , the servo which has been connected is OFF. If the value in the control register is 129, the error which appears is cleared. Please refer to the table below for more information.

Bit	Bit $[15: 8]$	Bit [7:0]
Value	Reserved	1: The servo which has been connected is ON.   128: The servo drive which has been connected is OFF.   129: The error which appears is cleared.

## 11 cANopen Communication Card

CR\#n50: SDO access command and status
[Description]
The control register is used to set an SDO access command, and obtain a status. Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:4]	Bit [3]	Bit [2:0]
			Command:   0: Completed	
Setting   value	Subindex of length (Unit: Byte)   index	Range: 1~8   If users want to write data, they   have to specify a data length.	Error   flag	1: Writing (including a check)   2: Reading (including a check)   3: Writing (not including a   check)
(not including a				

## Example: SDO data transmission

1. Specify the OD index of an SDO server in CR\#n51.
2. Set the data to be transmitted in CR\#n52~CR\#n55.
3. Refer to the table above. Specify a subindex in bit 15~bit 8 in CR\#n50, and an SDO access command.


CR\#n51: SDO OD (object dictionary) index
[Description]
The control register is used to specify the OD index of a node.
Range: H'0000~H'FFFF.
CR\#n52~CR\#n55: SDO transmission/reception register 1~SDO transmission/reception register 4

## [Description]

The data to be accessed through an SDO protocol is stored in the four control registers. The maximum capacity is 1024 bytes. If an error occurs during SDO data transmission, an error code will be stored in CR\#n52 and CR\#n53. If CR\#n52~CR\#n55 are used at a time, CR\#n52 functions as the LSB and CR\#n55 functions as the MSB.

## 11 cANopen Communication Card

CR\#n60: Servo drive control

## [Description]

The control register is used to send a control command to an ASDA-A2 series servo drive. Please refer to the table below for more information.


- EO: The servo drive is enabled. The servo drive will be ON if the bit is 1 .
- FR: The error occurs in the servo is cleared. The servo drive will clear the error which appears if the bit is 1 .
- OM: It is used to control the function of motion modes. Please refer to the table below for more information.

	Profile position mode	Homing mode	Interpolation mode
OM [4]	Setting a new target position	Enabling a homing mode	X
OM $[5]$	A target position is allowed to   be changed during motion.	X	X
OM $[6]$	Absolute/Relative positioning	X	X

Note: "X" indicates "Reserved".

## CR\#n61: Motion mode selection

## [Description]

The control register is used to set the motion mode of a servo drive. Please refer to the table below for more information.

Setting value	Motion mode
$0 \times 01$	Profile position mode
$0 \times 06$	Homing mode
$0 \times 07$	Interpolation mode

## CR\#n70~CR\#n71: Target position of a profile position mode

[Description]
The control registers are used to set the target position of a profile position mode.
Data type: Double word

CR\#n72~CR\#n73: Target speed of a profile position mode
[Description]
The control registers are used to set the target speed of a profile position mode.
Data type: Double word

## CR\#n74~CR\#n75: Acceleration time of a profile position mode

## [Description]

The control registers are used to set the acceleration time of a profile position mode.
Data type: Double word

## CR\#n76~CR\#n77: Deceleration time of a profile position mode

## [Description]

The control registers are used to set the deceleration time of a profile position mode.
Data type: Double word

## 11 cANopen Communication Card

CR\#n78: Profile position settings
[Description]
The control register is used to set a profile position mode. A profile position mode can be absolute positioning or relative positioning.

- 0: Positioning is completed.
- 1: A profile position mode is absolute positioning. The value in the control register will be cleared to 0 after positioning is completed.
- 2: A profile position mode is relative positioning. The value in the control register will be cleared to 0 after positioning is completed.
- 3: A profile position mode is absolute positioning. The value in the control register will be retained after positioning is completed.


## CR\#n80: Homing method

[Description]
The control register is used to set a homing method.
Range: 1~35
For more information, please refer to chapter 13 in CiA DSP402 V2.0.

## CR\#n81~CR\#n82: Home offset

[Description]
The control registers are used to set a home offset.
Range: -2,147,483,648~2,147,483,647
Data type: Double word

## CR\#n83~CR\#n84: Homing speed

[Description]
The control registers are used to set a homing speed.
Range: 0~2,147,483,647
Data type: Double word

CR\#n85~CR\#n86: Speed at which motion homes after a transition in a DOG signal
[Description]
The control registers are used to set the speed at which motion homes after a transition in a DOG signal.
Range: 0~2,147,483,647
Data type: Double word

CR\#n87~CR\#n88: Homing acceleration time
[Description]
The control registers are used to set homing acceleration time.
Range: 0~2,147,483,647
Data type: Double word

CR\#n89: Enabling a homing mode
[Description]
A homing mode will be executed if the value in the control register is 1. After homing is completed, the value in the control register will be cleared to 0 automatically.

## 11 CANopen Communication Card

## CR\#n90~CR\#n91: Target position of an interpolation mode

## [Description]

The control registers are used to set the target position of an interpolation mode.
Range: -2,147,483,648~2,147,483,647
Data type: Double word
CR\#n92: Enabling an interpolation mode
[Description]
An interpolation mode will be executed if the value in the control register is 1 . An interpolation mode will be disabled if the value in the control register is 0 .

## - CANopen common mode

## CR\#500: CANopen mode switch

## [Description]

The control register is used to switch the CANopen mode of DVP-FPMC. If the value in the control register is 1, the CANopen mode of DVP-FPMC is an A2 mode. If the value in the control register is 2 , the CANopen mode of DVP-FPMC is a normal mode.
Default value: 1
Control registers for an A2 mode will be unavailable if the CANopen mode of DVP-FPMC is a normal mode. Control registers for a normal mode will be unavailable if the CANopen mode of DVP-FPMC is an A2 mode.

## CR\#504: Enabling a heartbeat protocol

## [Description]

If a heartbeat protocol is enabled in a common mode, the heartbeat mechanisms of node ID 1~nod ID 16 (slaves) will be enabled by a master. If the value in the control register is 0 , a heartbeat protocol is disabled. If the value in the control register is 1 , a heartbeat protocol is enabled.

## CR\#505: Execution statuses of a heartbeat protocol

## [Description]

The control register is used to display the execution statuses of the heartbeat protocol executed by node ID 1~node ID 16. If the value in the control register is 0 , the execution of a heartbeat protocol is completed. If the value in the control register is 1 , a heartbeat protocol is being executed.

## CR\#506: Heartbeat statuses

## [Description]

The control register is used to display the heartbeat statuses of node ID1~node ID 16. Node ID 1~node ID 16 correspond to bit $0 \sim$ bit 15 . If the heartbeat mechanism of a slave is enabled successfully, the bit corresponding to the salve is 1 . If the heartbeat mechanism of a slave is not enabled, the bit corresponding to the salve is 0 . In addition, if a slave is disconnected from a master, the bit corresponding to the slave is 0 .


## 11 CANopen Communication Card

- Object dictionary parameters

CR\#H'1006: Synchronization cycle setting
[Description]
The control register is used to set a time interval (unit) for the sending of CANopen synchronization packets in a normal mode.
Unit: $\mu \mathrm{s}$
Data type: Double word
Default value: 5000
A synchronization cycle is measured by the millisecond now. The time less than one millisecond is ignored. It is suggested that the minimum synchronization cycle for 1 PDO~3 PDOs in a CANopen network should be 3 milliseconds, and the minimum synchronization cycle for 4 PDOs $\sim 8$ PDOs should be 4 milliseconds. That is to say, one millisecond will be added to a minimum synchronization cycle if four PDOs are added.

## CR\#H'1017: DVP-FPMC heartbeat cycle setting

[Description]
The control register is used to set a heartbeat cycle.
Unit: Millisecond
Default value: 0
If the value in the control register is 0 , the heartbeat mechanism of DVP-FPMC is not enabled.

## CR\#H'1400~CR\#H'143F: Parameter settings for a RPDO

## [Description]

The control registers are used to set the parameters for RPDO in a normal mode. The capacity of the control registers is 3 words. Please refer to the table below for more information.

Transmission method	PDO ID	
Word 2	Word 1 (High)	Word 0 (Low)

- PDO ID: A CANopen POD ID occupies two words.

Default values:
CR\#H'1400=H180+FPMC DVP-FPMC node ID (CR\#053)
CR\# H'1401=H280+FPMC DVP-FPMC node ID (CR\#053)
CR\#H'1403=H380+FPMC DVP-FPMC node ID (CR\#053)
CR\#H'1404=H480+FPMC DVP-FPMC node ID (CR\#053)

- Transmission method: If the value set is in the range of 1 to 240 , the sending of a PDO is synchronized with the sending of a CANopen packet, and is executed every synchronization cycle. If the value set is in the range of 241 to 255 , no PDO is sent.
Default value: 241


## CR\#H'1600~CR\#H'163F: Parameter settings for RPDO data mapping

## [Description]

The control registers are used to set parameters for RPDO data mapping in a normal mode. A RPDO parameter is composed of a double word. The first word is used to set an OD Index. The high byte of the second word is used to set a subindex, and the low byte is used to set a data type. A bit is a unit for setting a data type. Please refer to the figure below for more information.

$\begin{aligned} & \text { OD index } \\ & (1600 \sim 163 F) \end{aligned}$	RPDO mapping format			PDO databuffer	
				$\begin{gathered} \text { Index } \\ (2000 \sim 207 F) \end{gathered}$	Subindex 1
	Index	Subindex	Length (Data)		Subindex 2
					Subindex 3
					Subindex 4

## CR\#H'1800~CR\#H'183F: Parameter settings for a TPDO

## [Description]

The control registers are used to set the parameters for TPDO in a normal mode. The capacity of the control registers is 3 words. Please refer to the table below for more information.

Transmission method	PDO ID	
Word 2	Word 1 (High)	Word 0 (Low)

- PDO ID: A CANopen POD ID occupies two words.

Default values:
CR\#H'1800=H200+ DVP-FPMC node ID (CR\#053)
CR\# H'1801=H300+ DVP-FPMC node ID (CR\#053)
CR\#H'1803=H400+ DVP-FPMC node ID (CR\#053)
CR\#H'1804=H500+ DVP-FPMC node ID (CR\#053)

- Transmission method: If the value set is in the range of 1 to 240 , the sending of a PDO is synchronized with the sending of a CANopen packet, and is executed every synchronization cycle. If the value set is in the range of 241 to 255 , no PDO is sent.
Default value: 241

Transmission method	PDO ID	
Word 2	Word 1 (High)	Word 0 (Low)

CR\#H'1A00~CR\#H'1A3F: Parameter settings for TPDO data mapping

## [Description]

The control registers are used to set parameters for TPDO data mapping in a normal mode. A TPDO parameter is composed of a double word. The first word is used to set an OD Index. The high byte of the second word is used to a subindex, and the low byte is used to set a data type (unit: bit). Please refer to the figure below for more information.

TPDO mapping format

$\underset{(1 A 00 \sim 1 A 3 F)}{\text { OD index }} \quad$ Index $\quad$ Subindex | Length |
| :--- |
| (Data) |


PDO	data buffer
Index   $(2000 \sim 207 F)$	Subindex 1
	Subindex 2
	Subindex 3
	Subindex 4

## 11 CANopen Communication Card

## CR\#H'2000~CR\#H'207F: PDO data registers

[Description]
Data registers storing the data for PDO access. DVP-FPMC takes CR\#H'2000~CR\#H'207F in an OD as data registers. Every index has 4 subindices in which data can be stored. The size of a subindex is one word. If the size of the data to be accessed is bigger than one word, users have to use several subindex areas for data transmission.

- Object dictionary for DVP-FPMC

Index   (Hexadecimal   value)   1000	Object name	Number of subindices	Name	Data type	Attribute	Mapping target
1000	VAR	1	Product type	UNSIGNED32	RO	N
1006	VAR	1	Synchronization cycle	UNSIGNED32	RW	N
1018	ARRAY	5	Product information	UNSIGNED32	RO	N
1200	ARRAY	3	SDO parameter of a master	UNSIGNED32	RO	N
1280	ARRAY	4	SDO parameter of a slave	UNSIGNED32	RO	N
:	:	:	:	:	:	:
128F	ARRAY	4	SDO parameter of a slave	UNSIGNED32	RO	N
1400	ARRAY	6	RPDO parameter	UNSIGNED32	RW	N
:	:	:	:	:	:	:
143F	ARRAY	6	RPDO parameter	UNSIGNED32	RW	N
1600	ARRAY	9	RPDO mapping parameter	UNSIGNED32	RW	N
:	:	:	:	:	:	:
163F	ARRAY	9	RPDO mapping parameter	UNSIGNED32	RW	N
1800	ARRAY	6	TPDO parameter	UNSIGNED32	RW	N
:	:	:	:	:	:	:
183F	ARRAY	6	TPDO parameter	UNSIGNED32	RW	N
1A00	ARRAY	9	TPDO mapping parameter	UNSIGNED32	RW	N
:	:	:	:	:	:	:
1A3F	ARRAY	9	TPDO mapping parameter	UNSIGNED32	RW	N
2000	ARRAY	5	PDO data register	UNSIGNED32	RW	Y
:	:	:	:	:	:	:
207F	ARRAY	5	PDO data register	UNSIGNED32	RW	Y
6000	ARRAY	5	Mode switch	UNSIGNED8	R	Y
6100	ARRAY	17	Servo drive control	UNSIGNED16	R	Y
6120	ARRAY	17	Parameter of a profile position mode	UNSIGNED32	R	Y
6200	ARRAY	5	Present motion mode of a servo drive	UNSIGNED8	RW	Y
6300	ARRAY	5	Servo drive status	UNSIGNED16	RW	Y
6320	ARRAY	5	Servo drive position	UNSIGNED32	RW	Y

## 11 cANopen Communication Card

### 11.6 Setting a DVP-FPMC Mode

- A2 mode

In an A2 mode, DVP-FPMC communicates with four Delta ASDA-A2 series servo drives through a CANopen network. During the communication, DVP-FPMC functions as a master, and the servo drives functions as slaves. The communication structure required is show below. The default node ID of DVP-FPMC is 127. The objects which are connected are node ID 1~ node ID 4. After users assign node ID 1~node ID4 to the servo drives, the servo drives can exchange data with DVP-FPMC.


In the A2 mode, there are six PDOs for the setting of servo parameters. The users can monitor the statuses of the servo drives directly by accessing control registers in a CANopen network. They do not need to set PDO parameters. Four PDOs are assigned to DVP-FPMC, and two PDOs are assigned to the servo drives. Please refer to the table below for more information.

PDO	Master (transmission)	Slave (transmission)
1	Target position of a profile position mode   (CR\#n70~CR\#n71)   Target speed of a profile position mode   (CR\#n72~CR\#n73)	
2	Acceleration time of a profile position mode   (CR\#n74~CR\#n75)   Deceleration time of a profile position mode   (CR\#n76~CR\#n77)	
3	Servo drive control (CR\#n60)	
4	Target position of an interpolation mode   (CR\#n90~CR\#n91)	Servo drive status (CR\#n20)   Present motion mode of a servo drive   (CR\#n21)
5		Servo drive position (CR\#n22~CR\#n23)
6		

## 11 cANopen Communication Card

Setting communication in an A2 mode:

- Setting the ASDA-A2 series servo drives

Before creating a CANopen connection, the users have to set the servo drives to CANopen mode.

1. Set P1-01 to H'OB. (The servo drive is set to CANopen mode.)
2. Set P3-00. The value of P3-00 indicates a node number. It is in the range of $\mathrm{H}^{\prime} 01$ to $\mathrm{H}^{\prime} 04$.
3. Set P3-01 to H'0403. The value of P3-01 indicates a baud rate. (If the high byte of the value of P3-01 is 2 , the baud rate used is 500 kbps . If the high byte of the value of P3-01 is 4 , the baud rate used is 1 Mbps.) The baud rates which are supported by DVP-FPMC now are 1 Mbps and 500 kbps . (Default: 1 Mbps )

- Setting DVP-FPMC

After the setting of the CNopen parameters in the servo drives connected is completed, the users can create a CANopen network by means of DVP-FPMC.

1. Write 1 into CR\#500. DVP-FPMC is set to A2 mode.
2. Write a node ID into CR\#053. The default node ID of DVP-FPMC is 127.
3. Write H'FFFF into CR\#010. All servo drives which are connected are scanned.
4. Read the value in CR\#010 by means of the instruction FROM, and check whether the value in CR\#010 is cleared to 0 .
5. Write 1 into CR\#050. All servo drives which has been connected are set to ON.

- Normal mode

In a normal mode, users have to set the PDO parameters in DVP-FPMC and the slaves which are connected. They have to use FROM/TO to set control registers in DVP-FPMC, and use an SDO protocol to set the PDO parameters in the servo drives connected. The steps of setting the PDO parameters in DVP-FPMC are as follows.

1. Setting PDO transmission parameters

The setting of PDO parameters includes the setting of a frame ID and the setting of a synchronization cycle. A frame ID is in the range of H'181 to H'578. Please note that the frame ID and the synchronization cycle in the PDO for a master must be the same as the frame ID and the synchronization cycle in the PDO for the slave connected. There are two kinds of PDOs: transmit and receive PDOs (TPDO and RPDO).

- Setting a TPDO

CR\#H'1800~CR\#H'183F in DVP-DPMC function as TPDOs. They communicate with a slave's RPDOs. For example, the OD index H'1800 (TPDO) in a master communicates with the OD index H'143F (RPDO) in a slave. The synchronization cycle set is 240 , and the frame ID set is H'181.

	DVP-FPMC
CR\#	Transmit PDO
H'1800	Synchronization   cycle=240


$\begin{aligned} & \text { OD } \\ & \text { index } \end{aligned}$	Slave	
	Receive PDO	
H'143F	Synchronization cycle=240	Frame ID $=\mathrm{H}^{\prime} 181$

- Setting a RPDO

CR\#H'1400~CR\#H'143F in DVP-DPMC function as RPDOs. They communicate with a slave's TPDOs. For example, the OD index H'1438 (RPDO) in a master communicates with the OD index H'1800 (TPDO) in a slave. The synchronization cycle set is 5 , and the frame ID set is $\mathrm{H}^{\prime} 400$.

CR\#	DVP-FPMC		$\begin{aligned} & \text { OD } \\ & \text { index } \end{aligned}$	Slave	
	Receive	PDO		Transmi	PDO
H'1438	Synchronization cy cle=5	Frame ID=H'400	H'1800	Synchronization cy cle=5	Frame ID $=\mathrm{H}^{\prime} 400$

2. Setting PDO mapping parameters

The setting of PDO mapping parameters includes the setting of a mapping target and the setting of a data length in a PDO data buffer. The maximum data length which can be set is 64 bits, that is to say, four subindices in a PDO data buffer can be occupied at a time. For example, the mapping target set is the second subindex in CR\#H'200A, and the data length set is 48 bits. Subindex 2~subindex 4 in the PDO data buffer used are occupied.

3. Setting PDO data

Write the data to be transmitted by a PDO into the OD indices set. For example, subindex 2~subindex 4 in CR\#H'200A in DVP-FPMC is TPDO data, and subindex 1~subindex 3 in CR\#H'203F in the slave connected is RPDO data. After communication is enabled, data will be transmitted/received every synchronization cycle.


### 11.7 Ethernet Mode of DVP-FPMC

DVP-FPMC supports Ethernet connection. It can be connected to an Ethernet device or a PC. If DVP-FPMC is connected to a PC, PMSoft can be used to upload/download a program and monitor devices. Users only need to connect the communication port on DVP-FPMC to a communication port on equipment. Please refer to section 11.3 for more information about installing hardware. If DVP-FPMC is connected to a PC, the Ethernet LED indicator will be ON. Please check the setting of hardware or the setting of the PC connected if the Ethernet LED indicator is not ON.

## 11 cANopen Communication Card

### 11.7.1 Communication between DVP-FPMC and an HMI

- Configuration

In this example, two DVP-20PM series motion controllers equipped with DVP-FPMC exchange data with the HMI DOP-B10E615 through Ethernet. The hardware configuration required is shown below. The program in the HMI controls Y0~Y7 on the two DVP-20PM series motion controllers.

DOP-B10E615


- Setting DVP-FPMC

In this example, DVP-FPMC functions as a slave. The IP address of DVP-FPMC needs to be set.
The IP address of the equipment to be connected and Ethernet connections do not need to be set. Users need to write the IP address of DVP-FPMC into CR\#59. Please refer to 9.5 for more information about setting CR\#59. Take the IP address 192.168.0.100 for instance. The program in DVP-PM is shown below.


## 11 cANopen Communication Card

- Setting an HMI

An HMI is used as a master. It is connected to two slaves. The IP address of the HMI and Ethernet connections need to be set. The steps of creating the connection between the HMI and DVP-FPMC are as follows.

1. Click Configuration... on the Options menu.
```
Options WWindow Help
```


## Configuration ..

## Commurication Setting

2. Click the Main tab, and then select DOP-B10E615 65536 Colors in the HMI Type drop-down list box.

3. Click Communication Setting on the Options menu.

Options $\underline{\text { Window }}$ Help
Configuration ...
Commurication Setting

4. Click the Ethernet tab.

5. After users click, they have to type a link name in the Link Name box, and select Delta DVP TCPIIP in the Controller drop-down list box.


## 11 cANopen Communication Card

6. The users have to set the IP address of DVP- FPMC in the Communication Parameter section.

Communication Parameter
Controller IP : Port
:---

7. After the users select the link name created in step 5 in the Input window for an element, they can operate the memory defined by the element by means of Ethernet.


The HMI needs to control Y0~Y7 on two DVP-10PM series motion controllers which function as slaves. The interface required is shown below. The buttons $\mathrm{Y} 0 \sim Y 7$ correspond to $\mathrm{Y} 0 \sim \mathrm{Y} 7$ on EtherLink1 and EtherLink2, that is to say, they correspond to Y0~Y7 on the two slaves connected. After the setting described above is completed, the HMI can connect to the two slaves by means of Ethernet.


### 11.7.2 Communication between DVP-FPMC and PMSoft

Before users create communication between DVP-FPMC and PMSoft, they have to use COMMG to create an Ethernet driver. An Ethernet driver can be used to upload the program in a DVP-10PM series motion controller, download a program into a DVP-20PM series motion controller, and monitor a DVP-20PM series motion controller.

- Wiring hardware

Users can connect the network port on DVP-FPMC to a network port on a PC by means of a network cable. If DVP-FPMC is connected to a PC, the Ethernet LED indicator on DVP-FPMC will be ON. Please check the setting of hardware and or the setting of the PC is the Ethernet LED indicator is not ON .

(1)	CANopen port	
(2)	Ethernet port	
(3)	CANopen LED indicator	
(4)	Ethernet LED indicator	

- Setting a PC

1. Click Internet Protocol (TCP/IP) in the Local Area Connection Properties window, and then click Properties.


This connection uses the following items:


Description
Transmission Control Protocol/Internet Protocol. The default wide area network protocol that provides communication across diverse interconnected networks.

Show icon in notification area when connected
Notify me when this connection has limited or no connectivity

> OK

Cancel
2. Select the Use the following IP address option button in the Internet Protocol (TCP/IP) Properties window. Type 192.168.0.55 in the IP address box. The last number is in the range of 1 to 255 , bit it can not be 100. Type 255.255.255.0 in the Subnet mask box, and click OK.


## 11 cANopen Communication Card

- Setting PMSoft

1. Click Add in the COMMGR window, and then create an Ethernet driver in the Driver Properties window.


The IP Address set is 192.168.0.100, and the port number set is 502 .
2. Start PMSoft, and click Communication Setting on the Communication menu. In the Communication Setting window, select the driver created in the first step in the Driver drop-down list box, and select the IP address 192.168.1.100. After OK is clicked, users can upload/download a program and monitor devices by means of Ethernet.

3. Downloading a program: If users want to download a program, they can click on the toolbar, or click Download Program on the Communication menu. The procedure for downloading a program through Ethernet is the same as the procedure for downloading a program through a general communication port.
4. Uploading a program: If users want to upload a program, they can click $\square$ on the toolbar, or click Upload Program on the Communication menu. The procedure for uploading a program through Ethernet is the same as the procedure for uploading a program through a general communication port.
5. Monitoring a DVP-20PM series motion controller: If users want to monitor a DVP-10PM series motion controller, they can click on the toolbar, or click Monitoring on the Communication menu. The procedure for monitoring a DVP-10PM series motion controller through Ethernet is the same as the procedure for monitoring a DVP-10PM series motion controller through a general communication port.

### 11.8 LED I ndicators and Troubleshooting

- CANopen LED indicator

LED indicator	Description	Resolution
The green light is OFF.	A CANopen cable is not connected.	Check whether cables are   connected correctly.
The green light is ON.	A CANopen cable is connected   normally.	No action is required.

- Ethernet LED indicator

LED indicator	Description	Resolution
The green light is OFF.	DVP-FPMC is not connected to a   network.	Check whether a network cable is   connected correctly.
The green light is ON.	DVP-FPMC is connected to a   network normally.	No action is required.
The green light blinks.	There is data exchange.	

## 11 cANopen Communication Card

MEMO

## 12 High-speed Comparison and High-speed Capture

### 12.1 High-speed Comparison and High-speed Capture

A DVP-20PM series motion controller sets and reads values by means of the instructions FROM and TO. The use of FROM/TO to set high-speed comparison and high-speed capture, and to read values is described below.

- Control


Device	Control	Resetting output devices	Setting a range which is masked
S	Initial group number $\mathrm{n}(\mathrm{n}=0 \sim 7)$	0	0
$\mathrm{S}_{+1}$	0	1	2
$\left(\mathrm{S}_{+3}, \mathrm{~S}_{+2}\right)$	Control register whose group number is n		
$\left(S_{+5}, S_{+4}\right)$	Data registers whose group numbers are n		
$\left(\mathrm{S}_{+7}, \mathrm{~S}_{+6}\right)$	Control register whose group number is $\mathrm{n}+1$		
$\left(\mathrm{S}_{+9}, \mathrm{~S}_{+8}\right)$	Data registers whose group numbers are $\mathrm{n}+1$		
:	:		
$\left(\mathrm{S}_{+31}, \mathrm{~S}_{+30}\right)$	Control register whose group number is $\mathrm{n}+7$		
$\left(\mathrm{S}_{+33}, \mathrm{~S}_{+32}\right)$	Data registers whose group numbers are $\mathrm{n}+7$		
N	Data length $=2+\mathrm{m}^{*} 4$   m=number of groups (8 groups at most can be used.)		

- Reading


Device	Reading the values in counters	Reading the states of output devices/Enabling capture
S	Initial group number n ( $\mathrm{n}=0 \sim 7$ )	0
$\mathrm{S}_{+1}$	0	1
$\left(\mathrm{S}_{+3}, \mathrm{~S}_{+2}\right)$	Control register whose group number is n	States of output devices
$\left(S_{+5}, S_{+4}\right)$	Data registers whose group numbers are n	Enabling capture (8 bits)
$\left(S_{+7}, S_{+6}\right)$	Control register whose group number is $\mathrm{n}+1$	
(S ${ }_{+9}, \mathrm{~S}_{+8}$ )	Data registers whose group numbers are $\mathrm{n}+1$	
:	:	
( $\left.\mathrm{S}_{+31}, \mathrm{~S}_{+30}\right)$	Control register whose group number is $\mathrm{n}+7$	
$\left(\mathrm{S}_{+33}, \mathrm{~S}_{+32}\right)$	Data registers whose group numbers are n+7	
N	Data length $=2+\mathrm{m}^{*} 4$   m=number of groups (8 groups at most can be used.)	

- Control/Reading
(1) The format of a control register in a high-speed comparison mode is described below.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Item			Comparison result	Output   action	Condition	Comparison source										


Item	Bit	Setting value	DVP-20PM series motion controller
Comparison source	[3-0]	0	Present position of the X-axis
		1	Present position of the Y -axis
		2	Present position of the Z-axis
		3	Value in C200
		4	Value in C204
		5	-
		6	-
		7	-
Comparison condition	[5-4]	1	Equal to ( = )
		2	Greater than or equal to ( $\geqq$ )
		3	Less than or equal to ( $\leqq$ )
Output action	[7-6]	0	Set
		1	Reset
		2, 3	-
Comparison result	[11-8]	0	CLR0
		1	CLR1
		2	Y2
		3	Y3
		4	Clearing the value in C200
		5	Clearing the value in C204

(2) The format of a control register in a high-speed capture mode is described below.


Item	Bit	Setting value	DVP-20PM series motion controller
Capture source	[3-0]	0	Present position of the X -axis
		1	Present position of the Y -axis
		2	Present position of the Z-axis
		3	Value in C200
		4	Value in C204
		5	-
		6	-
		7	
Setting	[5-4]	0	Capture mode
External trigger	[15-12]	0	PGO $\pm$ for the X-axis
		1	$B 0 \pm$ for the X -axis
		2	$\mathrm{A} 0 \pm$ for the X -axis
		3	LSNO for the X-axis
		4	LSPO for the X -axis
		5	DOGO for the X-axis
		6	STOPO for the X-axis
		7	STARTO for the X-axis
		8	PG1 $\pm$ for the Y -axis
		9	B1 $\pm$ for the Y -axis
		10	A1 $\pm$ for the Y -axis
		11	LSN1 for the Y -axis
		12	LSP1 for the Y -axis
		13	DOG1 for the Y -axis


Item	Bit	Setting value	DVP-20PM series motion controller
External   trigger	[15-12]{}	14	STOP1 for the Y-axis
		START1 for the Y-axis	

### 12.2 High-speed Comparison

A high-speed comparison is shown below. Users use FROM/TO to read/write values so that they can compare data.

※ The dotted lines are data procedures, and the solid lines are control procedures.
Block (A): The instruction TO is used to write data into control registers (block C) and data registers (block D).
Block (B): The instruction FROM is used to read data from control registers (block C) and data registers (block D).
Block (C): User set a comparison source (block E), a comparison condition (block F), and an output terminal (block $G$ ) in a control register in accordance with the value it receives by means of TO.
Block (D): The value that users write into data registers by means of the instruction TO is compared with a comparison source (block E).
Block (E): The present positions of three axes, the values in C200 and C204 are comparison sources.
Block (F): There are three comparison conditions, they are equal to, greater than or equal to, and less than or equal to. If block $D$ and block $E$ meet the comparison condition set, the output terminal selected will be set to ON, the counter selected will be reset, the output terminal selected will be reset to OFF, or the counter selected will not be reset.
 Procedure for a high-speed comparison: The instruction TO is used to write data into control registers and data registers (block A). $\rightarrow$ The comparison source set (block E) is compared with the value in data registers (block D). The comparison result meets the condition set (block F). $\rightarrow$ CLRO $\pm, \mathrm{CLR} 1 \pm, \mathrm{Y} 2, \mathrm{Y} 3$, C200, or C204 will be set or reset (block G).

- Example


## 【Description】

The high-speed counter C204 is used. If the value in C204 is greater than 100, Y1 will be set to ON. If the value in C204 is greater than 300, Y1 will be reset to OFF. Two comparators are used in a program. One comparator is used to set Y 1 to ON , and the other is used to reset Y 1 to OFF. When Y 1 is set to ON, no LED indicator on the DVP-20PM series motion controller used will indicate that Y 1 is ON, but users can know whether Y1 is ON by means of its external wiring. As a result, the terminal C 1 is connected to the terminal $24 \mathrm{G}, \mathrm{Y} 1$ is connected to $\mathrm{X} 7, \mathrm{~S} / \mathrm{S} 2$ is connected to +24 V . A manual pulse generator is used, and is connected to $\mathrm{A} 1 \pm$ and $\mathrm{B} 1 \pm$.

## 【Steps】

1．After O 100 is started，the initial setting of two high－speed comparisons will be carried out．
（1） $\mathrm{DO}=0 \rightarrow$ Initial group number $\mathrm{n}=0$
（2） $\mathrm{D} 1=0$
（3）D20 $=10 \rightarrow$ Writing 10 values by means of the instruction TO（two groups of high－speed comparison values）
（4）$D 60=10 \rightarrow$ Reading 10 values by means of the instruction FROM（two high－speed comparison values）
2．Two groups of high－speed comparison values are set when M1 is ON．
（1）First group：The value in（D3，D2）is H125．$\rightarrow$ The comparison source set is C204．（The value of bit 3～bit 0 is 5 ．）The comparison condition set is greater than or equal to．（The value of bit $5 \sim$ bit 4 is 2．）The output action selected is set．（The value of bit7～bit 6 is 0 ．）The terminal selected is Y 1 （The value of bit11～bit 8 is 1．）
（2）First group：The value in（D5，D4）is K100．If the value in C204 is greater or equal to K100， Y1 will be set to ON．
（3）Second group：The value in（D7，D6）is H165．$\rightarrow$ The comparison source set is C204．（The value of bit $3 \sim$ bit 0 is 5 ．）The comparison condition set is greater than or equal to．（The value of bit $5 \sim$ bit 4 is 2．）The output action selected is reset．（The value of bit7～bit 6 is 1．）The terminal selected is Y 1 ．（The value of bit11～bit 8 is 1 ．）
（4）Second group：The value in（D9，D8）is K300．If the value in C204 is greater or equal to K300，Y1 will be reset to OFF．
3．The two high－speed comparisons are started when M 2 is ON ．
4．The setting of the two high－speed comparisons is read when M3 is ON．
凅 Monitor Table

	Devioe No．	Radiu	Value	Comment
C204	d32u	0		
	D44	d32u	100	
	D48	d32u	300	
	D40	d16u	0	
	D41	d16u	0	
	D42	h32	00000125	
	D44	d32u	100	
	D46	h32	00000165	
	D48	d32s	300	

5．When M4 is ON，K1 is moved to M1204～M1207．C204 is started when M5 is set to ON．（Mode of counting：Pulse／Direction）
6．Use the manual pulse generator，and check whether C204 counts．
凅 MonitorIable

	Devioe No．	Radix	Value	Comment
	C204	d 32 u	95	
	D44	d 32 u	100	
	D488	d 32 u	300	

7．Use the manual pulse generator．Check whether $\mathrm{X7}$ on the DVP－20PM series motion controller used is ON when the value in C204 is greater than 100．If $X 7$ is $\mathrm{ON}, \mathrm{Y} 1$ is set to ON ．
8．Use the manual pulse generator．Check whether X7 on the DVP－10PM series motion controller used is OFF when the value in C 204 is greater than 300 ．If $X 7$ is OFF， Y 1 is reset to OFF．

## 【Program in PMSoft】



## 12 High－speed Comparison and High－speed Capture

## 12．3 High－speed Capture

A deviation often occurs when the present position of an axis or the value in C200／C204 is read．To prevent a deviation from occurring，users read a value immediately by setting an input terminal to ON． Capture is described below．


Block（A）：The instruction TO is used to write data into control registers（block B）．
Block（B）：Users set a capture source（block D），set bit 5～bit 4 to 0 （block E），and set a trigger（block F） in a control register．
Block（C）：The capture of a value（block D ）is triggered by an input terminal，and the value captured is stored in data registers．
Block（D）：The present positions of three axes，the values in C200 and C204 are capture sources．
Block（E）：Capture mode
Block（F）：External trigger
Block（G）：The instruction FROM is used to read data from control registers（block C）and data registers （block B）．The values stored in the data registers are values captured．
Procedure for a high－speed capture：The instruction TO is used to write data into control registers （block A）．$\rightarrow$ An input terminal is set to ON（block F）．$\rightarrow$ The present position of the X －axis／Y－axis／Z－axis， or the value in C200／C204 is captured（block D）．The value captured is stored in data registers（block C）．$\rightarrow$ Users read the value captured by means of the instruction FROM．
－Example

## 【Description】

Start the high－speed counter C204．The value in C204 is captured when X5 is set to ON．A manual pulse generator is used，and is connected to $\mathrm{A} 1 \pm$ and $\mathrm{B} 1 \pm$ ．

## 【Steps】

1．When M 1002 in O 100 is ON ，the initial setting of high－speed capture is carried out．
（1） $\mathrm{DO}=0 \rightarrow$ Initial group number $\mathrm{n}=0$
（2） $\mathrm{D} 1=0$
（3）D20 $=6 \rightarrow$ Writing 6 values by means of the instruction TO（Only one value is captured．）
（4）$D 60=10 \rightarrow$ Reading 6 values by means of the instruction FROM（Only one value is captured．）
2．When M1 is ON，the high－speed capture is set．
（1）The value in（D3，D2）is H5005．$\rightarrow$ The capture source set is C204．（The value of bit 3～bit 0 is 5）．The mode selected is a capture mode．（The value of bit $5 \sim$ bit 4 is 0 ．）The trigger selected is X 5 ．（The value of bit $15 \sim$ bit 12 is 5 ．）
（2）The value in（D5，D4）is K100．Users can set（D5，D4）by themselves．
3．The high－speed capture is started when M 2 is ON ．
4. The setting of the high-speed capture is read when M3 is ON.

圆 MonitorTable				-0
Devioe No.	Radix	Value	Comment	
C204	d32u	0		
D44	d32u	100		
D48	d32u	300		
D40	d16u	0		
D41	d16u	0		
D42	h32	00005005		
D44	d32u	100		

5. When M4 is ON, K1 is moved to M1204~M1207. C204 is started when M5 is set to ON. (Mode of counting: Pulse/Direction)
6. Use a manual pulse generator, and check whether C204 counts.

7. Use the manual pulse generator, and set $X 5$ to $O N$.
8. The value captured is read when M3 is ON. When X5 is ON, the value in C2O4 is captured. The value captured is 677 .

圆 Monitoriable			-0]
Devio No.	Radix	Value	Comment
C204	d32u	726	
D44	d32u	677	
			Whe $\longrightarrow \text { the } v$
D40	d16u	0	is ca
D41	d16u	0	
D42	h32	00005005	
D44	d32u	677	

【Program in PMSoft】


### 13.1 Appendix A: Error Code Table

After a program is written into a DVP-20PM series motion controller, the ERROR LED indicator will blink and an error flag will be ON if an error occurs in O100 or an Ox motion subroutine. The reason for the error occurring in O 100 or an Ox motion subroutine may be that the use of operands (devices) is incorrect, syntax is incorrect, or the setting of motion parameters is incorrect. Users can know the reasons for the errors occurring in a DVP-20PM series motion controller by means of the error codes (hexadecimal codes) stored in error registers.

- Error message table

Program block	0100			
Error type	Program error	Motion error		
		X-axis	Y-axis	Z-axis
Error flag	M1953	M1793	M1873	M2033
Error register	D1802	D1857	D1937	D2017
Step number	D1803	D1869		
Program block	Ox			
Error type	Program error	Motion error		
		X-axis	Y -axis	Z-axis
Error flag	M1793	M1793	M1873	M2033
Error register	D1857	D1857	D1937	D2017
Step number	D1869	D1869		

- Program error codes and motion error codes (hexadecimal codes)

Error code	Description	Error code	Description
0002	The subroutine used has no data.	0031	The positive-going pulses generated by motion are inhibited.
0003	CJ, CJN, and JMP have no matching pointers.	0032	The negative-going pulses generated by motion are inhibited.
0004	There is a subroutine pointer in the main program.	0033	The motor used comes into contact with the left/right limit switch set.
0005	Lack of a subroutine	0040	A device exceeds the device range available.
0006	A pointer is used repeatedly in the same program.	0041	A communication timeout occurs when MODRD/MODWR is executed.
0007	A subroutine pointer is used repeatedly.	0044	An error occurs when a device is modified by a 16-bit index register/32-bit index register.
0008	The pointer used in JMP is used repeatedly in different subroutines.	0045	The conversion into a floating-point number is incorrect.
0009	The pointer used in JMP is the same as the pointer used in CALL.	0E18	The conversion into a binary-coded decimal number is incorrect.
000A	A pointer is the same as a subroutine pointer.	0E19	Incorrect division operation (The divisor is 0.)
0011	Target position (I) is incorrect.	C401	General program error
0012	Target position (II) is incorrect.	C402	LD/LDI has been used more than nine times.
0021	Velocity (I) is incorrect.	C404	There is more than one nested program structure supported by RPT/RPE.
0022	Velocity (II) is incorrect.	C405	SRET is used between RPT and RPE.
0023	The velocity ( $\mathrm{V}_{\mathrm{RT}}$ ) of returning home is incorrect.	C4EE	There is no M102 in the main program, or there is no M 2 in a motion subroutine.
0024	The velocity $\left(\mathrm{V}_{\mathrm{CR}}\right)$ to which the velocity of the axis specified decreases when the axis returns home is incorrect.	C4FF	A wrong instruction is used, or a device used exceeds the range available.
0025	The JOG speed set is incorrect.		

MEMO


[^0]:    Additional remark

[^1]:    Additional remark: 20D=DVP20PMOOD; 20M=DVP20PM00M

[^2]:    - Please refer to the explanation of ABS for more information about the operation

    Explanation of G90.

