I ndustrial Automation Headquarters
Delta Electronics, Inc.
Taoyuan Technology Center
No. 18 , Xinglong Rd., Taoyuan C
Taoyuan County 33068 Taiwan
TEL: 886-3-362-6301/ FAX: 886-3-371-6301
Asia
Delta Electronics (Jiangsu) Lto
Wujiang Plant 3
1688 Jiangxing East Road
Wuiiang Economic Development Zone
Wuiliang City, Jiang Su Province, P.R.C. 215200
TEL: $86-512-6340-3008 /$ FAX: 86-769-6340-7290
Delta Greentech (China) Co., Ltd
238 Min-xia Road, 2000120
Shanglai, P.R.C. 201209
TEL: 86-21-58635678 / FAX: 86-21-58630003
Delta Electronics (Japan), Inc.
Tokyo Office
2-1-14 Minato-ku Shibadaimon,
Tokyo 105-0012, Japan
TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211
Delta Electronics (Korea), Inc.
1511, Byucksan Digital Valley 6-cha, Gasan-dong
TEL: 82-2-515-5503 / FAX: 82-2-515-5302
Delta Electronics $\operatorname{lnt}^{\prime \prime}$ (S) Pte Ltd.
4 Kaki Bukit Ave $1, \# 05$-05, Singapore 417939
AX: 65-6744-922
Delta Electronics (India) Pvt. L
Plot No 43 Sector 35, HSIIDC
Gurgaon, PIN 122001, Haryana, India
TEL: 91-124-4874900 / FAX: 91-124-4874945

Americas

Delta Products Corporation (USA)
P.O. Box 12173,5101 Davis Drive

Research Triangle Park, NC 27709, U.S.A.
Delta Greentech (Brasil) S.A.
Sao Paulo Office
Rua Itapeva, $26-3^{\circ}$ andar Edificio Itapeva One-Bela Vista
TEL: 55 11 3568-3855 / FAX: 5511 3568-3865

Europe

Deltronics (The
Eindhoven Office
De Witbogt 20, 5652 AG Eindhoven, The Netherlands
TEL: 31-40-2592850 / FAX: 31-40-2592851
DVP-0179720-01

DVP-10PM
Application Manual (Programming)

DVP-10PM Application Manual

Contents

Chapter 1 Program Framework of a DVP-PM Series Motion Controller
1.1 Structure of O100 1-1
1.1.1 Manual Function of O100 1-2
1.2 Structure of Ox Motion Subroutines 1-3
1.3 Structure of P Subroutines 1-4
1.4 Using O100, Ox Motion Subroutines, and P Subroutines 1-6
1.4.1 Structure of a Program 1-6
Chapter 2 Hardware Specifications and Wiring
2.1 Hardware Specifications 2-1
2.1.1 Specifications for Power 2-1
2.1.2 Electrical Specifications for Input Terminals/Output Terminals 2-1
2.1.3 Dimensions 2-4
2.2 Wiring 2-5
2.2.1 Installation of a DVP-10PM Series Motion Controller in a Control Box 2-6
2.2.2 Wiring Power Input 2-6
2.2.3 Safety Wiring 2-7
2.2.4 Wiring Input/Output Terminals 2-7
2.2.5 Wiring a DVP-10PM Series Motion Controller and an Inferior Servo Drive 2-14
2.3 Communication Ports 2-24
2.3.1 COM1 (RS-232 Port) 2-24
2.3.2 COM2 (RS-485 Port) 2-25
2.3.3 COM3 (RS-232/RS-485 Port) 2-25
Chapter 3 Devices
3.1 Device Lists 3-1
3.2 Values, Constants, and Floating-point Numbers 3-4
3.3 External Input Devices and External Output Devices 3-6
3.4 Auxiliary Relays 3-8
3.5 Stepping Relays 3-8
3.6 Timers 3-8
3.7 Counters 3-9
3.8 Registers 3-14
3.8.1 Data Registers 3-15
3.8.2 Index Registers 3-15
3.9 Pointers 3-16
3.10 Specail Auxiliary Relays and Special Data Registers 3-16
3.11 Functions of Special Auxiliary Relays and Special Data Registers 3-30
3.12 Special Data Registers for Motion Axes 3-44
3.12.1 Descriptions of the Special Data Registers Related to Motion. 3-47
3.12.2 Introduction of Modes of Motion 3-68
3.12.3 Special Data Registers for Motion Axes 3-69
Chapter 4 Basic Instructions
4.1 Table of Basic Instructions 4-1
4.2 Descriptions of the Basic Instructions 4-3
Chapter 5 Applied Instructions and Basic Usage
5.1 Table of Applied Instructions 5-1
5.2 Structure of an Applied Instruction 5-4
5.3 Processing Values 5-7
5.4 Using Index Registers to Modify Operands 5-9
5.5 Instruction Index 5-10
5.6 Descriptions of the Applied Instructions 5-13

- (API 00~09) Loop control 5-13
- (API 10~19) Transfer and comparison 5-22
- (API 20~29) Arithmetic 5-35
- (API 30~39) Rotation and move 5-47
- (API 40~49) Data processing 5-58
- (API 50) High-speed processing 5-72
- (API 61~69) Convenience 5-73
- (API 78~87) I/O 5-80
- (API 100~101) Communication 5-85
- (API 110~175) Floating-point value 5-94
- (API 215~223) Logical operation 5-125
- (API 224~246) Comparison instructions 5-128
- (API 147, 154, 202, 203, 256~260) Other instructions 5-131
5.7 Motion Control Function Block Table 5-144
5.8 Introduction of the Pins in a Motion Control Function Block 5-145
5.8.1 Definitions of Input Pins/Output Pins 5-145
5.8.2 Timing Diagram for Input/Output Pins 5-147
5.8.3 Introducing the Use of PMSoft 5-148
5.9 Delta-defined Parameter Table 5-150
5.10 Uniaxial Motion Control Function Blocks 5-152
5.10.1 Absolute Single-speed Motion 5-152
5.10.2 Relative Single-speed Motion 5-156
5.10.3 Absolute Two-speed Motion 5-160
5.10.4 Relative Two-speed Motion 5-163
5.10.5 Inserting Single-speed Motion 5-166
5.10.6 Inserting Two-speed Motion 5-170
5.10.7 JOG Motion 5-173
5.10.8 Manual Pulse Generator Mode 5-176
5.10.9 Electronic Gear Motion 5-179
5.10.10 Returning Home 5-181
5.10.11 Stopping Uniaxial Motion 5-183
5.10.12 Parameter Setting I 5-186
5.10.13 Parameter Setting II 5-187
5.10.14 Reading the Present Position/Speed of an Axis 5-189
5.10.15 State of an Axis 5-191
5.10.16 Setting the Present Position of an Axis 5-193
5.10.17 Setting the Polarities of Input Terminals 5-194
5.11 Multiaxial Motion Control Function Blocks 5-196
5.11.1 Multiaxial Absolute Linear Interpolation 5-196
5.11.2 Multiaxial Relative Linear Interpolation 5-197
5.11.3 Stopping Multiaxial Linear Interpolation 5-200
5.12 Other Motion Control Function Blocks 5-203
5.12.1 High-speed Counter 5-203
5.12.2 High-speed Timer 5-206
5.12.3 Setting High-speed Comparison 5-209
5.12.4 Resetting High-speed Comparison 5-211
5.12.5 Setting High-speed Capture 5-215
5.12.6 High-speed Masking 5-218
5.12.7 Setting an Interrupt 5-220
Chapter 6 Multiaxial Interpolation
6.1 Introduction of Multiaxial Interpolation 6-1
6.2 Description of TO 6-1
Chapter 7 CANopen Communication Card
7.1 Introduction of DVP-FPMC: CANopen Communication Card 7-1
7.2 Specifications 7-1
7.3 Product Profile and Installation 7-2
7.4 Parameters for Control Registers 7-2
7.5 Descriptions of Control Registers 7-4
7.6 Setting a DVP-FPMC Mode 7-19
7.7 Ethernet Mode of DVP-FPMC 7-21
7.7.1 Communication between DVP-FPMC and an HMI 7-22
7.7.2 Communication between DVP-FPMC and PMSoft 7-24
7.8 LED Indicators and Troubleshooting 7-27
Chapter 8 High-speed Capture and High-speed Comparison
8.1 High-speed Comparison and High-speed Capture 8-1
8.2 High-speed Comparison 8-3
8.3 High-speed Capture 8-6
Chapter 9 Appendix
9.1 Appendix A: Error Code Table 9-1

1 Program Framework of a DVP-PM Series Motion Controller

Delta DVP-PM series motion controllers can put axes in particular positions at high-speeds, create linear interpolations, and circular interpolations. They can execute basic instructions, applied instructions, motion instructions, and G-codes. Different DVP-PM series motion controllers support different program frameworks and functions. The functions that DVP-PM series motion controllers support are shown in the table below.

Function		DVP-20PM	DVP-10PM
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 03 \end{aligned}$	Main program O100	\bigcirc	\bigcirc
	Ox motion subroutines	O	\times
	P subroutines	\bigcirc	\bigcirc
$\begin{aligned} & \overline{\overline{0}} \\ & \stackrel{\rightharpoonup}{7} \\ & \bar{\eta} \\ & \overline{\overline{3}} \end{aligned}$	General instructions/Applied instructions	\bigcirc	\bigcirc
	Motion instructions	\bigcirc	\times
	G-codes	\bigcirc	\times
	M-codes	\bigcirc	\times
	JOG motion	\bigcirc	\bigcirc
	Returning home	\bigcirc	\bigcirc
	Variable motion	\bigcirc	\bigcirc
	Single-speed motion	\bigcirc	\bigcirc
	Inserting single-speed motion	\bigcirc	\bigcirc
	Two-speed motion	\bigcirc	\bigcirc
	Inserting two-speed motion	\bigcirc	\bigcirc
	Triggering single-speed motion by means of an external signal	\bigcirc	\times
	Manual pulse generator mode	\bigcirc	\bigcirc
	Cyclic/Noncyclic electronic cam motion	\bigcirc	\times

In this chapter, the basic program frameworks of DVP-PM series motion controllers are described. Owing to the fact that the functionality of a DVP-PM series motion controller is composed of sequence control and positioning control, a program comprises O100, Ox motion subroutines, and P subroutines. O100, Ox motion subroutines, and P subroutines are described in this chapter. Basic instructions, applied instructions, motion instructions, and G-codes will be introduced in other chapter 4~chapter 6 . The specifications for DVP-PM series motion controllers are shown in the table below.

Specifications	DVP-10PM	DVP-20PM
High-speed output	4 axes (1000 kHz)	3 axes (500 kHz)
PWM	Precision: $0.3 \% @ 200 \mathrm{kHz}$	-
High-speed counter	6 input terminals (2 differential input terminals, and 4 input terminals whose collectors are open collectors)	2 input terminals
Program capacity	64K steps	64 K steps
Execution speed	LD: 0.14 us MOV: 2 us DMUL: 7.6 us DEMUL: 6.1 us	

1.1 Structure of 0100

O100 is a sequence control program. It is the main program in a DVP-PM series motion controller. It only supports basic instructions and applied instructions. Users can use these two types of instructions to process I/O data, call P subroutines, and enable Ox motion subroutines (Ox0~Ox99). O100 functions as a main program. Motion subroutines are enabled through O100. There is hierarchical relation between O100 and motion subroutines. The characteristics of O100 are described below.

1. There are two methods of enabling O100.

- If the STOP/RUN switch of a DVP-PM series motion controller module is turned form the "STOP" position to the "RUN" position when the DVP-PM series motion controller is powered, M1072 will be ON , and O 100 will run.

1 Program Framework of a DVP-PM Series Motion Controller

- If a DVP-PM series motion controller is powered, users can use communication to set M1072 to ON, and to run O100.

2. O100 is scanned cyclically. The scan of the main program O100 starts from the starting flag O100. After the ending instruction M102 is scanned, the scan of the main program O100 will go back to the starting flag O100.

3. There are three methods of disabling O100.

- If the STOP/RUN switch of a DVP-PM series motion controller is turned form the "RUN" position to the "STOP" position when the DVP-PM series motion controller is powered, M1072 will be OFF, and O 100 will stop. If O 100 stops, Ox motion subroutines and P subroutines will not be executed.
- If a DVP-PM series motion controller is powered, users can use communication to set M1072 to OFF, and to stop O100. If O100 stops, Ox motion subroutines and P subroutines will not be executed.
- If an error occurs when O100 is compiled or when O100 runs, O100 will stop automatically. Please refer to appendix A in chapter 9 for more information about error codes.

4. O100 supports basic instructions and applied instructions. Users can write a control program according to their needs. They can set the parameters of motion instructions, and motion subroutine numbers (Ox0~Ox99) in O100.

- O100 does not support motion instructions and G-codes. Motion instructions and G-codes must be used in the motion subroutines Ox0~Ox99. Please refer to section 1.2 for more information.
- O100 can call P subroutines. Please refer to section 1.3 for more information.

5. The description of O 100 is shown below.

O100	Description
Enabling O100	Starting flag O100 (If O100 is a ladder diagram in PMSoft, the starting flag in O100 will be set automatically, and users do not have to write the starting flag.)
Disabling O100	Ending instruction M102 (If O100 is a ladder diagram in PMSoft, the ending instruction M102 will be set automatically, and users do not have to write the ending instruction M102.)
Executing O100	1. The STOP/RUN switch of a DVP-PM series motion controller is turned form the "STOP" position to the "RUN" position. 2. Users use communication to set M1072 to ON.
Operation characteristic	O100 is scanned cyclically.
Instructions supported	Basic instructions and applied instructions are supported.
Number	There is only one O100 in a program. Characteristic and function1. It is a sequence control program. 2. It can enable the motion subroutines Ox0~Ox99, and call P subroutines. 3. If O100 is used with Ox motion subroutines and P subroutines, O100, the Ox motion subroutines, and the P subroutines can be arranged in any order.

1.1.1 Manual Function of $\mathbf{0 1 0 0}$

Users can set manual motion modes by means of special registers in O100. (Please refer to section 3.12 for more information.)

1 Program Framework of a DVP-PM Series Motion Controller

1.2 Structure of Ox Motion Subroutines

The motion subroutines $\mathrm{Ox0} \sim \mathrm{Ox99}$ are motion control programs. They are subroutines which control the motion of the axes of a DVP-PM series motion controller. Ox0~Ox99 support basic instructions, applied instructions, motion instructions, and G-codes. They can call P subroutines. Users can control the paths of the axes of a DVP-PM series motion controller through Ox motion subroutines. The characteristics of Ox motion subroutines are described below.

1. There are two methods of enabling an Ox motion subroutine.

- When O100 runs, users can set motion subroutine numbers in O100. (The motion subroutine numbers must be in the range of 0×0 to 0×99. The users can set a motion subroutine number in O100 by setting D1868. The value in D1868 must be in the range of H 8000 to H8063.) If the users want to enable an Ox motion subroutine, they have to set M1074 to ON or set bit 12 in D1846 to ON.
- Before an Ox motion subroutine is enabled, users have to make sure that no Ox motion subroutine runs.

2. Whenever an Ox motion subroutine is enabled, it is executed once. After O100 enables an Ox motion subroutine, the execution of the Ox motion subroutine will start from the starting flag in the Ox motion subroutine. After the ending instruction M2 in the Ox motion subroutine is executed, the execution of the Ox motion subroutine will stop.

If X 0 is ON , the motion subroutine Ox 10 will be enabled. After the ending instruction M 2 in Ox 10 is executed, the execution of Ox 10 will stop. ($\mathrm{O} \times 10$ is executed once. If $\mathrm{O} \times 10$ needs to be executed again, X0 has to be set to ON.)
3. There are four methods of disabling an Ox motion subroutine.

- If the STOP/RUN switch of a DVP-PM series motion controller is turned form the "RUN" position to the "STOP" position when the DVP-PM series motion controller is powered, M1072 will be OFF, O100 will stop, and Ox motion subroutines will not be executed.
- Users can stop the execution of Ox motion subroutines by means of the external terminal Stop0.
- If a DVP-PM series motion controller is powered, users can use communication to set the value in D1846 to 0, or to set M1074 to OFF, and to stop the execution of Ox motion subroutines.
- If an error occurs when an Ox motion subroutine is compiled or when an Ox motion subroutine is

1 Program Framework of a DVP-PM Series Motion Controller

executed, the execution of the Ox motion subroutine will stop automatically. Please refer to appendix A in chapter 9 for more information about error codes.
4. An Ox motion subroutine supports basic instructions, applied instructions, motion instructions, and G-codes. Users can write a motion program according to their needs. They can control the motion of the axes of a DVP-PM series motion controller by setting the parameters of the axes.

- Basic instructions, applied instructions, motion instructions and G-codes must be used in the motion subroutines Ox0~Ox99.
- Ox motion subroutines can call P subroutines. Please refer to section 1.3 for more information.

5. The description of Ox motion subroutines is shown below.

Ox motion subroutine	\quadDescription		
Enabling an Ox motion subroutine	There are 100 Ox motion subroutines (Ox0~Ox99). (If an Ox motion subroutine is a ladder diagram in PMSoft, the starting flag in the Ox motion subroutine will be set automatically, and users do not have to write the starting flag.)		
Disabling an Ox motion subroutine	Ending instruction M2 (If an Ox motion subroutine is a ladder diagram in PMSoft, the ending instruction M2 will be set automatically, and users do not have to write the ending instruction M2.)		
1. If users set bit 12 in D1846 or M1074 to ON when O100 runs, an Ox motion subroutine will be enabled. Executing an Ox motion subroutine	2. If users use communication to set bit 12 in D1846 or M1074 to ON when O100 runs, an Ox motion subroutine will be enabled. 3. Users can stop the execution of Ox motion subroutines by means of the external terminal Stop0.		
Note: Before an Ox motion subroutine is enabled, users have to make sure that no Ox motion subroutine runs.			
Characteristic	Whenever an Ox motion subroutine is enabled, it is executed once. If an Ox motion subroutine needs to be executed again, it has to be enabled again.		
Instructions			
supported			Basic instructions, applied instructions, motion instructions, and G-codes are supported.
:---			
Note: Users have to avoid using pulse instructions.			

1.3 Structure of P Subroutines

P subroutines are general subroutines. They can be called by O 100 and Ox motion subroutines. If P subroutines are called by O100, the P subroutines will support basic instructions and applied instructions. If P subroutines are called by Ox0~Ox99, the P subroutines will support basic instructions, applied instructions, motion instructions, and G-codes. After O100 or an Ox motion subroutine calls a P subroutine, the P subroutine will be executed. After SRET in the P subroutine is executed, the lines under the instruction which calls the P subroutine will be executed.

1. There are two methods of enabling a P subroutine.

- O100 can call P subroutines.
- Ox motion subroutines can call P subroutines.

2. Whenever a P subroutine is called, it is executed once. After $O 100$ or an $O x$ motion subroutine calls a P subroutine, the P subroutine will be executed. After the ending instruction SRET in the P subroutine is executed, the execution of the P subroutine will stop, and the lines under the instruction which calls the P subroutine will be executed.

The subroutine P0 supports basic instructions and applied instructions. The subroutine P2 supports basic instructions, applied instructions, motion instructions, and G-codes.
3. There are three methods of disabling a P subroutine.

- If the STOP/RUN switch of a DVP-PM series motion controller is turned form the "RUN" position to the "STOP" position when the DVP-PM series motion controller is powered, M1072 will be OFF, O100 will stop, and Ox motion subroutines and P subroutines will not be executed.
- If a DVP-PM series motion controller is powered, users can use communication to set the value in D1846 to 0, or to set M1074 to OFF, to stop the execution of Ox motion subroutines, and to stop the execution of P subroutines.
- If an error occurs when a P subroutine is executed, the execution of the P subroutine will stop automatically. Please refer to appendix A in chapter 9 for more information about error codes.

4. If P subroutines are called by $O 100$, the P subroutines will support basic instructions and applied instructions. If P subroutines are called by $\mathrm{OxO} 0 \times \mathrm{O} 9$, the P subroutines will support basic instructions, applied instructions, motion instructions, and G-codes.
5. The description of P subroutines is shown below.

P subroutine	Description
Enabling a P subroutine	There are 256 P subroutines (P0~P255). (If a P subroutine is a ladder diagram in PMSoft, the starting flag in the P subroutine will be set automatically, and users do not have to write the starting flag.)
Disabling a P subroutine	Ending instruction SRET (If a P subroutine is a ladder diagram in PMSoft, the ending instruction SRET will be set automatically, and users do not have to write the ending instruction SRET.)

1 Program Framework of a DVP-PM Series Motion Controller

P subroutine	Description
Executing a P subroutine	1. $O 100$ can call P subroutines. 2. Ox motion subroutines can call P subroutines.
Operation characteristic	Whenever a P subroutine is enabled, it is executed once. If a Pn subroutine needs to be executed again, it has to be enabled again.
Instruction supported	1. If P subroutines are called by $O 100$, the P subroutines will support basic instructions and applied instructions. 2. If P subroutines are called by $O x$ motion subroutines, the P subroutines will support basic instructions, applied instructions, motion instructions, and G-codes. Note: If P subroutines are called by Ox motion subroutines, users have to avoid using pulse instructions.
Number	There are 256 P subroutines in a program.
Characteristic and function	1. P subroutines are general subroutines. 2. P subroutines can be called by O 100 and Ox motion subroutines. 3. If P subroutines are used with O 100 and Ox motion subroutines, the P subroutines, O100, and the Ox motion subroutines can be arranged in any order.

1.4 Using 0100, Ox Motion Subroutines, and P Subroutines

O100, Ox motion subroutines, and P subroutines are introduced in section 1.1~section 1.3. In this section, a program composed of O100, Ox motion subroutines, and P subroutines is described.

1.4.1 Structure of a Program

Suppose a program is composed of $\mathrm{O} 100, \mathrm{Ox0}, \mathrm{Ox} 3, \mathrm{P} 1$, and P 2 . The five program blocks are shown below.

1 Program Framework of a DVP-PM Series Motion Controller

In order to describe the program, the program is divided into 5 sections (section (1)~section (5)).

The program is described below.

1. Section (1)~section (5) are created in numerical order, but they can be arranged in any order.
2. There is only one O100. O100 can not be called by another program, but it can freely call Ox motion subroutines and P subroutines.
3. Ox motion subroutines can be called by O 100 and P subroutines, and it can call P subroutines.
4. P subroutines can be called by O 100 and Ox motion subroutines, and it can call Ox motion subroutines.

Note:

1. One Ox motion subroutine is executed at a time. If OxO is executed, $\mathrm{O} \times 3$ can not be executed. If Ox 3 is executed, Ox0 can not be executed.
2. After O 100 or a P subroutine enables an $O x$ motion subroutine, the next line will be executed, and the execution of the Ox motion subroutine will be ignored.

1
 Program Framework of a DVP-PM Series Motion Controller

3. Whenever an Ox motion subroutine is enabled, it is executed once. If an Ox motion subroutine needs to be executed again, it has to be enabled again.
The instructions supported by O100, Ox0, Ox3, P1 and P3 are described below. (O: Supported; X: Not supported)

Section	O100	Ox0 and Ox3	P1	P2
Basic instruction	O	O	O	O
Applied instruction	O	O	O	O
Motion instruction	X	O	O	X
G-code	X	O	O	X
Description	-	-	P1 is called by Ox0, and therefore it supports motion instructions and G-codes.	P2 is called by O100, and therefore it does not support motion instructions and G-codes.

Additional remark:

	Main program	Subroutine	Motion subroutine
Order	In any order	In any order	In any order
Execution	It runs normally.	P subroutines can be called by O100 or Ox motion subroutines.	Ox motion subroutines can be called by O100 or P subroutines.
Operation	It is scanned cyclically.	Whenever a subroutine is called, it is executed once.	Whenever a motion subroutine is called, it is executed once.
Number	1 main program	256 subroutines They can be used according to users' needs.	100 motion subroutines They can be used according to users' needs.

2 Hardware Specifications and Wiring

2.1 Hardware Specifications

Electrical specifications and wiring are described in this chapter. Please refer to chapter 5~chapter 6 for more information about the writing of a program and the use of instructions. For more information about the peripherals purchased, please refer to the manuals attached to them.

2.1.1 Specifications for Power

Item	10PM
Supply voltage	100~240 V AC (-15\%~10\%), 50/60 Hz $\pm 5 \%$
Fuse	2 A/250 V AC
Power Consumption	60 V A
24 V DC power	500 mA
Power protection	24 V DC output is equipped with a short circuit protection and an overcurrent protection.
Surge voltage withstand level	1500 V AC (Primary-secondary), 1500 V AC (Primary-PE), 500 V AC (Secondary-PE)
Insulation impedance	Above $5 \mathrm{M} \Omega$ (The voltage between all input terminals/output terminals and the ground is 500 V DC.)
Noise immunity	ESD: 8 kV air discharge EFT: Power line: 2 kV ; digital I/O: 1 kV ; analog \& communication I/O: 250 V
Ground	The diameter of the ground should not be less than the diameters of the cables connected to the terminals L and N. (If several DVP-10PM series motion controllers are used, please use single-point ground.)
Operation/Storage	Operation: $0^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}$ (Temperature), 5~95\% (Humidity), pollution degree 2 Storage: $-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ (Temperature), $5 \sim 95 \%$ (Humidity)
Vibration/Shock resistance	International standards IEC 61131-2, IEC 68-2-6 (TEST Fc)/IEC 61131-2 \& IEC 68-2-27 (TEST Ea)
Weight	Approximately 478/688 g

2.1.2 Electrical Specifications for Input Terminals/ Output Terminals

Electrical specifications for input terminals:

- DVP10PM00M: Four-axis mode

Terminal	Description	Response	Maximum input	
	1.They are single/A/B-phase input terminals. 2. DOG signals for the X-axis, the Y-axis, the Z-axis, and the A-axis: X0, X2, X4, and X6 X0~X7 3. PG signals for the X-axis, the Y-axis, the Z-axis, and the A-axis: X1, X3, X5, and X7		15 mA	24 V
X10+, X10-, X11+, and X11-	Differential terminals for a manual pulse generator (differential terminals for a counter)	200 kHz	15 mA	$5 \sim 24 \mathrm{~V}$
X12+, X12-, X13+, and X13-	Differential terminals for a counter	200 kHz	15 mA	$5 \sim 24 \mathrm{~V}$

DVP10PM00M: Six-axis mode

| Terminal | Description | Response | Maximum input | |
| :--- | :--- | :---: | :---: | :---: | :---: |
| | Current | | | |
| X0~X7 | They are single/A/B-phase input terminals.
 2.
 DOG signals for the X-axis, the Y-axis, the
 Z-axis, and the A-axis: X0, X2, X4, and X6
 3.
 PG signals for the X-axis, the Y-axis, the
 Z-axis, and the A-axis: X1, X3, X5, and X7 | 200 kHz | 15 mA | 24 V |
| X10+, X10-,
 X11+, and X11- | Differential terminals for a manual pulse
 generator (differential terminals for a counter) | 200 kHz | 15 mA | $5 \sim 24 \mathrm{~V}$ |

2 Hardware Specifications and Wiring

Terminal	Description	Response	Maximum input	
			Current	Voltage
$\begin{aligned} & \mathrm{X} 12+, \mathrm{X} 12-, \\ & \mathrm{X} 13+\text {, and X13- } \end{aligned}$	1. Differential terminals for a counter 2. DOG signals for the B-axis and the C-axis: (X12+, X12-) and (X13+, X13-) 3. PG signals should ne used with I/O extension modules.	200 kHz	15 mA	5~24 V

Electrical specifications for output terminals:
■ DVP10PM00M: Four-axis mode

Terminal	Description	Response	Maximum current output
Y0~Y3	They are high-speed output terminals whose collectors are open collectors. (PWM) PG signals	200 kHz	40 mA
Y10+, Y10-, Y12+,	U/D: Counting up Y12-, Y14+, Y14-, P/D: Pulse Y16+, and Y16-	1000 kHz	40 mA
Y11+, Y11-, Y13+, Y13-, Y15+, Y15-,	U/D: Counting down P/D: Direction Y17+, Y17-	1000 kHz	40 mA

- DVP10PM00M: Six-axis mode

Terminal	Description	Response	Maximum current output
Y0, C0, Y2, and C2	They are high-speed output terminals whose collectors are open collectors. U/D: Counting up P/D: Pulse A/B: A phase	200 kHz	40 mA
Y1, C1, Y3, and			
C3	They are high-speed output terminals whose collectors are open collectors. U/D: Counting down P/D: Direction A/B: B phase	200 kHz	40 mA
Y10+, Y10-, Y12+, Y12-, Y14+, Y14-, Y16+, and Y16-	U/D: Counting up P/D: Pulse A/B: A phase	1000 kHz	40 mA
Y11+, Y11-, Y13+, Y13-, Y15+, Y15-, Y17+, and Y17-	U/D: Counting down P/D: Direction A/B: B phase	1000 kHz	40 mA

2 Hardware Specifications and Wiring

Digital input terminals:

- DVP-10PM series motion controller

Item Specifications		Differential input terminal	24 V DC common terminal	Remark
		High speed of 200 kHz		
Wiring type		Independent wiring	A current flows into the terminal S/S (sinking), or a current flows from the terminal S / S.	\#1: Users can filter pulses by setting a digital input terminal to ON after the pulses in 10 $\mathrm{ms} \sim 60 \mathrm{~ms}$ are received. Besides, they can filter high-frequency pulses by setting the terminals for a manual pulse generator to ON when the frequency of pulses received is in the range of 10 kHz to 2600 kHz .
Input indicator		LED indicator (If the LED indicator corresponding to an input terminal is ON, the input terminal is ON. If the LED indicator corresponding to an input terminal is OFF, the input terminal is OFF.)		
Input voltage		5~24 V DC	24 V DC	
Maximum input current		15 mA		
Action level	Off \rightarrow On	20 us		
	On \rightarrow Off	30 us		
Response time/Noise reduction		$10 \mathrm{~ms} / 0.5$ us		

Digital output terminals:

- DVP-10PM series motion controller

Specifications		Differential output terminal	Transistor output terminal
Maximum frequency of output signals		1 MHz	200 kHz
Output indicator		LED indicator (If the LED indicator output terminal is ON. If the LED in OFF, the output terminal is OFF.)	ding to an output terminal is ON , the responding to an output terminal is
Output terminal		Y10~Y17	Y0~Y3
Working voltage		5 V DC	5~30 V DC
Maximum output current		40 mA	40 mA
Isolation		Power isolation	Optocoupler
Current specifications	Resistance	$<25 \mathrm{~mA}$	0.5A/output terminal (4 A/COM)
	Inductance	--	12 W (24 V DC)
	Bulb	--	2 W (24 V DC)
Response time	Off \rightarrow On	0.2 us	
	On \rightarrow Off		
Overcurrent protection		N/A	

2 Hardware Specifications and Wiring

2.1.3 Dimensions

(Unit: mm)

Profile

■ DVP-10PM series motion controller

(1) Communication port cover
(2) Input/Output terminal cover
(3) Input LED indicators
(4) Input/Output terminals
(5) Connector cover
(6) Input/Output terminal numbers
(7) Function card/memory card cover
(8) Output LED indicators
(9) DIN rail mounting clip
(10) COM2 (RS-485 port)
(11) $\mathrm{STOP} / \mathrm{RUN}$ switch
(12) COM1 (RS-232 port)
(13) Battery compartment
(14) Battery
(15) Function card slot POWER LED indicator, RUN LED indicator, ERROR LED indicator, and BATTERY LED indicator
(17) Connector
(18) Set screw
(19) Mounting hole

2 Hardware Specifications and Wiring

Open the COM1 cover.

Please change the battery in a minute.

Take out the RS-485 terminals.

Part	Description
COM2 (RS-485 port)	Master/Slave mode
STOP/RUN switch	Running/Stopping the DVP-10PM series motion controller
COM1 (RS-232 port)	Slave mode (It can be used with COM2 at the same time.)

Arrangement of terminals: Please refer to section 2.1.2 for more information.
■ DVP-10PM series motion controller

()			24 C		+24V		X0		X2		X4	X6			X10+		X11+		X12+	X13+	
	L					S/S		X1		X3		X5		X7		X10-		X11-	X1		X13-
DVP-10PM (AC Power IN, DC Signal IN)																					
Y0			Y2		Y3		Y10		Y11+		Y12+		Y13+		Y14+		Y15+			Y1	
C0		C1		C2		C3		Y10-	Y11-		-	Y12-		Y13-	Y14-			Y15-	Y16-		Y17-

2.2 Wiring

A DVP-10PM series motion controller is an OPEN-TYPE device. It should be installed in a control cabinet free of airborne dust, humidity, electric shock and vibration. To prevent non-maintenance staff from operating a DVP-10PM series motion controller, or to prevent an accident from damaging a DVP-10PM series motion controller, the control cabinet in which a DVP-10PM series motion controller is installed should be equipped with a safeguard. For example, the control cabinet in which a DVP-10PM series motion controller is installed can be unlocked with a special tool or key.
DO NOT connect AC power to any of I/O terminals, otherwise serious damage may occur. Please check all wiring again before a DVP-10PM series motion controller is powered up. Make sure that the ground terminal
 on a DVP-10PM series motion controller is correctly grounded in order to prevent

2 Hardware Specifications and Wiring

electromagnetic interference.

2.2.1 Installation of a DVP-10PM Series Motion Controller in a Control Box

Installing a DIN rail:

The installation is applicable to a 35 millimeter DIN rail. Before users hang a DVP-10PM series motion controller on a DIN rail, they have to insert a slotted screw into the slots on the mounting clips, and pull out the mounting clips. After the users hang the DVP-10PM series motion controller on the DIN rail, they have to push the mounting clips back. If the users want to remove the DVP-10PM series motion controller, they have to insert a slotted screw into the slots on the mounting clips, and pull out the mounting clips. After the mounting clips are pulled
 out, they will not move back.

1. Using screws: Please mount a DVP-10PM series motion controller on a DIN rail by means of M4 screws.
2. A DVP-10PM series motion controller has to be installed in a closed control box. In order to ensure that the DVP-10PM series motion controller radiates heat normally, there should be space between the DVP-10PM series motion controller and the control box.

D $>50 \mathrm{~mm}$
Points for attention:

1. Please use O-type terminals or Y-type terminals. The specifications for terminals are on the right. The torque applied to the terminal screws used should be $9.50 \mathrm{~kg}-\mathrm{cm}(8.25 \mathrm{lb}-\mathrm{in})$. Please use copper conducting wires. The temperature of the copper conducting wires used should be $60 / 75^{\circ} \mathrm{C}$.
2. Please do not wire NC. Please do not put the cables connected to input terminals and the cables connected to output terminals in the same cable tray.
3. Users have to make sure that there are no tiny metal conductors
 inside a DVP-10PM series motion controller when they tighten screws and wire terminals. In order to ensure that the DVP-10PM series motion controller radiates heat normally, the users have to remove the sticker on the heat hole.

2.2.2 Wiring Power I nput

The power input of a DVP-10PM series motion controller is AC input. Users have to pay attention to the following points.

1. The voltage of AC power input is in the range of 100 V AC to 240 V AC . A live wire and a neutral wire are connected to L and N . If 110 V AC power or 220 V AC power is connected to +24 V or an input terminal on a DVP-10PM series motion controller, the DVP-10PM series motion controller will be damaged.
2. The AC power input of a DVP-10PM series motion controller, and the AC power input of the I/O module connected to the DVP-10PM series motion controller must be ON or OFF at the same time.
3. The length of the cable connected to the ground terminal on a DVP-10PM series motion controller is at least 1.6 millimeters.
4. If a power cut lasts for less than 10 milliseconds, the DVP-10PM series motion controller used will keep running without being affected. If a power cut lasts for long, or if the voltage of the power input of DVP-10PM series motion controller decreases, the DVP-10PM series motion controller will stop running, and the output terminals will be OFF. When the power input returns to normal, the DVP-10PM series motion controller will resume. (Users have to notice that there are latching auxiliary relays and registers in a DVP-10PM series motion controller when they write a program.)
5. The maximum current which can flows from the power output terminal +24 V is 0.5 A . Please do not connect any external power to +24 V . The current flows into any input terminal must be in the range of 6 mA to 7 mA . If there are 16 input terminals, 100 mA will be required. As a result, the current that flows

2 Hardware Specifications and Wiring

from +24 V to an external load can not be greater than 400 mA .

2.2.3 Safety Wiring

A DVP-10PM series motion controller controls many devices, and the activity of any device affects the activity of other devices. If any device breaks down, the whole automatic control system will go out of control, and dangers will occur. As a result, it is suggested that users should create the protection circuit shown below when they wire power input.

(1) Alternating-current power input : 100~240 VAC, $50 / 60 \mathrm{~Hz}$
(2) Circuit breaker
(3) Emergency stop: The emergency stop button can be used to cut off power when an emergency occurs.
(4) Power indicator
(5) Load through which a alternating current passes
(6) 3 A fuse
(7) DVP-10PM series motion controller
(8) Direct-current power output: 24 V DC, 500 mA

2.2.4 Wiring I nput/ Output Terminals

1. The power input of a DVP-10PM series motion controller is DC power input. Sinking and sourcing are current driving capabilities of a circuit. They are defined as follows.
Sinking:
DC power input

Sinking: The current flows into the common terminal S / S.

2
 Hardware Specifications and Wiring

2 Hardware Specifications and Wiring

Wiring		

2. Wiring differential input terminals

The direct-current signals ranging in voltage from 5 V to 24 V can pass through the high-speed input terminals X10~X13+ on a DVP-10PM series motion controller. The frequency of input signals can be up to 200 kHz . These high-speed input terminals are connected to a differential (two-wire) line driver. Wiring of differential input terminals (used for high speed and noise):

If the frequency of input signals is less than 50 kHz and there is not much noise, these high-speed input terminals can be connected to the direct-current power input whose voltage is in the range of 5 V to 24 V , as shown below.
Sinking:
DVP10PM

Sourcing:

2 Hardware Specifications and Wiring

3. Relay output circuit

Direct-current power input
Emergency stop: An external switch is used.
(3) Fuse: To protect the output circuit, a fuse having a breaking capacity in the range of 5 A to 10 A is connected to a common terminal.
(4) A diode is used to absorb the surge voltage which occurs when the load connected is OFF. It can lengthen the lifespan of a terminal.

1. A diode is connected to a load through which a direct current passes. It is used when the power of the load connected is small.

D: 1N4001 diode
2. A diode and a zener diode are connected to a load through which a direct current passes. They are used when the power of the load is large and the load is turned ON/OFF frequently.

(5) Incandescent lamp: Resistive load
(6) Alternating-current power input
(7) Mutually exclusive output: Y4 controls the clockwise rotation of a motor, and Y5 controls the counterclockwise rotation of a motor. The interlock circuit which is formed, and the program in the DVP-10PM series motion controller ensure that there will be protective measures if an abnormal condition occurs.
(8) Indicator: Neon lamp

2 Hardware Specifications and Wiring

(9) Surge absorber: It can be used to reduce the noise of a load through which an alternating current passes.

R: 100-120.0
C: 01~024
4. Transistor output circuit

DVP-10PM

2 Hardware Specifications and Wiring

(4) Transistor output terminals are open collectors. If Y0/Y1 is a pulse output terminal, the output current passing through an output pull-up resistor must be larger than 0.1 A to ensure that transistor output terminals operate normally.

1. Diode: It is used when the power of the load connected is small.

PLC transistor output

D: 1N4001 diode
2. Diode and zener diode: They are used when the power of the load connected is large and the load is turned ON/OFF frequently.

PLC transistor output
The power of the load is large and

D: 1N4001 diode
(5) Mutually exclusive output: Y4 controls the clockwise rotation of a motor, and Y5 controls the counterclockwise rotation of a motor. The interlock circuit which is formed, and the program in the DVP-10PM series motion controller ensure that there will be protective measures if an abnormal condition occurs.
5. Wiring differential output terminals

- Wiring differential output terminals on a DVP-10PM series motion controller and an ASDA-A series $A C$ servo drive/ASDA-A+ series AC servo drive/ASDA-A2 series AC servo drive

Differential output terminals on a
DVP-10PM series motion controller
Drive

2 Hardware Specifications and Wiring

- Wiring differential output terminals on a DVP-10PM series motion controller and an ASDA-B series AC servo drive

- Wiring differential output terminals on a DVP-10PM series motion controller and an ASDA-AB series AC servo drive

Differential output terminals on a DVP-10PM series motion controller

2 Hardware Specifications and Wiring

2.2.5 Wiring a DVP-10PM Series Motion Controller and an Inferior Servo Drive

Wiring a DVP-10PM series motion controller and a Delta ASDA-A series AC servo drive: Four-axis wiring

2 Hardware Specifications and Wiring

Wiring a DVP-10PM series motion controller and a Delta ASDA-A series AC servo drive: Six-axis wiring

2 Hardware Specifications and Wiring

Wiring a DVP-10PM series motion controller and a Panasonic CN5 series servo drive: Four-axis wiring

2 Hardware Specifications and Wiring

Wiring a DVP-10PM series motion controller and a Panasonic CN5 series servo drive: Six-axis wiring

2
 Hardware Specifications and Wiring

Wiring a DVP-10PM series motion controller and a Yaskawa servo drive: Four-axis wiring

2 Hardware Specifications and Wiring

Wiring a DVP-10PM series motion controller and a Yaskawa servo drive: Six-axis wiring

2 Hardware Specifications and Wiring

Wiring a DVP-10PM series motion controller and a Mitsubishi MJR2 series servo drive: Four-axis wiring

2 Hardware Specifications and Wiring

Wiring a DVP-10PM series motion controller and a Mitsubishi MJR2 series servo drive: Six-axis wiring

2 Hardware Specifications and Wiring

Wiring a DVP-10PM series motion controller and a Fuji servo drive: Four-axis wiring

2 Hardware Specifications and Wiring

Wiring a DVP-10PM series motion controller and a Fuji servo drive: Six-axis wiring

2 Hardware Specifications and Wiring

2.3 Communication Ports

A DVP-10PM series motion controller is equipped with COM1 (RS-232 port), COM2 (RS-485 port), and a communication card (COM3 (RS-232 or RS-485 communication)).
COM1: It is an RS-232 port. It can function as a slave station. A program is edited through this port. COM1 can be used in a Modbus ASCII mode or an RTU mode.
COM2: It is an RS-485 port. It can function as a master station or a slave station. It can be used in a Modbus ASCII mode or an RTU mode.
COM3: It is an RS-232/RS-485 port. It can function as a slave station. It can be used in a Modbus ASCII mode.
Communication architecture:

Communication port Communication parameter	$\begin{aligned} & \text { RS-232 port } \\ & \text { (COM1) } \end{aligned}$	$\begin{aligned} & \text { RS-485 port } \\ & \text { (COM2) } \end{aligned}$	RS-232/RS-485 port (COM3)
Serial transmission rate	110~115,200 bps		110~38,400 bps
Number of data bits	7 bits -8 bits		
Parity bit	Even/Odd parity bit/None		
Number of stop bits	1 data bit-2 data bits		
Register where a communication format is stored	D1036	D1120	D1109
ASCII mode	Slave station	Master station/ Slave station	Slave station
RTU mode	Slave station	Master station/ Slave station	-
Quantity of data read/written (ASCI mode)	100 registers		32 registers
Quantity of data read/written (RTU mode)	100 registers		32 registers

Default communication protocol supported by a communication port

- Modbus ASCII mode
- 7 data bits
- 1 stop bit
- Even parity bit
- Serial transmission rate: 9600 bps

2.3.1 COM1 (RS-232 Port)

1. COM1 is an RS-232 port. Users can upload the program in a DVP-1OPM series motion controller through COM1, and download a program to DVP-10PM series motion controller through COM1. The communication protocols that COM1 supports are Modbus ASCII and Modbus RTU, and the transmission rate supported is in the range of $9,600 \mathrm{bps}$ to $57,600 \mathrm{bps}$.
The communication cable DVPACAB2A30 is described below.

2 Hardware Specifications and Wiring

Communication port on a PC/TP 9-pin D-SUB female connector	\longleftrightarrow	COM1 on a DVP-10P 8-pin Mini
$\begin{array}{lr}\text { Tx } & 3 \\ \text { Rx } & 2 \\ \text { GND } & 5 \\ & \square 7 \\ & -8 \\ & 1 \\ & -4 \\ & \\ & \end{array}$	$\begin{array}{ll} \longleftrightarrow & 4 \\ \longleftrightarrow & 5 \\ \longleftrightarrow & 8 \\ & 1,2 \end{array}$	

2. COM1 functions as a slave station. It can be connected to a human-machine interface.

2.3.2 COM2 (RS-485 Port)

1. COM2 is an RS-485 port. It can function as a master station or a slave station. The communication protocols that COM2 supports are Modbus ASCII and Modbus RTU, and the transmission rate supported is in the range of 9,600 bps to $115,200 \mathrm{bps}$.
2. COM2 can function as a master station or a slave station. If it functions as a master station, it can be connected to a Delta PLC, or an inferior drive such as a Delta servo drive, a Delta AC motor drive, or a temperature controller, and read/write data. If it functions as a slave station, it can be connected to a human-machine interface such as a Delta TP series HMI or DOP series HMI.

2.3.3 COM3 (RS-232/ RS-485 Port)

1. If COM1 (RS-232 port) and COM2 (RS-485 port) can not fulfill a communication requirement, users can use the function card DVP-F232S or DVP-F485S to add a communication interface called COM3 (RS-232/RS485 interface). The functions of DVP-F232S/DVP-F485S is the same as those of COM1, but the transmission rate that DVP-F232S/DVP-F485 supports is 9600/19200/38400 bps in an ASCII mode.
2. COM3 functions as a slave station. It can be connected to a human-machine interface.

3.1 Device Lists

Functional specifications

Item			Specifications		Remark
Operation of axes		Six axes operate synchronously or independently.			
Storage		The capacity of a built-in storage is 64 K steps.			
Unit		Motor unit	Compound unit	Mechanical unit	
Master mode		Users can read the data in control registers in an I/O module by means of the instruction FROM and write data into control registers in an I/O module by means of the instruction TO. If the data read or written is 32 -bit data, two control registers will be used.			
Slave mode		Not supported			
Pulse output		There are three types of pulse output modes. These modes adopt differential output. 1. Pulse/Direction 2. Counting up/Counting down 3. A/B-phase output			
Maximum speed		Single axis: 1000 K pps Multi-axis interpolation: 1000 K pps			
Input signal	Switch	STOP/RUN switch (Manual/Automatic switch)			
	Differential input signal	X10+, X10-, X12+, X12-, X11+, X11-, X13+, and X13-			
	Detector	X0~X7 They can be connected to I/O modules. The maximum number of expansion input terminals is 256 , including the number of input terminals on a DVP-10PM series motion controller.			
Output signal	Differential output signal	Y10+, Y10-, Y12+, Y12-, Y14+, Y14-, Y16+, Y16-, Y11+, Y11-, Y13+, Y13-, Y15+, Y15-, Y17+, and Y17-			
	General output	YO~Y3 They can be connected to I/O modules. The maximum number of expansion output terminals is 256 , including the number of output terminals on a DVP-10PM series motion controller.			
	Serial communication port	The communication ports which can be used for the reading/writing of a program are as follows. COM1: RS-232 port (It can function as a slave station.) COM2: RS-485 port (It can function as a master station or a slave station.) COM3 (Communication card): RS-232/RS-485 port (It can function as a slave station, and it is optionally required.)			
Special I/O module	Optional purchase	The EH2 series special right-side modules which are supported are AD, DA, PT, TC, XA, and PU. (Eight special right-side modules can be connected at most, and they do not occupy I/O devices.)			
Special function card	Optional purchase	The function cards which are supported are 02AD, 02DA, and COM3.			
Number of basic instructions		27			
Number of applied instructions		130			
Number of motion instructions		-			

Item				Specifications	Remark
M-code				Ox0~Ox99 (motion subroutine/positioning program): M02 (The execution of a program stops. (END)) M00~M01, M03~M101, and M103~M65535: The execution of a program pauses. (WAIT) (Users can use them freely.) O100 (main program in a DVP-10PM series motion controller/subtask program): M102 (The execution of a program stops. (END))	
G-code				Not supported	
Self-diagnosis				Errors such as parameter errors, program errors, and external errors are displayed.	
	X	External input relay		X0~X377; octal numbers; 256 external input relays (corresponding to external input terminals)	512 relays in total
	Y	External output relay		Y0~Y377, octal numbers, 256 external output relays (corresponding to external output terminals)	
		Auxiliary relay	General	M0~M499; 500 general auxiliary relays (*2)	There are 4,096 auxiliary relays in total. They can be set to ON/OFF in a program.
	M			M3000~M4095; 1096 general auxiliary relays (*3)	
			Latching	M500~M999; 500 latching auxiliary relays (*3)	
			Special	M1000~M2999; 2000 special auxiliary relays (Some special auxiliary relays are latching auxiliary relays.)	
	T	Timer	10 ms	T0~T255; 256 timers (*2)	There are 256 timers in total. If the present value of the timer specified by the instruction TMR matches the value set, the contact of the timer will be ON.
	C	Counter	16-bit up counter	C0~C99; 100 16-bit up counters (*2)	There are 250 counters in total. If the present value of the counter specified by the instruction CNT (DCNT) matches the value set, the contact of the counter will be ON.
				C100~C199; 100 16-bit up counters (*3)	
			32-bit up/down counter	C210~C219; 12 32-bit up/down counters (*2)	
				C220~C255; 36 32-bit up/down counters (*3)	
			32-bit high-speed counter	C200, C204, C208, C212, C216, and C220; 6 32-bit high-speed counters	
		Stepping relay	General	S0~S499; 500 stepping relays (*2)	There are 1,024 stepping relays in total. They can be set to ON/OFF in a program.
	S		Latching	S500~S1023; 524 stepping relays (*3)	

Item				Specifications	Remark
	T	Present value of a timer		T0~T255; 16-bit timers; 256 timers	If the present value of a timer matches the value set, the contact of the timer will be ON.
		Present value of a counter		C0~C199; 16-bit counters; 200 counters	If the present value of a counter matches the value set, the contact of the counter will be ON.
	C			C200~C255; 32-bit counters; 56 counters	
	D	Data register	General	D0~D199; 200 general data registers (*2)	There are 10,000 registers in total. Users can store data in data registers. V/Z registers are index registers.
			Latching	D200~D999; 800 latching data registers (*3)	
				D3000~D9999; 7000 latching data registers (*3)	
			Special	D1000~D2999; 2000 special data registers (Some special data registers are latching data registers.)	
			Index	V0~V7 (16-bit registers); Z0~Z7 (32-bit registers); 16 index registers (*1)	
	P	Used with CJ, CJN, CALL, or JMP		P0~P255; 256 pointers	It is used with CJ , CJN, CALL, or JMP.
	K	Decimal system		K-32,768~K32,767 (16-bit operation)	
				K-2,147,483,648~K2,147,483,647 (32-bit operation)	
	H	Hexadeci	al system	H0000~HFFFF (16-bit operation); H00000000~HFFFFFFFFF (32-bit operation)	
	F	Floati nu	-point ber	32-bit operation: $\pm 1.1755 \times 10^{-38} \sim \pm 3.4028 \times 10^{+38}$ (The IEEE 754 standard is used.)	

*1: They are non-latching devices, and can not be changed.
*2: They are non-latching devices. Users can change them to latching devices by setting parameters.
*3: They are latching devices. Users can change them to non-latching devices by setting parameters.
*4: They are latching devices, and can not be changed.

Latching and non-latching memory devices

Auxiliary relay (M)	General auxiliary relays			Special auxiliary relays
	M0~M499	M500~M999	M3000~M4095	M1000~M2999
	Non-latching	Latching	Non-latching	(They are in the general auxiliary relay range.)
	Start: D1200 (K500)*1 End: D1201 (K999) *1			Some special auxiliary relays are latching
				auxiliary relays. They can not be changed.

Timer (T)	10 ms
	T0~T255
	Non-latching

Counter (C)	16-bit up counters		32-bit up/down counters	
	C0~C99	C100~C199	C200, C204, and C208~C219	C220~C255
	Non-latching	Latching	Non-latching	Latching
	Start: D1204 (K100)		Start: D1206 (K220)	
	End: D1205 (K199)		End: D1207 (K255)	

Stepping relay (S)	Initial stepping relays	General stepping relay	Latching stepping relay
	S0~S9	S10~S499	S500~S1023
	Non-latching		Latching

Data register (D)	General data registers	Latching data registers	Special data registers
	D0~D999	D3000~D9999	D1000~D2999 (They are between the general data register range and the latching data register range.)
	Non-latching	Latching	Some special data registers are latching data registers. They can not be changed.
	Start: D1210 (K200) *3 End: D1211 (K9999) *3		

*1: If the value in D1200 is 0, and the value in D1201 is 4095, the DVP-10PM series motion controller used will automatically skip M1000~M2999, and M0~M999 and M3000~M4095 will be changed to latching devices.
*2: K-1 indicates that the timers are non-latching devices.
*3: If the value in D1210 is 0, and the value in D1211 is 9999, the DVP-10PM series motion controller used will automatically skip D1000~D2999, and D0~M999 and D3000~D9999 will be changed to latching devices.

- When power is switched ON/OFF, or when the DVP-10PM series motion controller used switches between a manual mode and an automatic mode, the action of general devices are as shown below.

Memory type	Power OFF=>ON	STOP=>RUN	RUN=>STOP	Clearing all non-latching devices (M1031 is ON.)	Clearing all latching devices (M1032 is ON.)	Factory setting
Non-latching	Cleared	Unchanged	Cleared when M1033 is OFF	Cleared	Unchanged	0
Unchanged when						
M1033 is ON						

3.2 Values, Constants, and Floating-point Numbers

Constant	\mathbf{K}	Decimal system	16-bit operation: $\mathrm{K}-32,768 \sim \mathrm{~K} 32,767$ 32-bit operation: $\mathrm{K}-2,147,483,648 \sim \mathrm{~K} 2,147,483,647$
	\mathbf{H}	Hexadecimal system	16-bit operation: H0~HFFFF 32-bit operation: H0~HFFFFFFFFF
	\mathbf{F}	32-bit number	32-bit operation: $\pm 1.1755 \times 10^{-38} \sim \pm 3.4028 \times 10^{+38}$ (The IEEE 754 standard is used.)

A DVP-10PM series motion controller performs operations on five types of values according to various control purposes. The functions of the five types of values are described below.

1. Binary number (BIN)

The values on which a DVP-10PM series motion controller performs operations, and the values stored in the DVP-10PM series motion controller are binary numbers. Binary numbers are described below.
Bit: \quad A bit is the basic unit of information in the binary system. Its state is either 1 or 0.
Nibble: A nibble is composed of four consecutive bits (e.g. b3~b0). Nibbles can be used to represent 0~9 in the decimal system, or 0~F in the hexadecimal system.
Byte: A byte is composed of two consecutive nibbles (i.e. 8 bits, b7~b0). Bytes can be used to represent 00~FF in the hexadecimal system.
Word: A word is composed of two consecutive bytes (i.e. 16 bits, b15~b0). Words can be used to represent 0000~FFFF in the hexadecimal system.
Double word: A double word is composed of two consecutive words (i.e. 32 bits, b31~b0). Double words can be used to represent 00000000~FFFFFFFF in the hexadecimal system.

The relation among bits, nibbles, bytes, words, and double words in the binary system is shown below.

2. Octal number (OCT)

The external input terminal numbers and the external output terminal numbers on a DVP-10PM series motion controller are octal numbers.
■ External input terminals: $\mathrm{X0} \mathrm{\sim X7} ,\mathrm{X} 10 \sim \mathrm{X} 17 \ldots$ (Device numbers)
■ External output terminals: Y0~Y7, Y10~Y17... (Device numbers)
3. Decimal number (DEC)

■ A decimal number can be used as the setting value of a timer, or the setting value of a counter, e.g. TMR T0 K50 (K indicates that the value following it is a constant.).
■ A decimal number can be used as an S/M/T/C/D/V/Z/P device number, e.g. M10 and T30.

- A decimal number can be used as an operand in an applied instruction, e.g. MOV K123 D0 (K indicates that the value following it is a constant.).

4. Binary-coded decimal number (BCD)

A decimal value is represented by a nibble or four bits, and therefore sixteen consecutive bits can represent a four-digit decimal value. A binary-coded decimal number is mainly used as the input value of a DIP switch, or the value displayed on a seven-segment display.
5. Hexadecimal Number (HEX)

- A hexadecimal number can be used as an operand in an applied instruction, e.g. MOV H1A2B D0 (H indicates that the value following it is a constant.).
Constant (K): A decimal number in a DVP-10PM series motion controller is generally preceded by K. For example, K100 represents the decimal number 100.

> Exception:
> If K is used with an X/Y/M/S device, a nibble device, a byte device, a word device, or a double word device will be formed.
> Example:
> K1Y10 represents a device composed of 4 bits, K2Y10 represents a device composed of 8 bits, K3Y10 represents a device composed of 12 bit, and K4Y10 represents a device composed of 16 bits. K1M100 represents a device composed of 4 bits, K2M100 represents a device composed of 8 bits, K3M100 represents a device composed of 12 bit, and K4M100 represents a device composed of 16 bits.

Constant (H) : A hexadecimal number in a DVP-10PM series motion controller is generally preceded by H . For example, the hexadecimal number H 100 represents the decimal number 256.
Floating-point number (F): A floating-point number in a DVP-10PM series motion controller is generally preceded by F. For example, the floating-point number F3.123 represents 3.123 .

Value table:

3.3 External Input Devices and External Output Devices

■ Input devices: X0~X377
Input device numbers are octal numbers. A DVP-10PM series motion controller has 256 input devices at most (X0~X7, X10~X17,, X370~X377).

- Output devices: Y0~Y377

Output device numbers are octal numbers. A DVP-10PM series motion controller has 256 output devices at most (YX0~Y7, Y10~Y17, Y370~Y377).

- Functions of input devices:

After X devices in a DVP-10PM series motion controller are connected to an input device, the input signals sent to the DVP-10PM series motion controller will be read. There is no limitation on the number of times the Form A contact/the Form B contact of an X device can be used in a program. The state of an X device varies with the state of the input device to which the X device is connected.

- Users can turn X devices ON/OFF by means of M1304.

If M1304 is OFF, X devices can not be turned ON/OFF by means of PMSoft. If M1304 is ON, X devices can be turned ON/OFF by means of PMSoft. However, if users use PMSoft to turn ON/OFF X devices in a DVP-10PM series motion controller when M1304 is ON, the function of updating input signals will be disabled.

- Functions of output devices:

A Y device sends a signal to drive the load connected to it. There are two types of output devices. They are relays and transistors. There is no limitation on the number of times the Form A contact/the Form B contact of a Y device can be used in a program. However, it is suggested that a Y device should be
used once in a program. If a Y device is used more than once in a program, the state of the Y device depends on the Y device used last time.

The state of YO depends on circuit (2), that is, the state of X 10 determines the state of Y 0 .

The procedure for processing the program in a DVP-10PM series motion controller is described below.

- Regenerating an input signal:

1. Before a DVP-10PM series motion controller executes a program, it reads the states of the input signals sent to it into its input memory.
2. If the states of the input signals change during the execution of the program, the states of input signals stored in the input memory will not change until the DVP-10PM series motion controller reads the states of the input signals sent to it next time.
3. The time it takes for an input device in the program to receive the state of an external signal is about 10 milliseconds. (The time it takes for a contact in the program to receive the state of an external signal may be affected by the time it takes for the program to be scanned.)

- Processing a program:

After the DVP-10PM series motion controller reads the states of the input signals stored in the input memory, the execution of the instructions in the program will start from the beginning of the program. After the program is executed, the states of the Y devices used in the program will be stored in the device memory in the DVP-10PM series motion controller.

- Regenerating an output signal:

1. After M102 is executed, the states of the Y devices stored in the device memory will be sent to the latch memory in the DVP-10PM series motion controller.
2. The time it takes for a relay to be turned form ON to OFF or turned from OFF to ON is about 10.
3. The time it takes for a transistor to be turned form ON to OFF or turned from OFF to ON is about 10~20 milliseconds.

3 Devices

3.4 Auxiliary Relays

Auxiliary relay (M): Auxiliary relay numbers are decimal numbers.

Auxiliary relay (M)	General auxiliary relay	M0~M499 (500 general auxiliary relays) Users can change M0~M499 to latching devices by setting parameters.	$\begin{gathered} 4,096 \\ \text { auxiliary } \\ \text { relays in } \\ \text { total } \end{gathered}$
	Latching auxiliary relay	M500~M999 and M3000~M4095 (1,596 latching auxiliary relays) Users can change M0~M499 to non-latching devices by setting parameters.	
	Special auxiliary relay	M1000~M2999 (2,000 special auxiliary relays) Some of them are latching devices.	

Functions of auxiliary relays:
An M device has an output coil and a Form A contact/Form B contact. There is no limitation on the number of times an M device can be used in a program. Users can combine control loops by means of M devices, but can not drive external loads by means of M devices. There are three types of auxiliary relays.

1. General auxiliary relay: If a power cut occurs when a DVP-10PM series motion controller runs, the general auxiliary relays in the DVP-10PM series motion controller will be reset to OFF. When the supply of electricity is restored, the general auxiliary relays are still OFF.
2. Latching auxiliary relay: If a power cut occurs when a DVP-10PM series motion controller runs, the latching auxiliary relays will remain in their last states. When the supply of electricity is restored, the latching auxiliary relays remain unchanged.
3. Special auxiliary relay: Every auxiliary relay has its own specific function. Please do not use the auxiliary relays which are not defined. Users can refer to section 3.10 for more information about special auxiliary relays and special data registers, and refer to section 3.11 for more information about the functions of special auxiliary relays and functions of special data registers.

3.5 Stepping Relays

Stepping relay (S): Stepping relay numbers are decimal numbers.

Stepping relay (S)	General stepping relay	S0~S499 (490 general stepping relays) Users can change S0~S499 to latching devices by setting parameters.	$\begin{aligned} & 1,024 \\ & \text { stepping } \\ & \text { relays in } \\ & \text { total } \end{aligned}$
	Latching stepping relay	S500~S1023 (524 latching stepping relays) Users can change S500~S1023 to non-latching devices by setting parameters.	

Functions of stepping relays:
There are 1024 stepping relays (S0~S1023). An S device has an output coil and a Form A contact/Form B contact. There is no limitation on the number of times an S device can be used in a program. Users can not drive external loads by means of S devices. An S device can be used as a general auxiliary relay.

3.6 Timers

Timer (T): Timer numbers are decimal numbers.

| Timer
 (T) | 10 ms | General timer |
| :---: | :--- | :--- |\quad| T0~T255 (256 general timers) |
| :--- |
| Users can change T0~T255 to latching devices by setting parameters. |

Functions of timers:
10 milliseconds are a unit of measurement for time. A timer counts upwards for measuring time which elapses. If the present value of a timer is equal to the value set, the output coil of the timer will be ON. The
value set can be a decimal value preceded by K, or the value in a data register.
Actual time measured by a timer= Unit of measurement for time x Setting value

1. If the instruction TMR is executed, a timer will count for measuring time which elapses once. If the value of a timer matches the value set, the output coil of the timer will be ON.

- If XO is ON, the timer TO will count upwards from the present time value every 10 milliseconds. If the present timer value matches the setting value K100, the output coil T0 will be ON.
- If XO is OFF, or there is a power cut, the present value in TO will become 0 , and the output coil TO will be OFF.

Setting value: Actual time measured by a timer= Unit of measurement for time x Setting value

1. Constant preceded by K: A setting value can be a constant preceded by K.
2. Value in a data register: A setting value can be the value in a data register.

3.7 Counters

Counter (C): Counter numbers are decimal numbers.

C	Counter	16-bit up counter	$\begin{aligned} & \text { C0~C199 (200 16-bit up } \\ & \text { counters) } \end{aligned}$	236 counters in total	If the present value of the counter specified by the instruction CNT (DCNT) matches the value set, the contact of the counter will be ON.
		32-bit up/down counter	C220~C255 (36 32-bit up/down counters) (Accumulation)		
		32-bit high-speed counter	C200, C204, C208, C212, C216, and C220 (6 32-bit high-speed counters)	6 counters in total	Input contact of C200: X0/X1
					Input contact of C204: X2/X3
					Input contact of C208: X4/X5
					Input contact of C212: $\times 6 / \mathrm{X7}$
					Input contact of C216:
					\| X10+/X10-/X11+/X11-
					Input contact of C220: X12+/X12-/X13+/X13-

Characteristics of counters:

Item	16-bit counter	32-bit counter	
Type	General counter	General counter	High-speed counter
Direction	Counting up	$-2,147,483,648 \sim+2,147,483,647$	
Setting value	$0 \sim 32,767$	Constant preceded by K, or value stored in a data register	Constant preceded by K, or value stored in two consecutive data registers
Specification of a setting value	If the present value matches the setting value, the counter will stop counting.	Even if the present value matches the setting value, the counter will keep counting.	
Change of the present value	Counting up: If the present value matches the setting value, the output contact will be ON. Counting down: If the present value matches the setting value, the output contact will be reset to OFF.		
Output contact the present value matches the setting			
value, the output contact will be ON.			

Item	16-bit counter		32-bit counter	
Resetting of a contact	If the instruction RST is executed, the present value will becomes zero, and the contact will be reset to OFF.			
Actions of contacts	After the scan of a program is complete, the contacts will act.	After the scan of a program is complete, the contacts will act.	If the present value matches the setting value, the contact will be ON.	

Functions of counters:
If the input signal of a counter is turned from OFF to ON, and the present value of the counter matches the value set, the output coil of the counter will be ON. A setting value can be a constant preceded by K, or the value stored in a data register.
16-bit counter:

1. The setting value of a 16 -bit counter must be in the range of $K 0$ to $K 32,767$. ($K 0$ is equal to $K 1$. If the setting value of a counter is K0 or K1, the output contact of the counter will be ON after the counter counts for the first time.)
2. If a power cut occurs when a general counter in a DVP-20PM series motion controller counts, the present value of the counter will be cleared. If a power cut occurs when a latching counter counts, the present value of the counter and the state of the contact of the counter will be retained, and the latching counter will not continue counting until power is restored.
3. If users move a value greater than the setting value of CO to CO by means of the instruction MOV, the contact C 0 will be ON , and the present value of the counter will become the setting value next time X 1 is turned from OFF to ON.
4. The setting value of a counter can be a constant preceded by K , or the value stored in a data register. (The special data registers D1000~D2999 can not be used.)
5. If the setting value of a counter is a value preceded by K , the setting value can only be a positive value. If the setting value of a counter is the value stored in a data register, the setting value can be a positive value or a negative value. If a counter counts up from the present value 32,767, the next value following 32,767 will be $-32,768$.
Example:

LD	X0	
RST	C0	
LD	X1	
CNT	C0	K5

LD C0
OUT YO

1. If $X O$ is $O N$, the instruction RST will be executed, the present value of $C O$ will become zero, and the output contact will be reset to OFF.
2. If X01 is turned from OFF to $O N$, the present value of the counter will increase by one.
3. If the present value of CO matches the setting value K 5 , the contact CO will be ON (Present value of $\mathrm{C} 0=$ Setting value $=\mathrm{K} 5$). K 5 will be retained even if X 1 is turned from OFF to ON again.

32-bit up/down counter:

1. The setting value of a 32 -bit general up/down counter must be in the range of $\mathrm{K}-2,147,483,648$ to K2,147,483,647. The states of the special auxiliary relays M1208~M1255 determine whether the 32-bit general up/down counters C220~C255 count up or count down. For example, C208 will count up if M1208 is OFF, and C208 will count down if M1208 is ON.
2. The setting value of a 32-bit up/down counter can be a constant preceded by K , or the value stored in two consecutive data registers. (The special data registers D1000~D2999 can not be used.) A setting value can be a positive value, or a negative value.
3. If a power cut occurs when a general counter in a DVP-10PM series motion controller counts, the present value of the counter will be cleared. If a power cut occurs when a latching counter counts, the present value of the counter and the state of the contact of the counter will be retained, and the latching counter will not continue counting until power is restored.
4. If a counter counts up from the present value $2,147,483,647$, the next value following $2,147,483,647$ will be $-2,147,483,648$. If a counter counts down from the present value $-2,147,483,648$, the next value following -2,147,483,648 will be 2,147,483,647.
Example:

LD	X10	
OUT	M1255	
LD	X11	
RST	C255	
LD	X12	
DCNT	C255	K-5
LD	C255	
OUT	Y0	

1. M1255 is driven by X10. The state of M1255 determines whether C255 counts up or counts down.
2. If $X 11$ is turned form OFF to $O N$, the instruction RST will be executed, the present value of $C 255$ will become 0 , and the contact will be OFF.
3. If X 12 is turned form OFF to ON , the present value of the counter will increase by one or decrease by one.
4. If the present value of the counter C 255 increases from $\mathrm{K}-6$ to $\mathrm{K}-5$, the contact C 255 will be turned form OFF to ON. If the present value of the counter C255 decreases from K-5 to K-6, the contact C255 will be turned from ON to OFF.
5. If users move a value greater than the setting value of C 255 to C 255 by means of the instruction MOV, the contact C255 will be ON, and the present value of the counter will become the setting value next time X11 is turned from OFF to ON.

32-bit high-speed counter:
■ DVP-10PM series motion controller (C200, C204, C208, C212, C216, and C220)

1. The setting value of a 32 -bit high-speed counter must be in the range of $K-2,147,483,648$ to K2,147,483,647.
2. Mode of counting:

Counter	Mode of counting		Resetting a counter	$\begin{gathered} \text { External } \\ \text { reset } \\ \text { terminal } \end{gathered}$	External input terminal
	Device	Setting value			
C200	K1M1200	Mode of counting 0 : U/D* 1: P/D*	M1203	X10	X0, X1, and S/S
C204	K1M1204	2: A/B* (One time the frequency	M1207	X11	X2, X3, and S/S
C208	K1M1208	inputs) 3: 4A/B (Four	M1211	X12	X4, X5, and S/S
C212	K1M1212	times the frequency of A/B-phase	M1215	X13	X6, X7, and S/S
C216	K1M1216	inputs) Mode of	M1219	X0	X10+, X10-, X11+, and X11-
C220	K1M1220	5: General mode 6: Cyclic mode	M1223	X1	$\begin{aligned} & \text { X12+, X12-, X13+, and } \\ & \text { X13- } \end{aligned}$

Note: U/D: Counting up/Counting down; P/D: Pulse/Direction; A/B: A phase/B phase

- C200: Users can select a mode of counting by setting M1200 and M1201. Input signals are controlled by X0 and X1. If M1203 is ON, the function of resetting C200 will be enabled. Resetting signals are controlled by X10.

- C204: Users can select a mode of counting by setting M1204 and M1205. Input signals are controlled by X2 and X3. If M1207 is ON, the function of resetting C204 will be enabled.
Resetting signals are controlled by X11.

- C208: Users can select a mode of counting by setting M1208 and M1209. Input signals are controlled by X4 and X5. If M1211 is ON, the function of resetting C208 will be enabled. Resetting signals are controlled by X12.

- C212: Users can select a mode of counting by setting M1212 and M1213. Input signals are controlled by X 6 and X 7 . If M 1215 is ON , the function of resetting C 212 will be enabled. Resetting signals are controlled by X13.

- C216: Users can select a mode of counting by setting M1216 and M1217. Input signals are controlled by X10 and X11. If M1219 is ON, the function of resetting C216 will be enabled. Resetting signals are controlled by X 0 .

- C220: Users can select a mode of counting by setting M1221 and M1220. Input signals are controlled by X12 and X13. If M1223 is ON, the function of resetting C220 will be enabled. Resetting signals are controlled by X 1 .

3. The setting value of a 32-bit high-speed counter can be a constant preceded by K, or the value stored in two consecutive data registers. (The special data registers D1000~D2999 can not be used.) A setting value can be a positive value, or a negative value.
4. If a power cut occurs when a general counter in a DVP-10PM series motion controller counts, the present value of the counter will be cleared. If a power cut occurs when a latching counter counts, the present value of the counter and the state of the contact of the counter will be retained, and the latching counter will not continue counting until power is restored.
5. If a counter counts up from the present value $2,147,483,647$, the next value following $2,147,483,647$ will be $-2,147,483,648$. If a counter counts down from the present value $-2,147,483,648$, the next value following $-2,147,483,648$ will be $2,147,483,647$.

3.8 Registers

Registers are classified according to their characters. There are four types of registers.

1. General register: If the STOP/RUN switch on a DVP-10PM series motion controller is turned from the STOP position to the RUN position, or a DVP-10PM series motion controller is disconnected, the values in the general registers will become 0 . If M1033 in a DVP-10PM series motion controller is turned ON, the values in the general registers will be retained after the STOP/RUN switch on the DVP-10PM series motion controller is turned from the RUN position to the STOP position, and will become 0 after the module is disconnected.
2. Latching register: If a module is disconnected, the values in the latching registers will be retained.
If users want to clear the value in a latching register, they can use the instruction RST or ZRST.
3. Special data register: Every special data register has its definition and purposes. System states, error messages, and states monitored are stored in special data registers. Please refer to section 3.10 and section 3.11 for more information about special auxiliary relays and special data registers.
4. Index register $(\mathrm{V}) /(\mathrm{Z})$: V devices are 16 -bit registers, and Z devices are 32 -bit registers. There are 8 V devices (V0~V7), and 8 Z devices (Z0~Z7) in a DVP-10PM series motion controller.

3.8.1 Data Registers

The value in a data register is a 16-bit value. The highest bit in a 16-bit data register represents an algebraic sign. The value stored in a data register must be in the range of $-32,768$ to $+32,767$. Two 16 -bit data registers can be combined into one 32-bit data register ($D+1, D$). The highest bit in a 32 -bit data register represents an algebraic sign. The value stored in a 32-bit data register must be in the range of $-2,147,483,648$ to $+2,147,483,647$.

	General data register	D0~D199 (200 general data registers in total) Users can change them to latching devices by setting parameters.	
Data register (D)	Latching data register	D200~D999 and D3000~D9999 (7,800 latching data register in total) Users can change them to non-latching devices by setting parameters.	10,000 data registers in total
	Special data register	D1000~D2999 (2,000 special data registers in total) Some of them are latching devices.	

3.8.2 Index Registers

Index register $(\mathrm{V})(\mathrm{Z})$	$\mathrm{V} 0 \sim \mathrm{~V} 7$	16 index
	$\mathrm{ZO} \sim \mathrm{Z7}$	registers in total

32 bits

\checkmark devices are 16-bit registers. Data can be freely written into a \checkmark device, and data can be freely read from a V device. If a V device is used as a general register, it can only be used in a 16-bit instruction.
Z devices are 32-bit registers. If a Z device is used as a general register, it can only be used in a 32-bit instruction.

If XO is ON , the value in V 0 will be 8 , and the value in $\mathrm{Z1}$ will be 14, the value in D8 will be moved to D16, and the value in D17 will be moved to D12.
If a V device or a Z device is an index register used to modify an operand, the V device or the Z device can be used in a 16 -bit instruction and a 32-bit instruction.

Index registers are like general operands in that they can be used in movement instructions and comparison instructions. They can be used to modify word devices (KnX/KnY/KnM/KnS/T/C/D devices) and bit devices ($\mathrm{X} / \mathrm{Y} / \mathrm{M} / \mathrm{S}$ devices).
There are 8 V devices (V0~V7), and 8 Z devices (Z0~Z7) in a DVP-10PM series motion controller.
※Constants and some instructions do not support the use of index registers. Please refer to section 5.4 for more information about using index registers to modify operands.
※To prevent error from occurring, if a V device or a Z device is used to modify an operand, the effective address which is formed can not be in the range of D1000 to D2999, and can not be in the range of M1000 to M2999.

3.9 Pointers

Pointer	N	Used with a master control loop	N0~N7 (8 poniters)	Used with a master control loop
	P	Used with CJ, CJN, or JMP	P0~P255 (256 pointers)	Used with CJ, CJN, or JMP

Pointer (P): A pointer is used with API 00 CJ, API 256 CJN, or API 257 JMP. Please refer to chapter 5 for more information about the use of $C J / C J N / J M P$.

- Conditional jump (CJ):

- If $X O$ is $O N$, the execution of the program will jump from address 0 to address N , and the part of the program between address 0 and address N will not be executed.
- If XO is OFF, the execution of the program starts from address 0 , and the instruction CJ will not be executed.

3.10 Special Auxiliary Relays and Special Data Registers

Special auxiliary relays (special M devices) and special data registers (special D devices) are shown in the tables below. Some device numbers in the tables are marked with *. Users can refer to section 3.11 for more information. If the attribute of a device is " R ", the users can only read data from the device. If the attribute of a device is "R/W", the users can read data from the device, and write data into the device. In addition, "-" indicates that the state of a special auxiliary relay is unchanged, or the value in a special data register is unchanged. "\#" indicates that a special auxiliary relay or a special data register in a DVP-10PM series motion controller is set according to the state of the DVP-10PM series motion controller. The users can read a setting value, and refer to the manual for more information.

Special M device	Function	$\begin{array}{\|c\|} \hline \text { Off } \\ \sqrt{n} \\ \text { On } \end{array}$	$\begin{gathered} \text { STOP } \\ \sqrt[3]{3} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \checkmark \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
M1000*	If the motion controller runs, M1000 will be a normally-open contact (Form A contact). When the motion controller runs, M1000 is ON.	Off	On	Off	R	No	Off	3-30
M1001*	If the motion controller runs, M1001 will be a normally-closed contact (Form B contact). When the motion controller runs, M1001 is OFF.	On	Off	On	R	No	On	3-30
M1002*	A positive-going pulse is generated at the time when the motion controller runs. The width of the pulse is equal to the scan cycle.	Off	On	Off	R	No	Off	3-30
M1003*	A negative-going pulse is generated at the time when the motion controller runs. The width of the pulse is equal to the scan cycle.	On	Off	On	R	No	On	3-30
M1008	The watchdog timer is ON.	Off	Off	-	R	No	Off	-
M1009	The low voltage signal has ever occurred.	Off	-	-	R	No	Off	-
M1011	10 millisecond clock pulse (The pulse is ON for 5 milliseconds, and is OFF for 5 milliseconds.)	Off	-	-	R	No	Off	-
M1012	100 millisecond clock pulse (The pulse is ON for 50 milliseconds, and OFF for 50 milliseconds.)	Off	-	-	R	No	Off	-
M1013	1 second clock pulse (The pulse is ON for 0.5 seconds, and OFF for 0.5 seconds.)	Off	-	-	R	No	Off	-
M1014	1 minute clock pulse (The pulse is ON for 30 seconds, and OFF for 30 seconds.)	Off	-	-	R	No	Off	-
M1020	Zero flag (for the instructions SFRD and SFWR)	Off	-	-	R	No	Off	-
M1022	Carry flag (for the instructions SFWR, RCR, and RCL)	Off	-	-	R	No	Off	-

Special M device	Function	$\begin{gathered} \text { Off } \\ \sqrt{n} \\ \text { On } \end{gathered}$	$\begin{aligned} & \text { STOP } \\ & \text { 』 } \\ & \text { RUN } \end{aligned}$	$\begin{gathered} \text { RUN } \\ \sqrt{n} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
M1025	Incorrect request for communication (If a PC or an HMI is connected to a DVP-10PM series motion controller, and the DVP-10PM series motion controller receives illegal request for communication during data transmission, M1025 will be set to ON, and an error code will be stored in D1025.)	Off	Off	-	R	No	Off	-
M1026	Selecting a RAMP mode	Off	-	-	R/W	No	Off	-
M1029	The sending of pulses through CH0 (Y0, Y1) is complete.	Off	-	-	R	No	Off	
M1031	All the non-latching devices are cleared.	Off	-	-	R/W	No	Off	-
M1032	All the latching devices are cleared.	Off	-	-	R/W	No	Off	-
M1033	Data is retained when the DVP-10PM series motion controller does not run.	Off	-	-	R/W	No	Off	-
M1034	All the outputs are disabled.	Off	-	-	R/W	No	Off	-
M1035	Using STOP0/START0 as external I/O terminals.	Off	Off	Off	R/W	No	Off	-
M1039*	The scan time for the program is fixed.	Off	-	-	R/W	No	Off	3-34
M1048	Status of the alarm	Off	-	-	R	No	Off	-
M1049	Monitoring the alarm	Off	-	-	R/W	No	Off	-
M1072	The DVP-10PM series motion controller is made to run. (Communication)	Off	On	Off	R/W	No	Off	-
M1077	The battery voltage is low, or malfunctions, or there is no battery.	Off	-	-	R/W	No	Off	-
M1087	The low voltage signal occurs.	Off	-	-	R/W	No	Off	-
M1120*	The setting of the communication through COM2 (RS-485 port) is retained. After M1120 is set to ON, changing the value in D1120 will be invalid.	Off	Off	-	R/W	No	Off	3-31
M1121	The transmission of the RS-485 data is ready.	Off	On	-	R	No	Off	-
M1122	Request for sending the data	Off	Off	-	R/W	No	Off	-
M1123	The reception of the data is complete.	Off	Off	-	R/W	No	Off	-
M1124	The reception of the data is ready.	Off	Off	-	R	No	Off	-
M1125	The reception of the data is reset.	Off	Off	-	R/W	No	Off	-
M1127	The sending/reception of the data is complete.	Off	Off	-	R/W	No	Off	-
M1128	The data is being sent/received.	Off	Off	-	R	No	Off	-
M1129	Reception timeout	Off	Off	-	R/W	No	Off	-
M1136	The setting of the communication through COM3 (communication card) is retained.	Off	-	-	R	No	Off	3-31
M1138*	The setting of the communication through COM1 (RS-232 port) is retained. After M1138 is set to ON, changing the value in D1036 will be invalid.	Off	-	-	R/W	No	Off	3-31
M1139*	Selecting an ASCII mode or an RTU mode when COM1 (RS-232 port) is in a slave mode. (OFF: ASCII mode; ON: RTU mode)	Off	-	-	R/W	No	Off	3-31
M1140	The data that users receive by means of MODRD/MODWR is incorrect.	Off	Off	-	R	No	Off	-
M1141	The values of parameters of MODRD/MODWR are incorrect.	Off	Off	-	R	No	Off	-
M1143*	Selecting an ASCII mode or an RTU mode when COM2 (RS-485 port) is in a slave mode. (OFF: ASCII mode; ON: RTU mode) Selecting an ASCII mode or an RTU mode when COM2 (RS-485 port) is in a master mode. (M1143 is used with MODRD/MODWR.) (OFF: ASCII mode; ON: RTU mode)	Off	-	-	R/W	No	Off	3-31
M1161	8-bit mode (ON: 8-bit mode; OFF: 16-bit mode)	Off	-	-	R/W	No	Off	-
M1162	Using decimal integers or binary floating-point values when SCLP is executed. ON: Binary floating-point values OFF: Decimal integers	Off	-	-	R/W	No	Off	-
M1168	SMOV: Mode of operation	Off	-	-	R/W	No	Off	-
M1200	C200: Selecting a mode of counting	Off	-	-	R/W	No	Off	-
M1201	C200: Selecting a mode of counting	Off	-	-	R/W	No	Off	-
M1203	Resetting C200	Off	-	-	R/W	No	Off	-

$\begin{aligned} & \text { Special } \\ & M \\ & \text { device } \end{aligned}$	Function	$\begin{gathered} \text { Off } \\ \sqrt[3]{2} \\ \text { On } \end{gathered}$	$\begin{aligned} & \text { STOP } \\ & \sqrt{3} \\ & \text { RUN } \end{aligned}$	$\begin{aligned} & \text { RUN } \\ & \sqrt{n} \\ & \text { STOP } \end{aligned}$	Attribute	Latching	Default	Page
M1204	C204: Selecting a mode of counting	Off	-	-	R/W	No	Off	-
M1205	C204: Selecting a mode of counting	Off	-	-	R/W	No	Off	-
M1207	Resetting C204	Off	-	-	R/W	No	Off	-
M1208	C208: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1209	C209: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1210	C210: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1211	C211: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1212	C212: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1213	C213: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1214	C214: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1215	C215: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1216	C216: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1217	C217: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1218	C218: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1219	C219: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1220	C220: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1221	C221: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1222	C222: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1223	C223: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1224	C224: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1225	C225: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1226	C226: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1227	C227: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1228	C228: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1229	C229: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1230	C230: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1231	C231: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1232	C232: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1233	C233: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1234	C234: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1235	C235: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1236	C236: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1237	C237: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1238	C238: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1239	C239: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1240	C240: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1241	C241: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1242	C242: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1243	C243: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1244	C244: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1245	C245: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1246	C246: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1247	C247: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1248	C248: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1249	C249: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1250	C250: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1251	C251: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1252	C252: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1253	C253: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1254	C254: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1255	C255: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1303	Interchanging high bits with low bits when XCH is executed	Off	-	-	R/W	No	Off	-
M1304*	The input terminals can be set to ON or OFF.	Off	-	-	R/W	No	Off	3-37
M1744*	Resetting the M-code in the Ox motion subroutine	Off	Off	-	R/W	No	Off	3-38

Special M device	Function	$\begin{gathered} \text { Off } \\ \sqrt{n} \\ \text { On } \end{gathered}$	$\begin{aligned} & \text { STOP } \\ & \sqrt{2} \\ & \text { RUN } \end{aligned}$	$\begin{gathered} \text { RUN } \\ \sqrt{3} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
M1745	Disabling the X -axis from returning home in the Ox motion subroutine	Off	-	-	R/W	No	Off	-
M1760	Using a radian or a degree in the Ox motion subroutine	Off	-	-	R/W	No	Off	-
M1792	The X-axis is ready.	On	On	On	R	No	On	3-38
M1793*	X -axis motion error (M1793 is reset at the time when the X-axis operates.)	Off	-	-	R/W	No	Off	3-39
M1794*	If an M code in an Ox motion subroutine is executed, M1794 will be ON. (M1794 is reset to OFF at the time when the Ox motion subroutine is executed.)	Off	-	Off	R	No	Off	-
M1795	If M0 in an Ox motion subroutine is executed, M1795 will be ON. (M1795 is reset to OFF at the time when the Ox motion subroutine is executed.)	Off	-	-	R	No	Off	-
M1796	If M2 in an Ox motion subroutine is executed, M1796 will be ON. (M1796 is reset to OFF at the time when the Ox motion subroutine is executed.)	Off	On	-	R	No	Off	-
M1808	Zero flag in the Ox motion subroutine	Off	-	-	R	No	Off	-
M1809	Borrow flag in the Ox motion subroutine	Off	-	-	R	No	Off	-
M1810	Carry flag in the Ox motion subroutine	Off	-	-	R	No	Off	-
M1811	An error occurs in a floating-point operation in the Ox motion subroutine.	Off	Off	-	R	No	Off	-
M1825	Disabling the Y -axis from returning home	Off	-	-	R/W	No	Off	-
M1872	The Y -axis is ready.	On	On	On	R	No	On	3-38
M1873*	Y -axis motion error (M1873 is reset at the time when the Y-axis operates.)	Off	-	-	R	No	Off	3-39
M1920	Using a radian or a degree in O 100	Off	-	-	R/W	No	Off	-
M1952	O100 is ready.	On	Off	On	R	No	On	-
M1953*	An error occurs in O100.	Off	-	-	R/W	No	Off	3-35
M1957	Status of the STOP/RUN switch (Automatic/Manual switch)	Off	On	-	R	No	Off	-
M1968	Zero flag in O100	Off	-	-	R	No	Off	-
M1969	Borrow flag in O100	Off	-	-	R	No	Off	-
M1970	Carry flag in O100	Off	-	-	R	No	Off	-
M1971	An error occurs in a floating-point operation in O100.	Off	-	-	R	No	Off	-
M1985	Disabling the Z-axis from returning home	Off	-	-	R/W	No	Off	-
M2032	The Z-axis is ready.	On	On	On	R	No	On	3-38
M2033*	Z-axis motion error (M2033 is reset at the time when the Z-axis operates.)	Off	-	-	R/W	No	Off	3-39
M2065	Disabling the A-axis from returning home	Off	-	-	R/W	No	Off	-
M2112	The A-axis is ready.	On	On	On	R	No	On	3-38
M2113*	A-axis motion error (M2113 is reset at the time when the A-axis operates.)	Off	-	-	R/W	No	Off	3-39
M2145	Disabling the B-axis from returning home	Off	-	-	R/W	No	Off	-
M2192	The B-axis is ready.	On	On	On	R	No	On	3-38
M2193*	B-axis motion error (M2193 is reset at the time when the B-axis operates.)	Off	-	-	R/W	No	Off	3-39
M2225	Disabling the C -axis from returning home	Off	-	-	R/W	No	Off	-
M2272	The C-axis is ready.	On	On	On	R	No	On	3-38
M2273*	C-axis motion error (M2273 is reset at the time when the X-axis operates.)	Off	-	-	R/W	No	Off	3-39

$\begin{gathered} \hline \text { Special } \\ D \\ \text { device } \end{gathered}$	Function	$\begin{aligned} & \text { Off } \\ & \sqrt{3} \\ & \text { On } \end{aligned}$	$\begin{gathered} \text { STOP } \\ \sqrt{n} \\ \text { RUN } \end{gathered}$	$\begin{aligned} & \text { RUN } \\ & \sqrt[3]{3} \\ & \text { STOP } \end{aligned}$	Attribute	Latching	Default	Page
D1000*	Watchdog timer (Unit: ms)	200	-	-	R/W	No	200	3-30
D1002	Size of the program	65535	-	-	R	No	65535	-
D1003	Checksum of the program	-	-	-	R	Yes	0	-
D1005	Firmware version of the DVP-10PM series motion controller (factory setting)	\#	-	-	R	No	\#	-
D1008	Step address at which the watchdog timer is ON	0	-	-	R	No	0	-
D1010	Present scan time (Unit: 1 millisecond)	0	-	-	R	No	0	-
D1011	Minimum scan time (Unit: 1 millisecond)	0	-	-	R	No	0	-
D1012	Maximum scan time (Unit: 1 millisecond)	0	-	-	R	No	0	-
D1020	Filtering the inputs X0~X7 (Unit: ms)	10	-	-	R/W	No	10	3-31
D1025	Code for a communication request error	0	0	-	R	No	0	-
D1036*	Communication protocol of COM1	H'86	-	-	R/W	No	H'86	3-31
D1038*	Delay which is allowed when an RS-485 port on the DVP-10PM series motion controller functions as a slave station (Setting range: 0~3000; Unit: 10 ms)	-	-	-	R/W	Yes	0	3-34
D1039*	Fixed scan time (Unit: ms)	0	-	-	R/W	No	0	3-34
$\begin{gathered} \text { D1050 } \\ \downarrow \\ \text { D1055 } \end{gathered}$	Modbus communication data is processed. The DVP-10PM series motion controller automatically converts the ASCII data in D1070~D1085 to hexadecimal values.	0	-	-	R	No	0	-
D1056	Present value of CHO in the function card 2AD	0	\#	-	R	No	0	-
D1057	Present value of CH 1 in the function card 2AD	0	\#	-	R	No	0	-
$\begin{gathered} \text { D1070 } \\ \downarrow \\ \text { D1085 } \end{gathered}$	Modbus communication data is processed. A DVP-10PM series motion controller has an RS-485 communication instruction. After a receptor receives the command sent by an RS-485 communication instruction, it will reply with a message which will be stored in D1070~D1085. Users can view the message by D1070~D1085.	0	-	-	R	No	0	-
$\begin{gathered} \text { D1089 } \\ \downarrow \\ \text { D1099 } \end{gathered}$	Modbus communication data is processed. A DVP-10PM series motion controller has an RS-485 communication instruction. The command sent by the RS-485 communication instruction is stored in D1089~D1099. Users can check whether the command is correct by viewing the values in D1089~D1099.	0	-	-	R	No	0	-
D1109	Communication protocol of COM3 (communication card)	H'86	-	-	R/W	No	H'86	3-31
D1110	Number by which the sum of several values of CHO in the function card 2AD is divided	0	\#	-	R	No	0	-
D1111	Number by which the sum of several values of CH1 in the function card 2AD is divided	0	\#	-	R	No	0	-
D1116	Present value of CHO in the function card 2DA	0	-	-	R/W	No	0	-
D1117	Present value of CH1 in the function card 2DA	0	-	-	R/W	No	0	-
D1120*	Communication protocol of COM2 (RS-485 port)	H'86	-	-	R/W	No	H'86	3-31
D1121	Communication address of the DVP-10PM series motion controller	-	-	-	R/W	Yes	1	-
D1122	Number characters which remain to be sent	0	0	-	R	No	0	-
D1123	Number of characters which remain to be received	0	0	-	R	No	0	-
D1124	Start-of-text character (STX)	H'3A	-	-	R/W	No	H'3A	-
D1125	First terminator (END High)	H'OD	-	-	R/W	No	H'OD	-
D1126	Second terminator (END Low)	H'OA	-	-	R/W	No	H'OA	-
D1129	Communication timeout (Unit: ms)	0	-	-	R/W	No	0	-
D1130	Error code that a slave station sends by means of Modbus when the RS-485 port on the DVP-10PM series motion controller functions as a master station	0	0	-	R	No	0	-
D1140*	Number of right-side modules (8 right-side modules at most)	0	-	-	R	No	0	3-37
D1142*	Number of X devices in a digital module	0	-	-	R	No	0	3-37
D1143*	Number of Y devices in a digital module	0	-	-	R	No	0	3-37
D1149	ID of a function card (0: No card inserted; 3: COM3; 8: 2AD; 9: 2DA)	0	-	-	R	No	0	-

Special D device	Function	$\begin{aligned} & \text { Off } \\ & \sqrt{3} \\ & \text { On } \end{aligned}$	$\begin{gathered} \text { STOP } \\ \sqrt{n} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \text { ת } \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D1200*	Starting latching auxiliary relay address	-	-	-	R/W	Yes	500	3-37
D1201*	Terminal latching auxiliary relay address	-	-	-	R/W	Yes	999	3-37
D1202*	Starting latching timer address	-	-	-	R/W	Yes	-1	3-37
D1203*	Terminal latching timer address	-	-	-	R/W	Yes	-1	3-37
D1204*	Starting latching 16-bit counter address	-	-	-	R/W	Yes	100	3-37
D1205*	Terminal latching 16-bit counter address	-	-	-	R/W	Yes	199	3-37
D1206*	Starting latching 32-bit counter address	-	-	-	R/W	Yes	220	3-37
D1207*	Terminal latching 32-bit counter address	-	-	-	R/W	Yes	255	3-37
D1208*	Starting latching stepping relay address	-	-	-	R/W	Yes	500	3-37
D1209*	Terminal latching stepping relay address	-	-	-	R/W	Yes	1023	3-37
D1210*	Starting latching data register address	-	-	-	R/W	Yes	200	3-37
D1211*	Terminal latching data register address	-	-	-	R/W	Yes	9999	3-37
D1313*	Value of the second in the real-time clock (RTC): 00~59	-	-	-	R/W	Yes	0	-
D1314*	Value of the minute in the real-time clock (RTC): 00~59	-	-	-	R/W	Yes	0	-
D1315*	Value of the hour in the real-time clock (RTC): 00~23	-	-	-	R/W	Yes	0	-
D1316*	Value of the day in the real-time clock (RTC): 1~31	-	-	-	R/W	Yes	1	-
D1317*	Value of the month in the real-time clock (RTC): 01~12	-	-	-	R/W	Yes	1	-
D1318*	Value of the week in the real-time clock (RTC): 1~7	-	-	-	R/W	Yes	2/5	-
D1319*	Value of the year in the real-time clock (RTC): 00~99 (A.D.)	-	-	-	R/W	Yes	8/10	-
D1320*	ID of the first right-side module	0	-	-	R	No	0	3-38
D1321*	ID of the second right-side module	0	-	-	R	No	0	3-38
D1322*	ID of the third right-side module	0	-	-	R	No	0	3-38
D1323*	ID of the fourth right-side module	0	-	-	R	No	0	3-38
D1324*	ID of the fifth right-side module	0	-	-	R	No	0	3-38
D1325*	ID of the sixth right-side module	0	-	-	R	No	0	3-38
D1326*	ID of the seventh right-side module	0	-	-	R	No	0	3-38
D1327*	ID of the eighth right-side module	0	-	-	R	No	0	3-38
D1400	Enabling the interrupt	0	-	-	R/W	No	0	-
D1401	Cycle of the time interrupt (Unit: ms)	0	-	-	R/W	No	0	-
D1500	Data block used by FROM/TO It corresponds to CR\#0.	H6260	-	-	R	No	H6260	-
$\begin{gathered} \hline \text { D1501 } \\ \downarrow \\ \text { D1699 } \end{gathered}$	Data block used by FROM/TO They correspond to CR\#1~CR\#199.	0	-	-	R/W	No	0	-
D1700	Ox motion subroutine which is executed	0	-	-	R	No	0	-
D1702	Step address which is executed in the Ox motion subroutine	0	-	-	R	No	0	-
D1703*	M-code which is executed in the Ox motion subroutine	0	-	-	R	No	0	3-38
D1704	Dwell duration of the Ox motion subroutine which is set	0	-	-	R	No	0	-
D1705	Present dwell duration of the Ox motion subroutine	0	-	-	R	No	0	-
D1706	Number of times the instruction RPT in the Ox motion subroutine is executed	0	-	-	R	No	0	-
D1707	Number of times the instruction RPT in the Ox motion subroutine has been executed	0	-	-	R	No	0	-
D1736	Dwell duration of O100 which is set	0	-	-	R	No	0	-
D1737	Present dwell duration of O100	0	-	-	R	No	0	-
D1738	Number of times the instruction RPT in O 100 is executed	0	-	-	R	No	0	-
D1739	Number of times the instruction RPT in O100 has been executed	0	-	-	R	No	0	-
D1799*	Polarities of the input terminals	0	-	-	R/W	No	0	3-39
D1800*	States of the input terminals	0	-	-	R	No	0	3-39
D1802*	O100 error code	0	-	-	R/W	No	0	3-40
D1803*	Step address in O100 at which an error occurs	0	0	-	R/W	No	0	3-40
D1806	Filter coefficient for the input terminals	0	-	-	R/W	No	0	3-40
D1816*	Setting the parameters of the X -axis	-	-	-	R/W	Yes	0	3-40

Special D device\quad Function		$\begin{aligned} & \text { Off } \\ & \sqrt{n} \\ & \text { On } \end{aligned}$	$\begin{gathered} \text { STOP } \\ \text { \& } \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt[3]{2} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D1818	Number of pulses it takes for the motor of the X-axis to rotate once (Low word)	-	-	-	R/W	Yes	2000	-
D1819	Number of pulses it takes for the motor of the X-axis to rotate once (High word)							
D1820	Distance generated after the motor of the X-axis rotate once (Low word)	-	-	-	R/W	Yes	1000	-
D1821	Distance generated after the motor of the X-axis rotate once (High word)							
D1822	Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the X -axis rotates (Low word)	-	-	-	R/W	Yes	500K	-
D1823	Maximum speed ($\mathrm{V}_{\mathrm{MAX}}$) at which the X -axis rotates (High word)							
D1824	Start-up speed (V $\mathrm{V}_{\text {BIAS }}$) at which the X-axis rotates (Low word)	-	-	-	R/W	Yes	0	-
D1825	Start-up speed (VIAS) at which the X-axis rotates (High word)							
D1826	JOG speed ($\mathrm{V}_{\text {JoG }}$) at which the X -axis rotates (Low word)	-	-	-	R/W	Yes	5000	-
D1827	JOG speed ($\mathrm{V}_{\text {JoG }}$) at which the X -axis rotates (High word)							
D1828	Speed (V_{RT}) at which the X-axis returns home (Low word)	-	-	-	R/W	Yes	50K	-
D1829	Speed (V_{RT}) at which the X -axis returns home (High word)							
D1830	Speed $\left(V_{C R}\right)$ to which the speed of the X-axis decreases when the axis returns home (Low word)	-	-	-	R/W	Yes	1000	-
D1831	Speed $\left(V_{C R}\right)$ to which the speed of the X -axis decreases when the axis returns home (High word)							
D1832*	Number of PG0 pulses for the X-axis	-	-	-	R/W	Yes	0	-
D1833*	Supplementary pulses for the X-axis	-	-	-	R/W	Yes	0	-
D1834*	Home position of the X -axis (Low word)	-	-	-	R/W	Yes	0	-
D1835	Home position of the X -axis (High word)	-	-	-	R/W	Yes	0	-
D1836	Time ($\mathrm{T}_{\text {ACC }}$) it takes for the X -axis to accelerate	-	-	-	R/W	Yes	500	-
D1837	Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the X -axis to decelerate	-	-	-	R/W	Yes	500	-
D1838	Target position of the X-axis (P (I)) (Low word)	0	-	-	R/W	No	0	-
	Pulse width for the X-axis (Low word)	0	-	-	R/W	No	0	-
D1839	Target position of the X-axis (P (I)) (High word)	0	-	-	R/W	No	0	-
	Pulse width for the X -axis (High word)	0	-	-	R/W	No	0	-
D1840	Speed at which the X-axis rotates (V (I)) (Low word)	1000	-	-	R/W	No	1000	-
D1841	Speed at which the X-axis rotates (V (I)) (High word)	1000	-	-	R/W	No	1000	-
D1842	Target position of the X-axis (P (II)) (Low word)	0	-	-	R/W	No	0	-
	Output period for the X-axis (Low word)	0	-	-	R/W	No	0	-
D1843	Target position of the X-axis (P (II)) (High word)	0	-	-	R/W	No	0	-
	Output period for the X-axis (High word)	0	-	-	R/W	No	0	-
D1844	Speed at which the X-axis rotates (V (II)) (Low word)	2000	-	-	R/W	No	2000	-
D1845	Speed at which the X-axis rotates (V (II)) (High word)							
D1846*	Operation command for the X -axis	0	-	0	R/W	No	0	3-42
D1847*	X-axis's mode of operation	0	-	-	R/W	No	0	3-42
D1848	Present command position of the X-axis (Pulse) (Low word)	0	-	-	R/W	No	0	-
	Position of the slave axis (Low word)							
D1849	Present command position of the X-axis (Pulse) (High word)	0	-	-	R/W	No	0	-
	Position of the slave axis (High word)							
D1850	Present command speed of the X-axis (PPS) (Low word)	0	0	0	R/W	No	0	-
D1851	Present command speed of the X-axis (PPS) (High word)							
D1852	Present command position of the X-axis (Unit) (Low word)	0	-	-	R/W	No	0	-
D1853	Present command position of the X-axis (Unit) (High word)							
D1854	Present command speed of the X-axis (Unit) (Low word)	0	0	0	R/W	No	0	-
D1855	Present command speed of the X-axis (Unit) (High word)							
D1856*	State of the X-axis	0	-	-	R	No	0	3-43
D1857*	X-axis error code	0	-	-	R	No	0	3-39
D1858	Electronic gear ratio of the X-axis (Numerator)	-	-	-	R/W	Yes	1	-
D1859	Electronic gear ratio of the X-axis (Denominator)	-	-	-	R/W	Yes	1	-

Specia D device	Function	$\begin{gathered} \text { Off } \\ \sqrt[n]{\text { On }} \end{gathered}$	$\begin{gathered} \text { STOP } \\ \text { \& } \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \text { s } \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D1860	Frequency of pulses generated by the manual pulse generator for the X -axis (Low word)	0	0	-	R/W	No	0	-
	Frequency of pulses sent by the master axis (Low word)							
D1861	Frequency of pulses generated by the manual pulse generator for the X -axis (High word)	0	0	-	R/W	No	0	-
	Frequency of pulses sent by the master axis (High word)							
D1862	Number of pulses generated by the manual pulse generator for the X -axis (Low word)	0	-	-	R/W	No	0	-
	Position of the master axis							
D1863	Number of pulses generated by the manual pulse generator for the X -axis (High word)	0	-	-	R/W	No	0	-
	Position of the master axis							
D1864*	Response speed of the manual pulse generator for the X-axis	-	-	-	R/W	Yes	5	-
D1865	Mode of stopping Ox0~Ox99 (K1: The execution of Ox0~Ox99 will resume next time Ox0~Ox99 are started. K2: The next instruction will be executed next time Ox0~Ox99 are started. Others: Ox0~Ox99 are executed again.)	-	-	-	R/W	Yes	0	-
D1866	Electrical zero of the X-axis (Low word)	-	-	-	R/W	Yes	0	-
D1867	Electrical zero of the X-axis (High word)		-	-	R/W	Yes	0	-
D1868*	Setting an Ox motion subroutine number	0	0	-	R/W	Yes	0	3-34
D1869	Step address in the Ox motion subroutine at which an error occurs	0	-	-	R/W	No	0	-
D1872	Enabling a Y device when the $O x$ motion subroutine is ready (High byte: K1; Low byte: Starting Y device address)	0	-	-	R/W	No	0	-
D1873	Enabling a Y device when an M-code in the Ox motion subroutine is executed (High byte: K1; Low byte: Starting Y device address)	-	-	-	R/W	Yes	0	-
D1874	Using an X device to reset the M-code	0	-	-	R/W	No	0	-
D1875*	Starting the X-axis manually (ZRN, MPG, JOG-, JOG+)	-	-	-	R/W	Yes	0	-
D1896*	Setting the parameters of the Y-axis	-	-	-	R/W	Yes	0	3-40
D1898	Number of pulses it takes for the motor of the Y -axis to rotate once (Low word)	-	-	-	R/W	Yes	2000	-
D1899	Number of pulses it takes for the motor of the Y-axis to rotate once (High word)							
D1900	Distance generated after the motor of the Y -axis rotate once (Low word)	-	-	-	R/W	Yes	1000	-
D1901	Distance generated after the motor of the Y -axis rotate once (High word)							
D1902	Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the Y -axis rotates (Low word)	-	-	-	R/W	Yes	500K	-
D1903	Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the Y -axis rotates (High word)							
D1904	Start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the Y-axis rotates (Low word)	-	-		R/W	Yes	0	-
D1905	Start-up speed (VEIAS) at which the Y-axis rotates (High word)							
D1906	JOG speed ($\mathrm{V}_{\mathrm{JOG}}$) at which the Y -axis rotates (Low word)	-	-		R/W	Yes	5000	-
D1907	JOG speed ($\mathrm{V}_{\text {JoG }}$) at which the Y-axis rotates (High word)							
D1908	Speed (V_{RT}) at which the Y -axis returns home (Low word)		-		R/W	Yes	50K	-
D1909	Speed (V_{RT}) at which the Y -axis returns home (High word)							
D1910	Speed (V_{CR}) to which the speed of the Y -axis decreases when the axis returns home (Low word)	-	-	-	R/W	Yes	1000	-
D1911	Speed $\left(V_{C R}\right)$ to which the speed of the Y-axis decreases when the axis returns home (High word)							
D1912	Number of PG0 pulses for the Y-axis	-	-	-	R/W	Yes	0	-
D1913	Supplementary pulses for the Y -axis	-	-	-	R/W	Yes	0	-
D1914	Home position of the Y-axis (Low word)		-	-	R/W	Yes	0	-
D1915	Home position of the Y-axis (High word)							
D1916	Time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the Y-axis to accelerate	-	-	-	R/W	Yes	500	-
D1917	Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the Y-axis to decelerate	-	-	-	R/W	Yes	500	-

$\begin{gathered} \text { Special } \\ D \\ \text { device } \end{gathered}$	Function	$\begin{aligned} & \text { Off } \\ & \sqrt{3} \\ & \text { On } \end{aligned}$	$\begin{gathered} \text { STOP } \\ \text { \& } \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt{n} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D1918	Target position of the Y-axis (P (I)) (Low word)	0	-	-	R/W	No	0	-
	Pulse width for the Y-axis (Low word)	0	-	-	R/W	No	0	-
D1919	Target position of the Y-axis (P (I)) (High word)	0	-	-	R/W	No	0	-
	Pulse width for the Y-axis (High word)	0	-	-	R/W	No	0	-
D1920	Speed at which the Y-axis rotates (V (I)) (Low word)	1000	-	-	R/W	No	1000	-
D1921	Speed at which the Y-axis rotates (V (I)) (High word)							
D1922	Target position of the Y-axis (P (II)) (Low word)	0	-	-	R/W	No	0	-
	Output period for the Y-axis (Low word)	0	-	-	R/W	No	0	-
D1923	Target position of the Y-axis (P (II)) (High word)	0	-	-	R/W	No	0	-
	Output period for the Y-axis (High word)	0	-	-	R/W	No	0	-
D1924	Speed at which the Y -axis rotates (V (II)) (Low word)	2000	-	-	R/W	No	2000	-
D1925	Speed at which the Y-axis rotates (V (II)) (High word)							
D1926*	Y-axis: Operation command	0	-	0	R/W	No	0	3-42
D1927*	Y-axis: Mode of operation	0	-	-	R/W	No	0	3-42
D1928	Present command position of the Y-axis (Pulse) (Low word)	0	-	-	R/W	No	0	-
D1929	Present command position of the Y-axis (Pulse) (High word)							
D1930	Present command speed of the Y-axis (PPS) (Low word)	0	0	0	R/W	No	0	-
D1931	Present command speed of the Y-axis (PPS) (High word)							
D1932	Present command position of the Y-axis (Unit) (Low word)	0	-	-	R/W	No	0	-
D1933	Present command position of the Y-axis (Unit) (High word)							
D1934	Present command speed of the Y-axis (Unit) (Low word)	0	0	0	R/W	No	0	-
D1935	Present command speed of the Y-axis (Unit) (High word)							
D1936*	State of the Y -axis	0	-	-	R	No	0	3-43
D1937*	Y-axis error code	0	-	-	R	No	0	3-39
D1938	Electronic gear ratio of the Y-axis (Numerator)	-	-	-	R/W	Yes	1	-
D1939	Electronic gear ratio of the Y-axis (Denominator)	-	-	-	R/W	Yes	1	-
D1940	Frequency of pulses generated by the manual pulse generator for the Y -axis (Low word)	0	-	0	R/W	No	0	-
D1941	Frequency of pulses generated by the manual pulse generator for the Y -axis (High word)							
D1942	Number of pulses generated by the manual pulse generator for the Y -axis (Low word)	0	-	-	R/W	No	0	-
D1943	Number of pulses generated by the manual pulse generator for the X-axis (High word)							
D1944	Response speed of the manual pulse generator for the Y -axis	-	-	-	R/W	Yes	5	-
D1946	Electrical zero of the Y-axis (Low word)	-	-	-	R/W	Yes	0	-
D1947	Electrical zero of the Y-axis (High word)							
D1955*	Starting the Y-axis manually (ZRN, MPG, JOG-, JOG+)	-	-	-	R/W	Yes	4	-
D1976	Setting the parameters of the Z-axis	-	-	-	R/W	Yes	0	3-40
D1978	Number of pulses it takes for the motor of the Z-axis to rotate once (Low word)	-	-	-	R/W	Yes	2000	-
D1979	Number of pulses it takes for the motor of the Z-axis to rotate once (High word)							
D1980	Distance generated after the motor of the Z-axis rotate once (Low word)	-	-	-	R/W	Yes	1000	-
D1981	Distance generated after the motor of the Z-axis rotate once (High word)							
D1982	Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the Z-axis rotates (Low word)	-	-	-	R/W	Yes	500K	-
D1983	Maximum speed ($\mathrm{V}_{\text {max }}$) at which the Z-axis rotates (High word)							
D1984	Start-up speed (VEIAS) at which the Z-axis rotates (Low word)	-	-	-	R/W	Yes	0	-
D1985	Start-up speed (VBIAS) at which the Z-axis rotates (High word)							
D1986	JOG speed ($\mathrm{V}_{\text {Jog }}$) at which the Z-axis rotates (Low word)	-	-	-	R/W	Yes	5000	-
D1987	JOG speed ($\mathrm{V}_{\text {JoG }}$) at which the Z-axis rotates (High word)							

Special D device\quad Function		$\begin{aligned} & \text { Off } \\ & \sqrt[n]{n} \\ & \text { On } \end{aligned}$	$\begin{gathered} \text { STOP } \\ \sqrt{4} \\ \text { RUN } \end{gathered}$	$\begin{aligned} & \text { RUN } \\ & \text { ת } \\ & \text { STOP } \end{aligned}$	Attribute	Latching	Default	Page
D1988	Speed (V_{RT}) at which the Z-axis returns home (Low word)	-	-	-	R/W	Yes	50K	-
D1989	Speed (V_{RT}) at which the Z-axis returns home (High word)							
D1990	Speed ($V_{C R}$) to which the speed of the Z-axis decreases when the axis returns home (Low word)	-	-	-	R/W	Yes	1000	-
D1991	Speed (V_{CR}) to which the speed of the Z-axis decreases when the axis returns home (High word)							
D1992	Number of PG0 pulses for the Z-axis	-	-	-	R/W	Yes	0	-
D1993	Supplementary pulses for the Z-axis	-	-	-	R/W	Yes	0	-
D1994	Home position of the Z-axis (Low word)	-	-	-	R/W	Yes	0	-
D1995	Home position of the Z-axis (High word)							
D1996	Time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the Z-axis to accelerate	-	-	-	R/W	Yes	500	-
D1997	Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the Z-axis to decelerate	-	-	-	R/W	Yes	500	-
D1998	Target position of the Z-axis (P (I)) (Low word)	0	-	-	R/W	No	0	-
	Pulse width for the Z-axis (Low word)	0	-	-	R/W	No	0	-
D1999	Target position of the Z-axis (P (I)) (High word)	0	-	-	R/W	No	0	-
	Pulse width for the Z-axis (High word)	0	-	-	R/W	No	0	-
D2000	Speed at which the Z-axis rotates (V (I)) (Low word)	1000	-	-	R/W	No	1000	-
D2001	Speed at which the Z-axis rotates (V (I)) (High word)							
D2002	Target position of the Z-axis (P (II)) (Low word)	0	-	-	R/W	No	0	-
	Output period for the Z-axis (Low word)	0	-	-	R/W	No	0	-
D2003	Target position of the Z-axis (P (II)) (High word)	0	-	-	R/W	No	0	-
	Output period for the Z-axis (High word)	0	-	-	R/W	No	0	-
D2004	Speed at which the Z-axis rotates (V (II)) (Low word)	2000	-	-	R/W	No	2K	-
D2005	Speed at which the Z-axis rotates (V (II)) (High word)							
D2006	Z-axis: Operation command	0	-	0	R/W	No	0	3-42
D2007	Z-axis: Mode of operation	0	-	-	R/W	No	0	3-42
D2008	Present command position of the Z-axis (Pulse) (Low word)	0	-	-	R/W	No	0	-
D2009	Present command position of the Z-axis (Pulse) (High word)							
D2010	Present command speed of the Z-axis (PPS) (Low word)	0	0	0	R/W	No	0	-
D2011	Present command speed of the Z-axis (PPS) (High word)							
D2012	Present command position of the Z-axis (Unit) (Low word)	0	-	-	R/W	No	0	-
D2013	Present command position of the Z-axis (Unit) (High word)							
D2014	Present command speed of the Z-axis (Unit) (Low word)	0	0	0	R/W	No	0	-
D2015	Present command speed of the Z-axis (Unit) (High word)							
D2016	State of the Z-axis	0	-	-	R	No	0	3-43
D2017*	Z-axis error code	0	-	-	R	No	0	3-39
D2018	Electronic gear ratio of the Z-axis (Numerator)	-	-	-	R/W	Yes	1	-
D2019	Electronic gear ratio of the Z-axis (Denominator)	-	-	-	R/W	Yes	1	-
D2020	Frequency of pulses generated by the manual pulse generator for the Z-axis (Low word)	0	-	0	R/W	No	0	-
D2021	Frequency of pulses generated by the manual pulse generator for the Z -axis (High word)							
D2022	Number of pulses generated by the manual pulse generator for the Z-axis (Low word)	0	-	-	R/W	No	0	-
D2023	Number of pulses generated by the manual pulse generator for the Z-axis (High word)							
D2024	Response speed of the manual pulse generator for the Z-axis	-	-	-	R/W	Yes	5	-
D2026	Electrical zero of the Z-axis (Low word)	-	-	-	R/W	Yes	0	-
D2027	Electrical zero of the Z-axis (High word)							
D2029	Step address in the Oz motion subroutine at which an error occurs (reserved, not available presently)	-	-	-	R/W	Yes	0	-
D2056	Setting the parameters of the A-axis	-	-	-	R/W	Yes	0	3-40
D2058	Number of pulses it takes for the motor of the A-axis to rotate once (Low word)	-	-	-	R/W	Yes	2000	-
D2059	Number of pulses it takes for the motor of the A-axis to rotate once (High word)							

Special D device	Function	$\begin{gathered} \text { Off } \\ \sqrt{n} \\ \text { On } \end{gathered}$	$\begin{gathered} \text { STOP } \\ \sqrt{2} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt{3} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D2060	Distance generated after the motor of the A-axis rotate once (Low word)	-	-	-	R/W	Yes	1000	-
D2061	Distance generated after the motor of the A-axis rotate once (High word)							
D2062	Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the A-axis rotates (Low word)	-	-	-	R/W	Yes	500K	-
D2063	Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the A-axis rotates (High word)							
D2064	Start-up speed (VBIAS) at which the A-axis rotates (Low word)	-	-	-	R/W	Yes	0	-
D2065	Start-up speed (VIAS) at which the A-axis rotates (High word)							
D2066	JOG speed ($\mathrm{V}_{\text {JoG }}$) at which the A-axis rotates (Low word)	-	-	-	R/W	Yes	5000	-
D2067	JOG speed ($\mathrm{V}_{\text {JoG }}$) at which the A-axis rotates (High word)							
D2068	Speed (V_{RT}) at which the A-axis returns home (Low word)	-	-	-	R/W	Yes	50K	-
D2069	Speed (V_{RT}) at which the A-axis returns home (High word)							
D2070	Speed $\left(V_{C R}\right)$ to which the speed of the A-axis decreases when the axis returns home (Low word)	-	-	-	R/W	Yes	1000	-
D2071	Speed $\left(V_{C R}\right)$ to which the speed of the A-axis decreases when the axis returns home (High word)							
D2072	Number of PG0 pulses for the A-axis	-	-	-	R/W	Yes	0	-
D2073	Supplementary pulses for the A-axis	-	-	-	R/W	Yes	0	-
D2074	Home position of the A-axis (Low word)	-	-	-	R/W	Yes	0	-
D2075	Home position of the A-axis (High word)	-	-	-	R/W	Yes	0	-
D2076	Time ($\mathrm{T}_{\text {Acc }}$) it takes for the A-axis to accelerate	-	-	-	R/W	Yes	500	-
D2077	Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the A-axis to decelerate	-	-	-	R/W	Yes	500	-
D2078	Target position of the A-axis (P (I)) (Low word)	0	-	-	R/W	No	0	-
	Pulse width for the A-axis (Low word)	0	-	-	R/W	No	0	-
D2079	Target position of the A-axis (P (I)) (High word)	0	-	-	R/W	No	0	-
	Pulse width for the A-axis (High word)	0	-	-	R/W	No	0	-
D2080	Speed at which the A-axis rotates (V (I)) (Low word)	1000	-	-	R/W	No	1000	-
D2081	Speed at which the A-axis rotates (V (I)) (High word)							
D2082	Target position of the A-axis (P (II)) (Low word)	0	-	-	R/W	No	0	-
	Output period for the A-axis (Low word)	0	-	-	R/W	No	0	-
D2083	Target position of the A-axis (P (II)) (High word)	0	-	-	R/W	No	0	-
	Output period for the A-axis (High word)	0	-	-	R/W	No	0	-
D2084	Speed at which the A-axis rotates (V (II)) (Low word)	2000	-	-	R/W	No	2K	-
D2085	Speed at which the A-axis rotates (V (II)) (High word)							
D2086	A-axis: Operation command	0	-	0	R/W	No	0	3-42
D2087	A-axis: Mode of operation	0	-	-	R/W	No	0	3-42
D2088	Present command position of the A-axis (Pulse) (Low word)	0	-	-	R/W	No	0	-
D2089	Present command position of the A-axis (Pulse) (High word)							
D2090	Present command speed of the A-axis (PPS) (Low word)	0	0	0	R/W	No	0	-
D2091	Present command speed of the A-axis (PPS) (High word)							
D2092	Present command position of the A-axis (Unit) (Low word)	0	-	-	R/W	No	0	-
D2093	Present command position of the A-axis (Unit) (High word)							
D2094	Present command speed of the A-axis (Unit) (Low word)	0	0	0	R/W	No	0	-
D2095	Present command speed of the A-axis (Unit) (High word)							
D2096	State of the A-axis	0	-	-	R	No	0	3-43
D2097*	A-axis error code	0	-	-	R	No	0	3-39
D2098	Electronic gear ratio of the A-axis (Numerator)	-	-	-	R/W	Yes	1	-
D2099	Electronic gear ratio of the A-axis (Denominator)	-	-	-	R/W	Yes	1	-
D2100	Frequency of pulses generated by the manual pulse generator for the A-axis (Low word)	0	-	0	R/W	No	0	-
D2101	Frequency of pulses generated by the manual pulse generator for the A-axis (High word)	0	-	0	R/W	No	0	-
D2102	Number of pulses generated by the manual pulse generator for the A-axis (Low word)	0	-	-	R/W	No	0	-

$\begin{gathered} \text { Special } \\ D \\ \text { device } \end{gathered}$	Function	$\begin{gathered} \text { Off } \\ \sqrt[n]{2 n} \\ \text { On } \end{gathered}$	$\begin{gathered} \text { STOP } \\ \text { RUN } \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt{3} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D2103	Number of pulses generated by the manual pulse generator for the A-axis (High word)	0	-	-	R/W	No	0	-
D2104	Response speed of the manual pulse generator for the A-axis	-	-	-	R/W	Yes	5	-
D2136	Setting the parameters of the B-axis	-	-	-	R/W	Yes	0	3-40
D2138	Number of pulses it takes for the motor of the B-axis to rotate once (Low word)	-	-	-	R/W	Yes	2000	-
D2139	Number of pulses it takes for the motor of the B-axis to rotate once (High word)	-	-	-	R/W	Yes	2000	-
D2140	Distance generated after the motor of the B-axis rotate once (Low word)	-	-	-	R/W	Yes	1000	-
D2141	Distance generated after the motor of the B-axis rotate once (High word)				R/W	Yes	1000	
D2142	Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the B-axis rotates (Low word)	-	-	-	R/W	Yes	500K	-
D2143	Maximum speed ($\mathrm{V}_{\mathrm{MAX}}$) at which the B-axis rotates (High word)	-	-	-	R/W	Yes	500K	
D2144	Start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the B-axis rotates (Low word)	-	-	-	R/W	Yes	0	-
D2145	Start-up speed (V $\mathrm{V}_{\text {BIAS }}$) at which the B-axis rotates (High word)				R/W	Yes	0	
D2146	JOG speed ($\mathrm{V}_{\text {JOG }}$) at which the B-axis rotates (Low word)	-	-	-	R/W	Yes	5000	-
D2147	JOG speed ($\mathrm{V}_{\text {JoG }}$) at which the B-axis rotates (High word)				R/W	Yes	5000	
D2148	Speed (V_{RT}) at which the B-axis returns home (Low word)	-	-	-	R/W	Yes	50K	-
D2149	Speed (V_{RT}) at which the B-axis returns home (High word)	-	-	-	R/W	Yes	50K	-
D2150	Speed $\left(V_{C R}\right)$ to which the speed of the B-axis decreases when the axis returns home (Low word)	-	-	-	R/W	Yes	1000	-
D2151	Speed $\left(V_{C R}\right)$ to which the speed of the B-axis decreases when the axis returns home (High word)	-	-	-	R/W	Yes	1000	-
D2152	Number of PG0 pulses for the B-axis	-	-	-	R/W	Yes	0	-
D2153	Supplementary pulses for the B-axis	-	-	-	R/W	Yes	0	-
D2154	Home position of the B-axis (Low word)	-	-	-	R/W	Yes	0	-
D2155	Home position of the B-axis (High word)	-	-	-	R/W	Yes	0	-
D2156	Time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the B-axis to accelerate	-	-	-	R/W	Yes	500	-
D2157	Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the B-axis to decelerate	-	-	-	R/W	Yes	500	-
D2158	Target position of the B-axis (P (I)) (Low word)	0	-	-	R/W	No	0	-
D2159	Target position of the B-axis (P (I)) (High word)	0	-	-	R/W	No	0	-
D2160	Speed at which the B-axis rotates (V (I)) (Low word)	1000	-	-	R/W	No	1000	-
D2161	Speed at which the B-axis rotates (V (I)) (High word)	1000	-	-	R/W	No	1000	-
D2162	Target position of the B-axis (P (II)) (Low word)	0	-	-	R/W	No	0	-
D2163	Target position of the B-axis (P (II)) (High word)	0	-	-	R/W	No	0	-
D2164	Speed at which the B-axis rotates (V (II)) (Low word)	2000	-	-	R/W	No	2K	-
D2165	Speed at which the B-axis rotates (V (II)) (High word)	2000	-	-	R/W	No	2K	-
D2166	B-axis: Operation command	0	-	0	R/W	No	0	3-42
D2167	B-axis: Mode of operation	0	-	-	R/W	No	0	3-42
D2168	Present command position of the B-axis (Pulse) (Low word)	0	-	-	R/W	No	0	-
D2169	Present command position of the B-axis (Pulse) (High word)	0	-	-	R/W	No	0	-
D2170	Present command speed of the B-axis (PPS) (Low word)	0	0	0	R/W	No	0	-
D2171	Present command speed of the B-axis (PPS) (High word)	0	0	0	R/W	No	0	-
D2172	Present command position of the B-axis (Unit) (Low word)	0	-	-	R/W	No	0	-
D2173	Present command position of the B-axis (Unit) (High word)	0	-	-	R/W	No	0	-
D2174	Present command speed of the B-axis (Unit) (Low word)	0	0	0	R/W	No	0	-
D2175	Present command speed of the B-axis (Unit) (High word)	0	0	0	R/W	No	0	-
D2176	State of the B-axis	0	-	-	R	No	0	3-43
D2177	B-axis error code	0	-	-	R	No	0	3-39
D2178	Electronic gear ratio of the B-axis (Numerator)	-	-	-	R/W	Yes	1	-
D2179	Electronic gear ratio of the B-axis (Denominator)	-	-	-	R/W	Yes	1	-
D2180	Frequency of pulses generated by the manual pulse generator for the B-axis (Low word)	0	-	0	R/W	No	0	-

Special D device	Function	$\begin{gathered} \text { Off } \\ \text { On } \end{gathered}$	$\begin{gathered} \text { STOP } \\ \sqrt{n} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt[3]{3} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D2181	Frequency of pulses generated by the manual pulse generator for the B-axis (High word)	0	-	0	R/W	No	0	-
D2182	Number of pulses generated by the manual pulse generator for the B-axis (Low word)	0	-	-	R/W	No	0	-
D2183	Number of pulses generated by the manual pulse generator for the B-axis (High word)	0	-	-	R/W	No	0	-
D2184	Response speed of the manual pulse generator for the B-axis	-	-	-	R/W	Yes	5	-
D2216	Setting the parameters of the C -axis	-	-	-	R/W	Yes	0	3-40
D2218	Number of pulses it takes for the motor of the C-axis to rotate once (Low word)	-	-	-	R/W	Yes	2000	-
D2219	Number of pulses it takes for the motor of the C-axis to rotate once (High word)	-	-	-	R/W	Yes	2000	-
D2220	Distance generated after the motor of the C-axis rotate once (Low word)	-	-	-	R/W	Yes	1000	-
D2221	Distance generated after the motor of the C-axis rotate once (High word)	-	-	-	R/W	Yes	1000	-
D2222	Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the C-axis rotates (Low word)	-	-	-	R/W	Yes	500K	-
D2223	Maximum speed ($\mathrm{V}_{\text {MAX }}$) at which the C -axis rotates (High word)	-	-	-	R/W	Yes	500K	-
D2224	Start-up speed (V $\mathrm{V}_{\text {BIAS }}$) at which the C-axis rotates (Low word)	-	-	-	R/W	Yes	0	-
D2225	Start-up speed (V $\mathrm{V}_{\text {BIAS }}$) at which the C-axis rotates (High word)	-	-	-	R/W	Yes	0	-
D2226	JOG speed ($\mathrm{V}_{\text {JoG }}$) at which the C-axis rotates (Low word)	-	-	-	R/W	Yes	5000	-
D2227	JOG speed ($V_{\text {JoG }}$) at which the C-axis rotates (High word)	-	-	-	R/W	Yes	5000	-
D2228	Speed (V_{RT}) at which the C-axis returns home (Low word)	-	-	-	R/W	Yes	50K	-
D2229	Speed (V_{RT}) at which the C-axis returns home (High word)	-	-	-	R/W	Yes	50K	-
D2230	Speed $\left(V_{C R}\right)$ to which the speed of the C -axis decreases when the axis returns home (Low word)	-	-	-	R/W	Yes	1000	-
D2231	Speed $\left(V_{C R}\right)$ to which the speed of the C-axis decreases when the axis returns home (High word)	-	-	-	R/W	Yes	1000	-
D2232	Number of PG0 pulses for the C-axis	-	-	-	R/W	Yes	0	-
D2233	Supplementary pulses for the C-axis	-	-	-	R/W	Yes	0	-
D2234	Home position of the C-axis (Low word)	-	-	-	R/W	Yes	0	-
D2235	Home position of the C-axis (High word)	-	-	-	R/W	Yes	0	-
D2236	Time ($\mathrm{T}_{\text {ACC }}$) it takes for the C-axis to accelerate	-	-	-	R/W	Yes	500	-
D2237	Time (T_{DE}) it takes for the C-axis to decelerate	-	-	-	R/W	Yes	500	-
D2238	Target position of the C-axis (P (I)) (Low word)	0	-	-	R/W	No	0	-
D2239	Target position of the C-axis (P (I)) (High word)	0	-	-	R/W	No	0	-
D2240	Speed at which the C-axis rotates (V (I)) (Low word)	1000	-	-	R/W	No	1000	-
D2241	Speed at which the C-axis rotates (V (I)) (High word)	1000	-	-	R/W	No	1000	-
D2242	Target position of the C-axis (P (II)) (Low word)	0	-	-	R/W	No	0	-
D2243	Target position of the C-axis (P (II)) (High word)	0	-	-	R/W	No	0	-
D2244	Speed at which the C-axis rotates (V (II)) (Low word)	2000	-	-	R/W	No	2K	-
D2245	Speed at which the C-axis rotates (V (II)) (High word)	2000	-	-	R/W	No	2K	-
D2246	C-axis: Operation command	0	-	0	R/W	No	0	-
D2247	C-axis: Mode of operation	0	-	-	R/W	No	0	3-42
D2248	Present command position of the C-axis (Pulse) (Low word)	0	-	-	R/W	No	0	-
D2249	Present command position of the C-axis (Pulse) (High word)	0	-	-	R/W	No	0	-
D2250	Present command speed of the C-axis (PPS) (Low word)	0	0	0	R/W	No	0	-
D2251	Present command speed of the C-axis (PPS) (High word)	0	0	0	R/W	No	0	-
D2252	Present command position of the C-axis (Unit) (Low word)	0	-	-	R/W	No	0	-
D2253	Present command position of the C-axis (Unit) (High word)	0	-	-	R/W	No	0	-
D2254	Present command speed of the C-axis (Unit) (Low word)	0	0	0	R/W	No	0	-
D2255	Present command speed of the C-axis (Unit) (High word)	0	0	0	R/W	No	0	-
D2256	State of the C-axis	0	-	-	R	No	0	3-43
D2257	C-axis error code	0	-	-	R	No	0	3-39
D2258	Electronic gear ratio of the C-axis (Numerator)	-	-	-	R/W	Yes	1	-

$\begin{gathered} \text { Special } \\ D \\ \text { device } \end{gathered}$	Function	$\begin{gathered} \text { Off } \\ \sqrt[n]{2} \\ \text { On } \end{gathered}$	$\begin{gathered} \text { STOP } \\ \sqrt[3]{2} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt{3} \\ \text { STOP } \end{gathered}$	Attribute	Latching	Default	Page
D2259	Electronic gear ratio of the C-axis (Denominator)	-	-	-	R/W	Yes	1	-
D2260	Frequency of pulses generated by the manual pulse generator for the C-axis (Low word)	0	-	0	R/W	No	0	-
D2261	Frequency of pulses generated by the manual pulse generator for the C-axis (High word)	0	-	0	R/W	No	0	-
D2262	Number of pulses generated by the manual pulse generator for the C-axis (Low word)	0	-	-	R/W	No	0	-
D2263	Number of pulses generated by the manual pulse generator for the C-axis (High word)	0	-	-	R/W	No	0	-
D2264	Response speed of the manual pulse generator for the C-axis	-	-	-	R/W	Yes	5	-

3.11 Functions of Special Auxiliary Relays and Special Data Registers

Operation flags

M1000~M1003

Watchdog timer

D1000

1. M1000: If the DVP-10PM series motion controller runs, M1000 will be a normally-open contact (Form A contact). When the DVP-10PM series motion controller runs, M1000 is ON.

2. M1001: If the DVP-10PM series motion controller runs, M1001 will be a normally-closed contact (Form B contact). When the DVP-10PM series motion controller runs, M1001 is OFF.
3. M1002: A positive-going pulse is generated at the time when the DVP-10PM series motion controller runs. The width of the pulse is equal to the scan cycle. If users want to initialize the DVP-10PM series motion controller, they can use the contact.
4. M1003: A negative-going pulse is generated at the time when the DVP-10PM series motion controller runs. The width of the pulse is equal to the scan cycle.

5. The watchdog timer is used to monitor a scan cycle. If the scan cycle is greater than the watchdog timer value, the ERROR LED indicator on the DVP-10PM series motion controller will be turned ON, and all the output devices will be turned OFF.
6. The watchdog timer is initailly set to 200. If the program is long, or the operation is complex, users can change the watchdog timer value by means of the instruction MOV. In the example below, the watchdog timer value is changed to 300 .

7. The maximum value which can be stored in the watchdog timer is 32,767 . However, the larger the watchdog timer value is, the more time it takes to detect any operation error. As a result, if there is no complex operation resulting in a scan cycle longer than 200 milliseconds, it is suggested that the watchdog timer value should be less than 200.
8. If an opration is complex, the scan cycle may be long. Users can check whether the scan cycle is greater than the value stored in D1000 by monitoring D1010~D1012. If the scan cycle is greater than the value stored in D1000, the users can change the value in D1000.

9. Users can set the time it takes for the input terminals $X 0 \sim X 7$ to respond by setting D1020. The value in D1020 must be in the range of 0 to 20. (Unit: ms)
10. If the DVP-10PM series motion controller is turned form OFF to ON, the value in S D1020 will automatically become 10 .

11. If the program below is executed, the time is takes for the input terminals $\mathrm{XO} \sim \mathrm{X7}$ to respond will be 0 milliseconds. Owing to the fact that the input terminals are connected to resistor-capacitor circuits in series, the shortest time it takes for the input terminals to respond is 50 microseconds.

Normally-open contact
4. If high-spedd counters and interrupts are used in a program, the value in D1020 does not have any effect.
The communication ports with which a DVP-10PM series motion controller is equipped are COM1 (RS-232 port) and COM2 (RS-485 port). They support Modbus ASCII/RTU. The maximum speed available is $115,200 \mathrm{bps}$. COM3 (RS-232/RS-485 communication card) supports Modbus ASCII. The maximum speed available is 38,400 bps. COM1, COM2, and COM3 can be used simultaneously.
COM1 COM1 can only be used as a slave station. It supports ASCII/RTU, and the adjustment of a communication speed. The maximum speed available is $115,200 \mathrm{bps}$. It supports the modification of the number of data bits.
COM2 COM2 can be used as a master station or a slave station. It supports ASCII/RTU, and the adjustment of a communication speed. The maximum speed available is $115,200 \mathrm{bps}$. It supports the modification of the number of data bits.
COM3 COM3 can only be used as a slave station. It supports the ASCII communication format 7, E, 1 (7 data bits, even parity bit, 1 stop bit), and the adjustment of a communication speed. The maximum speed available is $38,400 \mathrm{bps}$. COM2 and COM3 can not be used as slave stations simultaneously.
() Setting a communication format:
COM1 1. D1036 is used to set a communication format. Bit 8~bit 15 in D1036 do not support the setting of a communicaiton format.
2. M1138: The setting of the communication through COM1 is retained.
3. M1139: Selecting an ASCII mode or an RTU mode

COM2 1. D11120 is used to set a communication format.
2. M1120: The setting of the communication through COM2 is retained.
3. M1143: Selecting an ASCII mode or an RTU mode

COM3 1. D1109 is used to set a communication format. Bit 0~bit 3 and Bit 8~bit 15 in D1036 do not support the setting of a communicaiton format.
2. M1136: The setting of the communication through COM 3 is retained.
Communication format:

	Contents		0		1
b0	Data length		b0=0: 7		b0=1: 8
$\begin{aligned} & \text { b1 } \\ & \text { b2 } \end{aligned}$	Parity bit		b2, b1=00	:	None
			b2, b1=01	:	Odd
			b2, b1=11	:	Even
b3	Stop bit		b3=0: 1 bit		b3=1: 2 bits
b7~b4	b7~b4=0001	(H1)	110	bps	
	b7~b4=0010	(H2)	150	bps	
	b7~b4=0011	(H3)	300	bps	
	b7~b4=0100	(H4)	600	bps	
	b7~b4=0101	(H5)	1,200	bps	
	b7~b4=0110	(H6)	2,400	bps	
	b7~b4=0111	(H7)	4,800	bps	
	b7~b4=1000	(H8)	9,600	bps	
	b7~b4=1001	(H9)	19,200	bps	
	b7~b4=1010	(HA)	38,400	bps	
	b7~b4=1011	(HB)	57,600	bps	
	b7~b4=1100	(HC)	115,200	bps	
b8	Start character		b8=0: None	b8=1: D1124	
b9	First terminator		b9=0: None	b9=1: D1125	
b10	Second terminator		b10=0: None		b10=1: D1126
b15~b11	Undefined				

Example 1: Modifying the communication format of COM2
If users want to modify the communication format of COM2 on a DVP-10PM series motion controller, they have to add the program shown below to the top of the program in the DVP-10PM series motion controller. After the STOP/RUN switch on the DVP-10PM series motion controller is turned from the STOP position to the RUN position, the state of M1120 will be detected during the first scan cycle. If M1120 is ON, the setting of COM2 will be changed in accordance with the value in D1120.
The communication format of COM2 is changed to the ASCII format 9600, 7, E 1 (9,600bps, 7 data bits, even parity bit, 1 stop bit).

Notes:

1. If COM2 on a DVP-10PM series motion controller is used as a slave station, no communication instruction can exist in the program in the DVP-10PM series motion controller.
2. If the STOP/RUN switch on a DVP-10PM series motion controller is turned from the RUN position to the STOP position after the communication format of COM2 is modified, the new communication format of COM2 will not be changed.
3. If users disconnect a DVP-10PM series motion controller and then power it up after they modify the communication format of COM2, the new communication format of COM2 will be restored to its factory setting.
Example 2: Modifying the communication format of COM1
If users want to modify the communication format of COM1 on a DVP-10PM series motion controller, they have to add the program shown below to the top of the program in the DVP-10PM series motion controller. After the STOP/RUN switch on the DVP-10PM series motion controller is turned from the STOP position to the RUN position, the state of M1138 will be detected during the first scan cycle. If M1138 is ON, the setting of COM1 will be changed in accordance with the value in D1036.
The communication format of COM1 is changed to the ASCII format 9600, 7, E 1 (9,600bps, 7 data bits, even parity bit, 1 stop bit).

Notes:

1. If the STOP/RUN switch on a DVP-10PM series motion controller is turned from the RUN position to the STOP position after the communication format of COM1 is modified, the new communication format of COM1 will not be changed.
2. If users disconnect a DVP-10PM series motion controller and then power it up after they modify the communication format of COM1, the new communication format of COM1 will be restored to its factory setting.
Example 3: Modifying the communication format of COM3
The communication format of COM3 is 7, E 1 (7 data bits, even parity bit, 1 stop bit). If users want to change the communication speed of COM3 on a DVP-10PM series motion controller to $38,400 \mathrm{bps}$, they have to add the program shown below to the top of the program in the DVP-10PM series motion controller. After the STOP/RUN switch on the DVP-10PM series motion controller is turned from the STOP position to the RUN position, the state of M1136 will be detected during the
first scan cycle. If M1136 is ON, the setting of COM3 will be changed in accordance with the value in D1109.
The communication speed of COM3 is changed to $38,400 \mathrm{bps}$.

Example 4: Using COM1/COM2 in an RTU mode
COM1: (9,600, 8, E, 1, RTU)

COM2: (9,600, 8, E, 1, RTU)

If an RS-485 port on a DVP-10PM series motion controller functions as a slave station,

Communication timeout

D1038

Fixed scan time

M1039 and D1039

Setting an OX motion subroutine number

M1074 and D1868 users can set a communication timeout. The value in D1038 is in the range of 0 to 3,000 (0 to 30 seconds). The unit used is 10 milliseconds. If the value in D1038 is not in the range of 0 to 3,000 , the value in D1038 will become 0 . The value in D1038 must be less than the value in D1000.

1. If M1039 is ON, the time it takes for the program to be scanned will depend on the value in D1039. If the execution of a program is complete, the program will not be scanned again until the fixed scan time set elapses. If the value in D1039 is less than the time it takes for a program to be scanned, the time it takes for a program to be scanned, will be given priority.

2. The values stored in D1010~D1012 include the value stored in D1039.

Users can specify an Ox motion subroutine by setting D1868. The steps of setting D1868 are as follows.

1. The users have to set bit 14 in D1868 to 1, set bit 15 in D1868 to 1, or set bit 14 and bit 15 in D1868 to 1. Besides, the users have to write K99 (H63) into bit 0~bit 13 in D1868, that is, the Ox motion subroutine number specified is Ox99. To sum up, the users have to write H8063 into D1868.
2. After M1074 is set to ON, the Ox motion subroutine specified by D1868 will be executed.

The program is shown below.

In the main program O100, X0 starts the motion subroutine Ox99.
There are six high-speed counters.
High-speed
counting

M1200 and C200	1	C200	K1M1200	$0: U / D^{*}$ 1: P/D* 2: A/B* (One time the frequency of A/B-phase inputs) 3: 4A/B (Four times the frequency of A/B-phase inputs)	X10/M1203	X0, X1, and S/S
M1208 and C208	2	C204	K1M1204		X11/M1207	X2, X3, and S/S
M1212 and C212	3	C208	K1M1208		X12/M1211	X4, X5, and S/S
M1220 and C220	4	C212	K1M1212		X13/M1215	X6, X 7 , and S / S
	5	C216	K1M1216		X0/M1219	$\begin{aligned} & \text { X10+, X10-, X11+, } \\ & \text { and X11- } \end{aligned}$
	6	C220	K1M1220		X1/M1223	$\begin{aligned} & \mathrm{X} 12+, \mathrm{X} 12-, \mathrm{X} 13+\text {, } \\ & \text { and } \times 13- \end{aligned}$

*1. U/D: Counting up/Counting down; P/D: Pulse/Direction; A/B: A phase/B phase
*2. The input terminals of the first counter~the fourth counter are transistors whose collectors are open collectors. The input terminals of the fifth counter~the sixth counter are differential input terminals.
The steps of setting the second counter are as follows.

1. Write K2 into K1M1204.
2. Enable C204.

The program for step 1 and step 2 is shown below.

3. If users want to clear the present counter value by means of an external signal, they have to write HA into K1M1024.

M1027	M1026	M1025	M1204
1	0	1	0

4. C204 is enabled. If X 11 is ON , the present value of C 204 will become zero.

The program for step 3 and step 4 is shown below.

High-speed
timing
M1200 and C201 M1204 and C205 M1208 and C209 M1212 and C213 M1216 and C217 M1220 and C221

There are six high-speed timers.

Number Counter		Mode of measuring time					External signal	Storage device
		Device		Setting	value			
1	C200	K1M1200	Bit3	Bit2	Bit1	Bit0	X10	C201
2	C204	K1M1204	x	Enabling a timer	x	Selecting a mode	X11	C205
3	C208	K1M1208	Bit2: Enabling a timer Bit0: (1) 0: General mode (The interval between the rising edge of a pulse and the falling edge of the pulse is measured.)				X12	C209
4	C212	K1M1212					X13	C213
5	C216	K1M1216	(2) 1: Cyclic mode (The interval between the rising edge of a				x0	C217
6	C220	K1M1220	pulse and the rising edge of the next pulse is measured.)				X1	C221

Example 1: Using the third timer in a general mode

1. Users have to select the general mode, and enable the timer, that is, they have to write K4 into K1M1208.
2. C208 is enabled. The interval between the rising edge of a pulse received through X12 and the falling edge of the pulse is measured. The interval is written into C209. (Unit: 0.01 microseconds)

General mode
Unit: $0.01 \mu \mathrm{~s}$
The program is shown below.

Example 2: Using the third timer in a cyclic mode

1. Users have to write K5 into K1M1208.
2. C208 is enabled. The interval between the rising edge of a pulse received through X 12 and the rising edge of the next pulse is measured. The interval is written into C209. (Unit: 0.01 microseconds)

Cyclic mode
Unit: $0.01 \mu \mathrm{~s}$

The program is shown below.

The cyclic mode is used to measure a frequency.

1. D1140: Number of right-side modules (AD, DA, XA, PT, TC, RT, HC, PU) (8 right-side modules at most)
2. D1142: Number of X devices in a digital module
3. D1143: Number of Y devices in a digital module

D1140, D1142, and D1143

Latching device range

1. Users can set latching device ranges. The devices in the range of a starting latching device address and a terminal latching device address are latching devices.
2. Please refer to section 3.1 for more information.

D1200~D1211

Turning the X devices ON/OFF

If M1304 in a DVP-10PM series motion controller is ON, the X devices in the DVP-10PM series motion controller can be turned ON/OFF by means of PMSoft. M1304

Real-time clock

D1313~D1319

1. Special data registers which are related to the real-time clock in a DVP-10PM series motion controller

Device	Name	Function
D1313	Second	$0 \sim 59$
D1314	Minute	$0 \sim 59$
D1315	Hour	$0 \sim 23$
D1316	Day	$1 \sim 31$
D1317	Month	$1 \sim 12$
D1318	Week	$1 \sim 7$
D1319	Year	$0 \sim 99$ (A.D.)

2. If the value of the second in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 0 . If the value of the minute in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 0 . If the value of the hour in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 0 . If the value of the day in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 1. If the value of the month in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 1. If the value of the week in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 1. If the value of the year in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 0 .
3. The real-time clock in a DVP-10PM series motion controller is a latching device. If it is disconnected and then powered up, it will continue measuring time. It is suggested that users should calibrate the real-time clock in a DVP-10PM series motion controller after it is powered up.

Right-side special I/O module ID

D1320~D1327

Interrupt register

D1400 and D1401

1. If a DVP-10PM series motion controller is connected to special I/O modules, the IDs of the special I/O modules will be stored in D1320~D1327.
2. ID's of the special I/O modules which can be connected to a DVP-10PM series motion controller:

I/O module	ID (Hexadecimal value)	I/O module	ID (Hexadecimal value)
DVP04AD-H2	H'6400	DVP01PU-H2	H'6110
DVP04DA-H2	H'6401	DVP04PT-H2	H'6402
DVP04TC-H2	H'6403	DVP06XA-H2	H'6604
DVP-PM	H'6260	DVP01HC-H2	H'6120

1. D1400 is an interrupt register. If users set a bit in D1400 to ON, an interrupt will be enabled.

Bit\#	Interrupt	Interrupt number
0	Time interrupt	IO
1	External terminal START0/X0	I 1
2	External terminal STOP0/X1	I 2
3	External terminal START1/X2	13
4	External terminal STOP1/X3	I 4
5	External terminal X4	I
6	External terminal X5	I
7	External terminal X6	17
8	External terminal X7	18

2. If an interrupt enabled is a time interrupt, users can write the cycle of the interrupt into D1401.
3. There are two types of interrupts.

■ External interrupt: If an interrupt is triggered by the rising edge/falling edge of a pulse received through an external terminal, the execution of the present program will stop, and the interrupt will be executed. After an interrupt is executed, the program which is executed before the interrupt is triggered will be executed.
■ Time interrupt: The execution of the present program stops at regular intervals. Whenever the execution of the present program stops, an interrupt is executed.

- If users want to clear the M-code in D1703, they have to set M1744 to ON. If M1744 is set to ON, the value in D1703 will be cleared, and M1794 will be reset.
- If an M code in an Ox motion subroutine is executed, M1794 will be ON. The M-code which is executed is stored in D1703.

1. Every motion axis uses a ready flag. The X-axis uses M1792, the Y-axis uses M1872, the Z-axis uses M2032, the A-axis uses M2112, the B-axis uses M2192, and the C-axis uses M2272. Users can use the ready flags to judge whether the axes operate.
2. Description of the ready flag for the X-axis: Before the X-axis operates, M1792 is ON. When the X-axis operates, M1792 is OFF. After the first axis finishes operating, M1792 is ON.

Clearing the

 motion error1. If errors occur in the X-axis, the Y-axis, the Z-axis, the A-axis, the B-axis, and the C-axis, M1793, M1873, M2033, M2113, M2193, and M2273 will be ON, and the error messages which appear will be stored in D1857, D1937, D2017, D2097, D2177, and D2257.
M1793 and D1857
M1873 and D1937
M2033 and D2017
M2113 and D2097
M2193 and D2177
M2273 and D2257

D1799

Reading the states of the in put terminals

D1800

If users want to turn an input terminal into a Form A contact, they have to set the bit corresponding to the input terminal to OFF. If the users want to turn an input terminal into a Form B contact, they have to set the bit corresponding to the input terminal to ON.

Bit\#	Polarity	Bit\#	Polarity
0	X0 (DOG0)	8	X10 (MPGA)
1	X1 (PG0)	9	X11 (MPGB)
2	X2 (DOG1)	10	X12 (DOG4)
3	X3 (PG1)	11	X13 (DOG5)
4	X4 (DOG2)	12	-
5	X5 (PG2)	13	-
6	X6 (DOG3)	14	-
7	X7 (PG3)	15	-

If a bit in D1800 is ON, the input terminal corresponding to the bit receives a signal. If a bit in D1800 is OFF, the input terminal corresponding to the bit does not receive a signal.

Bit\#	State	Bit\#	State
0	X0 (DOG0)	8	X10 (MPGA)
1	X1 (PG0)	9	X11 (MPGB)
2	X2 (DOG1)	10	X12 (DOG4)
3	X3 (PG1)	11	X13 (DOG5)
4	X4 (DOG2)	12	-
5	X5 (PG2)	13	-
6	X6 (DOG3)	14	-
7	X7 (PG3)	15	-

Setting a filter coefficient for the input terminals

D1806

O100 error

M1953, D1802, and D1803
Setting the parameters of the axis
D1816, D1896, D1976, D2056, D2136, and D2216

1. Users can set a filter coefficient for the input terminals $X 0 \sim X 7$ by setting the low byte in SR806.
2. Users can set a filter coefficient for the input terminals X10+, X10-, X11+, and X11by setting the low byte in SR806.
3. Filter coefficeint $=\frac{85000}{2^{\mathrm{N}+4}}(\mathrm{kHz}) ; \mathrm{N}=1 \sim 19$

\mathbf{N}	$\mathbf{k H z}$	\mathbf{N}	$\mathbf{k H z}$	
1	2656.25	11	2.593994	
2	1328.125	12	1.296997	
3	664.0625	13	0.648499	
4	332.0313	14	0.324249	
5	166.0156	15	0.162125	
6	83.00781	16	0.081062	
7	41.50391	17	0.040531	
8	20.75195	18	0.020266	
9	10.37598	19	0.010133	
10	5.187988			

4. If the value in D1806 is 0 , no signals will be filtered.
5. If the value in D1806 is H000A, the filter coefficient for $X 0 \sim X 7$ and MPGO/1 $=\frac{85000}{2^{10+4}}=5.187988$ (KHz), and the signals whose frequencies are higher than 5.187988 kHz will be removed.
6. If an error occurs in O100, M1953 will be ON, the error code corresponding to the error will be stored in D1802, and the step address at which the error occurs will be stored in D1803.
7. Please refer to appendix A in chapter 9 for more information about error codes.

D1816 is for the X-axis, D1896 is for the Y-axis, D1976 is for the Z-axis, D2056 is for the A-axis, D2136 is for the B-axis, and D2216 is for the C-axis.

Bit\#	Parameter of the axis	Bit\#	Parameter of the axis
0	Unit ${ }^{* 1}$	8	Direction in which the axis returns home*4
1		9	Mode of returning home ${ }^{* 4}$
2	Ratio* ${ }^{\text {4 }}$	10	Mode of triggering the return to home ${ }^{* 4}$
3		11	Direction in which the motor rotates ${ }^{* 4}$
4	Output type ${ }^{\text {* }}$	12	Relative/Absolute coordinates ${ }^{* 4}$
5		13	Mode of triggering the calculation of the target position ${ }^{* 4}$
6*	PWM mode ${ }^{*}$	14	Curve ${ }^{* 4}$
7		15	

*: Only DVP-10PM series motion controllers support this function.
*1:

b3	b2	Ratio	b5	b4	Description
0	0	10^{0}	0	0	Positive-going pulse+Negative-going pulse
0	1	10^{1}	0	1	Pulse+Direction
1	0	10^{2}	1	0	A/B-phase pulse (two
1	1	10^{3}	1	1	phases and two inputs)
*4:					
Bit\#	Description				
6	Bit 6=1: Enabling a PWM mode (1) If positive JOG motion is started, Y0~Y3 will execute PWM. (2) If single-speed motion is started, $\mathrm{Y} 0 \sim \mathrm{Y} 3$ will send single-phase pulses. (3) Pulse width: D1838, D1918, D1998, and D2078 (4) Output period: D1842, D1922, D2002, and D2082				
8	Bit 8=0: The value indicating the present command position of the axis decreases progressively. Bit 8=1: The value indicating the present command position of the axis increases progressively.				
9	Bit 9=0: Normal mode ; bit 9=1: Overwrite mode				
10	Bit 10=0: The return to home is triggered by a transition in DOG's signal from high to low. Bit 10=1: The return to home is triggered by a transition in DOG's signal from low to high.				
11	Bit 11=0: When the motor rotates clockwise, the value indicating the present command position of the axis increases. Bit 11=1: When the motor rotates clockwise, the value indicating the present command position of the axis decreases.				
12	Bit 12=0: Absolute coordinates Bit 12=1: Relative coordinates				
13	Bit 13=0: The calculation of the target position of the axis is triggered by a transition in DOG's signal from low to high. Bit 13=1: The calculation of the target position of the axis is triggered by a transition in DOG's signal from high to low. (The setting of bit 13 is applicable to the insertion of single-speed motion, and the insertion of two-speed motion.)				
14	Bit 14=0: Trapezoid curve Bit 14=1: S curve				

Operation command

D1846, D1926, D2006, D2086, D2166, and D2246

Mode of operation

D1847, D1927, D2007, D2087, D2167, and D2247

D1846 is for the X-axis, D1926 is for the Y-axis, D2006 is for the Z-axis, D2086 is for the A-axis, D2166 is for the B-axis, and D2246 is for the C-axis.

Bit\#	Operation command	Bit\#	Operation command
0	The motion of the axis specified is stopped by software.	8	A mode of single-speed motion is activated.
1	The motion of the axis specified is started by software.	9	A mode of inserting single-speed motion is activated.
2	The axis specified operates in a JOG+ mode.	10	A mode of two-speed motion is activated.
3	The axis specified operates in a JOG- mode.	11	A mode of inserting two-speed motion is activated.
4	A mode of variable motion is activated.	12	0 : The execution of the Ox motion subroutine set stops. 1: The execution of the Ox motion subroutine set starts.
5	A manual pulse generator is operated.	13	-
6	A mode of triggering the return to home is activated.	14	-
7	-	15	-

D1847 is for the X-axis, D1927 is for the Y-axis, D2007 is for the Z-axis, D2087 is for the A-axis, D2167 is for the B-axis, and D2247 is for the C-axis.

Bit\#	Mode of operation	Bit\#	Mode of operation
$\mathbf{0}$	-	$\mathbf{8}$	-
$\mathbf{1}$	-	$\mathbf{9}$	-
$\mathbf{2}$	Mode of sending a CLR signal	$\mathbf{1 0}$	-
$\mathbf{3}$	Setting the CLR output to ON/OFF	$\mathbf{1 1}$	-
$\mathbf{4}$	Setting the polarity of the CLR output	$\mathbf{1 2}$	
$\mathbf{5}$	-	$\mathbf{1 3}$	-
$\mathbf{6}$	Limitation on the present position of the slave axis controlled by the manual pulse generator used	$\mathbf{1 4}$	-
$\mathbf{7}$	Mode of stopping the motor used when the motor used comes into contact with a positive limit switch/negative limit switch	$\mathbf{1 5}$	Restoring the DVP-10PM series motion controller to the factory settings

Bit\#	Description
2	Bit 2=0: After the axis specified returns home, the CLR output will send a 130 millisecond signal to the servo drive used, and the present position of the servo drive which is stored in a register in the servo drive will be cleared. Bit 2=1: The CLR output functions as a general output. Its state is controlled by bit 3.
3	Bit 3=0: The CLR output is OFF. Bit 3=1: The CLR output is ON.
4	Bit 4=0: The CLR output is a Form A contact. Bit 4=1: The CLR output is a Form B contact.
6	Bit 6=0: There is no limitation on the present position of the slave axis controlled by the manual pulse generator used
Bit $6=1$ generator used has to be in the range of the P (I) set to the P present position of the slave axis controlled by the manual pulse generator used is not in the range of the P (I) set to the P (II) set, the slave axis will decelerate and stop.	
7	Bit $7=0$: If the motor used comes into contact with a positive limit switch/negative limit switch when it rotates, it will decelerate and stop.
Bit $7=1$: If the motor used comes into contact with a positive limit switch/negative limit	
switch when it rotates, it will stop immediately.	

D1856 is for the X-axis, D1936 is for the Y-axis, D2016 is for the Z-axis, D2096 is for

State of

 the axisD1856, D1936, D2016, D2096, D2176, and D2256 the A-axis, D2176 is for the B-axis, and D2156 is for the C-axis.

Bit\#	State of the axis
$\mathbf{0}$	Positive-going pulses are being output.
$\mathbf{1}$	Negative-going pulses are being output.
$\mathbf{2}$	The axis specified is operating.
$\mathbf{3}$	An error occurs.
$\mathbf{4}$	The axis specified pauses.
$\mathbf{5}$	The manual pulse generator used generates positive-going pulses.
$\mathbf{6}$	The manual pulse generator used generates negative-going pulses.
$\mathbf{7}$	

3.12 Special Data Registers for Motion Axes

The special data registers for the X -axis, the Y -axis, the Z -axis, the A -axis, the B -axis, and the C -axis in a DVP-10PM series motion controller are described below. Please refer to this section for more information about the setting of the special data registers.

Special D device number								Special data register	Setting range	Default value
X-axis		Y-axis		Z-axis		A-axis				
HW ${ }^{1}$	LW ${ }^{1}$	HW	LW	HW	LW	HW	LW			
-	D1816	-	D1896	-	D1976	-	D2056	Setting the parameters of the axis specified	Bit 0~bit 15	H0
D1819	D1818	D1899	D1898	D1979	D1978	D2059	D2058	Number of pulses it takes for the motor of the axis specified to rotate once (A)	$\begin{aligned} & \text { 1~+2,147,483,647 } \\ & \text { pulses/revolution } \end{aligned}$	K2,000
D1821	D1820	D1901	D1900	D1981	D1980	D2061	D2060	Distance generated after the motor of the axis specified rotate once (B)	1~+2,147,483,647*2	K1,000
D1823	D1822	D1903	D1902	D1983	D1982	D2063	D2062	Maximum speed ($\mathrm{V}_{\text {max }}$) at which the axis specified rotates	$0 \sim+2,147,483,647{ }^{\text {* }}$	K500,000
D1825	D1824	D1905	D1904	D1985	D1984	D2065	D2064	Start-up speed (VBIAS) at which the axis specified rotates	$0 \sim+2,147,483,647{ }^{* 3}$	K0
D1827	D1826	D1907	D1906	D1987	D1986	D2067	D2066	JOG speed ($\mathrm{V}_{\text {JoG }}$) at which the axis specified rotates	$0 \sim+2,147,483,647{ }^{* 3}$	K5,000
D1829	D1828	D1909	D1908	D1989	D1988	D2069	D2068	Speed $\left(\mathrm{V}_{\mathrm{RT}}\right)$ at which the axis specified returns home	$0 \sim+2,147,483,647{ }^{* 3}$	K50,000
D1831	D1830	D1911	D1910	D1991	D1990	D2071	D2070	Speed (V_{CR}) to which the speed of the axis specified decreases when the axis returns home	$0 \sim+2,147,483,647{ }^{\text {*3 }}$	K1,000
-	D1832	-	D1912	-	D1992	-	D2072	Number of PGO signals for the axis specified	0~+32,767 PLS	K0
-	D1833	-	D1913	-	D1993	-	D2073	Number of supplementary pulses for the axis specified	-32,768~+32,767 PLS	K0
D1835	D1834	D1915	D1914	D1995	D1994	D2075	D2074	Home position of the axis specified	0~さ999,999 ${ }^{\text {*1 }}$	K0
-	D1836	-	D1916	-	D1996	-	D2076	Time ($\mathrm{T}_{\mathrm{ACC}}$) it takes for the axis specified to accelerate	10~+32,767 ms	K100
-	D1837	-	D1917	-	D1997	-	D2077	Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the axis specified to decelerate	10~+32,767 ms	K100
D1839	D1838	D1919	D1918	D1999	D1998	D2079	D2078	Target position of the axis specified (P (I))	$\begin{aligned} & -2,147,483,648 ~ \\ & +2,147,483,647^{* 1} \end{aligned}$	K0
D1841	D1840	D1921	D1920	D2001	D2000	D2081	D2080	Speed at which the axis specified rotates (V (I))	$0 \sim+2,147,483,647{ }^{\text {* }}$	K1000
D1843	D1842	D1923	D1922	D2003	D2002	D2083	D2082	Target position of the axis specified (P (II))	$\begin{aligned} & -2,147,483,648 ~ \\ & +2,147,483,647^{* 1} \end{aligned}$	K0
D1845	D1844	D1925	D1924	D2005	D2004	D2085	D2084	Speed at which the axis specified rotates (V (II))	0~+2,147,483,647*2	K2,000
-	D1846	-	D1926	-	D2006	-	D2086	Operation command	Bit 0~bit 15	H0
-	D1847	-	D1927	-	D2007	-	D2087	Mode of operation	Bit 0~bit 15	H0
D1849	D1848	D1929	D1928	D2009	D2008	D2089	D2088	Present command position of the axis specified (Pulse)	$\begin{aligned} & -2,147,483,648 ~ \\ & +2,147,483,647^{* 1} \end{aligned}$	K0
D1851	D1850	D1931	D1930	D2011	D2010	D2091	D2090	Present command speed of the axis specified (PPS)	$\begin{aligned} & \text { 0~+2,147,483,647 } \\ & \text { PPS } \end{aligned}$	K0
D1853	D1852	D1933	D1932	D2013	D2012	D2093	D2092	Present command position of the axis specified (unit ${ }^{* 3}$)	$\begin{aligned} & -2,147,483,648 ~ \\ & +2,147,483,647{ }^{*} \end{aligned}$	K0
D1855	D1854	D1935	D1934	D2015	D2014	D2095	D2094	Present command speed of the axis specified (unit ${ }^{* 3}$)	$\begin{aligned} & \text { 0~+2,147,483,647 } \\ & \text { PPS } \end{aligned}$	K0
-	D1856	-	D1936	-	D2016	-	D2096	State of the axis specified	Bit 0~bit 15	H0
-	D1857	-	D1937	-	D2017	-	D2097	Axis error code	Please refer to appendix A for more information.	H0

Special D device number								Special data register	Setting range	Default value
X-axis		Y-axis		Z-axis		A-axis				
HW ${ }^{\text {¹ }}$	LW ${ }^{11}$	HW	LW	HW	LW	HW	LW			
-	D1858	-	D1938	-	D2018	-	D2098	Electronic gear of the axis specified (Numerator)	1~+32,767	K1
-	D1859	-	D1939	-	D2019	-	D2099	Electronic gear of the axis specified (Denominator)	1~+32,767	K1
D1861	D1860	D1941	D1940	D2021	D2020	D2101	D2100	Frequency of pulses generated by the manual pulse generator for the axis specified	Frequency of pulses generated by the manual pulse generator for the axis specified	K0
D1863	D1862	D1943	D1942	D2023	D2022	D2103	D2102	Number of pulses generated by the manual pulse generator for the axis specified	Number of pulses generated by the manual pulse generator for the axis specified	K0
-	D1864	-	D1944	-	D2024	-	D2104	Response speed of the manual pulse generator for the axis specified	Response speed of the manual pulse generator for the axis specified	K5
D1867	D1866	D1947	D1946	D2027	D2026	-	-	Electrical zero of the axis specified	Users have to set a value according to their needs.	K0
D1868	-	-	-	-	-	-	-	Setting an Ox motion subroutine number	Users have to set a value according to their needs.	K0
D1869	-	-	-	-	-	-	-	Step address in the Ox motion subroutine executed at which an error occurs	Users have to set a value according to their needs.	K0
D1872	-	-	-	-	-	-	-	Enabling a Y device when an Ox motion subroutine is ready (High byte)	Users have to set a value according to their needs.	K0
D1873	-	-	-	-	-	-	-	Enabling a Y device when an M-code in an Ox motion subroutine is executed (High byte)	Users have to set a value according to their needs.	K0
D1874	-	-	-	-	-	-	-	Using an X device to reset the M-code	Users have to set a value according to their needs.	K0
D1875	-	D1955	-	-	-	-	-	Starting the X -axis manually (ZRN, MPG, JOG-, JOG+)	Users have to set a value according to their needs.	K0

Special D device number				Special data register	Setting range	Default value
B-axis		C-axis				
HW	LW	HW	LW			
-	D2136	-	D2216	Setting the parameters of the axis specified	Bit 0~bit 15	H0
D2139	D2138	D2219	D2218	Number of pulses it takes for the motor of the axis specified to rotate once (A)	$\begin{aligned} & \text { 1~+2,147,483,647 } \\ & \text { pulses/revolution } \end{aligned}$	K2,000
D2141	D2140	D2221	D2220	Distance generated after the motor of the axis specified rotate once (B)	1~+2,147,483,647*2	K1,000
D2143	D2142	D2223	D2222	Maximum speed ($\mathrm{V}_{\text {max }}$) at which the axis specified rotates	$0 \sim+2,147,483,647^{* 3}$	K500,000
D2145	D2144	D2225	D2224	Start-up speed ($\mathrm{V}_{\text {BIAS }}$) at which the axis specified rotates	$0 \sim+2,147,483,647^{* 3}$	K0
D2147	D2146	D2227	D2226	JOG speed ($\mathrm{V}_{\mathrm{JOG}}$) at which the axis specified rotates	0~+2,147,483,647*3	K5,000

Special D device number				Special data register	Setting range	Default value
B-axis		C-axis				
HW	LW	HW	LW			
D2149	D2148	D2229	D2228	Speed $\left(\mathrm{V}_{\mathrm{RT}}\right)$ at which the axis specified returns home	$0 \sim+2,147,483,647{ }^{* 3}$	K50,000
D2151	D2150	D2231	D2230	Speed (V_{CR}) to which the speed of the axis specified decreases when the axis returns home	$0 \sim+2,147,483,647{ }^{\text {*3 }}$	K1,000
-	D2152	-	D2232	Number of PGO signals for the axis specified	0~+32,767 PLS	K0
-	D2153	-	D2233	Number of supplementary pulses for the axis specified	-32,768~+32,767 PLS	K0
D2155	D2154	D2235	D2234	Home position of the axis specified	0~さ999,999 ${ }^{\text {* }}$	K0
-	D2156	-	D2236	Time ($\mathrm{T}_{\mathrm{AcC}}$) it takes for the axis specified to accelerate	10~+32,767 ms	K100
-	D2157	-	D2237	Time ($\mathrm{T}_{\mathrm{DEC}}$) it takes for the axis specified to decelerate	10~+32,767 ms	K100
D2159	D2158	D2239	D2238	Target position of the axis specified (P (I))	$\begin{aligned} & -2,147,483,648 ~ \\ & +2,147,483,647^{* 1} \end{aligned}$	K0
D2161	D2160	D2241	D2240	Speed at which the axis specified rotates (V (I))	$0 \sim+2,147,483,647{ }^{\text {*1 }}$	K1000
D2163	D2162	D2243	D2242	Target position of the axis specified (P (II))	$\begin{aligned} & -2,147,483,648 ~ \\ & +2,147,483,647^{* 1} \end{aligned}$	K0
D2165	D2164	D2245	D2244	Speed at which the axis specified rotates (V (II))	0~+2,147,483,647*2	K2,000
-	D2166	-	D2246	Operation command	Bit 0~bit 15	H0
-	D2167	-	D2247	Mode of operation	Bit 0~bit 15	H0
D2169	D2168	D2249	D2248	Present command position of the axis specified (Pulse)	$\begin{aligned} & -2,147,483,648 ~ \\ & +2,147,483,647^{*} \end{aligned}$	K0
D2171	D2170	D2251	D2250	Present command speed of the axis specified (PPS)	$\begin{aligned} & 0 \sim+2,147,483,647 \\ & \text { PPS } \end{aligned}$	K0
D2173	D2172	D2253	D2252	Present command position of the axis specified (unit ${ }^{* 3}$)	$\begin{aligned} & -2,147,483,648 ~_{*}^{* 1} \\ & +2,147,483,647 \end{aligned}$	K0
D2175	D2174	D2255	D2254	Present command speed of the axis specified (unit ${ }^{* 3}$)	$\begin{aligned} & 0 \sim+2,147,483,647 \\ & \text { PPS } \end{aligned}$	K0
-	D2176	-	D2256	State of the axis specified	Bit 0~bit 15	H0
-	D2177	-	D2257	Axis error code	Please refer to appendix A for more information.	H0
-	D2178	-	D2258	Electronic gear of the axis specified (Numerator)	1~+32,767	K1
-	D2179	-	D2259	Electronic gear of the axis specified (Denominator)	1~+32,767	K1
D2181	D2180	D2261	D2260	Frequency of pulses generated by the manual pulse generator for the axis specified	Frequency of pulses generated by the manual pulse generator for the axis specified	K0
D2183	D2182	D2263	D2262	Number of pulses generated by the manual pulse generator for the axis specified	Number of pulses generated by the manual pulse generator for the axis specified	K0
-	D2184	-	D2264	Response speed of the manual pulse generator for the axis specified	Response speed of the manual pulse generator for the axis specified	K5

*1: HW: High word; LW: Low word
*2: Unit: $\mu \mathrm{m} / \mathrm{rev}$, mdeg/rev, and 10^{-4} inches/rev
*3: The unit used varies with the setting of bit 0 and bit 1 in D1816/D1896/D1976.

3.12.1 Descriptions of the Special Data Registers Related to Motion

X-axis		Y-axis		Z-axis		Setting the parameters of the axis specified
HW	LW	HW	LW	HW	LW	
	D1816		D1896		D1976	
HW	LW	HW	LW	HW	LW	
	D2056		D2136		D2216	

[Description]
Bit 0~bit 15 in D1816 (D1896, D1976, D2056, D2136, D2216) are described below.

1. Bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216): Unit

b1	b0	Unit	Description
0	0	Motor unit	A pulse is a unit.
0	1	Mechanical unit	A micrometer, 10-4 inches, or a degree is a unit.
1	0	Compound unit	Position: A micrometer, 10-4 inches, or a degree is a unit. (Mechanical unit) Speed: A pulse is a unit. (Motor unit)
1	1		

	Motor unit	Compound unit	Mechanical unit
Position	pulse	$\mu \mathrm{m}$	
	pulse	mdeg	
	pulse	10^{-4} inches	
Speed		ond	centimeter/minute
		cond	10 degrees/minute
		ond	inch/minute

- Position: Home position of the axis specified, target position of the axis specified (P (I)), target position of the axis specified ($\mathrm{P}(\mathrm{II})$), and present command position of the axis specified
- Speed: Maximum speed $\left(\mathrm{V}_{\text {MAX }}\right)$ at which the axis specified rotates, start-up speed $\left(\mathrm{V}_{\text {BIAS }}\right)$ at which the axis specified rotates, JOG speed $\left(V_{\text {JoG }}\right)$ at which the axis specified rotates, speed $\left(V_{R T}\right)$ at which the axis specified returns home, speed $\left(\mathrm{V}_{\mathrm{CR}}\right)$ to which the speed of the axis specified decreases when the axis returns home, speed at which the axis specified rotates ($V(I)$), and speed at which the axis specified rotates (V (II))
- Example 1:

Bit [1:0]=00 \Rightarrow Motor unit
Position: Pulse
Speed: Pulse/second (PPS)
Target position of the axis specified ($\mathrm{P}(\mathrm{I})$): 10,000 pulses
Speed at which the axis specified rotates: 10K PPS
After the DVP-10PM series motion controller sends 10,000 pulses, the axis specified can move to the target position specified. (The frequency of pulses is 10K PPS.) The distance for which the axis specified can move after a pulse is sent is calculated according to the physical quantity used.

- Example 2:

Bit [1:0]=01 \Rightarrow Mechanical unit
Position: $\mu \mathrm{m}$
Speed: Centimeter/minute
$\mathrm{N}=0$
D1818 (D1898, D1978, D2058, D2138, D2218)=1,000 (pulses/revolution)
D1820 (D1900, D1980, D2060, D2140, D2220)=100 (micrometers/revolution)
P (I)=10,000 (micrometers)
$\vee(I)=6$ (centimeters/minute)
The number of pulses sent by the DVP-10PM series motion controller and the frequency of pulses are calculated below.
Distance $=\underbrace{\frac{\text { Distance }}{\text { Revolution }}}_{B} \times \underbrace{\frac{\text { Revolution }}{\text { Number of pulses }}}_{1 / \mathrm{A}} \times$ Number of pulses
Number of pulses it takes for the axis specified to move to the target position
specified $=\frac{P(\mathrm{I}) \mu \mathrm{m}}{\mathrm{B} / \mathrm{A}}=\mathrm{P}(\mathrm{I}) \times \frac{\mathrm{A}}{\mathrm{B}}=100,000$ (pulses)
Speed at which the axis specified rotates (V (I)): 6 (centimeters/minute) $=60,000 / 60$ (micrometers/second)
Speed $=\frac{\text { Distance }}{\text { Time }}=\underbrace{\frac{\text { Distance }}{\text { Revolution }}}_{B} \times \underbrace{\frac{\text { Revolution }}{\text { Number of pulses }}}_{1 / B} \times \underbrace{\frac{\text { Number of pulses }}{\text { Time }}}_{\text {Pps,pulesesec }}$
The frequency of pulses calculated by the DVP-10PM series motion controller
$=V(I) \times \frac{10^{4}}{60} \times \frac{A}{B}=\frac{60,000}{60} \times \frac{1000}{100}=10,000$ (PPS)

- Example 3

Bit [1:0]=10 or $11 \Rightarrow$ Compound unit
Position: Micrometer
Speed: Pulse/second (PPS)
$\mathrm{N}=0$
D1818 (D1898, D1978, D2058, D2138, D2218)=2,000 (pulses/revolution)
D1820 (D1900, D1980, D2060, D2140, D2220)=100 (micrometers/revolution)
$P(I)=10,000$ (micrometers)
$\mathrm{V}(\mathrm{I})=10 \mathrm{~K}$ (PPS)
The number of pulses sent by the DVP-10PM series motion controller is calculated below.
Number of pulses it takes for the axis specified to move to the target position specified

$$
=\frac{P(I) \mu \mathrm{m}}{B / A}=P(\mathrm{I}) \times \frac{\mathrm{A}}{B}=200,000 \text { (pulses) }
$$

2. Bit 2 and bit 3 in D1816 (D1896, D1976, D2056, D2136, D2216): Ratio Position: The home position of the axis specified, the target position of the axis specified ($\mathrm{P}(\mathrm{I})$), the target position of the axis specified (P (II)), and the present command position of the axis specified must be multiplied by a ratio.

b3	b2	Ratio
0	0	Position $\times 10^{0}$
0	1	Position $\times 10^{1}$
1	0	Position $\times 10^{2}$
1	1	Position $\times 10^{3}$

3. Bit 4 and bit 5 in D1816 (D1896, D1976, D2056, D2136, D2216): Output type

b5	b4	Output type (positive logic)	Description
0	0	FP Clockwise pulses \square \uparrow \square , RP Counterclockwise pulses \qquad \uparrow 4 $\stackrel{4}{4}$	Counting up/down
0	1		Pulses+Directions
1	0	FP A-phase pulses \square $\square \square$ \square \square \qquad 4 $\stackrel{4}{4}$ 4	
1	1	RP B-phase pulses \square \uparrow \square Clockwise Counterclockwise	A/B-phase pulses

4. Bit 6 in D1816 (D1896, D1976, D2056, D2136, D2216): Setting a PWM mode

Bit 6=1: If positive JOG motion is started, Y0~Y3 will execute PWM.
5. Bit 8 in D1816 (D1896, D1976, D2056, D2136, D2216): Direction in which the axis specified returns home
Bit 8=0: The value indicating the present command position of an axis specified decreases, and the axis returns home in the negative direction.
Bit 8=1: The value indicating the present command position of an axis specified increases, and the axis returns home in the positive direction.
6. Bit 9 in D1816 (D1896, D1976, D2056, D2136, D2216): Mode of returning home

Bit 9=0: Normal mode
After DOG's signal is generated, the motor used will rotate for a specific number of PGO pulses, then rotate for a specific number of supplementary pulses, and finally stop.
Bit 9=1: Overwrite mode
After DOG's signal is generated, the motor used will rotate for a number of PGO pulses or rotate for a number of supplementary pulses, and then stop.
7. Bit 10 in D1816 (D1896, D1976, D2056, D2136, D2216): Mode of triggering the return to home Bit 10=0: The return to home is triggered by a transition in DOG's signal from high to low.
Bit 10=1: The return to home is triggered by a transition in DOG's signal from low to high.

- Bit [9:10] in D1816 (D1896, D1976, D2056, D2136, D2216) is $00 . \Rightarrow$ The mode of returning home is a normal mode, and the return to home is triggered by a transition in DOG's signal from high to low. Steps: The motor used rotates at the speed V_{RT}. When DOG's signal is generated, the speed of the motor begins to decrease to the speed V_{CR}. After DOG's signal goes from high to low, the motor will rotate for a specific number of PG0 pulses, and then rotate for a specific number of supplementary pulses, and finally stop.
If the number of PG0 pulses or the number of supplementary pulses is not large, the speed of the motor used will decrease to the speed V_{CR} after DOG's signal is generated. After DOG's signal goes from high to low, the motor will rotate for a specific number of PGO pulses, and then rotate for a specific number of supplementary pulses, and finally stop whether the its speed is V_{CR}.
If the number of PGO pulses is 0 , and the number of supplementary pulses is 0 , the motor used will stop after DOG's signal is generated and there is a transition in DOG's signal from high to low.

- Bit [9:10] in D1816 (D1896, D1976, D2056, D2136, D2216) is 01. \Rightarrow The mode of returning home is a normal mode, and the return to home is not triggered by a transition in DOG's signal from high to low.
Steps: The motor used rotates at the speed V_{RT}. When DOG's signal is generated, the speed of the motor begins to decrease to the speed V_{CR}. After the motor rotates for a specific number of PG0 pulses, and rotate for a specific number of supplementary pulses, it will stop.
If the number of PGO pulses or the number of supplementary pulses is not large, the speed of the motor used will decrease to the speed V_{CR} after DOG's signal is generated. After the motor rotates for a specific number of PGO pulses, and rotates for a specific number of supplementary pulses, it will stop whether its speed is $\mathrm{V}_{\text {CR }}$.
If the number of PGO pulses is 0 , and the number of supplementary pulses is 0 , the motor used will stop after DOG's signal is generated.

- Bit [9:10] in D1816 (D1896, D1976, D2056, D2136, D2216) is 10. \Rightarrow The mode of returning home is an overwrite mode, and the return to home is triggered by a transition in DOG's signal from high to low.
Steps: The motor used rotates at the speed V_{RT}. When DOG's signal is generated, the speed of the motor begins to decrease to the speed V_{CR}. After DOG's signal goes from high to low, the motor will rotate for a specific number of PG0 pulses, or rotate for a specific number of supplementary pulses, and then stop.
If the number of PGO pulses or the number of supplementary pulses is not large, the speed of the motor used will decrease to the speed $\mathrm{V}_{\text {CR }}$ after DOG's signal is generated. After DOG's signal goes from high to low, the motor will rotate for a specific number of PG0 pulses, or rotate for a specific number of supplementary pulses, and then stop whether the its speed is $V_{C R}$.
If the number of PGO pulses is 0 , and the number of supplementary pulses is 0 , the motor used will stop after DOG's signal is generated and there is a transition in DOG's signal from high to low.

- Bit [9:10] in D1816 (D1896, D1976, D2056, D2136, D2216) is 11. \Rightarrow The mode of returning home is an overwrite mode, and the return to home is not triggered by a transition in DOG's signal from high to low.
Steps: The motor used rotates at the speed V_{RT}. When DOG's signal is generated, the speed of the motor begins to decrease to the speed $\mathrm{V}_{\text {CR }}$. After the motor rotates for a specific number of PG0 pulses, or rotate for a specific number of supplementary pulses, it will stop.
If the number of PGO pulses or the number of supplementary pulses is not large, the speed of the motor used will decrease to the speed V_{CR} after DOG's signal is generated. After the motor rotates for a specific number of PG0 pulses, or rotates for a specific number of supplementary pulses, it will stop whether its speed is $\mathrm{V}_{\text {CR }}$.
If the number of PG0 pulses is 0 , and the number of supplementary pulses is 0 , the motor used will stop after DOG's signal is generated.

8. Bit 11 in D1816 (D1896, D1976, D2056, D2136, D2216): Direction in which the motor used rotates

- Bit 11=0: When the motor rotates clockwise, the value indicating the present command position of the axis specified increases.
- Bit 11=1: When the motor rotates clockwise, the value indicating the present command position of the axis specified decreases.

9. Bit 12 in D1816 (D1896, D1976, D2056, D2136, D2216): Relative/Absolute coordinates

- Bit 12=0: Absolute coordinates
- Bit 12=1: Relative coordinates

10. Bit 13 in D1816 (D1896, D1976, D2056, D2136, D2216): Mode of triggering the calculation of the target position

- Bit 13=0: The calculation of the target position of the axis specified is triggered by a transition in DOG's signal from low to high.
- Bit 13=1: The calculation of the target position of the axis specified is triggered by a transition in DOG's signal from high to low. (The setting of bit 13 is applicable to the insertion of single-speed motion, and the insertion of two-speed motion.)

11. Bit 14 in D1816 (D1896, D1976, D2056, D2136, D2216): Curve

- Bit 14=0: Trapezoid curve
- Bit 14=1: S curve

| X-axis | | Y-axis | | Z-axis | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HW | LW | HW | LW | HW | LW | Number of pulses it takes for the motor of the axis |
| specified to rotate once (A) | | | | | | |

[Description]

1. Owing to the fact that users can set an electronic gear ratio for a servo drive, the number of pulses it takes for a servo motor to rotate once is not necessarily equal to the number of pulses which will be generated after a decoder rotates once. The relation between the number of pulses it takes for a servo drive to rotate once and an electronic gear ratio is described below.
Number of pulses it takes for a motor to rotate once (A) x Electronic gear ratio (CMX/CDV)=Number of pulses which will be generated after a decoder rotates once
2. The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216). If the unit selected is a mechanical unit or a compound unit, users need to set D1818 (D1898, D1978, D2058, D2138, D2218) and D1819 (D1899, D1979, D2059, D2139, D2219). If the unit selected is a motor unit, users do not need to set D1818 (D1898, D1978, D2058, D2138, D2218) and D1819 (D1899, D1979, D2059, D2139, D2219).

X-axis		Y-axis		Z-axis	
HW	LW	HW	LW	HW	LW
D1821	D1820	D1901	D1900	D1981	D1980
A-axis		B-axis		C-axis	
HW	LW	HW	LW	HW	LW
D2061	D2060	D2141	D2140	D2221	D2220

Distance generated after the motor of the axis specified rotate once (B)
[Description]

1. Three units are available. They are $\mu \mathrm{m} /$ revolution, $\mathrm{mdeg} /$ revolution, and 10^{-4} inches/revolution. The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216). The value in (D1821, D1820) ((D1901, D1900), (D1981, D1980), (D2061, D2060), (D2141, D2140), (D2221, D2220)) is in the range of 1 to $2,147,483,647$.
2. The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216). If the unit selected is a mechanical unit or a compound unit, users need to set D1820 (D1900, D1980, D2060, D2140, D2220) and D1821 (D1901, D1981, D2061, D2141, D2221). If the unit selected is a motor unit, users do not need to set D1820 (D1900, D1980, D2060, D2140, D2220) and D4821 (D1901, D1981, D2061, D2141, D2221).

X-axis		Y-axis		Z-axis	
HW	LW	HW	LW	HW	LW
D1823	D1822	D1903	D1902	D1983	D1982
A-axis		B-axis		C-axis	
HW	LW	HW	LW	HW	LW
D2063	D2062	D2143	D2142	D2223	D2222

Maximum speed $\left(\mathrm{V}_{\text {MAX }}\right)$ at which the axis specified rotates
[Description]

1. Users can set the maximum speed of motion. The value in (D1823, D1822) ((D1903, D1902), (D1983, D1982), (D2063, D2062), (D2143, D2142), (D2223, D2222)) is in the range of 0 to $2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).)
2. The frequency of pulses generated by motion is in the range of 10 PPS to 500 KPPS . If the value in (D1823, D1822) ((D1903, D1902), (D1983, D1982), (D2063, D2062), (D2143, D2142), (D2223, D2222)) is greater than 500 K , the frequency of pulses generated will be 500 K PPS. If the value in (D1823, D1822) ((D1903, D1902), (D1983, D1982), (D2063, D2062), (D2143, D2142), (D2223, D2222)) is less than 10, the frequency of pulses generated will be 10 PPS.

| X-axis | | Y-axis | | Z-axis | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HW | LW | HW | LW | HW | LW | Start-up speed (V $\left.\mathrm{V}_{\text {BIAS }}\right)$ at which the axis specified |
| rotates | | | | | | |

[Description]

1. Users can set the start-up speed of motion. The value in (D1825, D1824) ((D1905, D1904), (D1985, D1984), (D2065, D2064), (D2145, D2144), (D2225, D2224)) is in the range of 0 to $2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).)
2. The frequency of pulses generated by motion is in the range of 0 PPS to 500 K PPS. If the value in (D1825, D1824) ((D1905, D1904), (D1985, D1984), (D2065, D2064), (D2145, D2144), (D2225, D2224)) is greater than 500 K , the frequency of pulses generated will be 500 K PPS. If the value in (D1825, D1824) ((D1905, D1904), (D1985, D1984), (D2065, D2064), (D2145, D2144), (D2225, D2224)) is less than 0 , the frequency of pulses generated will be 0 PPS.
3. If a stepper motor system is used, the start-up speed that users set must be greater than the motor resonance frequency generated.

X-axis		Y-axis		Z-axis		
HW	LW	HW	LW	HW	LW	JOG speed $\left(V_{\text {JoG }}\right)$ at which the axis specified
D1827	D1826	D1907	D1906	D1987	D1986	
A-axis		B-axis		C-axis		
HW	LW	HW	LW	HW	LW	
D2067	D2066	D2147	D2146	D2227	D2226	

[Description]

1. Users can set the JOG speed $\left(\mathrm{V}_{\mathrm{JoG}}\right)$ at which the axis specified rotates. The value in (D1827, D1826) ((D1907, D1906), (D1987, D1986), (D2067, D2066), (D2147, D2146), (D2227, D2226)) is in the range of 0 to $2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).
2. The frequency of pulses generated by motion is in the range of 10 PPS to 500 K PPS. If the value in (D1827, D1826) ((D1907, D1906), (D1987, D1986), (D2067, D2066), (D2147, D2146), (D2227, D2226)) is greater than 500K, the frequency of pulses generated will be 500 K PPS. If the value in (D1827, D1826) ((D1907, D1906), (D1987, D1986), (D2067, D2066), (D2147, D2146), (D2227, D2226)) is less than 10, the frequency of pulses generated will be 10 PPS.
3. $\mathrm{V}_{\text {MAX }}>\mathrm{V}_{\text {JOG }}>\mathrm{V}_{\text {BIAS }}$

If the $\mathrm{V}_{\text {Jog }}$ set is greater than the $\mathrm{V}_{\text {MAX }}$ set, the actual $\mathrm{V}_{\text {Jog }}$ will be equal to the $\mathrm{V}_{\text {MAX }}$.
If the $\mathrm{V}_{\text {Jog }}$ set is less than the $\mathrm{V}_{\text {BIAS }}$ set, the actual $\mathrm{V}_{\text {JOG }}$ will be equal to the $\mathrm{V}_{\text {BIAS }}$, and an error will occur.
4. When an axis operates, users can not modify the JOG speed of the axis.

| X-axis | | Y-axis | | Z-axis | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HW | LW | HW | LW | HW | LW | |
| home | | | | | | |

[Description]

1. Users can set the speed at which the axis specified returns home. The value in (D1829, D1828) ((D1909, D1908), (D1989, D1988), (D2069, D2068), (D2149, D2148), (D2229, D2228)) is in the range of 1 to $2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).)
2. The frequency of pulses generated by motion is in the range of 10 PPS to 500 KPPS . If the value in (D1829, D1828) ((D1909, D1908), (D1989, D1988), (D2069, D2068), (D2149, D2148), (D2229, D2228)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1829, D1828) ((D1909, D1908), (D1989, D1988), (D2069, D2068), (D2149, D2148), (D2229, D2228)) is less than 10, the frequency of pulses generated will be 10 PPS.
3. $\mathrm{V}_{\text {MAX }}>\mathrm{V}_{\mathrm{RT}}>\mathrm{V}_{\text {BIAS }}$
4. When an axis returns home, the speed at which the axis returns home can not be changed.

X-axis		Y-axis		Z-axis		Speed $\left(V_{C R}\right)$ to which the speed of the axis specified decreases when the axis returns home
HW	LW	HW	LW	HW	LW	
D1831	D1830	D1911	D1910	D1991	D1990	
HW	LW	HW	LW	HW	LW	
D2071	D2070	D2151	D2150	D2231	D2230	

[Description]

1. The value in (D1831, D1830) ((D1911, D1910), (D1991, D1990), (D2071, D2070), (D2151, D2150), (D2231, D2230) is in the range of 1 to $2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).
2. The frequency of pulses generated by motion is in the range of 10 PPS to 500 K PPS. If the value in (D1831, D1830) ((D1911, D1910), (D1991, D1990), (D2071, D2070), (D2151, D2150), (D2231, D2230)) is greater than 500 K , the frequency of pulses generated will be 500K PPS. If the value in (D1831, D1830) ((D1911, D1910), (D1991, D1990), (D2071, D2070), (D2151, D2150), (D2231, D2230)) is less than 10, the frequency of pulses generated will be 10 PPS.
3. When motion of returning home is executed, the speed of the motor used is the $V_{R T}$ set. When there is a transition in DOG's signal from low to high or from high to low, the speed of the motor used decreases to the V_{CR} set.
4. In order for the axis specified to returns home precisely, it is suggested that the V_{CR} set should be a low speed.
5. When the motion of returning home is executed, the V_{CR} set can not be changed.

X-axis		Y-axis		Z-axis		Number of PG0 pulses for the axis specified
HW	LW	HW	LW	HW	LW	
	D1832		D1912		D1992	
A-axis		B-axis		C-axis		
HW	LW	HW	LW	HW	LW	
	D2072		D2152		D2232	

[Description]

1. The value in D1832 (D1912, D1992, D2072, D2152, D2232) is in the range of $-32,768$ to 32,767 . If the value in D1832 (D1912, D1992, D2072, D2152, D2232) is a positive value, the axis specified will move in the direction in which it returns home. If the value in D1832 (D1912, D1992, D2072, D2152, D2232) is a negative value, the axis specified will move in the direction which is opposite to the direction in which it returns home.
2. Please refer to the descriptions of bit 9 and bit10 in D1816 (D1896, D1976, D2056, D2136, D2216) for more information about decelerating and stopping the motor used.

X-axis		Y-axis		Z-axis		Supplementary pulses for the axis specified
HW	LW	HW	LW	HW	LW	
	D1833		D1913		D1993	
A-axis		B-axis		C-axis		
HW	LW	HW	LW	HW	LW	
	D2073		D2153		D2233	

[Description]

1. The value in D1833 (D1913, DD1993, D2073, D2153, D2233) is in the range of $-32,768$ to 32,767 . If the value in D1833 (D1913, DD1993, D2073, D2153, D2233) is a positive value, the axis specified will move in the direction in which it returns home. If the value in D1833 (D1913, DD1993, D2073, D2153, D2233) is a negative value, the axis specified will move in the direction which is opposite to the direction in which it returns home.
2. Please refer to the descriptions of bit 9 and bit10 in D1816 (D1896, D1976, D2056, D2136, D2216) for more information about decelerating and stopping the motor used.

X-axis		Y-axis		Z-axis	
HW	LW	HW	LW	HW	LW
D1835	D1834	D1915	D1914	D1995	D1994
A-axis		B-axis		C-axis	
HW	LW	HW	LW	HW	LW
D2075	D2074	D2155	D2154	D2235	D2234

[Description]

1. The value in (D1835, D1834) ((D1915, D1914), (D1995, D1994), (D2075, D2074), (D2155, D2154), (D2235, D2234)) is in the range of 0 to $\pm 999,999$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).
2. After the axis specified returns home, the value in (D1835, D1834) ((D1915, D1914), (D1995, D1994), (D2075, D2074), (D2155, D2154), (D2235, D2234)) will be written into (D1849, D1848) ((D1929, D1928), (D2009, D2008), (D2089, D2088), (D2169, D2168), (D2249, D2248)).

X-axis		Y-axis		Z-axis	
HW	LW	HW	LW	HW	LW
		D1836		D1916	
D1996					
A-axis		B-axis		C-axis	
HW	LW	HW	LW	HW	LW
	D2076		D2156		D2236

Time ($T_{A C C}$) it takes for the axis specified to accelerate

[Description]

1. Users can set the times it takes for the speed of the axis specified to increase from its start-up speed to its maximum speed. The value in D1836 (D1916, D1996, D2076, D2156, D2236) is in the range of 0 to 32,767 . A millisecond is a unit.
2. If the value in D1836 (D1916, D1996, D2076, D2156, D2236) is less than 10, it will be counted as 10. If the value in D1836 (D1916, D1996, D2076, D2156, D2236) is greater than 32,767, it will be counted as 32,767.
3. If users want to have a complete S curve, the maximum speed which is set must be the same as the speed at which the axis specified operates.

X-axis		Y-axis		Z-axis		Time ($T_{\text {DEC }}$) it takes for the axis specified to decelerate
HW	LW	HW	LW	HW	LW	
	D1837		D1917		D1997	
HW	LW	HW	LW	HW	LW	
	D2077		D2157		D2237	

[Description]

1. Users can set the times it takes for the speed of the axis specified to decrease from its maximum speed to its start-up speed. The value in D1837 (D1917, D1997, D2077, D2157, D2237) is in the range of 0 to 32,767 . A millisecond is a unit.
2. If the value in D1837 (D1917, D1997, D2077, D2157, D2237) is less than 10, it will be counted as 10 . If the value in D1837 (D1917, D1997, D2077, D2157, D2237) is greater than 32,767, it will be counted as 32,767.
3. If users want to have a complete S curve, the maximum speed which is set must be the same as the speed at which the axis specified operates.

X-axis		Y-axis		Z-axis		Target position of the axis specified (P (I))
HW	LW	HW	LW	HW	LW	
D1839	D1838	D1919	D1918	D1999	D1998	
HW	LW	HW	LW	HW	LW	
D2079	D2078	D2159	D2158	D2239	D2238	

[Description]

1. The value in (D1839, D1838) ((D1919, D1918), (D1999, D1998), (D2079, D2078), (D2159, D2158), ($D 2239, \mathrm{D} 2238$)) is in the range of $-2,147,483,648$ to $+2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).)
2. Target position (P (I))

- Absolute coordinates: Bit 12 in D1816 (D1896, D1976, D2056, D2136, D2216) is 0.

The target position of the axis specified indicates a distance from 0 . If the target position of an axis is greater than its present command position, the motor used will rotate clockwise. If the target position of an axis is less than its present command position, the motor used will rotate counterclockwise.

- Relative coordinates: Bit 12 in D1816 (D1896, D1976, D2056, D2136, D2216) is 1.

The target position of an axis indicates a distance from its present command position. If the target position specified is a positive value, the motor used will rotate clockwise. If the target position specified is a negative value, the motor used will rotate counterclockwise.
3. The ratio used is determined by bit 2 and bit 3 in D1816 (D1896, D1976, D2056, D2136, D2216).

| X-axis | | Y-axis | | Z-axis | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HW | LW | HW | LW | HW | LW | |
| D1841 | D1840 | D1921 | D1920 | D2001 | D2000 | |
| A-axis | | B-axis | | C-axis | | |
| HW | LW | HW | LW | HW | LW | |
| D2081 | D2080 | D2161 | D2160 | D2241 | D2240 | |

[Description]

1. The value in (D1841, D1840) ((D1921, D1920), (D2001, D2000), (D2081, D2080), (D2161, D2160), ($D 2241, D 2240$)) is in the range of $-2,147,483,647$ to $+2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).)
2. The frequency of pulses generated by motion is in the range of 10 PPS to 500K PPS. If the value in (D1841, D1840) ((D1921, D1920), (D2001, D2000), (D2081, D2080), (D2161, D2160), (D2241, D2240)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1841, D1840) ((D1921, D1920), (D2001, D2000), (D2081, D2080), (D2161, D2160), (D2241, D2240)) is less than 10, the frequency of pulses generated will be 10 PPS.
3. $\mathrm{V}_{\text {MAX }}>\mathrm{V}(\mathrm{I})>\mathrm{V}_{\text {BIAS }}$
4. When bit 4 in D1846 (D1926, D2006, D2086, D2166, D2246) is ON, the speed at which the axis specified rotates $(V(I))$ can be changed. If the Speed at which the axis specified rotates is a positive value, the motor used will rotate clockwise. If the Speed at which the axis specified rotates is a negative value, the motor used will rotate counterclockwise.

X-axis		Y-axis		Z-axis		
HW	LW	HW	LW	HW	LW	
D1843	D1842	D1923	D1922	D2003	D2002	Target position of the axis specified (P (II))
A-axis	B-axis		C-axis			
HW	LW	HW	LW	HW	LW	
D2083	D2082	D2163	D2162	D2243	D2242	

[Description]

1. The value in (D1843, D1842) ((D1923, D1922), (D2003, D2002), (D2083, D2082), (D2163, D2162), ($\mathrm{D} 2243, \mathrm{D} 2242$)) is in the range of $-2,147,483,648$ to $+2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).)
2. Target position (P (II))

- Absolute coordinates: Bit 12 in (D1816 (D1896, D1976, D2056, D2136, D2216) is 0. The target position of the axis specified indicates a distance from 0 . If the target position of an axis is greater than its present command position, the motor used will rotate clockwise. If the target position of an axis is less than its present command position, the motor used will rotate counterclockwise.
- Relative coordinates: Bit 12 in (D1816 (D1896, D1976, D2056, D2136, D2216) is 1. The target position of an axis indicates a distance from its present command position. If the target position specified is a positive value, the motor used will rotate clockwise. If the target position specified is a negative value, the motor used will rotate counterclockwise.

3. The ratio used is determined by bit 2 and bit 3 in D1816 (D1896, D1976, D2056, D2136, D2216).

X-axis		Y-axis		Z-axis		Speed at which the axis specified rotates(V (II))
HW	LW	HW	LW	HW	LW	
D1845	D1844	D1925	D1924	D2005	D2004	
HW	LW	HW	LW	HW	LW	
D2085	D2084	D2165	D2164	D2245	D2244	

[Description]

1. The value in (D1845, D1844) ((D1925, D1924), (D2005, D2004), (D2085, D2084), (D2165, D2164), ($\mathrm{D} 2245, \mathrm{D} 2244$)) is in the range of 0 to $2,147,483,647$. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).)
2. The frequency of pulses generated by motion is in the range of 10 PPS to 500 K PPS. If the value in (D1845, D1844) ((D1925, D1924), (D2005, D2004), (D2085, D2084), (D2165, D2164), (D2245, D2244)) is greater than 500K, the frequency of pulses generated will be 500 K PPS. If the value in (D1845, D1844) ((D1925, D1924), (D2005, D2004), (D2085, D2084), (D2165, D2164), (D2245, D2244)) is less than 10, the frequency of pulses generated will be 10 PPS .
3. $\mathrm{V}_{\mathrm{MAX}}>\mathrm{V}$ (II) $>\mathrm{V}_{\mathrm{BIAS}}$

X-axis		Y-axis		Z-axis		
HW	LW	HW	LW	HW	LW	
	D1846		D1926	D2006		
A-axis		B-axis		C-axis		
Operation command						
	LW	HW	LW	HW	LW	
	D2086		D2166		D2246	

[Description]

1. Bit 0 in D1846 (D1926, D2006, D2086, D2166, D2246): The motion of the axis specified is stopped by software.

- The motion of the axis specified is stopped by software when bit 0 in D1846 (D1926, D2006, D2086, D2166, D2246) is turned from OFF to ON.

2. Bit 1 in D1846 (D1926, D2006, D2086, D2166, D2246): The motion of the axis specified is started by software.

- The motion of the axis specified is started by software when bit 1 in D1846 (D1926, D2006, D2086, D2166, D2246) is turned from OFF to ON.

3. Bit 2 in D1846 (D1926, D2006, D2086, D2166, D2246): The axis specified operates in a JOG+ mode.

- When bit 2 in D1846 (D1926, D2006, D2086, D2166, D2246), clockwise pulses are generated at the JOG speed set.
- If bit 6 in D1816 (D1896, D1976, D2056, D2136, D2216) is ON, and bit 2 in D1846 (D1926, D2006, D2086, D2166, D2246) is ON, PWM will be executed.

4. Bit 3 in D1846 (D1926, D2006, D2086, D2166, D2246): The axis specified operates in a JOG- mode.

- When bit 3 in D1846 (D1926, D2006, D2086, D2166, D2246) is ON, counterclockwise pulses are generated at the JOG speed set.

5. Bit 4 in D1846 (D1926, D2006, D2086, D2166, D2246): A mode of variable motion is activated.

- After bit 4 in D1846 (D1926, D2006, D2086, D2166, D2246) is set to 1, the DVP-10PM series motion controller will execute variable motion, and it will send pulses by a pulse generator.
- After a mode of variable motion is activated, the $\mathrm{V}_{\text {BIAS }}$ of the axis specified will increase to its V (I). When the axis operates, users can change its $V(I)$ at will. The DVP-10PM series motion controller accelerates or decelerates according to the $\mathrm{V}(\mathrm{I})$ set.
- Users can stop variable motion by setting bit 0 in D1846 (D1926, D2006, D2086, D2166, D2246) to 1, or by setting bit 4 in D1846 (D1926, D2006, D2086, D2166, D2246) to 0.
- Diagram

6. Bit 5 in D1846 (D1926, D2006, D2086, D2166, D2246): A manual pulse generator is operated.

- If bit 5 in D1846 (D1926, D2006, D2086, D2166, D2246) is set to ON, a manual pulse generator mode will be activated. Please refer to the descriptions of D1858~D1864 (D1938~D1944, D2018~D2024, D2098~D2104, D2178~D2184, D2258~D2264) for more information.

7. Bit 6 in D1846 (D1926, D2006, D2086, D2166, D2246): A mode of triggering the return to home is activated.

- When bit 6 in D1846 (D1926, D2006, D2086, D2166, D2246) is turned from OFF to ON, a mode of triggering the return to home is activated. The mode of triggering the return to home varies with the
present command position of the axis specified. There are two situations.

Position (1): Position [1] is at the right side of the home and DOG, and DOG is OFF. Position (2): Position [2] is at the right side of the home, and DOG is ON.
*: Position (2) does not support the B-axis and the C-axis.
8. Bit 8 in D1846 (D1926, D2006, D2086, D2166, D2246): A mode of single-speed motion is activated.

- After bit 8 in D1846 (D1926, D2006, D2086, D2166, D2246) is set to 1, a mode of single-speed motion will be activated. The target position of the single-speed motion and the speed of the single-speed motion depend on the $P(I)$ and the $V(I)$ which are set by users, and the DVP-10PM series motion controller sends pulses by a pulse generator.
- If relative single-speed motion is activated, the sign bit of the $P(I)$ set by users will determine the direction of the relative single-speed motion.
- Absolute single-speed motion: If the target position of the axis specified is greater than its present command position, the motor used will rotate clockwise. If the target position of the axis specified is less than its present command position, the motor used will rotate counterclockwise.
- After single-speed motion is activated, the speed of the absolute single-speed motion will increase from the $\mathrm{V}_{\text {BIAS }}$ set to the $\mathrm{V}(\mathrm{I})$ set. The speed of the absolute single-speed motion will not decrease from the V (I) set to the $\mathrm{V}_{\text {BIAS }}$ set until the number of pulses output is near the P (I) set.
- $V_{\text {BIAS: }}$ D1824 (D1904, D1984, D2054, D2134, D2214); V (I): D1840 (D1920, D2000, D2080, D2160, D2240); $\mathrm{V}_{\text {MAX }}$: D1822 (D1902, D1982, D2062, D2142, D2222); P (I): D1838 (D1918, D1998, D2078, D2158, D2238); $T_{\text {Acc: }}$ D1836 (D1916, D1996, D2076, D2156, D2236); T $_{\text {Dес: }}$ D1837 (D1917, D1997, D2077, D2157, D2237)

- If bit 6 in D1816 (D1896, D1976, D2056, D2136, D2216) is ON, and bit 8 in D1846 (D1926, D2006, D2086, D2166, D2246) is ON, Y0~Y3 will execute PWM.

9. Bit 9 in D1846 (D1926, D2006, D2086, D2166, D2246): A mode of inserting single-speed motion is activated.

- After bit 9 in D1846 (D1926, D2006, D2086, D2166, D2246) is set to 1, a mode of inserting single-speed motion will be activated, and the DVP-10PM series motion controller will send pulses by a pulse generator. After DOG's signal goes from low to high or from high to low, the axis specified will move to the target position indicated by the $P(I)$ set.
- If relative single-speed motion is activated, the sign bit of the $P(I)$ set by users will determine the direction of the relative single-speed motion.
- Absolute single-speed motion: If the target position of the axis specified is greater than its present command position, the motor used will rotate clockwise. If the target position of the axis specified is
less than its present command position, the motor used will rotate counterclockwise.
- The speed of motion will increase from the $\mathrm{V}_{\text {BIAS }}$ set to the $\mathrm{V}(\mathrm{I})$ set. After DOG's signal goes from low to high or from high to low, the DVP-10PM series motion controller used will continue sending pulses. The speed of the motion will not decrease from the $\mathrm{V}(\mathrm{I})$ set to the $\mathrm{V}_{\text {BIAs }}$ set until the number of pulses output is near the $P(I)$ set.
- V ${ }_{\text {BIAS: }}$ D1824 (D1904, D1984, D2054, D2134, D2214); V (I): D1840 (D1920, D2000, D2080, D2160, D2240); $\mathrm{V}_{\text {MAX }}$: D1822 (D1902, D1982, D2062, D2142, D2222); P (I): D1838 (D1918, D1998, D2078, D2158, D2238); $T_{\text {Acc: }}$ D1836 (D1916, D1996, D2076, D2156, D2236); T ${ }_{\text {DEc }}$ D1837 (D1917, D1997, D2077, D2157, D2237)

10. Bit 10 in D1846 (D1926, D2006, D2086, D2166, D2246): A mode of two-speed motion is activated.

- After bit 10 in D1846 (D1926, D2006, D2086, D2166, D2246) is set to 1, a mode of two-speed motion will be activated. The axis specified moves at the $V(I)$ set. After it moves to the $P(I)$ set, it will move to the P (II) set at the V (II) set.
- Relative coordinates: The sign bit of the $P(I)$ set by users determines the direction of motion. If the $P(I)$ specified is a positive value, the motor used will rotate clockwise. If the $P(I)$ specified is a negative value, the motor used will rotate counterclockwise.
- Absolute coordinates: If the target position (P (I)) of an axis is greater than its present command position, the motor used will rotate clockwise. If the target position (P (I)) of an axis is less than its present command position, the motor used will rotate counterclockwise.
- After motion is started, the speed of the motion will increase from the $\mathrm{V}_{\text {BIAS }}$ set to the V (I) set. The speed of the motion will not increase/decrease from the V (I) set to the V (II) set until the number of pulses output is near the $P(I)$ set. The speed of the motion will not decrease from the V (II) to the $V_{\text {BIAS }}$ set until the present command position of the axis specified is near the P (II) set.

11. VBIAs: D1824 (D1904, D1984, D2054, D2134, D2214); V (I): D1840 (D1920, D2000, D2080, D2160, D2240); V (II): D1844 (D1924, D2004, D2084, D2164, D2244); Vmax: D1822 (D1902, D1982, D2062, D2142, D2222); P (I): D1838 (D1918, D1998, D2078, D2158, D2238); P (II): D1842 (D1922, D2002, D2082, D2162, D2242); T ${ }_{\text {Acc: }}$ D1836 (D1916, D1996, D2076, D2156, D2236); T ${ }_{\text {Dec }}$: D1837 (D1917, D1997, D2077, D2157, D2237)

12. Bit 11 in D1846 (D1926, D2006, D2086, D2166, D2246): A mode of inserting two-speed motion is
activated.

- After bit 11 in D1846 (D1926, D2006, D2086, D2166, D2246) is set to 1, a mode of inserting two-speed motion will be activated. The axis specified moves at the $V(I)$ set. After DOG's signal goes from low to high or from high to low, the axis will move to the target position indicated by the P (II) set at the V (II) set.
- Relative coordinates: The sign bit of the $\mathrm{P}(\mathrm{I})$ set by users determines the direction of motion.
- Absolute coordinates: If the target position ($\mathrm{P}(\mathrm{I})$) of an axis is greater than its present command position, the motor used will rotate clockwise. If the target position (P (I)) of an axis is less than its present command position, the motor used will rotate counterclockwise.
- After motion is started, the speed of the motion will increase from the $\mathrm{V}_{\text {BIAS }}$ set to the V (I) set. After DOG's signal goes from low to high or from high to low, the speed of the motion will increase/decrease from the V (I) set to the V (II) set.
- V ${ }_{\text {BIAS: }}$ D1824 (D1904, D1984, D2054, D2134, D2214); V (I): D1840 (D1920, D2000, D2080, D2160, D2240); V (II): D1844 (D1924, D2004, D2084, D2164, D2244); V ${ }_{\text {Max }}$: D1822 (D1902, D1982, D2062, D2142, D2222); P (I): D1838 (D1918, D1998, D2078, D2158, D2238); P (II): D1842 (D1922, D2002, D2082, D2162, D2242); $\mathrm{T}_{\text {Acc: }}$ D1836 (D1916, D1996, D2076, D2156, D2236); T $\mathrm{T}_{\mathrm{DEC}}$: D1837 (D1917, D1997, D2077, D2157, D2237)

13. Bit 12 inD1846 (D1926, D2006, D2086, D2166, D2246): The execution of the Ox motion subroutine set starts.

- Bit 12=1: The execution of the Ox motion subroutine set starts.
- Bit 12=0: The execution of the Ox motion subroutine set stops.

X-axis		Y-axis		Z-axis		Mode of operation
HW	LW	HW	LW	HW	LW	
	D1847		D1927		D2007	
A-axis		B-axis		C-axis		
HW	LW	HW	LW	HW	LW	
	D2087		D2167		D2247	

[Description]

1. Bit 2 in D1847 (D1927, D2007, D2087, D2167, D2247): Mode of sending a CLR signal

- Bit 2=0: After the axis specified returns home, the CLR output will send a 130 millisecond signal to the servo drive used, and the present position of the servo drive which is stored in a register in the servo drive will be cleared.
- Bit 2=1: The CLR output functions as a general output. Its state is determined by bit 3 in D1847 (D1927, D2007, D2087, D2167, D2247).

2. Bit 3 in D1847 (D1927, D2007, D2087, D2167, D2247): Setting the CLR output to ON/OFF

- Bit $3=0$: The CLR output is OFF.
- Bit 3=1: The CLR output is ON.

3. Bit 4 in D1847 (D1927, D2007, D2087, D2167, D2247): Setting the polarity of the CLR output

- Bit 4=0: The CLR output is a Form A contact.
- Bit 4=1: The CLR output is a Form B contact.

4. Bit 6 in D1847 (D1927, D2007, D2087, D2167, D2247): Limitation on the present position of the slave axis controlled by the manual pulse generator used

- Bit $6=0$: There is no limitation on the present position of the slave axis controlled by the manual pulse generator used.
- Bit $6=1$: The present position of the slave axis controlled by the manual pulse generator used has to be in the range of the $P(I)$ set to the $P(I I)$ set. If the present position of the slave axis controlled by the manual pulse generator used is not in the range of the $P(I)$ set to the P (II) set, the slave axis will decelerate and stop.

5. Bit 7 in D1847 (D1927, D2007, D2087, D2167, D2247): Mode of stopping the motor used when the motor used comes into contact with a positive limit switch/negative limit switch

- Bit $7=0$: If the motor used comes into contact with a positive limit switch/negative limit switch when it rotates, it will decelerate and stop.
- Bit $7=1$: If the motor used comes into contact with a positive limit switch/negative limit switch when it rotates, it will stop immediately.

6. Bit 15 in D1847 (D1927, D2007, D2087, D2167, D2247): Restoring the DVP-10PM series motion controller to the factory settings

- Bit 15=1: The values of parameters are restored to factory settings.

X-axis		Y-axis		Z-axis		
HW	LW	HW	LW	HW	LW	
D1849	D1848	D1929	D1928	D2009	D2008	Present command position of the axis specified
(Pulse)						

[Description]

1. The value in (D1849, D1848) ((D1929, D1928), (D2009, D2008), (D2089, D2088), (D2169, D2168), (D2249, D2248)) is in the range of $-2,147,483,648$ to $+2,147,483,647$.
2. The present command position of the axis specified is indicated by the number of pulses. The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216). After the axis specified returns home, the value in (D1835, D1834) ((D1915, D1914), (D1995, D1994), (D2075, D2074, (D2155, D2154), (D2235, D2234)) will be written into (D1849, D1848) ((D1929, D1928), (D2009, D2008), (D2089, D2088), (D2169, D2168), (D2249, D2248)).

X-axis		Y-axis		Z-axis		
HW	LW	HW	LW	HW	LW	
D1851	D1850	D1931	D1930	D2011	D2010	
(PPS)						
A-axis	B-axis		C-axis			
HW	LW	HW	LW	HW	LW	
D2091	D2090	D2171	D2170	D2251	D2250	

[Description]

1. The value in (D1851, D1850) ((D1931, D1930), (D2011, D2010), (D2091, D2090), (D2171, D2170), (D2251, D2250)) is in the range of 0 to $2,147,483,647$.
2. The present command speed of the axis specified is indicated by the number of pulses.

X-axis		Y-axis		Z-axis		
HW	LW	HW	LW	HW	LW	Present command position of the axis specified
D1853	D1852	D1933	D1932	D2013	D2012	
A-axis		B-axis		C-axis		
HW	LW	HW	LW	HW	LW	
D2093	D2092	D2173	D2172	D2253	D2252	

[Description]

1. The value in (D1853, D1852) ((D1933, D1932), (D2013, D2012), (D2093, D2092), (D2173, D2172),
(D2253, D2252)) is in the range of $-2,147,483,648$ to $+2,147,483,647$.
2. The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216). After the axis specified returns home, the value in (D1835, D1834) ((D1915, D1914), (D1995, D1994), (D2075, D2074, (D2155, D2154), (D2235, D2234)) will be written into (D1853, D1852) ((D1933, D1932), (D2013, D2012), (D2093, D2092), (D2173, D2172), (D2253, D2252)).

X-axis		Y-axis		Z-axis		
HW	LW	HW	LW	HW	LW	Present command speed of the axis specified
(Unit)						

[Description]

1. The value in (D1855, D1854) ((D1935, D1934), (D2015, D2014), (D2095, D2094), (D2175, D2174), (D2255, D2254)) is in the range of 0 to $2,147,483,647$.
2. The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).

X-axis		Y-axis		Z-axis		State of the axis specified
HW	LW	HW	LW	HW	LW	
	D1856		D1936		D2016	
A-axis		B-axis		C-axis		
HW	LW	HW	LW	HW	LW	
	D2096		D2176		D2256	

[Description]

Bit\#	D1856 (D1936, D2016...)
$\mathbf{0}$	Positive-going pulses are being output.
$\mathbf{1}$	Negative-going pulses are being output.
$\mathbf{2}$	The axis specified is operating.
$\mathbf{3}$	An error occurs.
$\mathbf{4}$	The axis specified pauses.
$\mathbf{5}$	The manual pulse generator used generates positive-going pulses.
$\mathbf{6}$	The manual pulse generator used generates negative-going pulses.
$\mathbf{7}$	Undefined

X-axis		Y-axis		Z-axis		Axis error code
HW	LW	HW	LW	HW	LW	
	D1857		D1937		D2017	
A-axis		B-axis		C-axis		
HW	LW	HW	LW	HW	LW	
	D2097		D2177		D2257	

[Description]

Please refer to chapter 11 for more information.

X-axis		Y-axis		Z-axis		Electronic gear ratio
HW	LW	HW	LW	HW	LW	
	D1858		D1938		D2018	Electronic gear ratio (Numerator)
	D1859		D1939		D2019	Electronic gear ratio (Denominator)
A-axis		B-axis		C-axis		Electronic gear ratio
HW	LW	HW	LW	HW	LW	
	D2098		D2178		D2258	Electronic gear ratio (Numerator)
	D2099		D2179		D2259	Electronic gear ratio (Denominator)

[Description]

1. If bit 5 in D1846 (D1926, D2006, D2086, D2166, D2246) is set to ON, a manual pulse generator mode will be activated.
2. A manual pulse generator generates A / B-phase pulses that are sent to the input terminals $\mathrm{X} 10 \pm$ and X11 \pm. The relation between the position of the axis specified and the input pulses generated by the manual pulses used is shown below.

If a positive limit switch or a negative limit switch is enabled when a manual pulse generator is operated, the generation of pulses will stop. If a positive limit switch is enabled, positive-going pulses will be inhibited, and negative-going will be allowed. If a negative limit switch is enabled, negative-going pulses will be inhibited, and positive-going switch will be allowed.
3. The speed output is determined by the frequency of input pulses generated by a manual pulse generator and an electronic gear ratio.

X-axis		Y-axis		Z-axis		Frequency of pulses generated by the manual pulse generator for the axis specified
HW	LW	HW	LW	HW	LW	
D1861	D1860	D1941	D1940	D2021	D2020	
A-axis		B-axis		C-axis		
HW	LW	HW	LW	HW	LW	
D2101	D2100	D2181	D2180	D2261	D2260	

[Description]

1. The value in (D1861, D1860) ((D1941, D1940), (D2021, D2020), (D2101, D2100), (D2181, D2180), (D2261, D2260)) indicates the frequency of pulses generated by the manual pulse generator for the axis specified. It does not vary with the values in D1858 (D1938, D2018, D2098, D2178, D2258) and D1859 (D1939, D2019, 2099, D2179, D2259).

\left.| X-axis | | Y-axis | | Z-axis | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HW | LW | HW | LW | HW | LW | |
| D1863 | D1862 | D1943 | D1942 | D2023 | D2022 | Number of pulses generated by the manual pulse |
| generator for the axis specified | | | | | | |$\right)$

[Description]

1. The value in (D1863, D1862) ((D1943, D1942), (D2023, D2022), (D2103, D2102), (D2183, D2182), (D2263, D2262)) indicates the number of pulses generated by the manual pulse generator for the axis specified. If the pulses generated by the manual pulse generator for the axis specified are clockwise pulses, the value in (D1863, D1862) ((D1943, D1942), (D2023, D2022), (D2103, D2102), (D2183, D2182), (D2263, D2262)) will increase. If the pulses generated by the manual pulse generator for the axis specified are counterclockwise pulses, the value in (D1863, D1862) ((D1943, D1942), (D2023, D2022), (D2103, D2102), (D2183, D2182), (D2263, D2262)) will decrease.
2. The value in (D1863, D1862) ((D1943, D1942), (D2023, D2022), (D2103, D2102), (D2183, D2182), (D2263, D2262)) does not vary with the values in D1858 (D1938, D2018, D2098, D2178, D2258) and D1859 (D1939, D2019, 2099, D2179, D2259).

X-axis		Y-axis		Z-axis		Response speed of the manual pulse generator for the axis specified
HW	LW	HW	LW	HW	LW	
	D1864		D1944		D2024	
A-axis		B-axis		C-axis		
HW	LW	HW	LW	HW	LW	
	D2104		D2184		D2264	

[Description]

1. If the response speed set is high, the pulses output happen almost at the same time as the pulses input by the manual pulse generator used.
2. If the response speed set is low, the pulses output follows the pulses input by the manual pulse
generator used

Setting value	Response speed
$\geqq 5$	4 ms (Initial value)
4	32 ms
3	108 ms
2	256 ms
1 or 0	500 ms

3. Bit 8 and bit 9 in D1864 (D1944, D2024, D2104, D2184, D2264): Setting the input pulses generated by the manual pulse generator specified

b9	b8	Input type (positive logic)	Description
0	0	FP Clockwise pulses RP Counterclockwise pulses \qquad	Counting up/down
0	1		Pulses+Directions
1	0	FP A-phase pulses	A/B-phase pulses
1	1	RP B-phase pulses \qquad \square \square \square \square \square Counterclockwise	Four times the frequency of A/B-phase pulses

3.12.2 I ntroduction of Modes of Motion

1. There are eight modes of motions.
2. Returning home
3. Two-speed motion
4. JOG motion
5. Inserting two-speed motion
6. Single-speed motion
7. Variable motion
8. Inserting single-speed motion
9. Manual pulse generator mode
10. If more than one mode of motion is activated, they will be executed in particular order.
11. Stopping the motion of the axis specified by software
12. Variable motion
13. Returning home
14. Single-speed motion
15. Positive JOG motion
16. Inserting single-speed motion
17. Negative JOG motion
18. Two-speed motion
19. Manual pulse generator mode
20. Inserting two-speed motion

If a mode of motion is activated when another mode of motion is executed, the DVP-10PM series motion controller will continue executing the original mode.
3. There are two types of acceleration curves.

3.12.3 Special Data Registers for Motion Axes

Special data registers for motion axes

\odot indicates that the special data registers are applicable to the motion.

MEMO

4.1 Table of Basic Instructions

[a] General instructions

Instruction code	Function	Operand	Execution speed ($\boldsymbol{\mu} \boldsymbol{s})$	Step	Page number
LD	Loading a Form A contact	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	0.14	3	$4-3$
LDI	Loading a Form B contact	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	0.14	3	$4-3$
AND	Connecting a Form A contact in series	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	0.14	3	$4-4$
ANI	Connecting a Form B contact in series	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	0.14	3	$4-4$
OR	Connecting a Form A contact in parallel	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	0.14	3	$4-5$
ORI	Connecting a Form B contact in parallel	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	0.14	3	$4-5$
ANB	Connecting circuit blocks in series	None	-	3	$4-6$
ORB	Connecting circuit blocks in parallel	None	-	3	$4-7$

(1) Output instructions

Instruction code	Function	Operand	Execution speed ($\boldsymbol{\mu s})$	Step	Page number
OUT	Driving a coil	$\mathrm{Y}, \mathrm{M}, \mathrm{S}$	-	3	$4-7$
SET	Keeping a device ON	$\mathrm{Y}, \mathrm{M}, \mathrm{S}$	-	3	$4-8$
RST	Resetting a contact or a register	$\mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}, \mathrm{D}, \mathrm{V}, \mathrm{Z}$	-	3	$4-8$

[1] Timer and counters

API	Instruction code	Function	Operand	Execution speed ($\mu \mathrm{s}$)	Step	Page number
96	TMR	16-bit timer	T-K or T-D	6	5	4-9
97	CNT	16-bit counter	C-K or C-D (16 bits)	2.8	5	4-9
97	DCNT	32-bit counter	C-K or C-D (32 bits)	2.8	6	4-10

[a] Rising-edge/Falling-edge detection instructions

API	Instruction code	Function	Operand	Execution speed ($\boldsymbol{\mu}$)	Step	Page number
90	LDP	Starting rising-edge detection	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	0.4	3	$4-10$
91	LDF	Starting falling-edge detection	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	0.5	3	$4-11$
92	ANDP	Connecting rising-edge detection in series	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	0.4	3	$4-11$
93	ANDF	Connecting falling-edge detection in series	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	0.4	3	$4-12$
94	ORP	Connecting rising-edge detection in parallel	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	0.5	3	$4-12$
95	ORF	Connecting falling-edge detection in parallel	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$	0.4	3	$4-13$

4
 Basic Instructions

Rising-edge/Falling-edge output instruction

API	Instruction code	Function	Operand	Execution speed (us)	Step	Page number
89	PLS	Rising-edge output	Y, M	0.2	3	$4-14$
99	PLF	Falling-edge output	Y, M	0.3	3	$4-14$

[10] Other instructions

Instruction code	Function	Operand	Execution speed (us)	Step	Page number
P	Pointer	$\mathrm{P} 0 \sim \mathrm{P} 255$	-	1	$4-15$

4.2 Descriptions of the Basic Instructions

Instruction code	Function						Applicable model
	Loading a Form A contact						10PM
LD							\checkmark
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

- The instruction LD applies to the Form A contact which starts from a busbar or
\square
Instruction code: Description:

LD	X0	Loading the Form A contact X0
AND	X1	Connecting the Form A contact X1 in series
OUT	Y1	Driving the coil Y1

Instruction code	Function	Applicable model
LDI	Loading a Form B contact	10 PM
		\checkmark

Operand	XO - X377	$\mathrm{Y} 0 \sim \mathrm{Y} 377$	$\mathrm{M} 0 \sim \mathrm{M} 4,095$	$\mathrm{SO} \mathrm{\sim S1,023}$	T0~T255	C0~C255	D0~D9,999
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

Instruction code: Description:

LDI	X0	Loading the Form B contact X0
AND	X1	Connecting the Form A contact X1 in series
OUT	Y1	Driving the coil Y1

Instruction code	Function						Applicable model
AND	Connecting a Form A contact in series						10PM
							\checkmark
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

- The instruction AND is used to connect a Form A contact in series. It reads the state of a contact which is connected in series, and performs the AND operation on the previous logical operation result. The final result is stored in an accumulation register.
Ladder diagram:

Instruction code:	Description: Loading the Form B Lontact X1	
AND	X0	Connecting the Form A contact X0
OUT	Y1	Driving the coil Y1

Instruction code	Function						Applicable model
ANI	Connecting a Form B contact in series						10PM
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

- The instruction ANI is used to connect a Form B contact in series. It reads the state of a contact which is connected in series, and performs the AND operation on the previous logical operation result. The final result is stored in an accumulation register.
Ladder diagram:
Example

Instruction code:	Description:	
LD	X1	Loading the Form A contact X1
ANI	X0	Connecting the Form B contact X0 in series
OUT	Y1	Driving the coil Y1

Instruction code	Function	Applicable model
OR	Connecting a Form A contact in parallel	10 PM
		\checkmark

Operand	$\mathrm{X} 0 \sim \mathrm{X} 377$	$\mathrm{Y} 0 \sim \mathrm{Y} 377$	$\mathrm{M} 0 \sim \mathrm{M} 4,095$	$\mathrm{~S} 0 \sim$ S1,023	T0~T255	C0~C255	D0~D9,999
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

Instruction code:	Description:	
LD	X0	Loading the Form A contact X0
OR	X1	Connecting the Form A contact X1 in
OUT	Y1	parallel
Driving the coil Y1		

Instruction code	Function	Applicable model
ORI	Connecting a Form B contact in parallel	10 PM
		\checkmark

Operand	$\mathrm{XO} \mathrm{\sim X377}$	$\mathrm{Y} 0 \sim \mathrm{Y} 377$	$\mathrm{M} 0 \sim \mathrm{M} 4,095$	$\mathrm{~S} 0 \sim \mathrm{~S} 1,023$	$\mathrm{~T} 0 \sim \mathrm{~T} 255$	$\mathrm{C} 0 \sim \mathrm{C} 255$	$\mathrm{D} 0 \sim \mathrm{D} 9,999$
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

Instruction code:		Description:
LD	X0	Loading the Form A contact X0
ORI	X1	Connecting the Form B contact X1 in parallel
OUT	Y1	Driving the coil Y1

4
 Basic Instructions

Instruction code	Function	Applicable model
ANB	Connecting circuit blocks in series	10 PM
	None	
Operand		

Explanation

- The instruction ANB is used to perform the AND operation on the logical

Ladder diagram:
Example

Block A Block B

Instruction code: Description:
\(\left.$$
\begin{array}{lll}\text { LD } & \text { X0 } & \begin{array}{l}\text { Loading the Form A } \\
\text { contact X0 }\end{array} \\
\text { ORI } & \text { X2 } & \begin{array}{l}\text { Connecting the Form } \\
\text { B contact X2 in }\end{array}
$$

parallel\end{array}\right\}\)| LDI |
| :--- |
| X1 |
| OR | X3 | Lontact X1 the Form B |
| :--- |
| Connecting the Form |
| A contact X3 in |
| parallel |

Instruction code	Function	Applicable model
ORB	Connecting circuit blocks in parallel	10PM
	None	\checkmark
Operand		

Explanation

- The instruction ORB is used to perform the OR operation on the logical operation result reserved previously and the contents of the present accumulation register.

Example \begin{tabular}{llll}

Ladder diagram: \& Instruction code: | Description: |
| :--- |
| Loading the Form A |

contact X0
\end{tabular}

Instruction code	Function						Applicable model
OUT	Driving a coil						10PM
							\checkmark
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	-	\checkmark	\checkmark	\checkmark	-	-	-

4
 Basic Instructions

Instruction code	Function						Applicable model
SET	Keeping a device ON						10PM
							\checkmark
Operand	X0~X377	Y0-Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	-	\checkmark	\checkmark	\checkmark	-	-	-

Explanation

- When the instruction SET is driven, the device specified is set to ON. Whether
\qquad the instruction SET is still driven or not, the device specified remains ON. Users can set the device specified to OFF by means of the instruction RST.

Instruction code: Description:

LD	X0	Loading the Form A contact X0
ANI	Y0	Connecting the Form B contact Y0
SET	Y1	Y01 remains ON.

Instruction code	Function						Applicable model
	Resetting a contact or a register						10PM
RST							\checkmark
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Explanation

- When the instruction RST is driven, the device specified acts in the way

Device	State
S, Y, M	The coil and the contact are set to OFF.
T, C	The present timer value or the present counter value becomes 0. The coil and the contact are set to OFF.
D, V, Z	The value becomes 0.

- If the instruction RST is not executed, the state of the device specified will remain unchanged.
Ladder diagram:
Example

Instruction code: Description:
LD X0 Loading the Form A contact XO
RST Y5 Resetting Y5

$\left.$| Instruction
 code | Function | |
| :---: | :---: | :---: | | Applicable |
| :---: |
| model | \right\rvert\,

Explanation

Explanation

- When the instruction TMR is executed, the coil specified is ON, and the timer

Example

Additional remark

 specified begins to count. If the timer value matches the setting value (timer value \geqq setting value), the contact specified will act in the way described below.| NO (Normally-open) contact | OFF |
| :--- | :---: |
| NC (Normally-closed) contact | ON |

Ladder diagram:

Instruction code: Description:
LD XO Loading the Form A contact X0
TMR T5 K1000 The setting value in the timer T5 is K1000.

- Please refer to the specifications for the model used for more information about the timer range which can be used.

Instruction code	Function		Applicable model
CNT	16-bit counter		10PM
			\checkmark
Operand	C-K	C0~C199, K0~K32,767	
	C-D	C0~C199, D0~D9,999	

Explanation

- When the counter coil specified by the instruction CNT is turned from OFF to ON , the counter value increases by 1 . If the counter value matches the setting value (counter value=setting value), the contact specified will act in the way described below.

NO (Normally-open) contact	OFF
NC (Normally-closed) contact	ON

- If there are pulses sent to the counter specified by the instruction CNT after the counter value matches the setting value, the state of the contact specified and the counter value will remain unchanged. Users can reset a counter by means of the instruction RST.

Ladder diagram:
Example

Instruction code: Description:

LD	XO	Loading the Form A contact X0
CNT	C20 K100	The setting value in the counter
		C20 is K100.

Instruction code	Function		Applicable model
DCNT	32-bit counter		10 PM

Explanation \begin{tabular}{l}
DCNT is an instruction which is use

C221~C2255 are general up/down
by the instruction DCNT is turned fr
or decreases by one according to t

Example

Ladder diagram:
\end{tabular}

- DCNT is an instruction which is used to enable the 32-bit counters C200~C255.

Explanation by the instruction DCNT is turned from OFF to ON, the counter value increases or decreases by one according to the setting of M1200~M1234.
Ladder diagram:
Instruction code: Description:
LD MO Loading the Form A contact MO
DCNT C254 K1000 The setting value in the counter C254 is K1000.

Instruction code	Function						Applicable model
IDP	Starting rising-edge detection						10PM
LDP							\checkmark
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation
 \qquad

- The usage of LDP is similar to that of LD, but the action of LDP is different from that of LD. LDP reserves the present contents, and stores the state of the rising edge-triggered contact specified to an accumulation register.

Example \begin{tabular}{llll}

Ladder diagram: \& \begin{tabular}{l}
Instruction code:

LDP

 \&

Description:

Starting the detection

of the state of the rising

edge-triggered contact

X0
\end{tabular}

AND X1 \& | Connecting the Form A |
| :--- |
| contact X1 in series |

OUT Y1 \&	Driving the coil Y1

\end{tabular}

Additional remark

- Please refer to the specifications for the model used for more information about the operand ranges which can be used.
- If the state of a rising edge-triggered contact in a DVP-10PM series motion controller is ON before the DVP-10PM series motion controller is powered, it is TRUE after the DVP-10PM series motion controller is powered.

Instruction code	Function						Applicable model
LDF	Starting falling-edge detection						10PM
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

- The usage of LDF is similar to that of LD, but the action of LDP is different from

Explanation that of LD. LDF reserves the present contents, and stores the state of the falling edge-triggered contact specified to an accumulation register.

Instruction code:	Description:	
LDF	X0	Starting the detection of the state of the falling edge-triggered contact X0
AND	X1	Connecting the Form A contact X1 in series
OUT	Y1	Driving the coil Y1

Ladder diagram:

Example

Instruction code	Function	Applicable model
ANDP	Connecting rising-edge detection in series	10 PM
		\checkmark

Operand	$\mathrm{X0} \mathrm{\sim X377}$	$\mathrm{Y} 0 \sim \mathrm{Y} 377$	$\mathrm{M} 0 \sim \mathrm{M} 4,095$	$\mathrm{~S} 0 \sim \mathrm{~S} 1,023$	$\mathrm{~T} 0 \sim \mathrm{~T} 255$	$\mathrm{C} 0 \sim \mathrm{C} 255$	$\mathrm{D} 0 \sim \mathrm{D} 9,999$
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

- The instruction ANDP is used to connect a rising edge-triggered contact in

Explanation

 series.

Instruction code: Description:

LD	X0	Loading the Form A contact X0
ANDP	X1	Connecting the rising edge-triggered contact
OUT	Y1	X1 in series
Driving the coil Y1		

4 Basic Instructions

Instruction code	Function				
ANDF	Applicable model				
Operand	Connecting falling-edge detection in series	10PM			

Explanation

- The instruction ANDF is used to connect a falling edge-triggered contact in series.

Instruction code: Description:

LD	X0	Loading the Form A contact X0
ANDF	X1	Connecting the falling edge-triggered contact X1 in series
OUT	Y1	Driving the coil Y1

Instruction code	Function				
ORP	Applicable model				
	Connecting rising-edge detection in parallel	10PM			
	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Explanation

- The instruction ORP is used to connect a rising edge-triggered contact in parallel.

Instruction code:		Description:
LD \quad X0	Loading the Form A contact X0	
ORP	X1	Connecting the rising edge-triggered contact
OUT	Y1	X1 in parallel
Driving the coil Y1		

Instruction code	Function	Applicable model
ORF	Connecting falling-edge detection in parallel	10 PM
		\checkmark

Operand	$\mathrm{X} 0 \sim \mathrm{X} 377$	$\mathrm{Y} 0 \sim \mathrm{Y} 377$	$\mathrm{M} 0 \sim \mathrm{M} 4,095$	$\mathrm{~S} 0 \sim \mathrm{~S} 1,023$	$\mathrm{~T} 0 \sim \mathrm{~T} 255$	$\mathrm{C} 0 \sim \mathrm{C} 255$	$\mathrm{D} 0 \sim \mathrm{D} 9,999$
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

- The instruction ORF is used to connect a falling edge-triggered contact in parallel.

Ladder diagram:
Example

Instruction code: Description:

LD	X0	Loading the Form A contact X0
ORF	X1	Connecting the falling edge-triggered contact
OUT	Y1	X1 Driving the coil Y1

4
 Basic Instructions

Instruction code	Function						Applicable model
PLS	Rising-edge output						10PM
							\checkmark
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	-	\checkmark	\checkmark	-	-	-	-

Explanation

- PLS is a rising-edge output instruction. When XO is turned from OFF to ON, the $\begin{array}{cl}\text { Example } & \begin{array}{l}\text { Ladder diagram: }\end{array} \\ & \\ & \\ & \end{array}$

Instruction code	Function						Applicable model
	Falling-edge output						10PM
PLF							\checkmark
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
	-	\checkmark	\checkmark	-	-	-	-

Explanation

 instruction PLF is executed. MO sends a pulse for a scan cycle.Ladder diagram:
Example

Timing diagram:

Instruction code: Description:

LD	X0	Loading the Form A contact X0
PLF	M0	M0 is falling edge-triggered.
LD	M0	Loading the Form A contact M0
SET	YO	YO remains ON.

Basic Instructions

Instruction code	Function	Applicable model				
\mathbf{P}	Pointer	10PM				
Operand	P0~P255					

Explanation
A pointer can be used by API 00 CJ, API 01 CALL, API 256 CJN, and API 257 JMP. The pointers used do not have to start from P0. A pointer number can not be used repeatedly, otherwise an unexpected error will occur.

Ladder diagram:
Example

Instruction code: Description:

LD	X0	Loading the Form A contact X0		
CJ	P10	The jump instruction CJ specifies P10.		
$:$		Pointer P10		
P10	X1	Loading the Form A contact X1		
LD	OUT	Y1		Driving the coil Y1
:---				

MEMO

5 Applied Instructions and Basic Usage

5.1 Table of Applied I nstructions

Type	API	Instruction code		Pulse instruction	Function	Step		Page No.
		16-bit	32-bit			16-bit	32-bit	
$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{\rightharpoonup}{7} \\ & \underline{0} \end{aligned}$	00	CJ	-	\checkmark	Conditional jump	3	-	5-13
	01	CALL	-	\checkmark	Calling a subroutine	3	-	5-16
	02	SRET	-	-	Indicating that a subroutine ends	1	-	5-17
	07	WDT	-	\checkmark	Watchdog timer	1	-	5-19
	08	RPT	-	-	Start of a nested loop (only one loop)	3	-	5-20
	09	RPE	-	-	End of a nested loop	1	-	5-21
	10	CMP	DCMP	\checkmark	Comparing values	7	9	5-22
	11	ZCP	DZCP	\checkmark	Zonal comparison	9	12	5-23
	12	MOV	DMOV	\checkmark	Transferring a value	5	6	5-24
	13	SMOV	-	\checkmark	Transferring digits	11	-	5-25
	14	CML	DCML	\checkmark	Inverting bits	5	9	5-28
	15	BMOV	-	\checkmark	Transferring values	7	-	5-29
	16	FMOV	DFMOV	\checkmark	Transferring a value to several devices	7	13	5-31
	17	XCH	DXCH	\checkmark	Interchanging values	5	9	5-32
	18	$B C D$	DBCD	\checkmark	Converting a binary value into a binary-coded decimal value	5	5	5-33
	19	BIN	DBIN	\checkmark	Converting a binary-coded decimal value into a binary value	5	5	5-34
	20	ADD	DADD	\checkmark	Binary addition	7	9	5-35
	21	SUB	DSUB	\checkmark	Binary subtraction	7	9	5-37
	22	MUL	DMUL	\checkmark	Binary multiplication	7	9	5-38
	23	DIV	DDIV	\checkmark	Binary division	7	9	5-39
	24	INC	DINC	\checkmark	Adding one to a binary value	3	3	5-40
	25	DEC	DDEC	\checkmark	Subtracting one from a binary value	3	3	5-41
	26	WAND	DWAND	\checkmark	Logical AND operation	7	9	5-42
	27	WOR	DWOR	\checkmark	Logical OR operation	7	9	5-43
	28	WXOR	DWXOR	\checkmark	Logical exclusive OR operation	7	9	5-44
	29	NEG	DNEG	\checkmark	Taking the two's complement of a value	3	3	5-45
	30	ROR	DROR	\checkmark	Rotating bits rightwards	5	9	5-47
	31	ROL	DROL	\checkmark	Rotating bits leftwards	5	9	5-48
	32	RCR	DRCR	\checkmark	Rotating bits rightwards with a carry flag	5	9	5-49
	33	RCL	DRCL	\checkmark	Rotating bits leftwards with a carry flag	5	9	5-50
	34	SFTR	-	\checkmark	Moving the states of bit devices rightwards	9	-	5-51
	35	SFTL	-	\checkmark	Moving the states of bit devices leftwards	9	-	5-52
	36	WSFR	-	\checkmark	Moving the values in word devices rightwards	9	-	5-53
	37	WSFL	-	\checkmark	Moving the values in word devices leftwards	9	-	5-55
	38	SFWR	-	\checkmark	Moving a value and writing it into a word device	7	-	5-56
	39	SFRD	-	\checkmark	Moving a value and reading it from a word device	7	-	5-57
	40	ZRST	-	\checkmark	Resetting a zone	5	-	5-58
	41	DECO	-	\checkmark	Decoder	7	-	5-59
	42	ENCO	-	\checkmark	Encoder	7	-	5-61
	43	SUM	DSUM	\checkmark	Number of bits which are ON	5	9	5-63
	44	BON	DBON	\checkmark	Checking the state of a bit	7	13	5-64
	45	MEAN	DMEAN	\checkmark	Mean	7	13	5-65
	46	ANS	-	-	Driving an annunciator	7	-	5-66
	47	ANR	-	\checkmark	Resetting an annunicator	1	-	5-67
	48	SQR	DSQR	\checkmark	Square root of a binary value	5	9	5-69

5 Applied Instructions and Basic Usage

Type	API	Instruction code		Pulse instruction	Function	Step		Page No.
		16-bit	32-bit			16-bit	32-bit	
	49	-	DFLT	\checkmark	Converting a binary integer into a binary floating-point value	-	6	5-70
	50	REF	-	\checkmark	Refreshing the states of I/O devices	5	-	5-72
	61	SER	DSER	\checkmark	Searching data	9	17	5-73
	66	ALT	-	\checkmark	Alternating between ON and OFF	3	-	5-75
	67	RAMP	DRAMP	-	Ramp	9	17	5-76
	69	SORT	DSORT	-	Sorting data	11	21	5-78
$\bar{\bigcirc}$	78	FROM	DFROM	\checkmark	Reading data from a control register in a special module	9	12	5-80
	79	TO	DTO	\checkmark	Writing data into a control register in a special module	9	13	5-81
	87	ABS	DABS	\checkmark	Absolute value	3	5	5-84
	89	PLS	-	-	Rising-edge output	3	-	4-14
	90	LDP	-	-	Starting rising-edge detection	3	-	4-10
	91	LDF	-	-	Starting falling-edge detection	3	-	4-11
	92	ANDP	-	-	Connecting rising-edge detection in series	3	-	4-11
	93	ANDF	-	-	Connecting falling-edge detection in series	3	-	4-12
	94	ORP	-	-	Connecting rising-edge detection in parallel	3	-	4-12
	95	ORF	-	-	Connecting falling-edge detection in parallel	3	-	4-13
	96	TMR	-	-	16-bit timer	5	-	4-9
	97	CNT	DCNT	-	16-bit counter	5	6	4-9
	99	PLF	-	-	Falling-edge output	3	-	4-14
$\begin{aligned} & 0 \\ & 0 \\ & 3 \\ & 3 \\ & \stackrel{5}{3} \\ & \vdots . \\ & 0 . \\ & 0 . \\ & \hline 0 \end{aligned}$	100	MODRD	-	-	Reading Modbus data	7	-	5-85
	101	MODWR	-	-	Writing Modbus data	7	-	5-89
	110	-	DECMP	\checkmark	Comparing binary floating-point values	7	9	5-94
	111	-	DEZCP	\checkmark	Binary floating-point zonal comparison	9	12	5-95
	112	-	DMOVR	\checkmark	Transferring a floating-point value		9	5-96
	116	-	DRAD	\checkmark	Converting a degree to a radian	-	6	5-97
	117	-	DDEG	\checkmark	Converting a radian to a degree	-	6	5-98
	120	-	DEADD	\checkmark	Binary floating-point addition	7	9	5-99
	121	-	DESUB	\checkmark	Binary floating-point subtraction	7	9	5-100
	122	-	DEMUL	\checkmark	Binary floating-point multiplication	7	9	5-101
	123	-	DEDIV	\checkmark	Binary floating-point division	7	9	5-102
	124	-	DEXP	\checkmark	Exponent of a binary floating-point value	-	6	5-103
	125	-	DLN	\checkmark	Natural logarithm of a binary floating-point value	-	6	5-104
	126	-	DLOG	\checkmark	Logarithm of a binary floating-point value	-	9	5-105
	127	-	DESQR	\checkmark	Square root of a binary floating-point value	5	6	5-106
	128	-	DPOW	\checkmark	Power of a floating-point value	-	9	5-107
	129	-	DINT	\checkmark	Converting a binary floating-point value into a binary integer	-	6	5-108
	130	-	DSIN	\checkmark	Sine of a binary floating-point value	5	6	5-109

5 Applied Instructions and Basic Usage

Type	API	Instruction code		Pulse instruction	Function	Step		Page No.
		16-bit	32-bit			16-bit	32-bit	
	49	-	DFLT	\checkmark	Converting a binary integer into a binary floating-point value	-	6	5-70
	50	REF	-	\checkmark	Refreshing the states of $1 / O$ devices	5	-	5-72
	61	SER	DSER	\checkmark	Searching data	9	17	5-73
	66	ALT	-	\checkmark	Alternating between ON and OFF	3	-	5-75
	67	RAMP	DRAMP	-	Ramp	9	17	5-76
	69	SORT	DSORT	-	Sorting data	11	21	5-78
$\bar{\bigcirc}$	78	FROM	DFROM	\checkmark	Reading data from a control register in a special module	9	12	5-80
	79	TO	DTO	\checkmark	Writing data into a control register in a special module	9	13	5-81
	87	ABS	DABS	\checkmark	Absolute value	3	5	5-84
	89	PLS	-	-	Rising-edge output	3	-	4-14
	90	LDP	-	-	Starting rising-edge detection	3	-	4-10
	91	LDF	-	-	Starting falling-edge detection	3	-	4-11
	92	ANDP	-	-	Connecting rising-edge detection in series	3	-	4-11
	93	ANDF	-	-	Connecting falling-edge detection in series	3	-	4-12
	94	ORP	-	-	Connecting rising-edge detection in parallel	3	-	4-12
	95	ORF	-	-	Connecting falling-edge detection in parallel	3	-	4-13
	96	TMR	-	-	16-bit timer	5	-	4-9
	97	CNT	DCNT	-	16-bit counter	5	6	4-9
	99	PLF	-	-	Falling-edge output	3	-	4-14
\qquad	100	MODRD	-	-	Reading Modbus data	7	-	5-85
	101	MODWR	-	-	Writing Modbus data	7	-	5-89
	110	-	DECMP	\checkmark	Comparing binary floating-point values	7	9	5-94
	111	-	DEZCP	\checkmark	Binary floating-point zonal comparison	9	12	5-95
	112	-	DMOVR	\checkmark	Transferring a floating-point value		9	5-96
	116	-	DRAD	\checkmark	Converting a degree to a radian	-	6	5-97
	117	-	DDEG	\checkmark	Converting a radian to a degree	-	6	5-98
	120	-	DEADD	\checkmark	Binary floating-point addition	7	9	5-99
	121	-	DESUB	\checkmark	Binary floating-point subtraction	7	9	5-100
	122	-	DEMUL	\checkmark	Binary floating-point multiplication	7	9	5-101
	123	-	DEDIV	\checkmark	Binary floating-point division	7	9	5-102
	124	-	DEXP	\checkmark	Exponent of a binary floating-point value	-	6	5-103
	125	-	DLN	\checkmark	Natural logarithm of a binary floating-point value	-	6	5-104
	126	-	DLOG	\checkmark	Logarithm of a binary floating-point value	-	9	5-105
	127	-	DESQR	\checkmark	Square root of a binary floating-point value	5	6	5-106
	128	-	DPOW	\checkmark	Power of a floating-point value	-	9	5-107
	129	-	DINT	\checkmark	Converting a binary floating-point value into a binary integer	-	6	5-108
	130	-	DSIN	\checkmark	Sine of a binary floating-point value	5	6	5-109

5
 Applied Instructions and Basic Usage

Type	API	Instruction code		Pulse instruction	Function	Step		Page No.
		16-bit	32-bit			16-bit	32-bit	
	131	-	DCOS	\checkmark	Cosine of a binary floating-point value	5	6	5-111
	132	-	DTAN	\checkmark	Tangent of a binary floating-point value	5	6	5-113
	133	-	DASIN	\checkmark	Arcsine of a binary floating-point value	-	6	5-115
	134	-	DACOS	\checkmark	Arccosine of a binary floating-point value	-	6	5-116
	135	-	DATAN	\checkmark	Arctangent of a binary floating-point value	-	6	5-117
	136	-	DSINH	\checkmark	Hyperbolic sine of a binary floating-point value	-	6	5-118
	137	-	DCOSH	\checkmark	Hyperbolic cosine of a binary floating-point value	-	6	5-119
	138	-	DTANH	\checkmark	Hyperbolic tangent of a binary floating-point value	-	6	5-120
	172	-	DADDR	\checkmark	Floating-point addition	-	13	5-121
	173	-	DSUBR	\checkmark	Floating-point subtraction	-	13	5-122
	174	-	DMULR	\checkmark	Floating-point multiplication	-	13	5-123
	175	-	DDIVR	\checkmark	Floating-point division	-	13	5-124
	215	LD\&	DLD\&	-	S1\&S2	5	7	5-125
	216	LD\|	DLD\|	-	S1\|S2	5	7	5-125
	217	LD^	DLD^	-	S1^S2	5	7	5-125
	218	AND\&	DAND\&	-	S1\&S2	5	7	5-126
	219	AND\|	DAND\|	-	S1\|S2	5	7	5-126
	220	AND^{\wedge}	DAND^	-	S1^S2	5	7	5-126
	221	OR\&	DOR\&	-	S1\&S2	5	7	5-127
	222	OR\|	DOR\|	-	S1\|S2	5	7	5-127
	223	OR^{\wedge}	DOR^	-	S1^S2	5	7	5-127
	224	LD=	DLD=	-	S1 = S2	5	7	5-128
	225	LD>	DLD>	-	S1 > S2	5	7	5-128
	226	LD<	DLD<	-	S1 < S2	5	7	5-128
	228	LD<>	DLD<>	-	S1 $=$ S2	5	7	5-128
	229	LD<=	DLD<=	-	$\mathrm{S} 1 \leqq \mathrm{~S} 2$	5	7	5-128
	230	LD>=	DLD>=	-	$\mathrm{S} 1 \geqq \mathrm{~S} 2$	5	7	5-128
	232	AND=	DAND=	-	S1 = S2	5	7	5-129
	233	AND>	DAND>	-	S1 > S2	5	7	5-129
	234	AND<	DAND<	-	S1 < S2	5	7	5-129
	236	AND<>	DAND<>	-	S1才, 2	5	7	5-129
	237	AND<=	DAND<=	-	$\mathrm{S} 1 \leqq \mathrm{~S} 2$	5	7	5-129
	238	AND>=	DAND>=	-	$\mathrm{S} 1 \geqq \mathrm{~S} 2$	5	7	5-129
	240	$\mathrm{OR}=$	DOR=	-	S1 = S2	5	7	5-130
	241	OR>	DOR>	-	S1 > S2	5	7	5-130
	242	OR<	DOR<	-	S1 < S2	5	7	5-130
	244	OR<>	DOR<>	-	S1 $=$ S2	5	7	5-130
	245	$\mathrm{OR}<=$	DOR<=	-	$\mathrm{S} 1 \leqq \mathrm{~S} 2$	5	7	5-130
	246	OR>=	DOR>=	-	$\mathrm{S} 1 \geqq \mathrm{~S} 2$	5	7	5-130

5
 Applied Instructions and Basic Usage

Type	API	Instruction code		Pulse instruction	Function	Step		Page No.
		16-bit	32-bit			16-bit	32-bit	
	147	SWAP	DSWAP	\checkmark	Interchanging the high byte in a device with the low byte in the device	3	5	5-131
	154	RAND	DRAND	\checkmark	Random value	7	13	5-132
	202	SCAL	-	\checkmark	Scale	9	-	5-133
	203	SCLP	DSCLP	\checkmark	Parameter scale	7	13	5-135
	256	CJN	-	\checkmark	Negated conditional jump	3	-	5-139
	257	JMP	-	-	Unconditional jump	3	-	5-140
	258	BRET	-	-	Returning to a busbar	1	-	5-141
	259	MMOV	-	\checkmark	Converting a 16-bit value into a 32-bit value	6	-	5-142
	260	RMOV	-	\checkmark	Converting a 32-bit value into a 16-bit value	6	-	5-143

5.2 Structure of an Applied Instruction

- An applied instruction is composed of an instruction name and operands.

Instruction name: An instruction name represents a function.
Operand: An operand is the object of an operation.
An instruction name occupie one step. The number of steps an operand occupies can be two or three, depending on the instruction used is a 16-bit instruciton or a 32-bit instruction.

- Descriptions of the applied instructions

(1)

API number
(2)

The upper cell indicates a 16-bit instruction. If the upper cell is a dotted cell, there will be no 16 -bit instruction.
The lower cell indicates a 32-bit instruction. If the lower cell is a dotted cell, there is no 32-bit instruction. If there is a 32-bit instruction, \mathbf{D} is displayed in the lower cell, e.g. API 10 DCMP.
(3) Applied instruction name
(4) If © is displayed in the upper cell, a pulse instruction is generally used.

The lower cell indicates a pulse instruction. If there is a pulse instruction, \mathbf{P} is displayed in the lower cell, e.g. API 12 MOVP.
(5) Operands
(6) Function

Number of steps occupied by a 16-bit instruction, continuity instruction name, and pulse instruction name
(8)

Number of steps occupied by a 32-bit instruction, continuity instruction name, and pulse
(9) Flags related to an applied instruction

The devices marked with ' * ' displayed in grayscale can be modified by V devices and Z devices.
(11) Points for attention
(12) The devices marked with ' *' can be used.
(13) Device name
(14) Device type
(15) Applicable model

- Typing an applied instruction

Some applied instructions are composed of instruction names, e.g. BRET and SRET, but most applied instructions are composed of instruction names and operands.
The applied instructions that a DVP-10PM series motion controller can use are assigned the instruction numbers API 00~API 260. Besides, every applied instruction is assigned a mnemonic. For example, the mnemonic of API 12 is MOV. If users want to type an instruction by means of PMSoft, they can type the mnemonic assigned to the instruction. If users want to type an instruction by means of the handheld programming panel DVPHPP03, they can type the API number assigned to the instruction. Every applied instruction specifies operands. Take the instruction MOV for instance.

The instruction is used to move the value in the operand \mathbf{S} to the operand \mathbf{D}.

S	Source operand If there is more one source operand, the source operands will be represented by $\mathbf{S}_{1}, \mathbf{S}_{2}$, and etc.
D	Destination operand If there is more than one destination operand, the destination operands will be represented by $\mathbf{D}_{1}, \mathbf{D}_{2}$, and etc.
If operands are constants, they will be represented by $\mathbf{m}, \mathbf{m}_{\mathbf{1}}, \mathbf{m}_{\mathbf{2}}, \mathbf{n}, \mathbf{n}_{\mathbf{1}}, \mathbf{n}_{2}$, and etc.	

If operands are constants, they will be represented by $\mathbf{m}, \mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{n}, \mathbf{n}_{1}, \mathbf{n}_{\mathbf{2}}$, and etc.

- Length of an operand (16-bit instruction or 32-bit instruction)

The values in operands can be grouped into 16 -bit values and 32 -bit values. In order to process values of difference lengths, some applied instructions are grouped into 16 -bit instructions and 32 -bit instructions. After " D " is added to the front of a 16-bit instruction, the instruction becomes a 32-bit instruction.

The instruction MOV is a 16 -bit instruction.

The instruction DMOV is a 32-bit instruction.

When X0 is ON, K10 is moved to D10.

When X 1 is ON , the value in (D11, D10) is moved to (D21, D20).

5
 Applied Instructions and Basic Usage

- Continuity instruction/Pulse instruction

The applied instructions can be grouped into continuity instructions and pulse instructions in terms of the ways the applied instructions are executed. If an instruction in a program is not executed, the execution of the program will take less time. As a result, if there are pulse instructions in a program, the scan cycle will be shorter. If " P " is added to the back of an instruction, the instruction becomes a pulse instruction. Some instructions are mostly used as pulse instructions.

Pulse instruction

Continuity instruction

When X0 is turned from OFF to ON, the instruction MOVP is executed once. MOVP will not be executed again during the scan cycle, and therefore it is a pulse instruction.

Whenever X 1 is ON , the instruction MOV is executed once. MOV is a continuity instruction.

When the contacts X 0 and X 1 are OFF, the instructions are not executed, and the values in the destation operands are not changed.

- Operand

1. A word device can consist of bit devices. Applied instructions can use $\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}$, and KnS . Values can be stored in KnX, KnY, KnM, and KnS.
2. Data registers, timers, counters, and index registers can be used as general operands.
3. A data register is a 16 -bit register. If users want to use a 32 -bit data register, they have to specify two consecutive data registers.
4. If a 32-bit instruction uses D0 as an operand, the 32-bit data register composed of D1 and D0 will be used. D1 occupies the high 16 bits, and D0 occupy the low 16 bits. Timers and the 16-bit counters C0~C199 can be used in the same way.
5. If the 32 -bit counters $\mathrm{C} 200 \sim \mathrm{C} 255$ are used as data registers, they can be operands used by 32-bit instructions.

- Operand type

1. X devices, Y devices, M devices, and S devices can only be turned ON or OFF. They are bit devices.
2. 16-bit (or 32-bit) T devices, C device, D devices, V devices, and Z devices are word devices.
3. If $K n$ is added to the front of an $X / Y / M / S$ device, a word device will be formed. For example, K2M0 represents a device composed of the eight bit devices MO~M7.

When XO is ON, the values of MO~M7 are moved to bit 0~bit 7 in D10, and bit 8~bit 15 are set to 0 .

- Values in word devices composed of bit devices

16-bit instruction		32-bit instruction	
A 16-bit value is in the range of $K-32,768$ to K32,767.		A 32-bit value is in the range of $K-2,147,483,648$ to K2,147,483,647.	
Value in a word device composed of bit devices		Value in a word device composed of bit devices	
K1 (4 bits)	0~15	K1 (4 bits)	0~15
K2 (8 bits)	0~255	K2 (8 bits)	0~255
K3 (12 bits)	0~4,095	K3 (12 bits)	0~4,095
K4 (16 bits)	-32,768~+32,767	K4 (16 bits)	0~65,535
		K5 (20 bits)	0~1,048,575
		K6 (24 bits)	0~167,772,165
		K7 (28 bits)	0~268,435,455
		K8 (32 bits)	-2,147,483,648~+2,147,483,647

- General flags

Example: M1968 is a zero flag, M1969 is a borrow flag, and M1970 is a carry flag Every flag in a DVP-10PM series motion controller corresponds to an operation result.
The state of a flag varies with an operation result. For example, if the instruction ADD/SUB/MUL/DIV is used in the main program O100~M102, the operation result gotten will affect the states of M1968~M1970. However, if the instruciton is not executed, the states of the flags will remain unchanged. The states of flags are related to instructions. Please refer to the explanations of instructions for more information.

5.3 Processing Values

- X devices, Y devices, M devices, and S devices can only be turned ON or OFF. They are bit devices. Values can be stored in T device, C devices, D devices, V devices, and Z devices. They are word devices. If Kn is added to the front of an $\mathrm{X} / \mathrm{Y} / \mathrm{M} / \mathrm{S}$ device, a word device will be formed.
- If Kn is added to the front of an X/Y/M/S device, a word device will be formed. For example, K2M0 represents a device composed of the eight bit devices M0~M7.

- The value in K1M0 is moved to a 16-bit register, and bit 4~bit 15 in the register are set to 0 . The value in K2M0 is moved to a 16-bit register, and bit 8~bit 15 in the register are set to 0 . The value in K3M0 is moved to a 16-bit register, and bit 12~bit 15 in the register are set to 0 . The value in K1M0 is moved to a 32-bit register, and bit 4~bit 31 in the register are set to 0 . The value in K2MO is moved to a 32 -bit register, and bit 8~bit 31 in the register are set to 0 . The value in K3M0 is moved to a 32-bit register, and bit 12~bit 31 in the register are set to 0 . The value in K4MO is moved to a 32-bit register, and bit 16~bit 31 in the register are set to 0 . The value in K5M0 is moved to a 32-bit regiser, and bit 20~bit 31 in the register are set to 0 . The vlaue in K6M0 is moved to a 32-bit register, and bit 24~bit 31 in the register are set to 0 . The value in K7M0 is moved to a 32-bit register, and bit 28~bit 31 in the register are set to 0 .
- If Kn is in the range of K1~K3 (or K4~K7), the bits which are not assigned values in the 16-bit register (the 32-bit register) to which a value is moved will be set to 0 . As a result, operations will be performed on positive values if Kn is in the range of K1~K3 (or K4~K7).

The binary-coded decimal value in $\mathrm{X} 4 \sim \mathrm{X} 11$ is converted into a binary value, and the binary value is stored in DO.
Users can specify bit device numbers freely. It is suggested X device numbers $/ Y$ devuce numbers should end with 0 , and that M device numbers/S device numbers should start from a number which is a multiple of 8 .

5
 Applied Instructions and Basic Usage

- Consecutive devices

Take data registers for instances. D0, D1, D2, D3, and D4 are consecutive data registers.
The consecutive word devices composed of bit devices are shown below.

K1X0	K1X4	K1X10	K1X14......
K2Y0	K2Y10	K2Y20	Y2X30.....
K3M0	K3M12	K3M24	K3M36.....
K4S0	K4S16	K4S32	K4S48......

The consecutive word devices composed of bit devices are shown above. To avoid confusion, please do not skip any word device composed of bit devices. Beisdes, if a 32-bit operation is performed on K4Y0, the high 16 bits in the 32 -bit register to which the value in K4Y0 is moved will be set to 0 . If a 32 -bit value is required, please use K8Y0.
After an operation is performed, the binary integer gotten will be given priority. For example, $40 \div 3=13$, and the remainder 1 is dropped. The integer part of the square root of an integer is retained, and the fractional part of the square root is dropped. However, if a decimal instruiction is used, a decimal will be gotten.
The applied intructions listed below are decimal instructions.

API 110 (D ECMP)	API 111 (D EZCP)	API 116 (D RAD)	API 117 (D DEG)
API 120 (D EADD)	API 121 (D ESUB)	API 122 (D EMUL)	API 123 (D EDIV)
API 124 (D EXP)	API 125 (D LN)	API 126 (D LOG)	API 127 (D ESQR)
API 128 (D POW)	API 129 (D INT)	API 130 (D SIN)	API 131 (D COS)
API 132 (D TAN)	API 133 (D ASIN)	API 134 (D ACOS)	API 135 (D ATAN)
API 136 (D SINH)	API 137 (D COSH)	API 138 (D TANH)	

Representations of binary floating-point values

The floating-point values in a DVP-10PM series motion controller are 32-bit floating-point values, and the representations of the floating-point values conform to the IEEE 754 standard.

Representation of a floating-point value:
$(-1)^{S} \times 2^{E-B} \times 1 . M ; B=127$
A 32-bit floating-point value is in the range of $\pm 2^{-126}$ to $\pm 2^{+128}$, that is, a 32 -bit floating-point value is in the range of $\pm 1.1755 \times 10^{-38}$ to $\pm 3.4028 \times 10^{+38}$.
Example 1: 23 is represented by a 32 -bit floating-point value.
Step 1: Converting 23 into a binary value: 23.0=10111
Step 2: Normalizing the binary value: $10111=1.0111 \times 24$ (0111 is a mantissa, and 4 is an exponent)
Step 3: Getting the exponent which is stored

$$
\because \mathrm{E}-\mathrm{B}=4 \rightarrow \mathrm{E}-127=4 \therefore \mathrm{E}=131=10000011_{2}
$$

Step 4: Combining the sign bit, the exponent, and the mantissa to form a floating-point value. $01000001101110000000000000000000_{2}=41 \mathrm{BB}_{2} 0000_{16}$

Example 2: -23.0 is represented by a 32 -bit floating-point value. -23.0 is converted in the same way as 23.0 . Users only need to change the sign bit to 1 .
A DVP-10PM series motion controller uses two consecutive registers to form a 32-bit floating-point values. Take (D1, D0) in which a bianry floating-point value is stored for instance.

Decimal floating-point value

- Since binary floating-point values are not widely accepted by people, they can be converted into decimal floating-point values. However, the decimals on which operations are performed in a DVP-10PM series motion controller are still binary floating-point values.
- A decimal floating-point value is stored in two consecutive registers. The constant part is stored in the register whose device number is smaller, and the exponent part is stored in the register whose device number is bigger.
Take (D1, D0) for instance.
[Exponent D1]
Decimal floating-point number=[Constant D0]* 10
Base: D0= $\pm 1,000 \sim \pm 9,999$
Exponent: D1=-41~+35
Besides, the base 100 does not exist in DO because 100 is represented by $1,000 \times 10^{-1}$. A decimal floating-point value is in the range of $\pm 1,175 \times 10^{-41}$ to $\pm 3,402 \times 10^{+35}$.
- If the instruction ADD/SUB/MUL/DIV is used in the main program O100~M102, the operation result gotten will affect the states of M1968~M1970. If a floating-point operation instruction is used, the result gotten will also affect the state of the zero flag M1968, the state of the borrow flag M1969, and the state of the carry flag M1970.
- Zero flag: If the operation result gotten is 0, M1968 will be ON.
- Carry flag: If the absolute value of the operaiton result gotten is greater than the maximum value allowed, M1969 will be ON.
- Borrow flag: If the absolute value of the operation result gotten is less than the minimum value allowed, M1970 will be ON.

5.4 Using I ndex Registers to Modify Operands

V devices are 16 -bit index registers, and Z devices are 32-bit index registers. There are 6 V devices (V0~V5), 8 Z devices (Z0~Z7) in a DVP-10PM series motion controller.

V devices are 16 -bit registers. Data can be freely
 written into a V device, and data can be freely read from a \vee device. If a 32-bit value is required, please use a Z device.

Index registers can be used to modify P/I/X/Y/M/S/KnX/KnY/KnM/KnS/T/C/D devices, but they can not be used to modify index registers, constants, and Kn. For example, K4@Z0 is invalid, K4M0@ZO is valid,

5
 Applied Instructions and Basic Usage

and K0@ZOMO is invalid. The devices marked with ‘ * ' displayed in grayscale in the table in the explanation of an applied instruction can be modified by \vee devices and Z devices..

5.5 I nstruction I ndex

- Arranging applied instructions in alphabetical order

Type	API	Instruction code		Pulse instruction	Function	Step		Page No.
		16-bit	32-bit			16-bit	32-bit	
A	87	ABS	DABS	\checkmark	Absolute value	3	5	5-84
	20	ADD	DADD	\checkmark	Binary addition	7	9	5-35
	66	ALT	-	\checkmark	Alternating between ON and OFF	3	-	5-75
	218	AND\&	DAND\&	-	S1\&S2	5	7	5-126
	220	AND^	DAND^	-	S1^S2	5	7	5-126
	219	AND\|	DAND\|	-	S1\|S2	5	7	5-126
	234	AND<	DAND<	-	S1 < S2	5	7	5-129
	93	ANDF	-	-	Connecting falling-edge detection in series	3	-	4-10
	92	ANDP	-	-	Connecting rising-edge detection in series	3	-	4-10
	47	ANR	-	\checkmark	Resetting an annunciator	1	-	5-67
	46	ANS	-	-	Driving an annunciator	7	-	5-66
	237	AND<=	DAND<=	-	$\mathrm{S} 1 \leqq$ S2	5	7	5-129
	236	AND<>	DAND<>	-	S1 \ddagger S2	5	7	5-129
	232	AND=	DAND=	-	S1 = S2	5	7	5-129
	233	AND>	DAND>	-	S1 > S2	5	7	5-129
	238	AND>=	DAND>=	-	S1 2 S2	5	7	5-129
	134	-	DACOS	\checkmark	Arccosine of a binary floating-point value	-	6	5-116
	133	-	DASIN	\checkmark	Arcsine of a binary floating-point value	-	6	5-115
	135	-	DATAN	\checkmark	Arctangent of a binary floating-point value	-	6	5-117
B	18	BCD	DBCD	\checkmark	Converting a binary value into a binary-coded decimal value	5	5	5-33
	19	BIN	DBIN	\checkmark	Converting a binary-coded decimal value into a binary value	5	5	5-34
	15	BMOV	-	\checkmark	Transferring values	7	-	5-29
	44	BON	DBON	\checkmark	Checking the state of a bit	7	13	5-64
	258	BRET	-	-	Returning to a busbar	1	-	5-141
C	01	CALL	-	\checkmark	Calling a subroutine	3	-	5-16
	131	-	DCOS	\checkmark	Cosine of a binary floating-point value	5	6	5-111
	137	-	DCOSH	\checkmark	Hyperbolic cosine of a binary floating-point value	-	6	5-119
	00	CJ	-	\checkmark	Conditional jump	3	-	5-13
	256	CJN	-	\checkmark	Negated conditional jump	3	-	5-139
	14	CML	DCML	\checkmark	Inverting bits	5	9	5-28
	10	CMP	DCMP	\checkmark	Comparing values	7	9	5-22
	97	CNT	DCNT	-	16-bit counter	5	6	4-9
D	25	DEC	DDEC	\checkmark	Subtracting one from a binary value	3	3	5-41
	41	DECO	-	\checkmark	Decoder	7	-	5-59
	117	-	DDEG	\checkmark	Converting a radian to a degree	-	6	5-98
	23	DIV	DDIV	\checkmark	Binary division	7	9	5-39
E	42	ENCO	-	\checkmark	Encoder	7	-	5-61
	172	-	DADDR	\checkmark	Floating-point addition	-	13	5-121
	175	-	DDIVR	\checkmark	Floating-point division	-	13	5-124
	120	-	DEADD	\checkmark	Binary floating-point addition	7	9	5-99

Type	API	Instruction code		Pulse instruction	Function	Step		Page No.
		16-bit	32-bit			16-bit	32-bit	
E	110	-	DECMP	\checkmark	Comparing binary floating-point values	7	9	5-94
	123	-	DEDIV	\checkmark	Binary floating-point division	7	9	5-102
	122	-	DEMUL	\checkmark	Binary floating-point multiplication	7	9	5-101
	127	-	DESQR	\checkmark	Square root of a binary floating-point value	5	6	5-106
	121	-	DESUB	\checkmark	Binary floating-point subtraction	7	9	5-100
	124	-	DEXP	\checkmark	Exponent of a binary floating-point value	-	6	5-103
	111	-	DEZCP	\checkmark	Binary floating-point zonal comparison	9	12	5-95
	112	-	DMOVP	\checkmark	Transferring a floating-point value	-	9	5-96
	174	-	DMULR	\checkmark	Floating-point multiplication	-	13	5-123
	173	-	DSUBR	\checkmark	Floating-point subtraction	-	13	5-122
F	49	-	DFLT	\checkmark	Converting a binary integer into a binary floating-point value	-	6	5-70
	16	FMOV	DFMOV	\checkmark	Transferring a value to several devices	7	13	5-31
	78	FROM	DFROM	\checkmark	Reading data from a control register in a special module	9	12	5-80
1	24	INC	DINC	\checkmark	Adding one to a binary value	3	3	5-40
	129	-	DINT	\checkmark	Converting a binary floating-point value into a binary integer	-	6	5-108
J	257	JMP	-	-	Unconditional jump	3	-	5-140
L	215	LD\&	DLD\&	-	S1\&S2	5	7	5-125
	217	LD^	DLD^	-	S1^S2	5	7	5-125
	216	LD\|	DLD\|	-	S1\|S2	5	7	5-125
	226	LD<	DLD<	-	S1 < S2	5	7	5-128
	229	LD<=	DLD<=	-	$\mathrm{S} 1 \leqq \mathrm{~S} 2$	5	7	5-128
	228	LD<>	DLD<>	-	S1 $=$ S2	5	7	5-128
	224	LD=	DLD=	-	S1 = S2	5	7	5-128
	225	LD>	DLD>	-	S1 > S2	5	7	5-128
	230	LD>=	DLD>=	-	$\mathrm{S} 1 \geqq \mathrm{~S} 2$	5	7	5-128
	125	-	DLN	\checkmark	Natural logarithm of a binary floating-point value	-	6	5-104
	126	-	DLOG	\checkmark	Logarithm of a binary floating-point value	-	9	5-105
	90	LDP	-	-	Starting rising-edge detection	3	-	4-9
	91	LDF	-	-	Starting falling-edge detection	3	-	4-10
M	45	MEAN	DMEAN	\checkmark	Mean	7	13	5-65
	259	MMOV	-	\checkmark	Converting a 16-bit value into a 32-bit value	6	-	5-142
	100	MODRD	-	-	Reading Modbus data	7	-	5-85
	101	MODWR	-	-	Writing Modbus data	7	-	5-89
	12	MOV	DMOV	\checkmark	Transferring a value	5	6	5-24
	22	MUL	DMUL	\checkmark	Binary multiplication	7	9	5-38
N	29	NEG	DNEG	\checkmark	Taking the two's complement of a value	3	3	5-45
O	221	OR\&	DOR\&	-	S1\&S2	5	7	5-127
	223	OR^	DOR^	-	S1^S2	5	7	5-127
	222	OR\|	DOR\|	-	S1\|S2	5	7	5-127
	242	OR<	DOR<	-	S1 < S2	5	7	5-130
	245	$\mathrm{OR}<=$	DOR<=	-	$\mathrm{S} 1 \leqq \mathrm{~S} 2$	5	7	5-130
	244	OR<>	DOR<>	-	S1才S2	5	7	5-130
	240	OR=	DOR=	-	S1 = S2	5	7	5-130
	241	OR>	DOR>	-	S1 > S2	5	7	5-130

Type	API	Instruction code		Pulse instruction	Function	Step		Page No.
		16-bit	32-bit			16-bit	32-bit	
0	246	OR>=	DOR>=	-	$\mathrm{S} 1 \geqq$ S2	5	7	5-130
	95	ORF	-	-	Connecting falling-edge detection in parallel	3	-	4-11
	94	ORP	-	-	Connecting rising-edge detection in parallel	3	-	4-11
P	99	PLF	-	-	Falling-edge output	3	-	4-12
	89	PLS	-	-	Rising-edge output	3	-	4-12
	128	-	DPOW	\checkmark	Power of a floating-point value	-	9	5-107
R	116	-	DRAD	\checkmark	Converting a degree to a radian	-	6	5-97
	67	RAMP	DRAMP	-	Ramp	9	17	5-76
	154	RAND	DRAND	\checkmark	Random value	7	13	5-132
	33	RCL	DRCL	\checkmark	Rotating bits leftwards with a carry flag	5	9	5-50
	32	RCR	DRCR	\checkmark	Rotating bits rightward with a carry flag	5	9	5-49
	50	REF	-	\checkmark	Refreshing the states of I/O devices	5	-	5-72
	260	RMOV	-	\checkmark	Converting a 32 -bit value into a 16 -bit value	6	-	5-143
	31	ROL	DROL	\checkmark	Rotating bits leftwards	5	9	5-48
	30	ROR	DROR	\checkmark	Rotating bits rightwards	5	9	5-47
	09	RPE	-	-	End of a nested loop	1	-	5-21
	08	RPT	-	-	Start of a nested loop (only one loop)	3	-	5-20
S	202	SCAL	-	\checkmark	Scale	9	-	5-133
	203	SCLP	DSCLP	\checkmark	Parameter scale	7	13	5-135
	61	SER	DSER	\checkmark	Searching data	9	17	5-73
	39	SFRD	-	\checkmark	Moving a value and reading it from a word device	7	-	5-57
	35	SFTL	-	\checkmark	Moving the states of bit devices leftwards	9	-	5-52
	34	SFTR	-	\checkmark	Moving the states of bit devices rightwards	9	-	5-51
	38	SFWR	-	\checkmark	Moving a value and writing it into a word device	7	-	5-56
	13	SMOV	-	\checkmark	Transferring digits	11	-	5-25
	69	SORT	DSORT	-	Sorting data	11	21	5-78
	130	-	DSIN	\checkmark	Sine of a binary floating-point value	5	6	5-109
	136	-	DSINH	\checkmark	Hyperbolic sine of a binary floating-point value	-	6	5-118
	48	SQR	DSQR	\checkmark	Square root of a binary value	5	9	5-69
	02	SRET	-	-	Indicating that a subroutine ends	1	-	5-17
	21	SUB	DSUB	\checkmark	Binary subtraction	7	9	5-37
	43	SUM	DSUM	\checkmark	Number of bits which are ON	5	9	5-63
	147	SWAP	DSWAP	\checkmark	Interchanging the high byte in a device with the low byte in the device	3	5	5-131
T	132	-	DTAN	\checkmark	Tangent of a binary floating-point value	5	6	5-113
	138	-	DTANH	\checkmark	Hyperbolic tangent of a binary floating-point value	-	6	5-120
	96	TMR	-	-	16-bit timer	5	-	4-8
	79	TO	DTO	\checkmark	Writing data into a control register in a special module	9	13	5-81
W	26	WAND	DWAND	\checkmark	Logical AND operation	7	9	5-42
	07	WDT	-	\checkmark	Watchdog timer	1	-	5-19
	27	WOR	DWOR	\checkmark	Logical OR operation	7	9	5-43
	37	WSFL	-	\checkmark	Moving the values in word devices leftwards	9	-	5-55
	36	WSFR	-	\checkmark	Moving the values in word devices rightwards	9	-	5-53
	28	WXOR	DWXOR	\checkmark	Logical exclusive OR operation	7	9	5-44
X	17	XCH	DXCH	\checkmark	Interchanging values	5	9	5-32
Z	11	ZCP	DZCP	\checkmark	Zonal comparison	9	12	5-23
	40	ZRST	-	\checkmark	Resetting a zone	5	-	5-58

5.6 Descriptions of the Applied I nstructions

API					Conditional jump	Applicable model
	CJ		S	10PM		

	Bit device				Word device											16 -bit instruction (3 steps)			
	X	Y	M	S	K	H	KnX	KnY	KnM	KnS	T	C	D	V	Z	CJ	Continuity	CJP	Pulse instruction
Note: S can be a pointer.																	instruction		
S can be a pointer in the range of P0 to P255. A pointer can not be modified by a V device or a Z device.																32 -bit instruction			
																	-	-	-
																- Flag: None			

Explanation

S: Pointer which points to a jump destination

- If some part of the main program O100 does not need to be executed, users can use CJ or CJP to shorten the scan time. Besides, if a dual output is used, users can use CJ or CJP.
- If the program specified by a pointer is prior to the instruction CJ, a watchdog timer error will occur, and the main program will not be executed. Please use the instruction carefully.
- The instruction CJ can specify the same pointer repeatedly. The pointer specified by CJ can not be the same as the pointer specified by CALL, otherwise an error will occur.
- When the instruction CJ/CJP in a program is executed, the actions of the devices in the program are as follows.

1. The states of the Y devices, the states of the M devices, and the states of the S devices in the program remain the same as those before the execution of the jump.
2. The 10 millisecond timers in the program stop counting.
3. The general counters in the program stop counting, and the general applied instructions in the program are not executed.
4. If the instructions which are used to reset the timers in the program are driven before the jump is executed, the timers will still be reset during the execution of the jump.

- When XO is ON, the execution of the program jumps from address 0 to address

Example 1

- When XO is OFF, the execution of the program starts from address 0 , and the instruction CJ is not executed.

5 Applied Instructions and Basic Usage

Example 2

States of devices

Device	States of contacts before the execution of CJ	States of contacts during the execution of CJ	States of output coils during the execution of CJ
Y devices, M devices, S devices	M1, M2, and M3 are OFF.	M1, M2, and M3 are turned from OFF to ON.	Y1 ${ }^{* 1}$, M20, and S1 are OFF.
	M1, M2, and M3 are ON.	M1, M2, and M3 are turned from ON to OFF.	Y1 ${ }^{* 1}$, M20, and S1 are ON.
$\begin{gathered} 10 \\ \text { millisecond } \\ \text { timers } \end{gathered}$	M 4 is OFF.	M4 is turned from OFF to ON.	The timer T0 does not count.
	M 4 is ON .	M4 is turned from ON to OFF.	The timer T0 stops counting immediately. When MO is turned from ON to OFF, the timer TO is reset to 0 .
	M6 is OFF.	M6 is turned from OFF to ON.	The timer T240 does not count.
	M6 is ON.	M6 is turned from ON to OFF.	The timer T240 stops counting immediately. When MO is turned from ON to OFF, the timer T240 is reset to 0 .
C0~C234	M7 and M10 are OFF.	M10 is ON/OFF.	The counter C0 does not count.
	M7 is OFF. M10 is ON/OFF.	M10 is ON/OFF.	C0 stops counting. After MO is turned OFF, C0 will resume counting.
Applied instructions	M11 OFF	M11 is turned from OFF to ON.	The applied instructions are not executed.
	M11 ON	M11 is turned from ON to OFF.	The applied instructions which are skipped are not executed, but API 53~API 59 and API 157~API 159 are still executed,

*1: Y1 is a dual output. When M0 is OFF, Y1 is controlled by M1. When M0 is ON, Y1 is controlled by M12.

- Y1 is a dual output. When M0 is OFF, Y1 is controlled by M1. When MO is ON, Y 1 is controlled by M12.

5 Applied Instructions and Basic Usage

API						(S)					Calling a subroutine							Applicable model		
01	CALL																	10PM		
																		\checkmark		
	Bit device					Word device											CALL	ruction (3 st		
	X	Y	M	S	K	H	KnX	KnY	KnM\|	KnS	T	C	D	V	Z	Continuity		CALP	Pulse	
	Note:	:	an	be a	pois												instruction		instruction	
			can	be a	poin	in	the ra	ange	of P0	to P	255					32-bit in	ruction			
			poin	c	n	be	odifi	d b	a V	devi	o	a Z	devi				-	-	-	
																- Flag:				

Explanation

S: Pointer which points to a subroutine

- The subroutine to which a pointer points should be written after M102, M2 and the instruction SRET.
- The pointer used by the instruction CALL can not be the same as the pointers used by the instructions CJ, CJN, and JMP.
- If only the instruction CALL is used, the same subroutine can be called repeatedly.

Example 1

Example 2

The instruction SRET indicates that a soubroutine ends. After the execution of a subroutine in a program is complete, the instruction following CALL which calls the subroutine in the main program O 100 will be executed.

- When XO is ON, the instruction CALL is executed, and the execution of the program jumps to the subroutine to which P2 points. When the instruction SRET is executed, the execution of the program returns to address 24.

Subroutine
- When X20 is turned from OFF to ON, the instruction CALL P10 is executed, and the execution of the program jumps to the subroutine to which P10 points. When X11 is ON, the instruction CALL P11 is executed, and the execution of the program jumps to the subroutine to which P11 points.
- When X12 is ON, the instruction CALL P12 is executed, and the execution of the program jumps to the subroutine to which P12 points.
- When X13 is ON, the instruction CALL P13 is executed, and the execution of the program jumps to the subroutine to which P13 points.
- When X14 is ON, the instruction CALL P14 is executed, and the execution of the program jumps to the subroutine to which P14 points. When the instruction SRET is executed, the execution of the program returns to the previous subroutine.
- When the instruction SRET in the subroutine to which P10 points is executed, the execution of the program returns to the main program.

Explanation

Additional remark

- The instruction WDT is used to reset the watchdog timer in a DVP-10PM series motion controller. If the scan time in a DVP-10PM series motion controller exceeds 200 milliseconds, the ERROR LED indicator of the motion controller will be ON, and users will have to disconnect the motion control module. After the users connect the motion controller again, the motion controller will judge its state according to the setting of the "STOP/RUN switch" switch. If there is no "STOP/RUN switch" switch, the motion controller will stop running automatically.
- The points when a watchdog timer acts are as follows.
- The system is abnormal.
- The execution of a program takes much time, and therefore the scan time is greater than the setting value in D1000. There are two ways users can use to improve the situation.

1. Using the instruction WDT

2. Changing the value in D1000 (The default setting is 200 milliseconds.)

Example

Suppose the scan time is 300 milliseconds. After the program is divided into two parts, and the instruction WDT is inserted between these two parts, the time it takes to scan either the first part of the program or the second part of the program will be less than 200 milliseconds.

- The instruction WDT is executed when a condition is met. Users can make the instruction WDT executed only in one scan cycle by writing a program. They can use the pulse instruction WDTP.
- The default setting of a watchdog timer is 200 milliseconds. Users can set a watchdog timer by means of D1000.

5 Applied Instructions and Basic Usage

[^0]

Explanation

Example 1

Example 2

- RPT in a program specifies that the RPT-RPE loop in the program must be executed N times.
- N is in the range of $K 1$ to $K 32,767$. If $N \leqq K 1, N$ will be regarded as $K 1$.
- Users can skip the execution of the RPT-RPE loop in a program by means of the instruction CJ .
- An error will occur if

1. the instruction RPE is before the instruction RPT.
2. there is RPT, but there is no RPE.
3. the number of times RPT is used is not the same as the number of times RPE is used.

- There is only one RPT-RPE loop in a program. If there is more than one RPT-RPE loop in a program, an error will occur.
- Part A can be executed three times by means of a RPT-RPE loop.

When X0. 7 is OFF, the program between RPT and RPE is executed. When X 0.7 is ON , the instruction CJ is executed, the subroutine to which P6 points is executed, and the program between RPT and RPE is skipped.

5
 Applied Instructions and Basic Usage

- $\quad \mathbf{S}_{1}$: Comparison value 1; \mathbf{S}_{2} : Comparison value 2; \mathbf{D} : Comparison result

Explanation

Example

- The operand D occupies three consecutive devices.
- If the operand D is $Y 0, Y 0, Y 1$, and $Y 2$ will be occupied automatically.
- When $\mathrm{X10}$ is ON , the instruction CMP is executed, and $\mathrm{Y} 0, \mathrm{Y} 1$, or Y 2 is ON . When X10 is OFF, the execution of the instruction CMP stops, and the states of $\mathrm{Y} 0, \mathrm{Y} 1$, and Y 2 remain unchanged.
- If users want to get the result that $\mathrm{K} 10 \geqq$ the value in D10, they have to connect Y 0 and Y 1 in series. If users want to get the result that $\mathrm{K} 10 \leqq$ the value in D10, they have to connect Y 1 and Y 2 in series. If users want to get the result that K10キthe value in D10, they have to connect Y0, Y1, and Y2 in series.

$\stackrel{\text { x10 }}{1}$					
		CMP	K10	D10	Yo
	YO	If $\mathrm{K} 10>$ the value in $\mathrm{D} 10, \mathrm{Y} 0$ will be ON .			
	Y_{1}	If $\mathrm{K} 10=$ the value in D10, Y1 will be ON.			
	Y2	If $\mathrm{K} 10<$ the value in D10, Y 2 will be ON .			
	-1				

API								

	Bit device				Word device											16-bit instruction (9 steps)			
	X	Y	M	S	K	H	KnX	KnY	KnM	KnS	T	C	D	V	Z	ZCP instruction ZCPP instruction			
S_{1}					*	*	*	*	*	*	*	*	*	*	*				
S_{2}					*	*	*	*	*	*	*	*	*	*	*	32-bit instruction(12 steps) DZCP Continuity instruction DZCPPPulse instruction			
S					*	*	*	*	*	*	*	*	*	*	*	- Flag: None			
D		*	*	*															
- Note: The instruction supports V devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges.																			

- $\quad \mathbf{S}_{1}$: Minimum value; \mathbf{S}_{2} : Maximum value; \mathbf{S} : Comparison value; \mathbf{D} : Comparison

Explanation

Example

- The instruction is used to compare the value in \mathbf{S} with that in \mathbf{S}_{1}, and compare the value in \mathbf{S} with that in \mathbf{S}_{2}. The comparison result is stored in \mathbf{D}.
- The value in $\mathbf{S}_{\mathbf{2}}$ must be greater than that in \mathbf{S}_{1}.
- The operand D occupies three consecutive devices.
- If the operand D is M0, M0, M1, and M2 will be occupied automatically.

When XO is ON, the instruction ZCP is executed, and MO, M1, or M2 is ON. When X0 is OFF, the execution of the instruction ZCP stops, and the states of M0, M1, and M2 remain unchanged.

5 Applied Instructions and Basic Usage

Explanation

Example

S: Source; D: Destination
When the instruction is executed, the value in \mathbf{S} is transferred to \mathbf{D}. When the instruction is not executed, the value in \mathbf{D} is unchanged.

- If an operation result gotten is a 32-bit value, users can only move the operation result by means of the instruction DMOV.
- If users want to move a 16 -bit value, they have to use the instruction MOV.

1. When $X O$ is OFF, the value in DO is unchanged. When $X O$ is $O N$, the value K10 is transferred to the data register D0.
2. When X 1 is OFF, the value in D10 is unchanged. When X 1 is ON , the value in K2M4 is transferred to the data register D10.

- If users want to move a 32 -bit value, they have to use the instruction DMOV. When X2 is OFF, the values in (D31, D30) and (D41, D40) are unchanged. When X2 is ON, the value in (D21, D20) is transferred to (D31, D30), and the value in (D51, D50) is transferred to (D41, D40).

Explanation
\mathbf{S} : Data source; \mathbf{m}_{1} : Start digit which will be transferred from the source device; \mathbf{m}_{2} : Number of digits which will be transferred; D: Data destination; \mathbf{n} : Start digit where the source data is stored in the destination device

- The value used by the instruction is a binary-coded decimal value (M1168 is OFF).
The value used by SMOV is a binary-coded decimal value. When the instruction is executed, the \mathbf{m}_{2} digits of the four-digit binary-code decimal value in \mathbf{S} which start from the $\mathbf{m}_{1}{ }^{\text {th }}$ digit of the four-digit binary-code decimal value in \mathbf{S} are transferred to the \boldsymbol{m}_{2} digits of the four-digit binary-code decimal value in \mathbf{D} which starts from the $\mathbf{n}^{\text {th }}$ digit of the four-digit binary-code decimal value in \mathbf{D}.
- The value used by the instruction is a binary value (M1168 is ON).

When the instruction is executed, the \boldsymbol{m}_{2} digits of the four-digit decimal value in \mathbf{S} which start from the $\boldsymbol{m}_{1}^{\text {th }}$ digit of the four-digit decimal value in \mathbf{S} are transferred to the $\mathbf{m}_{\mathbf{2}}$ digits of the four-digit decimal value in \mathbf{D} which starts from the $\mathbf{n}^{\text {th }}$ digit of the four-digit decimal value in \mathbf{D}.

- m_{1} is in the range of 1 to 4 .
- m_{2} is in the range of 1 to m_{1}. (It can not be greater than m_{1}.)
- $\quad \mathbf{n}$ is in the range of \boldsymbol{m}_{2} to 4 . (It can not be less than \mathbf{m}_{2}.)

5 Applied Instructions and Basic Usage

Example 1

- When M1168 is OFF, the value used by SMOV is a binary-coded decimal value. When X0 is ON, the two digits of the decimal value in D10 which start from the fourth digit of the decimal value (the digit in the thousands place of the decimal value) in D10 are transferred to the two digits of the decimal value in D20 which start from the third digit of the decimal value (the digit in the hundreds place of the decimal value) in D20. After the instruction is executed, the digits in the thousands place of the decimal value $\left(10^{3}\right)$ and the ones place of the decimal value $\left(10^{\circ}\right)$ in D20 will be unchanged.
- If the binary-coded decimal value used is not in the range of 0 to 9,999, an operation error will occur, the instruction will not executed, M1067 will be ON, and the error code in D1067 will be 0E18 (hexadecimal value).

D10 (16-bit binary value)

D10 (4-digit binary-coded decimal value) Transferrring digits
D20 (4-digit binary-coded decimal value)
Coversion
D20 (16-bit binary value)
Suppose the value in D10 is K1234, and the value in D20 is K5678. After the instruction is executed, the value in D10 will be unchanged, and the value in D20 is K5128.

Example 2

When M1168 is ON, the value used by SMOV is a is binary value. When the instruction SMOV is executed, the binary values in D10 and D20 are not converted into the binary-coded decimal values, and evey digit which is transferred is composed of four bits.

$4^{\text {th }}$ digit $3^{\text {rd }}$ digit $2^{\text {nd }}$ digit $1^{\text {st }}$ digit

D10 (16-bit binary value)

Unchanged Unchanged

- Suppose the value in D10 is H1234, and the value in D20 is H5678. After the instruction is executed, the value in D10 will be unchanged, and the value in D20 is H5128.

5

Example 3

The two digits of the value of the DIP switch on the right are transferred to the the two digits of the value in D2 which start from the second digit of the value in D2, and the one digit of the value of the DIP switch on the left is transferred to the the first digit of the value in D1. The instruction SMOV can be used to transfer the first digit of the value in D1 to the third digit of the value in D2. In other words, the two DIP switches can be combined into one DIP switch by means of the instruction SMOV.

5
 Applied Instructions and Basic Usage

API	D	CML			\mathbf{P}	(S) D					Inverting bits								Applica	ble model										
14																			OPM											
	Bit device					Word device											16-bit instruction (5 steps)													
	X		Y	M	S	K	H	KnX	KnY	KnM	KnS	T	C	D	V	Z	CML	Continuity instruction	CMLP	Pulse										
S						*		*	*	*	*	*	*	*	*	*	instruction instruction 32-bit instruction (6 steps) DCML Continuity instruction													
D									*	*	*	*	*	*	*	*														
- Note: The instruction supports V devices and Z devices. (If the 16-bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ is used, it is suggested that $\mathrm{X} /$ devices/ Y devices/ M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system).																	- Flag: None													

Explanation

Example 1

Example 2

S: Source; D: Destination

The instruction is used to invert the bits in $\mathbf{S}(0 \rightarrow 1$ and $1 \rightarrow 0)$, and transfer the inversion result to \mathbf{D}.

- When X10 is ON, bit 0~bit 3 in D1 are inverted, and the inversion result is transferred to $\mathrm{Y} 0 \sim \mathrm{Y} 3$.

The circuits below can be represented by means of the instruction CML.

X000	M 0
$\mathrm{X001}$	M 1
X 002	M 2

Explanation

Example 1

S: Source; D: Destination; n: Length

- The instruction is used to transfer the values in registers to new registers. The values in the \mathbf{n} registers starting from \mathbf{S} are transferred to the \mathbf{n} registers starting from \mathbf{D}. If \mathbf{n} is not in the range available, only the values in registers available will be transferred.
\mathbf{n} is in the range of 1 to 512 .
- When X2.0 is ON, the values in D0~D3 are transferred to D20~D23.

$$
\left.\begin{array}{|l|l|}
\hline \mathrm{D} 0 & \rightarrow \\
\hline \mathrm{D} 20 \\
\hline \mathrm{D} 1 \\
\hline \mathrm{D} 2 & \rightarrow \\
\hline \mathrm{D} 21 \\
\hline \mathrm{D} 22 \\
\hline \mathrm{D} 3 & \rightarrow \\
\hline \mathrm{D} 22 \\
\hline
\end{array}\right\} \mathrm{D} 23 \mathrm{n}=4
$$

Example 2

M0	$f \longrightarrow$	YO
M1		Y1
M2	\longrightarrow	Y2
M3	\longrightarrow	Y3

M4	Y4
M5	Y5
M6	Y6
M7	Y7

M8	Y10
M9	Y11
M10	Y12
M11	Y13

Example 3

- In order to prevent the error which results from the overlap between source devices and destination devices, the values in the source devices are transferred in the following way.

1. The device number of \mathbf{S} is greater than the device number of \mathbf{D}. The values in D20~D22 are transferred in the order $(1) \rightarrow(2) \rightarrow$ (3)

2. The device number of \mathbf{S} is less than the device number of \mathbf{D}. The values in D10~D12 are transferred in the order ${ }^{(3)} \rightarrow(2) \rightarrow$ (1). The values in D11~D13 are the same as the value in D10.

X21				
BMOV	D10	D11	K3	

D10	$\xrightarrow{(3)}$	D11
D11	$\xrightarrow{\text { 2) }}$	D12
D12	$\xrightarrow{(1)}$	D13

Explanation

Example

S: Source; D: Destination; n: Length
The value in \mathbf{S} is transferred to the n registers starting from \mathbf{D}. If \mathbf{n} is not in the range available, a value will only be transferred to registers available.
\mathbf{n} is in the range of 1 to 512 .

- When X20 is ON, K10 is transferred to the 5 registers starting from D10 (D10~D14).

F20	FMOV	K10	D10	K5

5
 Applied Instructions and Basic Usage

Explanation

Additional remark

Example

- \mathbf{D}_{1} : Value which is interchanged; \mathbf{D}_{2} : Value which is interchanged

The instruction is used to interchange the value in \mathbf{D}_{1} with the value in \mathbf{D}_{2}.

- It is suggested that users should use the pulse instruction XCHP.
- When XO is turned from OFF to ON, the value in D20 is interchanged with the value in D40.

Before the instruction is executed	Afterthe instruction is executed
D20 120	
D40 40	
D20	

- 16-bit instruction: If D_{1} is the same as D_{2}, and M1303 is ON, the high 8 bits are interchanged with the low 8 bits.
- 32-bit instruction: If D_{1} is the same as D_{2}, and M 1303 is ON , the high 16 bits are interchanged with the low 16 bits.
- When X0 is ON, and M1303 is ON, the high 8 bits in D100 are interchanged with the high 8 bits in D101, and the low 8 bits in D100 are interchanged with the low 8 bits in D101.

API 18	D	BCD		P	(S) D					Converting a binary value into a binary-coded decimal value								Applic	ble model	
																		PM		
	Bit device				Word device											16-bit ins	struction	teps)		
	X	Y	M		S	K	H	KnX	KnY	KnM	KnS	T	C	D	V	Z	BCD	Continuity	BCDP	Pulse
S							*	*	*	*	*	*	*	*						
D								*	*	*	*	*	*	*	*	32-bit in	Continuity	teps)	Pulse	

Explanation

Example

- The binary value in \mathbf{S} is converted into a binary-coded decimal value, and the conversion result is transferred to \mathbf{D}.
- If a binary value is converted to a binary-coded decimal value which is not in the range of 0 to 9,999 , the instruction BCD will not be executed. If a binary value is converted to a binary-coded decimal value which is not in the range of 0 to 99,999,999, the instruction DBCD will not be executed.
- BCD can be used to convert the binary value in a positioning unit to a binary-coded decimal value, and transfer the conversion result to an external device, e.g. a seven-segment display.
- When X0 is ON, the binary value in D10 is converted into a binary-coded decimal value, and the digit in the ones place of the conversion result is stored in K1Y0 (Y0~Y3).

If D10=001E (hexadecimal value)=0030 (decimal value), Y0~Y3=0000 (binary value).

5 Applied Instructions and Basic Usage

API	$\begin{array}{\|l\|} \hline W \\ \hline \mathbf{D} \end{array}$	BIN		P	(S) D					Converting a binary-coded decimal value into a binary value								Applic	ble model	
19																		OPM		
	Bit device				Word device											16-bit instruction (5 steps)				
	X	Y	M		S	K	H	KnX	KnY	KnM	KnS	T	C	D	V	Z	BIN	Continuity	BINP	Pulse
S							*	*	*	*	*	*	*	*	*	32 -bit instruction (6 steps)				
D								*	*	*	*	*	*	*	*	DBIN	Continuity	eps) DBINP	Pulse	
- Note: The instruction supports V devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32 -bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges.																		Operatio	instruction error flag	

Example

Additional remark

- S: Source; D: Conversion result
- The binary-coded decimal value in \mathbf{S} is converted into a binary value, and the conversion result is transferred to \mathbf{D}.
- The 16 -bit binary-coded decimal value in \mathbf{S} should be in the range of 0 to 9,999 , and the 32-bit binary-coded decimal value in \mathbf{S} should be in the range of 0 to 99,999,999.
- Decimal constants and hexadecimal constants are converted into binary values automatically. Users do not need to use the instruction.
- When X0 is ON, the binary-coded decimal value in K1M0 is converted into a binary value, and the conversion result is stored in D10.

Applications of the instructions BCD and BIN:

1. If a DVP-10PM series motion controller wants to read a binary-coded decimal value created by a DIP switch, users have to use the instruction BIN to convert the value into a binary value, and store the conversion result in the DVP-10PM series motion controller.
2. If users want to display a value stored in a DVP-10PM series motion controller on a seven-segment display on which binary-coded decimal values can be displayed, they have to use the instruction BCD to convert the value into a binary-coded decimal value, and transfer the conversion result to the seven-segment display.
3. When XO is ON, the binary-coded decimal value in K4MO is converted into a binary value, and the conversion result is stored in D100. Subsequently, the binary value in D100 is converted into a binary-coded decimal value, and the conversion result is stored in K4Y20.

Explanation

Example 1

Example 2
ᄃxallipic
\mathbf{S}_{1} : Augend; \mathbf{S}_{2} : Addend; \mathbf{D} : Sum in \mathbf{D}.

- The highest bit in \mathbf{S}_{1} and the highest bit in $\mathbf{S}_{\mathbf{2}}$ are sign bits. If the sign bit in a register is 0 , the value in the register is a positive value. If the sign bit in a register is 1 , the value in the register is a negative value.
- The flags related to 16 -bit binary addition and 32 -bit binary addition are listed below.
16-bit binary addition:

1. If the operation result gotten is 0 , a zero flag will be ON.
2. If the operation result gotten is less than $-32,768$, a borrow flag will be ON.
3. If the operation result gotten is greater than 32,767, a carry flag will be ON.

32-bit binary addition:

1. If the operation result gotten is 0 , a zero flag will be ON.
2. If the operation result gotten is less than $-2,147,483,648$, a borrow flag will be ON.
3. If the operation result gotten is greater than $2,147,483,647$, a carry flag will be ON.
16-bit binary addition: When X0 is ON, the addend in D10 is added to the
OOD

32-bit binary addition: When X1 is ON, the value in (D41, D40) is added to the augend in (D31, D30), and the sum is stored in (D51, D50).

D1	DADD	D30	D40	D50

5 Applied Instructions and Basic Usage

Additional remark

- The relations between flags and values are shown below.
16-bit addition: Zero flag
32-bit addition: Zero flag
$-2,-1,0,-2,147,483,648$
Negative number:
The value of the flag
highest bit is 1.

\mathbf{S}_{1} : Minuend; \mathbf{S}_{2} : Subtrahend; D: Difference
The binary value in $\mathbf{S}_{\mathbf{2}}$ is subtracted from the binary value in $\mathbf{S}_{\mathbf{1}}$, and the difference is stored in \mathbf{D}.
- The highest bit in \mathbf{S}_{1} and the highest bit in $\mathbf{S}_{\mathbf{2}}$ are sign bits. If the sign bit in a register is 0 , the value in the register is a positive value. If the sign bit in a register is 1 , the value in the register is a negative value.
- The flags related to 16 -bit binary subtraction and 32 -bit binary subtraction are listed below.
16-bit binary subtraction:

1. If the operation result gotten is 0 , a zero flag will be ON.
2. If the operation result gotten is less than $-32,768$, a borrow flag will be ON .
3. If the operation result gotten is greater than 32,767, a carry flag will be ON.

32-bit binary subtraction:

1. If the operation result gotten is 0 , a zero flag will be ON .
2. If the operation result gotten is less than $-2,147,483,648$, a borrow flag will be ON.
3. If the operation result gotten is greater than $2,147,483,647$, a carry flag will be ON.
Please refer to the additional remark on the instruction ADD for more information about the relations between flags and values.

Example 1

Example 2
16 -bit binary subtraction: When X0 is ON, the subtrahend in D10 is subtracted from the minuend in D0, and the difference is stored in D20.

| SUB | D0 | D10 | D20 |
| :--- | :--- | :--- | :--- | :--- |

- When X 1 is ON , the subtrahend in (D41, D40) is subtracted from the minuend in (D31, D30), and the difference is stored in (D51, D50).

| DSUB | D30 | D40 | D50 |
| :--- | :--- | :--- | :--- | :--- |

5 Applied Instructions and Basic Usage

Explanation
\mathbf{S}_{1} : Multiplicand; \mathbf{S}_{2} : Multiplier; D: Product
The signed binary value in \mathbf{S}_{1} is multiplied by the singed binary value in $\mathbf{S}_{\mathbf{2}}$, and the product is stored in \mathbf{D}. Users have to notice the sign bits in $\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}$, and \mathbf{D} when 16 -bit binary multiplication or 32-bit binary multiplication is done.
16-bit binary multiplication

Sign bit=0 (Positive sign); Sign bit=1 (Negative sign)
32-bit binary multiplication

Sign bit=0 (Positive sign); Sign bit=1 (Negative sign)

Example

The 16 -bit value in DO is multiplied by the 16 -bit value in D10, and the 32 -bit product is stored in (D21, D20). The bits in D21 is the high 16 bits in (D21, D20), whereas the bits in D20 is the low 16 bits in (D21, D20). Whether the product is a positive value or a negative value depends on the leftmost bit in (D21, D20).

Explanation

- $\quad \mathbf{S}_{1}$: Dividend; \mathbf{S}_{2} : Divisor; \mathbf{D} : Quotient and remainder

The singed binary value in \mathbf{S}_{1} is divided by the signed binary value in \mathbf{S}_{2}. The quotient and the remainder are stored in \mathbf{D}. Users have to notice the sign bits in $\mathbf{S}_{1}, \mathbf{S}_{\mathbf{2}}$, and \mathbf{D} when 16 -bit binary division or 32 -bit binary division is done. If the divisor in $\mathbf{S}_{\mathbf{2}}$ is 0 , the instruciton will not be executed. 16-bit binary division

32-bit binary division

Quotient

Example

When X0 is ON, the dividend in DO is divided by the divisor in D10, the quotient is stored in D20, and the remainder is stored in D21. Whether the quotient and the remainder are positive values or negative values depends on the leftmost bit in D20 and the leftmost bit in D21.

5 Applied Instructions and Basic Usage

Explanation

- D: Destination device
- If the instruction used is not a pulse instruction, the value in D used by the instruction increases by one whenever the instruction is executed.
- Generally, the pulse instructions INCP and DINCP are used.
- If a 16-bit operation is performed, 32,767 plus 1 equals $-32,768$. If a 32-bit operation is performed, 2,147,483,647 plus 1 equals -2,147,483,648.

Example
When XO is turned from OFF to ON, the value in DO increases by one.

Explanation

- D: Destination device

If the instruction used is not a pulse instruction, the value in \mathbf{D} used by the instruction decreases by one whenever the instruction is executed.

- Generally, the pulse instructions DECP and DDECP are used.
- If a 16 -bit operation is performed, $-32,768$ minus 1 leaves 32,767 . If a 32 -bit operation is performed, $-2,147,483,648$ minus 1 leaves $2,147,483,647$.

Example

When XO is turned from OFF to ON, the value in DO decreases by one.

5 Applied Instructions and Basic Usage

Explanation \quad A logical AND operator takes the binary representations in \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$, and

 performs the logical AND operation on each pair of corresponding bits. The operation result is stored in D.- The result in each position is 1 if the first bit is 1 and the second bit is 1 . Otherwise, the result is 0 .

Example 1 D0 and the 16 -bit device D2, and performs the logical AND operation on each pair of corresponding bits, and the operation result is stored in D4.

Example 2

 (D11, D10) and the 32-bit device (D21, D20), and performs the logical AND operation on each pair of corresponding bits, and the operation result is stored in (D41, D40).| X1 | DWAND | D10 | D20 |
| :--- | :--- | :--- | :--- |

5
 Applied Instructions and Basic Usage

Example 2

is executed
When $\mathrm{X1}$ is ON , a logical OR operator takes the values in the 32-bit device (D11, D10) and the 32-bit device (D21, D20), and performs the logical inclusive OR operation on each pair of corresponding bits, and the operation result is stored in (D41, D40).

X1	DWOR	D10	D20	D40

5 Applied Instructions and Basic Usage

API	D	WXOR				S1 S $S^{\text {d }}$					Logical exclusive OR operation							Applicable model10PM			
28																					
	Bit device					Word device											16-bit instruction (7 steps)				
	X	Y	M	S		K	H	KnX	KnY	KnM	KnS	T	C	D	V	Z	WXOR	Conti	WXORP	Pulse	
S1					*	*	*	*	*	*	*	*	*	*	*	32-bit	inst				
S2					*	*	*	*	*	*	*	*	*	*		DWXOR ContinuityCWXOR instructionPulse instruction					
D								*	*	*	*	*	*	*	*						
- Note: The instruction supports V devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges.																- Flag: None					

\mathbf{S}_{1} : Source device 1; $\mathbf{S}_{\mathbf{2}}$: Source device 2; \mathbf{D} : Operation result
A logical XOR operator takes the binary representations in \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$, and performs the logical exclusive OR operation on each pair of corresponding bits. The operation result is stored in \mathbf{D}.

- The result in each position is 1 if the two bits are different, and 0 if they are the same.

Example 1

 D0 and the 16-bit device D2, and performs the exclusive OR operation on each pair of corresponding bits, and the operation result is stored in D4.

Example 2

- When X1 is ON, a logical XOR operator takes the values in the 32-bit device (D11, D10) and the 32-bit device (D21, D20), and performs the logical exclusive OR operation on each pair of corresponding bits, and the operation result is stored in (D41, D40).

API	W	NEG		P	(D)					Taking the two's complement of a value								Appli	ble model									
29	D								10PM																			
\triangle Bit device					Word device											16-bit instruction (7 steps)												
		Y	M		S	K	H	KnX	KnY									KnM	KnS	T	C	D	V	Z	NEGContinuity instruction		NEGP	Pulse instruction
D								*	*	*	*	*	*	*	*													
- Note: The instruction supports V devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device - Flag: None ranges.																												

Explanation
D: Device in which the two's complement of the value in the device is stored
The instructions can be used to convert a negative binary value into an absolute value.
Generally, the pulse instructions NEGP and DNEGP are used.

- When XO is turned from OFF to ON, all the bits in DO are inverted (0 becomes

Example 1

Example 2

Example 3 1 , and 1 becomes 0), 1 is added to the result, and the final value is stored in the original register D10.

Getting the aboluste value of a negative value

1. When bit 15 in $D O$ is $1, M O$ is $O N$. (The value in $D O$ is a negative value.)
2. When MO is ON, the instruction NEG is used to take the two's complement of the negative value in D0.

Getting the absolute value of the difference between two values
Suppose X0 is ON.

1. When the value in DO is greater than that in $\mathrm{D} 2, \mathrm{MO}$ is ON .
2. When the value in D 0 is equal to that in $\mathrm{D} 2, \mathrm{M} 1$ is ON .
3. When the value in DO is less than that in D2, M2 is ON.
4. The value in $D 4$ is a positive value.

5 Applied Instructions and Basic Usage

Additional remark

- The representation of a negative value and its absolute value are described below.

1. Whether the value in a register is a positive value or a negative value depends on the leftmost bit in the register. If the leftmost bit in a register is 0 , the value in the register is a positive value. If the leftmost bit in a register is 1 , the value in the register is a negative value.
2. The negative value in a register can be converted into its absolute value by means of the instruction NEG.

(DO)=2
O\|O

(DO) $=1$
0 0 0 0 0 0 0 0 0 0 0$\|$

(D0)=0

The maximum absolute value is 32,767 .

Example

\qquad

- D: Device which is rotated; \mathbf{n} : Number of bits forming a group
- The bits in \mathbf{D} are divided into groups (\mathbf{n} bits as a group), and these groups are rotated rightwards.
- The $\mathbf{n}^{\text {th }}$ bit from the right is transmitted to a carry flag.
- Generally, the pulse instructions RORP and DRORP are used.
- If the operand \mathbf{D} is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}, \mathrm{Kn}$ in $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ must be K4 (16 bits) or K8 (32 bits).
- 16 -bit instruction: $1 \leq n \leq 16 ; 32$-bit instruction: $1 \leq n \leq 32$
- When X0 is turned from OFF to ON, the bits in D10 are divided into groups (four bits as a group), and these groups are rotated rightwards. (The bit marked with $※$ is transmitted to a carry flag.)

5 Applied Instructions and Basic Usage

Example

- D: Device which is rotated; \mathbf{n} : Number of bits forming a group
- The bits in \mathbf{D} are divided into groups (\mathbf{n} bits as a group), and these groups are rotated leftwards.
- The $\mathbf{n}^{\text {th }}$ bit from the left is transmitted to a carry flag.
- Generally, the pulse instructions ROLP and DROLP are used.
- If the operand \mathbf{D} is $\mathrm{KY} / \mathrm{KnM} / \mathrm{KnS}$, Kn in KY/KnM/KnS must be K4 (16 bits) or K8 (32 bits).
- 16 -bit instruction: $1 \leq n \leq 16 ; 32$-bit instruction: $1 \leq n \leq 32$
- When XO is turned from OFF to ON, the bits in D10 are divided into groups (four bits as a group), and these groups are rotated leftwards. (The bit marked with $※$ is transmitted to a carry flag.)

API		RCR		(D) n	Rotating bits rightwards with a carry flag	Applicable model
32	D		P			10PM
						\checkmark

- Note: The instruction supports V devices and Z devices. (If the 16-bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.)
Please refer to specifications for more information about device ranges.
If $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ is used, it is suggested that $\mathrm{X} /$ devices $/ \mathrm{Y}$ devices/M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system).

16-bit instruction (5 steps)			
RCR	Continuity instruction	RCRP	Pulse instruction
32 -bit instruction (9 steps)			
DRCR	Continuity instruction	DRCRP	Pulse instruction
- Flags			
Ox	0100		
M1810	M1970	Carry flag	

- Please refer to the additional remark below.
- D: Device which is rotated; \mathbf{n} : Number of bits forming a group
- The bits in \mathbf{D} are divided into groups (\mathbf{n} bits as a group), and these groups are rotated rightwards with a carry flag.
- The $\mathbf{n}^{\text {th }}$ bit from the right is transmitted to a carry flag.
- Generally, the pulse instructions RCRP and DRCRP are used.
- If the operand \mathbf{D} is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, Kn in $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ must be K 4 (16 bits) or K8 (32 bits).
- 16 -bit instruction: $1 \leq n \leq 16 ; 32$-bit instruction: $1 \leq n \leq 32$
- When XO is turned from OFF to ON, the bits in D10 are divided into groups (four

Example

 bits as a group), and these groups are rotated rightwards with a carry flag. (The bit marked with $※$ is transmitted to the carry flag.)

5 Applied Instructions and Basic Usage

- D: Device which is rotated; \mathbf{n} : Number of bits forming a group
- The bits in \mathbf{D} are divided into groups (\mathbf{n} bits as a group), and these groups are rotated leftwards with a carry flag.
- The $\mathbf{n}^{\text {th }}$ bit from the left is transmitted to a carry flag.
- Generally, the pulse instructions RCLP and DRCLP are used.
- If the operand \mathbf{D} is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}, \mathrm{Kn}$ in $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ must be K 4 (16 bits) or K8 (32 bits).
- 16-bit instruction: $1 \leq \mathbf{n} \leq 16$; 32 -bit instruction: $1 \leq \mathbf{n} \leq 32$
- When XO is turned from OFF to ON, the bits in D10 are divided into groups (four bits as a group), and these groups are rotated leftwards with a carry flag. (The bit marked with $※$ is transmitted to the carry flag.)

Explanation

Example

\mathbf{S} : Initial device which is moved; \mathbf{D} : Initial device which is moved; \mathbf{n}_{1} : Number of bits which are moved; $\mathbf{n}_{\mathbf{2}}$: Number of bits forming a group
The states of the \mathbf{n}_{1} bit devices starting from \mathbf{D} are divided into groups ($\mathbf{n}_{\mathbf{2}}$ bits as a group), and these groups are moved rightwards. The states of the $\mathbf{n}_{\mathbf{2}}$ bit devices starting from \mathbf{S} are moved to the vacant devices in the devices starting from \mathbf{D}.

- Generally, the pulse instruction SFTRP is used.
- $1 \leq n_{2} \leq n_{1} \leq 1024$
- When X0 is turned from OFF to ON, the states of the sixteen bit devices
\qquad starting from M0 are divided into groups (four bits as a group), and these groups are moved rightwards.
The states of the bit devices are moved rightwards in the order $\mathbf{0} \sim \boldsymbol{\Theta}$ during a scan cycle.
(M3~M0 \rightarrow The states of M3~M0 are carried.
(2) M7~M4 \rightarrow M3~M0
(3) M11~M8 \rightarrow M7~M4
(4) $\mathrm{M} 15 \sim \mathrm{M} 12 \rightarrow \mathrm{M} 11 \sim \mathrm{M} 8$
© $\mathrm{X} 3 \sim \mathrm{X0} \rightarrow \mathrm{M} 15 \sim \mathrm{M} 12$

5 Applied Instructions and Basic Usage

- $\quad \mathbf{S}$: Initial bit device which is moved; \mathbf{D} : Initial bit device which is moved; $\mathbf{n}_{\mathbf{1}}$:

Explanation

Example

Explanation

- The states of the $\mathbf{n}_{\mathbf{1}}$ bit devices starting from \mathbf{D} are divided into groups ($\mathbf{n}_{\mathbf{2}}$ bits as a group), and these groups are moved leftwards. The states of the $\mathbf{n}_{\mathbf{2}}$ bit devices starting from \mathbf{S} are moved to the vacant devices in the devices starting from \mathbf{D}. Generally, the pulse instruction SFTRP is used.
- $1 \leq n_{2} \leq n_{1} \leq 1024$
- When X0 is turned from OFF to ON, the states of the sixteen bit devices starting from M0 are divided into groups (four bits as a group), and these groups are moved leftwards.
- The states of the bit devices are moved leftwards in the order $\boldsymbol{1} \sim \boldsymbol{5}$ during a scan cycle.
(1) M15~M12 \rightarrow The states of M3~M0 are carried.
(2) M11~M8 \rightarrow M15~M12
(3) M7~M4 \rightarrow M11~M8
(4) $\mathrm{M} 3 \sim \mathrm{MO} \rightarrow \mathrm{M} 7 \sim \mathrm{M} 4$

5 X3~X0 \rightarrow M3~M0

ϑ

(1)
(2)
©
©

Explanation

\mathbf{S} : Initial word device which is moved; \mathbf{D} : Initial word device which is moved; $\mathbf{n}_{\mathbf{1}}$:
\qquad

Example 1 Number of values which are moved; \mathbf{n}_{2} : Number of values forming a group

- The values in the \mathbf{n}_{1} word devices starting from \mathbf{D} are divided into groups ($\mathbf{n}_{\mathbf{2}}$ values as a group), and these groups are moved rightwards. The values in the \mathbf{n}_{2} word devices starting from \mathbf{S} are moved to the vacant word devices in the word devices starting from \mathbf{D}.
- Generally, the pulse instruction WSFRP is used.
- If the operand S is $K n X / K n Y / K n M / K n S$, the operand D can be a counter, timer, or a data register. If the operand \mathbf{D} is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, the operand \mathbf{S} can be a counter, timer, or a data register.
- If the operand S is $K n X / K n Y / K n M / K n S$, and the operand D is $K n Y / K n M / K n S$, $K n$ in $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ which is S and Kn in $\mathrm{KnY/KnM/KnS}$ must be the same.
- $1 \leq n_{2} \leq n_{1} \leq 512$
- When XO is turned from OFF to ON, the values in the sixteen word devices starting from D20 are divided into groups (four values as a group), and these groups are moved rightwards.
The values in the word devices are moved rightwards in the order © $\boldsymbol{\operatorname { s }}$ during a scan cycle.
(1) D23~D20 \rightarrow The values in D23~D20 are carried.
(2) D27~D24 \rightarrow D23~D20
(3 D31~D28 \rightarrow D27~D24
(4) D35~D32 \rightarrow D31~D28
(5) D13~D10 \rightarrow D35~D32

5 Applied Instructions and Basic Usage

Example 2 starting from Y20 are divided into groups (eight values as a group), and these groups are moved rightwards.
The values in the word devices are moved rightwards in the order © $\sim \mathbf{5}$ during a scan cycle.
(1) Y27~Y20 \rightarrow The values in Y27~Y20 are carried.
(2) Y37~Y30 \rightarrow Y27~Y20
(3) X27~X20 \rightarrow Y37~Y30

If the operand \mathbf{S} is $\mathrm{KnX} / \mathrm{KnY/KnM/KnS}$, and the operand \mathbf{D} is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}, \mathrm{Kn}$ in $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ which is S and Kn in KnY/KnM/KnS must be the same.

Explanation

Example
\mathbf{S} : Initial word device which is moved; \mathbf{D} : Initial word device which is moved; \mathbf{n}_{1} : Number of values which are moved; $\mathbf{n}_{\mathbf{2}}$: Number of values forming a group

- The values in the \mathbf{n}_{1} word devices starting from \mathbf{D} are divided into groups (\mathbf{n}_{2} values as a group), and these groups are moved leftwards. The values in the \mathbf{n}_{2} word devices starting from \mathbf{S} are moved to the vacant word devices in the word devices starting from \mathbf{D}.
- Generally, the pulse instruction WSFLP is used.
- If the operand \mathbf{S} is $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, the operand \mathbf{D} can be a counter, timer, or a data register. If the operand \mathbf{D} is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, the operand \mathbf{S} can be a counter, timer, or a data register.
- If the operand S is $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, and the operand D is $\mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$, Kn in $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ which is S and Kn in $\mathrm{KnY/KnM/KnS}$ must be the same.
- $1 \leq \mathrm{n}_{2} \leq \mathrm{n}_{1} \leq 512$
- When XO is turned from OFF to ON, the values in the sixteen word devices starting from D20 are divided into groups (four values as a group), and these groups are moved leftwards.
The values in the word devices are moved leftwards in the order $\mathbf{0} \sim \boldsymbol{\Theta}$ during a scan cycle.
© D35~D32 \rightarrow The values in D35~D32 are carried.
(2) D31~D28 \rightarrow D35~D32
(3) D27~D24 \rightarrow D31~D28
(4) D23~D20 \rightarrow D27~D24
© D13~D10 \rightarrow D23~D20

Four values as a group are moved leftwards.

They are carried. | D35 | D34 | D33 | D32 | D31 | D30 | D29 | D28 | D27 | D26 | D25 | D24 | D23 | D22 | D21 | D20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5 Applied Instructions and Basic Usage

API	SFWR				(S D n					Moving a value and writing it into a word device								Applica	ble model								
38											PM																
38											\checkmark																
Bit device					Word device											16-bit instruction (9 steps)											
	X	Y	M	S	K	H	KnX	KnY	KnM									KnS	T	C	D	V	Z	SFWR	Continuity	SFWRP	Pulse
S					*	*	*	*	*									*	*	*	*	*	*				
D								*	*	*	*	*	*			32-bit instr	uction										
n					*	*										- Flags											
- Note: The instruction supports \vee devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ is used, it is suggested that $\mathrm{X} /$ devices/ Y devices/ M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system).																$\begin{gathered} \text { Ox } \\ \text { M1808 } \end{gathered}$	$\begin{array}{r} \mathrm{O} 100 \\ \text { M1968 } \end{array}$	Zero flag									

Explanation
 Explanation

Example
 Example

 remark- S: Device which is moved; D: Initial device; n: Number of devices
- The values in the \mathbf{n} word devices starting from \mathbf{D} are defined as first in, first out values, and \mathbf{D} is taken as a pointer. When the instruction is executed, the value of the pointer \mathbf{D} increases by one, and the value in \mathbf{S} is written into the device to which the pointer \mathbf{D} points. When the value of the pointer is greater than or equal to $\mathbf{n - 1}$, the instruction does not process the writing of the value, and a carry flag is ON.
- When the value of the pointer \mathbf{D} is greater than $\mathbf{n}-1$, the instruction does not process the writing of a value, and the carry flag M1022 is ON.
- Generally, the pulse instruction SFWRP is used.
- $2 \leq n \leq 512$
- The value of the pointer DO is cleared to 0 first. When X0 is turned from OFF to ON, the value in D20 is written into D1, and the value of D0 becomes 1 . When X0 is turned from OFF to ON again, the value in D20 is written to D2, and the value in DO becomes 2 .
- The value in D20 is moved and written into D1 in the way described below.
(1) The value in D20 is written into D1.
(2) The value of DO becomes 1 .

The instruction SFWR can be used with the instruction SFRD to write a value and read values.

Explanation

Example

- S: Initial device; D: Device into which a value is written; \mathbf{n} : Number of devices The values in the \mathbf{n} word devices starting from \mathbf{S} are defined as first in, first out values, and \mathbf{S} is taken as a pointer. When the instruction is executed, the value in \mathbf{S} decreases by one, the value in $\mathbf{S}+\mathbf{1}$ is written into \mathbf{D}, the values in $\mathbf{S}+\mathbf{n}-1 \sim \mathbf{S}+2$ are moved rightwards, and the value in $\mathbf{S}+\mathbf{n}-1$ is unchanged. When the value in \mathbf{S} is equal to 0 , the instruction does not process the reading of the values, and a zero flag is ON.
- When the value in \mathbf{S} is equal to 0 , the instruction does not process the reading of the values, and the zero flag M1020 is ON.
- Generally, the pulse instruction SFRDP is used.
- $2 \leq \mathbf{n} \leq 512$
- When X0 is turned from OFF to ON, the value in D1 is written into D21, the values in D9~D2 are moved rightwards, the value in D9 is unchanged, and the value in DO decreases by one.
- The value in D1 is moved and written into D21 in the way described below.
(1) The value in D1 is written into D21.
(2) The values in D9~D2 are moved rightwards.
(3) The value in D0 decreases by one.

The value in D1 is read.

5 Applied Instructions and Basic Usage

Explanation

Example

Additional

 remark

- D_{1} : Initial device which is reset; \mathbf{D}_{2} : Final device which is reset

The instruction ZRST can be used to reset 16 -bit counter and 32 -bit counters.

- If the device number of D_{1} is greater than the device number of \mathbf{D}_{2}, only \boldsymbol{D}_{2} will be reset.
- When X0 is ON, the auxiliary relays M300~M399 are reset to OFF.
- When X1 is ON, the 16 -bit counters C0~C127 are reset. (The values of C0~C127 are cleared to 0, and the contacts and the coils are reset to OFF.)
- When X10 is ON, the timers T0~T127 are reset. (The values of T0~T127 are cleared to 0 . and the contacts and the coils are reset to OFF.)
- When X2 is ON, the stepping relays S0~S127 are reset to OFF.
- When X3 is ON, the data registers D0~D100 are reset to 0 .
- When X4 is ON, the 32-bit counters C235~C254 are reset. (The values of C235~C254 are cleared to 0 , and the contacts and the coils are reset to OFF.)

$\begin{gathered} \text { X0 } \\ -1 \end{gathered}$	ZRST	M300	M399
X1	ZRST	C0	C127
-1			
X10	ZRST	т0	T127
11			
X2	ZRST	So	S127
11			
X3	ZRST	D0	D100
11			
X4	ZRST	C235	C254
-1			

The instruction RST can be used to reset a single device, e.g. a Y device, an M device, an S device, a T device, a C device, or a D device.

Explanation

Example 1

Example 2

S: Source device; D: Device in which a decoding result is stored \mathbf{n} : Number of bits which are decoded
The low \mathbf{n} bits in \mathbf{S} are decoded as the low $2^{\mathbf{n}}$ bits in \mathbf{D}.

- Generally, the pulse instruction DECOP is used.
- \mathbf{D} is in the range of 1 to 8 .
will occur.
If \mathbf{n} is 8 , the maximum number of bits which can be decoded is $2^{8}=256$.
When X20 is turned from OFF to ON, the instruction DECOP decodes X0~X2 as M100~M107.
- If the value in \mathbf{S} is 3 , M103 will be ON.
- After the instruciton is executed, X20 will be OFF, and the states of M100~M107 will remain unchanged.

When \mathbf{D} is a word device, \mathbf{n} is in the range of 1 to 8 . If \mathbf{n} is 0 , or greater than 8 , an error will occur.
If \mathbf{n} is 8 , the maximum number of bits which can be decoded is $2^{8}=256$.

- When X20 is turned from OFF to ON, the instruction DECOP decodes b2~bO in D10 as b7~b0 in D20, and b15~b8 in D20 become 0.
- The low 3 bits in D10 are decoded as the low 8 bits in D20. The high 8 bits in D20 are 0.
- After the instruciton is executed, X20 will be OFF, and the value in D20 will remain unchanged.

\mid X20				
$1 \mid$	DECOP	D10	D20	K3

Explanation

Example 1

Example 2
\mathbf{S} : Source device D: Device in which an encoding result is stored \mathbf{n} : Number of bits which are encoded
The low $2^{\mathbf{n}}$ bits in \mathbf{S} are encoded as the low \mathbf{n} bits in \mathbf{D}.

- If there are many bits which are 1 in \mathbf{S}, the first bit which is 1 from the left will be processed.
- Generally, the pulse instruction ENCOP is executed.
- If \mathbf{S} is a bit device, \mathbf{n} is in the range of 1 to 8 . If \mathbf{S} is a word device, \mathbf{n} is in the range of 1 to 4 .
- When \mathbf{S} is a bit device, \mathbf{n} is in the range of 1 to 8 . If \mathbf{n} is 0 , or greater than 8 , an error will occur.
If \mathbf{n} is 8 , the maximum number of bits which can be decoded is $2^{8}=256$.
When XO is turned from OFF to ON, the instruction ENCOP encodes the 8 bits in M0~M7 as the low 3 bits in D0, and b15~b3 in D0 become 0.
- After the instruction ENCOP is executed, X0 will be OFF, and the data in D will remain unchanged.

Bit 15~bit 3 in DO become 0.
When \mathbf{S} is a word device, \mathbf{n} is in the range of 1 to 4 . If \mathbf{n} is 0 , or larger than 4 , an error will occur.

- If \mathbf{n} is 4 , the maximum number of bits which can be decoded is $2^{4}=16$.
- When XO is turned from OFF to ON, the instruction ENCOP encodes the 8 bits in D10 as the low 3 bits in D20, and b15~b3 in D20 become 0 . (Bit 8~bit 15 in D10 are invalid data.)
- After the instruction ENCOP is executed, X0 will be OFF, and the data in \mathbf{D} will remain unchanged.

							ENCOP	D10	D20	K3

Bit $15 \sim$ bit 3 in D20 become 0.

Explanation

S: Source device; D: Destination device

Explanation The number of bits which are 1 in \mathbf{S} is stored in \mathbf{D}.

- If the bits in \mathbf{S} are 0 , a zero flag will be $O N$.
- If the 32-bit instruction is used, D will occupy two registers.
- When X20 is ON, the number of bits which are 1 in D0 is stored in D2.

Example

0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
3															

5 Applied Instructions and Basic Usage

Explanation

- S: Source device; D: Device in which a check result is stored; \mathbf{n} : Bit whose state is judged
- The state of the $\mathbf{n}^{\text {th }}$ bit in \mathbf{S} is checked, and the result is stored in \mathbf{D}.
- 16-bit instruction: $\mathbf{n}=0 \sim 15$; 32-bit instruction: $\mathbf{n}=0 \sim 31$
- If the $15^{\text {th }}$ bit in DO is 1 when XO is ON, MO will be ON. If the $15^{\text {th }}$ bit in DO is 0

Example

 when XO is ON, MO will be OFF.- When XO is turned OFF, the state of MO remains unchanged.

API	D	MEAN				$\underset{n}{(n)}$				Mean									Applicab	le model				
45				P									PM											
	Bit device				Word device												16 -bit instruction (7 steps) MEAN Continuity instruction \quad MEAN $P \quad$Pulse instruction							
	X	Y	M	S	K	H	KnX	X K	KnY								KnM	KnS	T	C	D	V	Z	
S					*	*	*		*	*	*	*	*	*										
D									*	*	*	*	*	*	*	*					DMEANContinuity instructionDMEANPPulse instruction			
n					*	*	*		*	*	*	*	*	*	*	*								
- Note: The instruction supports V devices and Z devices. (If the 16-bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ is used, it is suggested that $\mathrm{X} /$ devices $/ \mathrm{Y}$ devices/M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system).																	- Flag: None							

Example
\mathbf{S} : Initial device; \mathbf{D} : Device in which a mean is stored; \mathbf{n} : Number of devices After the values in the \mathbf{n} devices starting from \mathbf{S} are added up, the mean of the sum is stored in D.

- If a remainder appears in a calculation, it will be left out.
- If \mathbf{S} is not in a valid range, only the devices in the valid range will be processed.
- If \mathbf{n} is not in the range of 1 to 64 , an operation error will occur.
- $\mathbf{n}=1 \sim 64$
- When X10 is ON, the values in the three registers starting from D0 are added up. After the values are added up, the sum will be divided by 3 . The quotient is stored in D10, and the remainder is left out.

5 Applied Instructions and Basic Usage

Explanation

Example

- S: Timer; m: Time; D: Annunciator
- The instruction ANS is used to drive an annunciator.
- S: T0~T183
m: K1~K32,767 (Unit: 100 ms)
D: S912~S1023
See the explanation of ANR for more information.
If X 3 is ON for more than 5 seconds, the annunciator S 999 will be ON. Even if X3 is turned OFF, S999 will still be ON. (However, T10 will be reset to OFF, and the value of T10 will be 0.)

X3	ANS	T10	K50	S999

Explanation

Example

- The instruction ANR is used to reset an annunciator.
- If more than one annunciator is ON simultaneously, the annunciator whose number is smallest will be reset.
- Generally, the pulse instruction ANRP is used.
- If X20 and X21 are ON for more than 2 seconds, the annunciator S 912 will be ON. If X20 and D21 are turned OFF, S912 will still be ON, T10 will be reset to OFF, and the value of T10 will be 0 .
- If X20 and X21 are not ON for 2 seconds, the value of T10 will become 0 .
- When X0.3 is turned from OFF to ON, the annunciator whose number is smallest in the annunciators which are driven is reset.
- When X0.3 is turned from OFF to ON again, the next annunciator whose number is smallest in the annunciators which are driven is reset.

5 Applied Instructions and Basic Usage

Additional remark

- Application of annunciators

X0=Forward switch
X2=Front position switch
X1=Backward switch X3=Back position switch
X4=Resetting button
Y0=Forward Y1=Backward
Y2=Indicator
S912=Forward annunciator S920=Backward annunciator

1. If Y 0 is ON for more than 10 seconds, and X 2 is OFF, S 912 will be ON .
2. If $Y 1$ is $O N$ for more than 20 seconds, and $X 3$ is OFF, $S 920$ will be ON.
3. If X 1 and Y 1 are $\mathrm{ON}, \mathrm{Y} 1$ will not be OFF until X 3 is ON .
4. If an annuciator is driven, Y 2 will be ON .
5. When X 4 is turned from OFF to ON, the annunciator whose number is smallest in the annunciators which are driven is reset. When $X 4$ is turned from OFF to ON again, the next annunciator whose number is smallest in the annunciators which are driven is reset.

Explanation

Example

S: Source device; \mathbf{D} : Device in which a result is stored
The square root of the value in \mathbf{S} is calculated, and the result is stored in \mathbf{D}. The value in \mathbf{S} can only be a positive value. If the value in \mathbf{S} is a negative value, an error will occur, and the instruction will not be executed.

- The value stored in \mathbf{D} is an integer. The fractional part of a square root calculated is dropped. If the fractional part of a square root calculated is dropped, a borrow flag will be ON.
- If the value in \mathbf{D} is 0 , a zero flag will be ON .
- When X20 is ON, the square root of the value in DO is calculated, and the result is stored in D12.

$\sqrt{\mathrm{DO}} \rightarrow \mathrm{D} 12$

5 Applied Instructions and Basic Usage

Explanation

Example 1

Example 2

Explanation

(

- S: Source device; D: Conversion result

1. The binary integer in (D11, D10) is converted into a binary floating-point value, and the conversion result is stored in (D101, D100).
2. The binary-coded decimal value in $X 7 \sim X 0$ is converted into a binary value, and the conversion result is stored in (D201, D200).
3. The binary integer in (D201, D200) is converted into a binary floating-point value, and the conversion result is stored in (D203, D202).
4. The constant K615 is divided by the constant K10, and the quotient which is a binary floating-point value is stored in (D301, D300).
5. The binary floating-point value in (D101, D100) is divided by the binary floating-point value in (D203, D202), and the quotient which is a binary floating-point value is stored in (D401, D400).
6. The binary floating-point value in (D401, D400) is multiplied by the binary floating-point value in (D301, D300), and the product which is a binary floating-point value is stored in (D21, D20).
7. The binary floating-point value in (D21, D20) is converted into a decimal floating-point value, and the conversion result is stored in (D31, D30).
8. The binary floating-point value in (D21, D20) is converted into a binary integer, and the conversion result is stored in (D41, D40).

5 Applied Instructions and Basic Usage

Explanation

Example 1

Example 2

Example 3

D: Initial I/O device whose state is refreshed; \mathbf{n} : Number of I/O devices whose states are refreshed

- The states of I/O devices are not refreshed until the instruction END is executed. When the scan of a program starts, the states of external inputs are read, and stored in the input memory. After the instruction END is executed, the contents of the output memory will be sent to output terminals. Therefore, users can use this instruction when they need the latest I/O data in an operation process.
- D must be an I/O device whose number ends with 0, e.g. X0, X10, Y0 or Y10. The instruction can not be used to refresh the I/O devices in a digital extension module.
- D must be an I/O device in a PLC.

1. If \mathbf{D} is XO and \mathbf{n} is less than or equal to 8 , the states of $X 0 \sim X 0$ will be refreshed. If \mathbf{n} is greater than 8 , the states of the input devices and the states of the output devices in the motion controller used will be refreshed.
2. If \mathbf{D} is $Y 0$, and \mathbf{n} is equal to 8 , the states of $Y 0 \sim Y 7$ will be refreshed. If \mathbf{n} is greater than 8 , the states of the input devices and the states of the output devices in the motion controller used will be refreshed.
3. If \mathbf{D} is X 10 or Y 10 , and \mathbf{n} is any number, the states of all the input devices except $\mathrm{X} 0 \sim \mathrm{X} 7$, and the states of all the output devices except $\mathrm{Y} 0 \sim \mathrm{Y} 3$ in the motion controller used will be refreshed.

- \mathbf{n} is in the range of 4 to the number of I/O devices in the motion control module used, and is a multiple of 4 .
- When X0 is ON, the DVP-10PM series motion controller reads the states of X0~X7 immediately. The input signals are refreshed without any delay.

| X0 | | |
| :--- | :--- | :--- | :--- |
| REF | X0 | K8 |

- When XO is ON , the states of $\mathrm{Y} 0 \sim \mathrm{Y} 3$ are sent to output terminals. The output signals are refreshed immediately without the need to wait for the execution of the instruction END.

- When X0 is ON, the states of the input terminals starting from X10, or the states of the output terminals starting from Y10 are refreshed.

API	D	SER		P	$\begin{array}{ll} S_{1} \\ (D) \\ n & n \end{array}$				Searching data									Applic	le model				
61																							
	Bit device				Word device											16 -bit instruction (9 steps) CER Continuity instruction SER P Pulse instruction $\left.\begin{array}{lll} & \end{array}\right]$							
	X	Y	M		S	K	H	KnX								X KnY	KnM	KnS	T	C	D	V	Z
S1							*	*	*	*	*	*	*										
S2					*	*	*	*	*	*	*	*	*	*	*					DSER Continuity instruction DSERPPulse instruction			
D								*	*	*	*	*	*			- Flag: None							
N					*	*							*										
- Note: The instruction supports V devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If $\mathrm{KnX} / \mathrm{KnY} / \mathrm{KnM} / \mathrm{KnS}$ is used, it is suggested that $\mathrm{X} /$ devices $/ \mathrm{Y}$ devices/M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system).																							

Explanation
\qquad

Example

- \mathbf{S}_{1} : Initial device involved in a comparison; \mathbf{S}_{2} : Value which is compared; \mathbf{D} : Initial device in which a comparison result is stored (5 consecutive devices are occupied.); \mathbf{n} : Number of values
$-\quad \mathbf{S}_{1}$ is the initial register involved in a comparison, and \mathbf{n} is the number of values which are compared. The values in the \mathbf{n} registers starting from \mathbf{S}_{1} are compared with the value in \mathbf{S}_{2}, and the comparison results are stored in the five registers starting from \mathbf{D}.
- If the 32 -bit instruction is used, $\mathbf{S}_{1}, \mathbf{S}_{2}, \mathbf{D}$, and \mathbf{n} will be 32-bit registers.
- 16-bit instruction: $\mathbf{n}=1 \sim 256$; $\mathbf{n}=1 \sim 128$ (32-bit instruction)
- When X0 is ON, the values in D10~D19 are compared with the value in D0, and the comparison results are stored in D50~D54. If none of the values in D10~D19 are equal to the value in D0, the values in D50~D52 will be 0 .
- A comparison is based on algebra $(-10<2)$.
- The number of the minimum value is stored in D53, and the number of the maximum value is stored in D54. If there is more than one minimum value/maximum value, the number which is the biggest will be stored.

| X0 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SER | D10 | D0 | D50 | K10 |

(\mathbf{S}_{1} Value Value which is compared Number Result D Value Description
D10

Explanation

Example 1

Example 3

Example 2

D: Destination device

- When the instruction ALT is executed, the state of \mathbf{D} alternates between ON and OFF.
- Generally, the pulse instruction ALTP is used.
- When XO is turned from OFF to ON for the first time, YO is ON . When XO is turned from OFF to ON for the second time, YO is OFF.

- In the beginning, M0 is OFF, and therefore YO is ON , and Y 1 is OFF. When

X 10 is turned from OFF to ON for the first time, M0 is ON. Therefore, Y 1 is ON , and $\mathrm{Y0}$ is OFF. When X 10 is switched from OFF to ON for the second time, M0 is OFF. Therefore, YO is ON , and Y 1 is OFF.

- When X 20 is ON, T0 generates a pulse every two seconds. The output Y0 alternates between ON and OFF according to the pulses generated by T0.

5 Applied Instructions and Basic Usage

Explanation

Example

- $\mathbf{S}_{\mathbf{1}}$: Start a ramp; $\mathbf{S}_{\mathbf{2}}$: End of a ramp; D: Duration of a ramp (2 consecutive devices are occupied.); \mathbf{n} : Number of scan cycles ($\mathbf{n}=1 \sim 32,767$)
- The instruction is used to get a slope. Whether a slope is linear or not has an absolute relationship with scan time. When users use the instruction, they have to specify scan time in advance.
- When the contact driving the instruction RAMP is turned from OFF to ON, the value in \mathbf{D} will increase from the value in \mathbf{S}_{1} to the value \mathbf{S}_{2}, and the number of scan cycles is stored in $\mathbf{D}+1$.
- If the operand \mathbf{n} is a D device, the value in \mathbf{n} can not be changed until the execution of the instruction stops.
- If the instruction is used with an output of analog signals, the action of cushioning a start/stop can be executed.
- The start of a ramp is written into D10, and the end of the ramp is written into D11. When X20 is turned ON, the value in D12 increases from the value in D10 to the value in D11, and the number of scan cycles is stored in D13.
- After M1039 in a program is turned ON, the scan time for the program will be fixed. Users can write scan time into the special data register D1039 by means of the instruction MOV. If the scan time set is 30 milliseconds, and \mathbf{n} is K100, the time it takes for the value in D12 to increase from the value in D10 to the value in D11 will be 3 seconds (30 milliseconds $\times 100$).
- If X20 is turned OFF, the execution of the instruction will stop. If X20 is turned ON again, the value in D12 will become 0 , and increase again.
- If M1026 is OFF, and M1029 is ON, the value in D12 will becomes the value in D10.

RAMP	D10	D11	D12	K100

The number of scan cycles is n. The number of scan cycles is n. D10<D11 D10>D11
The number of scan cycle is stored in D13.

5 Applied Instructions and Basic Usage

Additional remark below.

M1026=OFF $\times 20$

5 Applied Instructions and Basic Usage

API	D	SORT				m		(Sorting data					Applicable model	
								m2	(D)		n)						10PM		
																	\checkmark		
	Bit device				Word device											16-bit instruction (9 steps)			
	X	Y	M	S	K	H	KnX		KnY	KnM\|	KnS	T	C	D	V	Z	SORTContinuity instruction		
S														*					
m1					*	*										32-bit instruction (17 steps)			
m2					*	*										DSORTContinuity instruction			
D													*			- Flag: None			
N					*	*							*						
- Note: All devices can not be modified by V devices and Z devices. Please refer to specifications for more information about device ranges.																			

Example

\mathbf{S} : Initial device in which original data is stored; \mathbf{m}_{1} : Number of rows of data (\mathbf{m}_{1} $=1 \sim 32$); \mathbf{m}_{2} : Number of columns of data ($\mathbf{m}_{2}=1 \sim 6$); D: Initial device in which a sorting result is stored; \mathbf{n} : Reference value ($\mathbf{n = 1 \sim m 2 \text {) (Data is sorted in }}$ algebraic order.)

- The data which is sorted is stored in the $\mathbf{m}_{1} \times \mathbf{m}_{\mathbf{2}}$ registers starting from the register specified by \mathbf{D}. If \mathbf{S} and \mathbf{D} specify the same register, the sorting result gotten will be the same as the original data in the register specified by \mathbf{S}.
- It is better that the rightmost number of the device number of the register specified by \mathbf{S} is 0 .
- After the instruction is scanned \boldsymbol{m}_{1} times, the sorting of data will be complete. After the sorting of data is complete, M1029 will be ON.
- The instruction can be used several times in a program, but one instruction is executed at a time.
- When XO is turned ON, the data specified is sorted in ascending order. When the sorting of the data specified is complete, M1029 is ON. When the instruction is executed, the data specified can not be changed. If users want to sort the data specified again, they can turn X0 from OFF to ON again.

X0	SORT	D0	K5	K5	D50	D100

1. The data which will be sorted is shown below.

5 Applied Instructions and Basic Usage

2. If the value in D100 is K3, users can get the sorting result shown below.

		Column				
		1	2	3	4	5
		Student number	Chinese	English	Math	Physics
4	1	(D50) 4	(D55) 70	(D60) 60	(D65) 99	(D70) 50
3	2	(D51) 2	(D56) 55	(D61) 65	(D66) 54	(D71) 63
\%	3	(D52) 1	(D57) 90	(D62) 75	(D67) 66	(D72) 79
$\stackrel{\rightharpoonup}{0}$	4	(D53) 5	(D58) 95	(D63) 79	(D68) 75	(D73) 69
\downarrow	5	(D54) 3	(D59) 80	(D64) 98	(D69) 89	(D74) 90

3. If the value in D100 is K5, users can get the sorting result shown below.

5 Applied Instructions and Basic Usage

Explanation

Example

－ \mathbf{m}_{1} ：Special module number（ \boldsymbol{m}_{1} is in the range of 0 to 255 ．）； $\boldsymbol{m}_{\mathbf{2}}$ ：Control register number（ \mathbf{m}_{2} is in the range of 0 to 499．）；D：Device in which the data read will be stored； \mathbf{n} ：Quantity of data which will be read（16－bit instruction： $1 \sim\left(500-\mathrm{m}_{2}\right) ; 32$－bit instruction：1～（500－m $\mathrm{m}_{2} / 2$
－A DVP－10PM series motion controller can read the data in a control register in a special module by means of the instruction．
－Please refer to the additional remark on the instruction TO for more information about the numbering of special modules．
－The value in CR\＃29 in special module 0 is read，and then stored in D0 in the motion controller used．The value in CR\＃30 in special module 0 is read，and then stored in D1 in the motion controller used．The two values are read at the same time．
－When XO is ON，the instruciton is executed．When X0 is turned OFF，the instruction is not executed，and the values which are read remain unchanged．

X0	FROM	K0	K29	D0	K2
$⿴ 囗 ⿱ 一 一 廾$					

API	D	TO			m1 m2 \quad m						Writing data into a control register in a special module							Appl	le model							
79				P																						
	Bit device				Word device											16-bit instruction (9 steps)										
	X	Y	M	S	K	H	KnX	KnY	KnM	KnS								T	C	D	V	Z	то	Continuity instruction	TOP	Pulse instruction
m_{1}					*	*					*	*	*	*	*											
m_{2}					*	*					*	*	*	*	*	 32-bit instruction (17 steps) DTO Continuity instruction DTOPPulse instruction										
S					*	*					*	*	*	*	*	- Please refer to the additional remark below.										
n					*	*					*	*	*	*	*											
- Note: m_{1} is in the range of 0 to 255 (16 -bit instruction/32-bit instruction). m_{2} is in the range of 0 to 499 (16-bit instruction/32-bit instruction). n is in the range of 1 to $\left(500-\mathrm{m}_{2}\right)$ (16 -bit instruction). n is in the range of $1 \sim\left(500-\mathrm{m}_{2}\right) / 2$ (32-bit instruction). The instruction supports V devices and Z devices. (If the 16 -bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.)																										

\mathbf{m}_{1} : Special module number (\mathbf{m}_{1} is in the range of 0 to 255 .); $\boldsymbol{m}_{\mathbf{2}}$: Control

Example

Additional remark

register number (\boldsymbol{m}_{2} is in the range of 0 to 499.); \mathbf{D} : Data which will be written into a control register; \mathbf{n} : Quantity of data which will be written (16-bit instruction: 1~(500-m \mathbf{m}_{2}; 32-bit instruction: 1~(500-m \mathbf{m}_{2} /2
A DVP-10PM series motion controller can write data into a control register in a special module by means of the instruction.
The 32-bit instruction DTO is used. The value in (D11, D10) is written into (CR\#13, CR\#12) in special module 0 . One value is written at a time.
When XO is ON, the instruction is executed. When XO is turned OFF, the instruction is not executed, and the value which is written remains unchanged.

Regulation of operands

1. \mathbf{m}_{1} : \mathbf{m}_{1} is a special module number. It is the number of a special module connected to the DVP-10PM series motion controller used.
The number of the first special module which is connected to the DVP-10PM series motion cotroller used is 0 . Eight special modules at most can be connected to the DVP-10PM series motion controller used, and they do not occupy I/O devices.
2. $\mathbf{m}_{\mathbf{2}}: \mathbf{m}_{\mathbf{2}}$ is a control register number. the 16 -bit memories in a special modules are called control registers. Control register numbers are decimal numbers. The operation of a special module and setting values are stored in the control registers in the special module.
3. If the instruction FROM/TO is used, one control register is taken as a unit for the reading/writing of data. If the instruction DFROM/DTO is used, two control registers are taken as a unit for the reading/writing of data.
High 16 bits Low 16 bits

| CR \#10 | CR \#9 |
| :---: | :---: | Control register number specified

4. \mathbf{n} which is 2 in a 16-bit instruction has the same meaning as \mathbf{n} which is $\mathbf{1}$ in a 32-bit instruction.

5 Applied Instructions and Basic Usage

- The application of the instruciton FROM/TO is described below.

Example 1 $0 \mathrm{~V}\left(\mathrm{KO}_{\mathrm{LSB}}\right)$, and the gain for channel 1 is $2.5 \mathrm{~V}\left(\mathrm{~K} 2,000_{\mathrm{LSB}}\right)$.

1. H 0 is written into CR\#1 in the analog input module whose number is 0 , and channel 1 is set to mode 0 (voltage input: $-10 \mathrm{~V} \sim+10 \mathrm{~V}$).
2. HO is written into CR\#33. Channel 1~channel 4 can be tuned.
3. When XO is turned from OFF to ON , the offset $\mathrm{KO}_{\text {LsB }}$ is writtedn into $\mathrm{CR} \# 18$, and the gain $\mathrm{K} 2,000_{\text {LsB }}$ is written into $\mathrm{CR} \# 24$.

Example 2

The characteristic curve of DVP04AD-H2 is adjusted. The offset for channel 2 is $2 \mathrm{~mA}\left(\mathrm{~K} 40 \mathrm{LssB}^{\text {}}\right.$), and the gain for channel 2 is 18 mA (K3,600 LSB).

1. H18 is written into CR\#1 in the analog input module whose number is 0 , and channel 2 is set to mode 3 (current input: $-20 \mathrm{~mA} \sim+20 \mathrm{~mA}$).
2. HO is written into CR\#33. Channel 1~channel 4 can be tuned.
3. When XO is turned from OFF to ON , the offset $\mathrm{K} 400_{\text {LSB }}$ is writtedn into CR\#19, and the gain $\mathrm{K} 3,600_{\text {LSB }}$ is written into $\mathrm{CR} \# 25$.

5

Example 3

Example 4

$2 \mathrm{~mA}\left(\mathrm{~K} 400_{\mathrm{LSB}}\right)$, and the gain for channel 2 is $18 \mathrm{~mA}\left(\mathrm{~K} 3,600_{\mathrm{LSB}}\right)$.

1. H10 is written into CR\#1 in the analog output module whose number is 1 , and channel 2 is set to mode 2 (current output: $+4 \mathrm{~mA} \sim+20 \mathrm{~mA}$).
2. HO is written into CR\#33. Channel 1~channel 2 can be tuned.
3. When XO is turned from OFF to ON , the offset $\mathrm{K} 40 \mathrm{~L}_{\text {LSB }}$ is writtedn into CR\#23, and the gain K K3,600 ${ }_{\text {LSB }}$ is written into CR\#29.

5 Applied Instructions and Basic Usage

Explanation

- D: Device whose absolute value will be gotten

When the instruction $A B S$ is executed, the absolute value of the value in \mathbf{D} is gotten.

- Generally, the pulse instructions ABSP and DABSP are used.
- When XO is turned from OFF to ON, the absolute value of the value in DO is Example gotten.

API	MODRD					$S_{1} S_{2}(n$					Reading Modbus data							cable model			
100												10PM									
	Bit device				Word device											16-bit instruction (7 steps) Continuity					
	X	Y	M	S	K	H	KnX	KnY	KnM	KnS							T	C	D	V	Z
S_{1}					*	*							*						32-bit instru		
S_{2}					*	*							*				-				
n					*	*							*			- Flags M1120~M1129 and M1140~M1143 Please refer to the additional remark below.					
- Note: S_{1} is in the range of K0 to K254. n is in the range of $K 1$ to $K 6$. Please refer to specifications for more information about device ranges.																					

Example 1

\mathbf{S}_{1} : Device address; $\mathbf{S}_{\mathbf{2}}$: Data address; \mathbf{n} : Data length
The instruction MODRD is used to drive peripheral equipment in a Modbus ACII/RUT mode. The RS-485 ports on Delta VFD series AC motor drives (except VFD-A series AC motor drives) conform to a Modbus communication format. Users can read data from a Delta AC motor drive by means of the instruction MODRD.

- $\quad \mathbf{S}_{\mathbf{2}}$ is a data address. If the data address specified is illegal, the device which is connected will respond with an error message, an error code will be stored in D1130 in the DVP-10PM series motion controller used, and M1141 will be ON.
- The data which is sent by a peripheral is stored in D1070~D1085. After a DVP-10PM series motion controller receives the data sent by a peripheral, it will automatically check whether the data received is correct. If an error occurs, M1140 will be ON.
- If an ASCII mode is used, the data sent by a peripheral will be ASCII characters, and the DVP-10PM series motion controller used will convert the data received into values, and store the values in D1050~D1055. If an RTU mode is used, D1050~D1055 will be invalid.
- If a DVP-10PM series motion controller sends correct data to a peripheral after M1140 or M1141 is turned ON, and the data with which the peripheral responds is correct, M1140 or M1141 will be reset.
- A DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF)

DVP-10PM series motion controller \Rightarrow VFD-B series AC motor drive: The DVP-10PM series motion controller sends "010321010006 D4".
VFD-B series AC motor drive \Rightarrow DVP-10PM series motion controller: The DVP-10PM series motion controller receives "01030C 0100176600000000 01360000 3B".

5
 Applied Instructions and Basic Usage

Data transmission registers in the DVP-10PM series motion controller (message sent by the DVP-10PM series motion controller):

Register	Data		Description	
D1089 low	'0'	30 H	ADR 1	ADR (1,0): Address of the
D1089 high	'1'	31 H	ADR 0	drive
D1090 low	'0'	30 H	CMD 1	CMD (1,0): Command
D1090 high	'3'	33 H	CMD 0	code
D1091 low	'2'	32 H	Starting data address	
D1091 high	'1'	31 H		
D1092 low	'0'	30 H		
D1092 high	'1'	31 H		
D1093 low	'0'	30 H	Quantity of data (count by the word)	
D1093 high	'0'	30 H		
D1094 low	'0'	30 H		
D1094 high	'6'	36 H		
D1095 low	'D'	44 H	LRC CHK 1 LRC CHK 0	LRC CHK (0,1): Checksum
D1095 high	'4'	34 H		

Data reception reigsters in the DVP-10PM series motion controller (message with which the VFD-B series AC motor drive responds):

Register	Data		Description	
D1070 low	'0'	30 H	ADR 1	
D1070 high	'1'	31 H	ADR 0	
D1071 low	'0'	30 H	CMD 1	
D1071 high	'3'	33 H	CMD 0	
D1072 low	'0'	30 H	Quantity of data (count by the byte)	
D1072 high	'C'	43 H		
D1073 low	'0'	30 H	Contents of the address 2101 H	The DVP-10PM series motion controller automatically converts the ASCII characters into values, and store the values in D1050. (D1050=0100 H)
D1073 high	'1'	31 H		
D1074 low	'0'	30 H		
D1074 high	'0'	30 H		
D1075 low	'1'	31 H	Contents of the address 2102 H	The DVP-10PM series motion controller automatically converts the ASCII characters into values, and store the values in D1051. (D1051=1766 H)
D1075 high	'7'	37 H		
D1076 low	'6'	36 H		
D1076 high	'6'	36 H		
D1077 low	'0'	30 H	Contents of the address 2103 H	The DVP-10PM series motion controller automatically converts the ASCII characters into values, and store the values in D1052. (D1052=0000 H)
D1077 high	'0'	30 H		
D1078 low	'0'	30 H		
D1078 high	'0'	30 H		
D1079 low	'0'	30 H	Contents of the address 2104 H	The DVP-10PM series motion controller automatically converts the ASCII characters into values, and store the values in D1053. (D1053=0000 H)
D1079 high	'0'	30 H		
D1080 low	'0'	30 H		
D1080 high	'0'	30 H		

Register	Data		Description		
D1081 low	'0’	30 H	Contents of the address 2105 H	The DVP-10PM series motion controller automatically converts the ASCII characters into values, and store the values in D1054. (D1054=0136 H)	
D1081 high	‘1’	31 H			
D1082 low	'3'	33 H			
D1082 high	'6'	36 H			
D1083 low	'0'	30 H	Contents of the address 2106 H	The DVP-10PM series motion controller automatically converts the ASCII characters into values, and store the values in D1055. (D1055=0000 H)	
D1083 high	'0'	30 H			
D1084 low	‘0’	30 H			
D1084 high	'0'	30 H			
D1085 low	'3'	33 H	LRC CHK 1 LRC CHK 0		
D1085 high	'B'	42 H			

Example 2

A DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (RTU mode: M1143=ON)

DVP-10PM series motion controller \Rightarrow VFD-B series AC motor drive: The DVP-10PM series motion controller sends "0103 21020002 6F F7".
VFD-B series AC motor drive \Rightarrow DVP-10PM series motion controller: The DVP-10PM series motion controller receives "01030417700000 FE 5C".
Data transmission registers in the DVP-10PM series motion controller (message sent by the DVP-10PM series motion controller):

Register	Data	Description
D1089 low	01 H	Address
D1090 low	03 H	Function
D1091 low	21 H	Starting data address
D1092 low	02 H	
D1093 low	00 H	Quantity of Data (count by the word)
D1094 low	02 H	
D1095 low	6F H	CRC CHK Low
D1096 low	F7 H	CRC CHK High

5 Applied Instructions and Basic Usage

Data reception registers in the DVP-10PM series motion controller (message with which the VFD-B series AC motor drive responds):

Register	Data	
D1070 low	01 H	Address
D1071 low	03 H	Function
D1072 low	04 H	Quantity of Data (count by the byte)
D1073 low	17 H	Contents of the address 2102 H
D1074 low	70 H	
D1075 low	00 H	Contents of the address 2103 H
D1076 low	00 H	
D1077 low	FE H	CRC CHK Low
D1078 low	5 C H	CRC CHK High

Example 3

If a communication timeout occurs, the data received is incorrect, or the values of parameters of the instruction MODRD are incorrect when a DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF), the sending of data will be retried.

- When X0 is ON, the DVP-10PM series motion controller used reads the data in the data address H2100 in the VFD-B series AC motor drive whose device address is 01, and store the data in D1070~D1085 in the form of ASCII characters. The DVP-10PM series motion controller will automatically convert the ASCII characters in D1070~D1085 into values, and store the values in D1050~D1055.
- If a communication timeout occurs, M1129 will be ON. If M1129 is ON, M1122 will be set to ON.
- If the data received is incorrect, M1140 will be ON. If M1140 is ON, M1122 will be set to ON.
- If the values of parameters of the instruction MODWR is incorrect, M1141 will be ON. If M1141 is ON, M1122 will be set to ON.

- LDP/ANDP/ORP and LDF/ANDF/ORF can not precede the instruction MODRD (function code: H 03), otherwise the data stored in data reception registers will be incorrect.
The instruction can be used several times in a program, but one instruction is executed at a time.

Explanation

Example 1

- \mathbf{S}_{1} : Device address; \mathbf{S}_{2} : Data address; \mathbf{n} : Data which is written
- The instruction MODWR is used to drive peripheral equipment in a Modbus ACII/RUT mode. The RS-485 ports on Delta VFD series AC motor drives (except VFD-A series AC motor drives) conform to a Modbus communication format. Users can write data into a Delta AC motor drive by means of the instruction MODWR.
$-\quad \mathbf{S}_{\mathbf{2}}$ is a data address. If the data address specified is illegal, the device which is connected will respond with an error message, an error code will be stored in D1130 in the DVP-10PM series motion controller used, and M1141 will be ON. For example, the data address 8000 H in a VFD-B series AC motor drive is illegal, and therefore M1141 is ON, and the value in D1130 is 2 . Please refer to VFD-B User Manual for more information about error codes.
- The data which is sent by a peripheral is stored in D1070~D1076. After a DVP-10PM series motion controller receives the data sent by a peripheral, it will automatically check whether the data received is correct. If an error occurs, M1140 will be ON.
- If a DVP-10PM series motion controller sends correct data to a peripheral after M1140 or M1141 is turned ON, and the data with which the peripheral responds is correct, M1140 or M1141 will be reset.
- A DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF)

5 Applied Instructions and Basic Usage

DVP-10PM series motion controller \Rightarrow VFD-B series AC motor drive: The DVP-10PM series motion controller sends "01 060100177071 ".
VFD-B series AC motor drive \Rightarrow DVP-10PM series motion controller: The DVP-10PM series motion controller receives "01 060100177071 ".
Data transmission registers in the DVP-10PM series motion controller (message sent by the DVP-10PM series motion controller):

Register	Data		Description	
D1089 low	'0'	30 H	ADR 1	ADR (1,0): Address of the
D1089 high	'1'	31 H	ADR 0	VFD-B series AC motor drive
D1090 low	'0'	30 H	CMD 1	
D1090 high	'6'	36 H	CMD 0	CMD (1,0). Command code
D1091 low	'0'	30 H	Data address	
D1091 high	'1'	31 H		
D1092 low	'0'	30 H		
D1092 high	'0'	30 H		
D1093 low	'1'	31 H	Data	
D1093 high	'7'	37 H		
D1094 low	'7'	37 H		
D1094 high	'0'	30 H		
D1095 low	'7'	37 H	LRC CHK 1 LRC CHK 0	LRC CHK (0,1): Checksum
D1095 high	'1'	31 H		

Data reception reigsters in the DVP-10PM series motion controller (message with which the VFD-B series AC motor drive responds):

Register	Data			Description
D1070 low	'0'	30 H	ADR 1	
D1070 high	'1'	31 H	ADR 0	
D1071 low	'0'	30 H	CMD 1	
D1071 high	'6'	36 H	CMD 0	
D1072 low	'0'	30 H		
D1072 high	'1'	31 H	Data address	
D1073 low	'0'	30 H		
D1073 high	'0'	30 H		
D1074 low	'1'	31 H		
D1074 high	'7'	37 H	Data	
D1075 low	'7'	37 H	Data	
D1075 high	'0'	30 H		
D1076 low	'7'	37 H	LRC CHK 1	
D1076 high	'1'	31 H	LRC CHK 0	

Example 2

 motor drive (RTU mode: M1143=ON)
of data is complete.
DVP-10PM series motion controller \Rightarrow VFD-B series AC motor drive: The DVP-10PM series motion controller sends "01 062000001202 07".
VFD-B series AC motor drive \Rightarrow DVP-10PM series motion controller: The DVP-10PM series motion controller receives "01 062000001202 07".
Data transmission registers in the DVP-10PM series motion controller (message sent by the DVP-10PM series motion controller):

Register	Data	Description
D1089 low	01 H	Address
D1090 low	06 H	Function
D1091 low	20 H	Data address
D1092 low	00 H	
D1093 low	00 H	Data
D1094 low	12 H	
D1095 low	02 H	CRC CHK Low
D1096 low	07 H	CRC CHK High

Data reception reigsters in the DVP-10PM series motion controller (message with which the VFD-B series AC motor drive responds):

Register	Data	
D1070 low	01 H	Address
D1071 low	06 H	Function
D1072 low	20 H	Data address
D1073 low	00 H	
D1074 low	00 H	Data content
D1075 low	12 H	
D1076 low	02 H	CRC CHK Low
D1077 low	07 H	CRC CHK High

5 Applied Instructions and Basic Usage

Example 3

Example 4

- If a communication timeout occurs, the data received is incorrect, or the values of parameters of the instruction MODRD are incorrect when a DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF), the sending of data will be retried.
- When X0 is ON, the DVP-10PM series motion controller used write H1770 (K6000) into the data address H0100 in the VFD-B series AC motor drive whose device address is 01.
- If a communication timeout occurs, M1129 will be ON. If M1129 is ON, M1122 will be set to ON.
- If the data received is incorrect, M1140 will be ON. If M1140 is ON, M1122 will be set to ON.
- If the values of parameters of the instruction MODWR is incorrect, M1141 will be ON. If M 1141 is $\mathrm{ON}, \mathrm{M} 1122$ will be set to ON .

- If a communication timeout occurs, the data received is incorrect, or the values of parameters of the instruction MODRD are incorrect when a DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF), the sending of data will be retried. The number of times the sending of data is retired is stored in DO. The default value in DO is 3 . If communication is retried successfully, users can control the communication by means of triggering a condition.
- When X0 is ON, the DVP-10PM series motion controller used write H1770 (K6000) into the data address H 0100 in the VFD-B series AC motor drive whose device address is 01 .
- If a communication timeout occurs, M1129 will be ON. If M1129 is ON, M1122 will be set to ON. The number of times the sending of data is retired is stored in DO. The default value in DO is 3 .
- If the data received is incorrect, M1140 will be ON. If M1140 is ON, M1122 will be set to ON. The number of times the sending of data is retired is stored in D0. The default value in D0 is 3 .
- If the values of parameters of the instruction MODWR is incorrect, M1141 will be ON. If M1141 is ON, M1122 will be set to ON. The number of times the sending of data is retired is stored in DO. The default value in D0 is 3 .

Additional remark

5 Applied Instructions and Basic Usage

Explanation

Example

Additional remark

- $\quad \mathbf{S}_{1}$: Binary floating-point value 1; \mathbf{S}_{2} : Binary floating-point value 2; D: Comparison result (D occupies three consecutive devices.)
- The instruction is used to compare the binary floating-point value in \mathbf{S}_{1} with that in $\mathbf{S}_{\mathbf{2}}$. The comparison result ($>,=$, or $<$)is stored in \mathbf{D}.
- If \mathbf{S}_{1} is a floating-point value, the instruction will be used to compare the \boldsymbol{S}_{1} with the binary floating-point value in $\mathbf{S}_{\mathbf{2}}$. If $\mathbf{S}_{\mathbf{2}}$ is a floating-point value, the instruction will be used to compare the binary floating-point value in \mathbf{S}_{1} with \mathbf{S}_{2}.
- If the operand D is M10, M10, M11, and M12 will be occupied automatically. When X0 is ON, the instruction DECMP is executed, and M10, M11, or M12 is ON. When X0 is OFF, the execution of the instruction DECMP stops, and the states of M10, M11, and M12 remain unchanged.
- If users want to get the result that the value in (D1, D0) \geqq the value in (D101, D100), they have to connect M10 and M11 in series. If users want to get the result that the value in (D1, D0) \leqq the value in (D101, D100), they have to connect M11 and M12 in series. If users want to get the result that the value in (D1, D0) $=$ the value in (D101, D100), they have to connect M10, M11, and M12 in series.
- If users want to reset M10, M11, or M12, they can use the instruction RST or ZRST.
If If In
- Please refer to section 5.3 for more information about performing operations on floating-point values.

Explanation

Example

Additional remark

- \mathbf{S}_{1} : Minimum binary floating-point value; \mathbf{S}_{2} : Maximum binary floating-point value; S: Binary floating-point value; D: Comparison result (D occupies three consecutive devices.)
- The instruction is used to compare the binary floating-point value in \mathbf{S} with that in $\mathbf{S}_{\mathbf{1}}$, and compare the binary floating-point value in \mathbf{S} with that in $\mathbf{S}_{\mathbf{2}}$. The comparison result is stored in \mathbf{D}.
- If \mathbf{S}_{1} is a floating-point value, the instruction will be used to compare \mathbf{S}_{1} with the binary floating-point value in \mathbf{S}_{2}. If $\mathbf{S}_{\mathbf{2}}$ is a floating-point value, the instruction will be used to compare the binary floating-point value in \mathbf{S}_{1} with \mathbf{S}_{2}.
- If the binary floating-point value in \mathbf{S}_{1} is greater than that in $\mathbf{S}_{\mathbf{2}}$, the binary floating-point value in \mathbf{S}_{1} will be taken as the maximum/minimum value during the execution of the instruction EZCP.
- If the operand \mathbf{D} is $M 0, M 0, M 1$, and $M 2$ will be occupied automatically.
- When XO is ON, the instruction DEZCP is executed, and M0, M1, or M2 is ON. When XO is OFF, the execution of the instruction DEZCP stops, and the states of M0, M1, and M2 remain unchanged.
- If users want to reset M0, M1, or M2, they can use the instruction RST or ZRST.

Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

Explanation

Example

- S: Source; D: Destination
- The operand \mathbf{S} can be a floating-point value.
- When the instruction is executed, the value in \mathbf{S} is transferred to \mathbf{D}. When the instruction is not executed, the value in \mathbf{D} is unchanged.
- When X0 is OFF, the value in (D11, D10) is unchanged. When X0 is ON, the
\qquad value F1.2 is transferred to the data register (D11, D10).

API 116	D	RAD		\mathbf{P}	(S D						Converting a degree to a radian							Applic	ble model	
																		PPM		
\bigcirc Bit device					Word device											16-bit instruction				
	X	Y	M		S	F	H	KnX	KnY	KnM	KnS	T	C	D	V					Z
S					*								*			32 bit instruction (6 steps)				
D													*			DRAD	Continuity instruction	DRADP	Pulse instruction	
- Note: Please refer to specifications for more information about device ranges. F represents a floating-point value. There is a decimal point in a floating-point value. Only the 32-bit instructions DRAD and DRADP are valid.																				

Explanation

Example

- S: Source (degree); D: Conversion result (radian)
- The equation below is used to convert a degree into a radian.

Radian $=$ Degree $\times(\pi / 180)$

- If the absolute value of a conversion result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of a conversion reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If a converseion result is 0 , a zero flag will be ON.
- When X0 is ON, the degree in (D1, D0) is converted into a radian, and the remark

5 Applied Instructions and Basic Usage

117	D	DEG		\mathbf{P}	(S) D						Converting a radian to a degree							Applic	ble model	
																		PPM		
	Bit device				Word device											16-bit instruction				
	X	Y	M		S	F	H	KnX	KnY	KnM	KnS	T	C	D	V					Z
S					*								*			32-bit inst	uction (6 s			
D																DDEG	Continuity instruction	DDEGP	Pulse instruction	
- Note: Please refer to specifications for more information about device ranges. F represents a floating-point value. There is a decimal point in a floating-point value. Only the 32-bit instructions DDEG and DDEGP are valid.- Flags Ox O100 M1808 M1968 Zero flag M1809 M1969 Borrow flag M1810 M1970 Carry flag - Please refer to the additional remark below.																				

Explanation

Example

Additional remark

- S: Source (radian); D: Conversion result (degree)
- If the absolute value of a conversion result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of a conversion reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If a converseion result is 0 , a zero flag will be $O N$.
- When X0 is ON, the radian in (D1, D0) is converted into a degree, and the conversion result is stored in (D11, D10). The degree in (D11, D10) is a binary floating-point value.

Please refer to section 5.3 for more information about performing operations on floating-point values.

Explanation

Example 1

Example 2

Additional remark

Lenipio

- \mathbf{S}_{1} : Augend; \mathbf{S}_{2} : Addend; D: Sum
- The binary floating-point value in $\mathbf{S}_{\mathbf{2}}$ is added to the binary floating-point value in $\mathbf{S}_{\mathbf{1}}$, and the sum is stored in \mathbf{D}.
- If \mathbf{S}_{1} is a floating-point value, the instruction will be used to add the binary floating-point value in \mathbf{S}_{2} to \mathbf{S}_{1}. If $\mathbf{S}_{\mathbf{2}}$ is a floating-point value, the instruction will be used to add \mathbf{S}_{2} to the binary floating-point value in \mathbf{S}_{1}.
- \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ can be the same register. If the instruction DEADD is used under the circumstances, the value in the register is added to itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DEADDP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When X0 is ON, the binary floating-point value in (D3, D2) is added to the

DO	DEADD	D0	D2	D10

- When X0 is ON, F1234.0 is added to the binary floating-point value in (D11, D10), and the sum is stored in (D21, D20).

$\times 2$	DEADD	D10	F1234.0	D20

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

Explanation

Example 1

Example 2

Additional

 remarkExample

- \mathbf{S}_{1} : Minuend; \mathbf{S}_{2} : Subtrahend; D: Difference

The binary floating-point value in $\mathbf{S}_{\mathbf{2}}$ is subtracted from the binary floating-point value in $\mathbf{S}_{\mathbf{1}}$, and the difference is stored in \mathbf{D}.

- If \mathbf{S}_{1} is a floating-point value, the instruction will be used to subtract the binary floating-point value in \mathbf{S}_{2} from \mathbf{S}_{1}. If \mathbf{S}_{2} is a floating-point value, the instruction will be used to subtract \mathbf{S}_{2} from the binary floating-point value in \mathbf{S}_{1}.
$-\quad \mathbf{S}_{1}$ and \mathbf{S}_{2} can be the same register. If the instruction DESUB is used under the circumstances, the value in the register is subtracted from itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DESUBP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When XO is ON, the binary floating-point value in (D3, D2) is subtracted from
the binary floating-point value in (D1, D0), and the difference is stored in (D11, D10).

- When X 2 is ON, the binary floating-point value in (D1, D0) is subtracted from F1234.0, and the difference is stored in (D11, D10).

- Please refer to section 5.3 for more information about performing operations on floating-point values.

API		EMUL	P	S1 S $S^{\text {d }}$	Binary floating-point multiplication	Applicable model
22	D					10PM
122	D					\checkmark

	Bit device				Word device											16-bit instruction			
	X	Y	M	S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z				
S_{1}					*								*			---------	-	-	-
S_{2}					*								*			32-bit instruction (9 steps)			
D													*			DEMUL	Continuity instruction	DEMULP	Pulse instruction
Note: Please refer to specifications for more information about device ranges. F represents a floating-point value. There is a decimal point in a floating-point value. Onlyt the 32-bit instructions DEMUL and DEMULP are valid.																- Flags - Please refer to the additional remark below.			

Additional remark

- \mathbf{S}_{1} : Multiplicand; \mathbf{S}_{2} : Multiplier; D: Product
- The binary floating-point value in \mathbf{S}_{1} is multiplied by the binary floating-point value in $\mathbf{S}_{\mathbf{2}}$, and the product is stored in \mathbf{D}.
- If \mathbf{S}_{1} is a floating-point value, the instruction will be used to multiply \mathbf{S}_{1} by the binary floating-point value in $\mathbf{S}_{\mathbf{2}}$. If $\mathbf{S}_{\mathbf{2}}$ is a floating-point value, the instruction will be used to multiply the binary floating-point value in \mathbf{S}_{1} by \mathbf{S}_{2}.
$-\quad \mathbf{S}_{1}$ and \mathbf{S}_{2} can be the same register. If the instruction DEMUL is used under the circumstances, the value in the register is multiplied by itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DEMULP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When X 1 is ON , the binary floating-point value in (D1, D0) is multiplied by the binary floating-point value in (D11, D10), and the product is stored in (D21, D20).

1	DEMUL	D0	D10	D20

- When X2 is ON, F1234.0 is multiplied by the binary floating-point value in (D1, D0), and the product is stored in (D11, D10).

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

API123	D	EDIV		P	$S_{1} S_{2}$ D						Binary floating-point division							Applic	ble model	
																		OPM		
	Bit device				Word device											16-bit instruction				
	X	Y	M		S	F	H	KnX	KnY	KnM	KnS	T	C	D	V					Z
S_{1}																:32-bit ins	uction (9 s	eps)		
S_{2}					*											DEDIV	Continuity instruction	DEDIVP	Pulse instruction	
D													*			- Flags				

Explanation

Example 1

Example 2

Additional remark

- \mathbf{S}_{1} : Dividend; \mathbf{S}_{2} : Divisor; D: Quotient and remainder
- The binary floating-point value in \mathbf{S}_{1} is divided by the binary floating-point value in $\mathbf{S}_{\mathbf{2}}$, and the quotient is stored in \mathbf{D}.
- If \mathbf{S}_{1} is a floating-point value, the instruction will be used to divide \mathbf{S}_{1} by the binary floating-point value in \mathbf{S}_{2}. If \mathbf{S}_{2} is a floating-point value, the instruction will be used to divide the binary floating-point value in \mathbf{S}_{1} by \mathbf{S}_{2}.
- If the value in \mathbf{S}_{2} is 0 , an operation error will occur, the instruciton will not be executed, an operation error flag will be ON, and the error code HOE19 will appear.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When X1 is ON, the binary floating-point value in (D1, D0) is divided by the D20).

X1	DEDIV	D0	D10	D20

- When X2 is ON, the binary floating-point value in (D1, D0) is divided by F1234.0, and the quotient is stored in (D11, D10).

- Please refer to section 5.3 for more information about performing operations on floating-point values.

Explanation

Example

Additional remark

- \mathbf{S} : Source device; \mathbf{D} : Device in which an operation result is stored
- $\operatorname{EXP}^{[\mathrm{D}+1, \mathrm{D}]}=[\mathbf{S}+1, \mathbf{S}]$. e is a base ($\mathrm{e}=2.71828$), and \mathbf{S} is an exponent.
- The value in \mathbf{S} can be a positive value or a negative value. \mathbf{D} must be a 32-bit register, and the value in \mathbf{S} must be a floating-point value.
- The value in \mathbf{D} is $\mathrm{e}^{\mathbf{S}}$. (e is 2.71828 , and \mathbf{S} represents a source value.)
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When M0 is ON, the value in (D1, D0) is converted into a binary floating-point value, and the conversion result is stored in (D11, D10).
- When M1 is ON, the exponentiation with the value in (D11, D10) as an exponent is performed. The result is a binary floating-point number, and is stored in (D21, D20).
- When M2 is ON, the binary floating-point value in (D21, D20) is converted into a decimal floating-point value, and the conversion result is stored in (D31, D30). (The value in D31 is the value in D30 to the power of 10.)

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

Explanation

Example

Additional remark

- S: Source device; D: Device in which an operation result is stored The natural logarithm of the value in \mathbf{S} is calculated.
$\operatorname{Ln}[\mathbf{S}+1, \mathbf{S}]=[\mathbf{D}+1, \mathrm{D}]$
The value in \mathbf{S} can only be a positive value. \mathbf{D} must be a 32-bit register, and the value in \mathbf{S} must be a floating-point value.
- f the value in \mathbf{S} is not a positive value, an operation error will occur, the instruciton will not be executed, an operation error flag will be ON, and the error code H0E19 will appear.
$-\quad e^{\mathrm{D}}=\mathbf{S} . \rightarrow$ The value in $\mathbf{D}=\ln \mathbf{S}$ (S: Source device)
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When MO is ON, the value in (D1, D0) is converted into a binary floating-point value, and the conversion result is stored in (D11, D10).
- When M1 is ON, the natural logarithm of the floating-point value in (D11, D10) is calculated, and the operation result is stored in (D21, D20).
- When M2 is ON, the binary floating-point value in (D21, D20) is converted into a decimal floating-point value, and the conversion result is stored in (D31, D30). (The value in D31 is the value in D30 to the power of 10.)

- Please refer to section 5.3 for more information about performing operations on floating-point values.

Explanation

Example

- $\mathbf{S}_{\mathbf{1}}$: Device in which the base is stored; $\mathbf{S}_{\mathbf{2}}$: Source device; \mathbf{D} : Device in which an operation result is stored
- The logarithm of the value in $\mathbf{S}_{\mathbf{2}}$ with respect to the value in \mathbf{S}_{1} is calculated, and the operation result is stored in \mathbf{D}.
- The values in \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ can only be positive values. \mathbf{D} must be a 32 -bit register, and the values in \mathbf{S}_{1} and \mathbf{S}_{2} must be floating-point values.
- $\mathbf{S}_{1}{ }^{\mathrm{D}}=\mathbf{S}_{2} \rightarrow \mathbf{D}=\log _{\mathrm{s}_{1}} \mathbf{S}_{2}$
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When M0 is ON, the values in (D1, D0) and (D3, D2) are converted into binary floating-point values, and the conversion results are stored in (D11, D10) and (D13, D12) respectively.
- When M1 is ON, the logarithm of the binary floating-point value in (D13, D12) with respect to the binary floating-point value in (D11, D10) is calculated, and the operation result is stored in (D21, D20).
- When M2 is ON, the binary floating-point value in (D21, D20) is converted into a decimal floating-point value, and the conversion result is stored in (D31, D30). (The value in D31 is the value in D30 to the power of 10.)

Additional remark

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

API	DESQR			\mathbf{P}	(S) D						Square root of a binary floating-point value						Applic	ble		
127																	PM			
	Bit device				Word device										16-bit instruction					
	X	Y	M		S	F	H	KnX	KnY	KnM	KnS	T	C	D						V
S					*								*		32-bit instruction (6 steps)					
D													*		DESQR	Continuity instruction	DESQRP	Pulse instru		
- Note: Please refer to specifications for more information about device ranges. S is greater than or equal to 0 . F represents a floating-point value. There is a decimal point in a floating-point value. Only the 32-bit instructions DESQR and DESQRP are valid.- Flags Ox O100 M1808 M1968 Zero flag M1793 M1953 Operation error flag - Please refer to the additional remark below.																				

Explanation

Example 1

Example 2

Additional remark

\mathbf{S} : Source device; \mathbf{D} : Device in which a result is stored

Binary floating-point number

Binary floating-point number

- When X2 is ON, the square root of F1234.0 is calculated, and the result is stored in (D11, D10).

$\times 2$			
$1 ト$	DESQR	F1234.0	D10

Please refer to section 5.3 for more information about performing operations on floating-point values.

API 128	D	POW		P	(S1) \mathbf{S}_{2}						Power of a floating-point value							Applica	le model	
																		PM		
\triangle Bit device					Word device											16-bit ins	uction			
	X	Y	M		S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z		-	-	-
S_{1}					*								*			32-bit ins	uction (9	eps)		
S_{2}					*								*			DPOW	Continuity instruction	DPOWP	Pulse instruction	
D													*			- Flags				
- Note: Please refer to specifications for more information about device Ox O100 M1808M1968Zero flag ranges. M1809 M1969 Borrow flag Only the 32-bit instructions DPOW and DPOWP are valid. M1810 M1970 Carry flag F represents a floating-point value. There is a decimal point in floating-point value. M1793 M1953 Operation error flag - Please refer to the additional remark below.																				

Explanation

Example

- \mathbf{S}_{1} : Device in which a base is stored; $\mathbf{S}_{\mathbf{2}}$: Device in which a power is stored; \mathbf{D} : Device in which the operation result is stored
- The binary floating-point value in \boldsymbol{S}_{1} is raised to the power of the value in $\mathbf{S}_{\mathbf{2}}$, and the operation result is stored in \mathbf{D}.
$\mathrm{D}=\mathrm{POW}\left[\mathbf{S}_{1}+1, \mathbf{S}_{1}\right]^{[\mathbf{S} 2+1, \mathbf{s} 2]}$
- The value in S_{1} can only be a positive value, whereas the value in S_{2} can be a positive value or a negative value. \mathbf{D} must be a 32 -bit register, and the values in S_{1} and S_{2} must be floating-point values.
- If the values in \mathbf{S}_{1} and \mathbf{S}_{2} are invalid, an operation error will occur, the instruciton will not be executed, an operation error flag will be ON, and the error code H0E19 will appear.
- If the absolute value of an operation result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an operation reuslt is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0 , a zero flag will be ON.
- When M0 is ON, the values in (D1, D0) and (D3, D2) are converted into binary floating-point values, and the conversion results are stored in (D11, D10) and (D13, D12) respectively.
- When M1 is ON, the binary floating-point value in (D11, D10) is raised to the power of the binary floating-point value in (D13, D12), and the operation result is stored in (D21, D20).
- When M2 is ON, the binary floating-point value in (D21, D20) is converted into a decimal floating-point value, and the conversion result is stored in (D31, D30). (The value in D31 is the value in D30 to the power of 10.)

Additional remark

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

API	D	INT			(S) D						Converting a binary floating-point value into a binary integer							Applica	le model
129				P															PM
	Bit device				Word device											16-bit instruction			
	X	Y	M	S	K	H	KnX	KnY	KnM	KnS	T	C	D	V	Z	-	-	-	-
S																32-bit inst	uction (5		
D																DINT	Continuity instruction	DINTP	Pulse instruction
- Note: Please refer to specifications for more information about device ranges. Only the 32-bit instructions DINT and DINTP are valid.																			

Explanation
Example

- S: Source device; D: Conversion result

The binary floating-point value in \mathbf{S} is converted into a binary value. The integer part of the binary value is stored in \mathbf{D}, and the fractional part of the binary value is dropped.

- The instruction is the opposite of API 49 DFLT.
- If a conversion result is 0 , a zero flag will be ON.

If the fractional part of a conversion result is dropped, a borrow flag will be ON. If a converesion result is not in the range of $-2,147,483,648$ to $2,147,483,647$, a carry flag will be ON.

- When X 1 is ON, the binary floating-point value in (D21, D20) is converted into a binary value. The integer part of the binary value is stored in (D31, D30), and the fractional part of the binary value is dropped.

API		SIN			(S) D					Sine of a binary floating-point value								Applica	le model
130	D			P															PM
\triangle Bit device					Word device											$\frac{16-\mathrm{bit} \text { instruction }}{-}$			
	X	Y	M	S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z				
S					*								*			32 -bit instruction (6 steps)			
D													*			DSIN	Continuity instruction	DSINP	Pulse instruction
- Note: $0^{\circ} \leqq$ Degree $\leqq 360^{\circ}$ Please refer to specifications for more information about device ranges. F represents a floating-point value. There is a decimal point in a floating-point value. Only the 32-bit instructions DSIN and DSINP are valid.																- Flags Ox O100 M1808 M1968 Zero flag M1760 M1920 Radian/Degree flag - Please refer to the additional remark below.			

S: Source value; D: Sine value

- Whether the source value in \mathbf{S} is a radian or a degree depends on the state of a radian/degree flag.
- If a radian/degree flag is OFF, the source value in \mathbf{S} is a radian.

Radian=Degree $\times \pi / 180$.

- If a radian/degree flag is ON, the source value in \mathbf{S} is a degree.
($0^{\circ} \leqq$ Degree $\leqq 360^{\circ}$)
- If an operation result is 0 , a zero flag will be ON.
- The sine of the source value in \mathbf{S} is stored in \mathbf{D}.

The relation between radians and sine values is shown below.

- A radian/degree flag is reset to OFF. The binary floating-point value in (D1, D0)

Example 1

 is a radian. When XO is ON, the sine of the binary floating-point value in (D1, D0) is stored in (D11, D10).

5 Applied Instructions and Basic Usage

Example 2

Example 3

Additional

 remark

Explanation

- S: Source value; D: Cosine value
- Whether the source value in \mathbf{S} is a radian or a degree depends on the state of a radian/degree flag.
- If a radian/degree flag is OFF, the source value in \mathbf{S} is a radian.

Radian=Degree $\times \pi / 180$.

- If a radian/degree flag is ON, the source value in \mathbf{S} is a degree.
($0^{\circ} \leqq$ Degree $\leqq 360^{\circ}$)
- If an operation result is 0 , a zero flag will be ON.
- The cosine of the source value in \mathbf{S} is stored in \mathbf{D}.

The relation between radians and cosine values is shown below.

- Radian/Degree flag: If a radian/degree flag is OFF, the source value in \mathbf{S} is a radian. If a radian/degree flag is ON, the source value in \mathbf{S} is a degree in the range of 0° to 360°.
- A radian/degree flag is reset to OFF. The binary floating-point value in (D1, D0)

Example 1 is a radian. When X0 is ON, the cosine of the binary floating-point value in (D1, D0) is stored in (D11, D10).

(D)

Cosine value
Binary floating-point value

- A radian/degree flag is set to ON. The value in (D1, D0) is a degree in the

Example 2

Additional remark range of 0° to 360°. When $\mathrm{X0.0}$ is ON , the cosine of the value in (D1, D0) is stored in (D11, D10). The value in (D11, D10) is a binary floating-point value.

Please refer to section 5.3 for more information about performing operations on floating-point values.

API132	D	TAN		P	(S) D					Tangent of a binary floating-point value								Applica	ble model	
																		PM		
\bigcirc Bit device					Word device											16-bit inst	uction			
	X	Y	M		S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z		-	-	-
S					*								*			32-bit inst	uction (6			
D													*			DTAN	Continuity instruction	DTANP	Pulse instruction	
- Note: $0^{\circ} \leqq$ Degree $\leqq 360^{\circ}$ Please refer to specifications for more information about device ranges. F represents a floating-point value. There is a decimal point in a floating-point value. Only the 32-bit instructions DTAN and DTANP are valid.																	$\begin{gathered} \text { O100 } \\ \text { M1968 } \\ \text { M1920 } \end{gathered}$ refer to the	ro flag adian/Deg ditional re	ee flag nark below.	

Explanation

- S: Source value; D: Tangent value
- Whether the source value in \mathbf{S} is a radian or a degree depends on the state of a radian/degree flag.
- If a radian/degree flag is OFF, the source value in \mathbf{S} is a radian.

Radian=Degree $\times \pi / 180$.

- If a radian/degree flag is $\mathbf{O N}$, the source value in \mathbf{S} is a degree. $\left(0^{\circ} \leqq\right.$ Degree $\leqq 360^{\circ}$)
- If an operation result is 0 , a zero flag will be ON.
- The tangent of the source value in \mathbf{S} is stored in \mathbf{D}.

The relation between radians and tangent values is shown below.

- A radian/degree flag is reset to OFF. The binary floating-point value in (D1, D0)

Example 1

 is a radian. When X0 is ON, the tangent of the binary floating-point value in (D1, D0) is stored in (D11, D10).

(D) | D 11 | D 10 |
| :--- | :--- |

Tangent value
Binary floating-point value

Example 2 range of 0° to 360°. When X0 is ON, the tangent of the value in (D1, D0) is stored in (D11, D10). The value in (D11, D10) is a binary floating-point value. $\left\lvert\, \begin{array}{ll}\text { M1002 } \\ \text { X0 } \\ \text { X } \\ \longrightarrow\end{array}\right.$

Radian/Degree flag

Additional remark

API	D	ASIN			(S) D					Arcsine of a binary floating-point value								Applica	ble model
133				P															PM
\triangle Bit device					Word device											16-bit instruction			
	X	Y	M	S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z				
S					*								*			32-bit inst	uction (6		
D													*			DASIN	Continuity instruction	DASINP	Pulse instruction
- Note: Please refer to specifications for more information about device ranges. Only the 32-bit instructions DASIN and DASINP are valid. F represents a floating-point value. There is a decimal point in a floating-point value.																			

Explanation

Example

Additional remark

S: Source value (binary floating-point value); D: Arcsine value

- Arcsine value=sin ${ }^{-1}$

The relation between sine values and arcsine values is shown below.

- The decimal floating-point value into which the sine value in \mathbf{S} is converted can only be in the range of -1.0 to +1.0 . If it is not in the range, the instruction will not be executed, an operation error flag will be ON, and the error code HOE19 will appear.
- If a conversion result is 0 , a zero flag will be ON.
- When XO is ON, the arcsine of the binary floating-point value in (D1, D0) is

| DASIN | D0 | D10 |
| :---: | :---: | :---: | :---: |
| | 1 D 1 D 0 | Binary floating-point value |

D \square Arcsine value Binary floating-point value

- Please refer to section 5.3 for more information about performing operations on floating-point values.

5
 Applied Instructions and Basic Usage

API	D	ACOS			(S) D					Arccosine of a binary floating-point value								Applica	le model
134				P															PM
	Bit device				Word device											16-bit inst	uction		
	X	Y	M	S	F	H	KnX	KnY	KnM	KnS	T	C	D	V	Z		-	-	-
S					*								*			32-bit inst	uction (6 s	eps)	
D													*			DACOS	Continuity instruction	DACOSP	Pulse instruction
- Note: Please refer to specifications for more information about device ranges. Only the 32 -bit instructions DACOS and DACOSP are valid. F represents a floating-point value. There is a decimal point in a floating-point value.- Flags Ox O100 M1808 M1968 Zero flag M1793 M1953 Operation error flag - Please refer to the additional remark below.																			

Explanation

\qquad

- S: Source value (binary floating-point value)

D: Arccosine value

- Arccosine value $=\cos ^{-1}$

The relation between cosine values and arccosine values is shown below.

- The decimal floating-point value into which the cosine value in \mathbf{S} is converted can only be in the range of -1.0 to +1.0 . If it is not in the range, the instruction will not be executed, an operation error flag will be ON, and the error code HOE19 will appear.
- If a conversion result is 0 , a zero flag will be ON.
- When XO is ON, the arccosine of the binary floating-point value in (D1, D0) is

Example

Additional remark

SD 1
D 0 Binary floating-point value
D

D 11	D 10

Arccosine value Binary floating-point value

Please refer to section 5.3 for more information about performing operations on floating-point values.

Explanation
*xplanation

- S: Source value (binary floating-point value);

D: Arctangent value

- Arctangent value $=\tan ^{-1}$

The relation between tangent values and arctangent values is shown below.

- If a conversion result is 0 , a zero flag will be ON.

Example

- When X0 is ON, the arctangent of the binary floating-point value in (D1, D0) is stored in (D11, D10).

D \square Arctangent value Binary floating-point value - Please refer to section 5.3 for more information about performing operations on floating-point values.

5 Applied Instructions and Basic Usage

Explanation

Example

Additional remark

S: Source value (binary floating-point value); D: Hyperbolic sine value
Hyperbolic sine value $=\left(e^{s}-e^{-s}\right) / 2$

- When X0 is ON, the hyperbolic sine of the binary floating-point number in (D1, D0) is stored in (D11, D10).

- If the absolute value of a conversion result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of a conversion result is less than the minimum floating-point value available, a borrow flag will be ON.
- If a conversion result is 0 , a zero flag will be ON.
- Please refer to section 5.3 for more information about performing operations on floating-point values.

Explanation

Example

Additional remark

5 Applied Instructions and Basic Usage

Explanation

Example

Additional remark

S: Source value (binary floating-point value); D: Hyperbolic tangent value
$-\quad$ Hyperbolic tangent value $=\left(e^{s}-e^{-s}\right) /\left(e^{s}+e^{-s}\right)$

- When X0 is ON, the hyperbolic tangent of the binary floating-point number in (D1, D0) is stored in (D11, D10).

D \square Hyperbolic tangent value Binary floating-point value

- If the absolute value of a conversion result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of a conversion result is less than the minimum floating-point value available, a borrow flag will be ON.
- If a conversion result is 0 , a zero flag will be $O N$.
- Please refer to section 5.3 for more information about performing operations on floating-point values.

Explanation

Example 1

Example 2

- \mathbf{S}_{1} : Augend; \mathbf{S}_{2} : Addend; D: Sum
- \mathbf{S}_{1} and \mathbf{S}_{2} can be floating-point values.
- \mathbf{S}_{1} and \mathbf{S}_{2} can be floating-point values (e.g. F1.2), or data registers in which floating-point values are stored.
- If \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ are data registers in which floating-point values are stored, the function of API 172 DAADR is the same as the function of API 120 DEADD.
- The floating-point value in \mathbf{S}_{2} is added to the floating-point value in \mathbf{S}_{1}, and the sum is stored in \mathbf{D}.
$-\quad \mathbf{S}_{1}$ and \mathbf{S}_{2} can be the same register. If the instruction DAADR is used under the circumstances, the value in the register is added to itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DADDRP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON. If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON. If an operation result is 0 , a zero flag will be ON .
- When X0 is ON, the floating-point value F2.200E +0 is added to the floating-point value F1.200E+0, and the sum F3.400E+0 is stored in (D11, D10). (The floating-point value F1.2 is represented by the scientific notation F1.200E +0 in a ladder diagram. The number of decimal places which are displayed can be set by means of the View menu in WPLSoft.)

| DADDR | F1.200E+0 | F2.200E+0 | D10 |
| :---: | :---: | :---: | :---: | :---: |

- When X0 is ON, the floating-point value in (D3, D2) is added to the floating-point value in (D1, D0), and the sum is stored in (D11, D10).

5 Applied Instructions and Basic Usage

Explanation

Example 1

Example 2

- \mathbf{S}_{1} : Minuend; \mathbf{S}_{2} : Subtrahend; \mathbf{D} : Subtrahend
- \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ can be floating-point values
- \mathbf{S}_{1} and \mathbf{S}_{2} can be floating-point values (e.g. F1.2), or data registers in which floating-point values are stored.
- If \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ are data registers in which floating-point values are stored, the function of API 172 DSUBR is the same as the function of API 121 DESUB.
- The floating-point value in \mathbf{S}_{2} is subtracted from the floating-point value in \mathbf{S}_{1}, and the difference is stored in \mathbf{D}.
- \mathbf{S}_{1} and \mathbf{S}_{2} can be the same register. If the instruction DSUBR is used under the circumstances, the value in the register is subtracted from itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DSUBRP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON. If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON. If an operation result is 0 , a zero flag will be ON.
- When X0 is ON, the floating-point value F2.200E+0 is subtracted from the floating-point value $\mathrm{F} 1.200 \mathrm{E}+0$, and the difference $\mathrm{F}-1.000 \mathrm{E}+0$ is stored in (D11, D10). (The floating-point value F1.2 is represented by the scientific notation F1.200E+0 in a ladder diagram. The number of decimal places which are displayed can be set by means of the View menu in WPLSoft.)

X0	DSUBR	$F 1.200 \mathrm{E}+0$	$F 2.200 \mathrm{E}+0$	D10

- When X0 is ON, the floating-point value in (D3, D2) is subtracted from the floating-point value in (D1, D0), and the difference is stored in (D11, D10).

X0	DSUBR	D0	D2	D10

Explanation

Example 1

Example 2

- \mathbf{S}_{1} : Multiplicand; \mathbf{S}_{2} : Multiplier; D: Product
- \mathbf{S}_{1} and \mathbf{S}_{2} can be floating-point values.
- \mathbf{S}_{1} and \mathbf{S}_{2} can be floating-point values (e.g. F1.2), or data registers in which floating-point values are stored.
- If \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ are data registers in which floating-point values are stored, the function of API 172 DMULR is the same as the function of API 122 DEMUL.
- The floating-point value in \mathbf{S}_{1} is multiplied by the floating-point value in \mathbf{S}_{2}, and the product is stored in \mathbf{D}.
$-\quad \mathbf{S}_{1}$ and \mathbf{S}_{2} can be the same register. If the instruction DSUBR is used under the circumstances, the value in the register is multiplied by itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DMULRP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON. If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON. If an operation result is 0 , a zero flag will be ON .
- When X0 is ON, the floating-point value F1.200E+0 is multiplied by the floating-point value $F 2.200 \mathrm{E}+0$, and the product $\mathrm{F} 2.640 \mathrm{E}+0$ is stored in (D11, D10). (The floating-point value F1.2 is represented by the scientific notation F1.200E+0 in a ladder diagram. The number of decimal places which are displayed can be set by means of the View menu in WPLSoft.)

- When X 1 is ON, the floating-point value in (D1, D0) is multiplied by the floating-point value in (D11, D10), and the product is stored in (D21, D20).

5 Applied Instructions and Basic Usage

Explanation

Example 1

Example 2

- \mathbf{S}_{1} : Dividend; \mathbf{S}_{2} : Divisor; D: Quotient
- \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ can be floating-point values.
- \mathbf{S}_{1} and \mathbf{S}_{2} can be floating-point values (e.g. F1.2), or data registers in which floating-point values are stored.
- If \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ are data registers in which floating-point values are stored, the function of API 172 DDIVR is the same as the function of API 123 DEDIV.
- The floating-point value in \mathbf{S}_{1} is divided by the floating-point value in \mathbf{S}_{2}, and the product is stored in \mathbf{D}.
- \mathbf{S}_{1} and \mathbf{S}_{2} can be the same register. If the instruction DSUBR is used under the circumstances, the value in the register is divided by itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DDIVRP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON. If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON. If an operation result is 0 , a zero flag will be ON.
- When X0 is ON, the floating-point value F1.200E is divided by the floating-point value $\mathrm{F} 2.200 \mathrm{E}+0$, and the quotient $\mathrm{F} 0.545 \mathrm{E}+0$ is stored in (D11, D10). (The floating-point value F1.2 is represented by the scientific notation F1.200E +0 in a ladder diagram. The number of decimal places which are displayed can be set by means of the View menu in WPLSoft.)

| DDIVR | F1.200E+0 | F2.200E +0 | D10 |
| :---: | :---: | :---: | :---: | :---: |

- When X 1 is ON, the floating-point value in (D1, D0) is divided by the floating-point value in (D11, D10), and the quotient is stored in (D21, D20).

X1	DDIVR	D0	D10	D20

Explanation

- $\quad \mathbf{S}_{1}$: Source device 1; \mathbf{S}_{2} : Source device 2

Example

 comparison result is 0 , the condition of the instruction is not met.The instruction LD\# can be connected to a busbar directly.
\&: Logical AND operation

- |: Logical OR operation
- $\quad \wedge$: Logical exclusive OR operation blink. (C200~C255 are 32-bit counters.)

The instruction is used to compare the value in \mathbf{S}_{1} with that in \mathbf{S}_{2}. If the comparison result is not 0 , the condition of the instruction is met. If the

API No.	16-bit instruction	32-bit instruction	ON				OFF			
215	LD\&	DLD\&	$\mathbf{S}_{\mathbf{1}}$	$\&$	$\mathbf{S}_{\mathbf{2}}$	$\neq 0$	$\mathbf{S}_{\mathbf{1}}$	$\&$	$\mathbf{S}_{\mathbf{2}}$	$=0$
216	LD	DLD	$\mathbf{S}_{\mathbf{1}}$	\mid	$\mathbf{S}_{\mathbf{2}}$	$\neq 0$	$\mathbf{S}_{\mathbf{1}}$	\mid	$\mathbf{S}_{\mathbf{2}}$	$=0$
217	LD^ $^{\wedge}$	DLD^ $^{\wedge}$	\mathbf{S}_{1}	\wedge	$\mathbf{S}_{\mathbf{2}}$	$\neq 0$	$\mathbf{S}_{\mathbf{1}}$	\wedge	$\mathbf{S}_{\mathbf{2}}$	$=0$

- If a 32-bit counter is used, the 32-bit insturciton DLD\# must be used. If a 32-bit counter and the 16 -bit instruction LD\# are used, a program error will occur, and the ERROR LED indicator on the DVP-10PM series motion controller used will
- A logical AND operator takes the values in C0 and C10, and performs the logical OR operation on each pair of corresponding bits. If the operation result is not 0 and X 1 is $\mathrm{ON}, \mathrm{Y} 11$ will be set to ON .
- A logical operator XOR takes the values in C201 and C200, and performs the logical exclusive OR operation on each pair of corresponding bits. If the operation result is not 0 , or if M 3 is $\mathrm{ON}, \mathrm{M} 50$ will be ON .

5 Applied Instructions and Basic Usage

Explanation

\mathbf{S}_{1} : Source device 1; \mathbf{S}_{2} : Source device 2
The instruction is used to compare the value in $\mathbf{S}_{\mathbf{1}}$ with that in $\mathbf{S}_{\mathbf{2}}$. If the comparison result is not 0 , the condition of the instruction is met. If the comparison result is 0 , the condition of the instruction is not met.
The instruction AND\# is connected to a contact in series.

API No.	16-bit instruction	32-bit instruction	ON				OFF			
218	AND\&	DAND\&	$\mathbf{S}_{\mathbf{1}}$	$\&$	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	$\&$	$\mathbf{S}_{\mathbf{2}}$	$=0$
219	AND	DAND	$\mathbf{S}_{\mathbf{1}}$	\mid	$\mathbf{S}_{\mathbf{2}}$	$\neq 0$	$\mathbf{S}_{\mathbf{1}}$	\mid	$\mathbf{S}_{\mathbf{2}}$	$=0$
220	AND^ $^{\wedge}$	DAND^ $^{\wedge}$	\mathbf{S}_{1}	\wedge	$\mathbf{S}_{\mathbf{2}}$	$\neq 0$	$\mathbf{S}_{\mathbf{1}}$	\wedge	$\mathbf{S}_{\mathbf{2}}$	$=0$

\&: Logical AND operation

- |: Logical OR operation
- \quad : Logical exclusive OR operation
- If a 32-bit counter is used, the 32-bit instruction DAND\# must be used. If a 32-bit counter and the 16-bit instruction AND\# are used, a program error will occur, and the ERROR LED indicator on the DVP-10PM series motion controller used will blink. (C200~C255 are 32-bit counters.)

Example

When X0 is ON, a logical AND operator takes the values in C0 and C10, and performs the logical AND operation on each pair of corresponding bits. If the operation result is not $0, \mathrm{Y} 10$ will be set to ON.
When X1 is OFF, a logical OR operator takes the values in D10 and D0, and performs the logical OR operation on each pair of corresponding bits. If the operation result is not $0, \mathrm{Y} 1$ will be set to ON .

- When X2 is ON, a logical XOR operator takes the values in (D201, D200) and (D101, D100), and performs the logical exclusive OR operation on each pair of corresponding bits. If the operation result is not 0 , or if M 3 is $\mathrm{ON}, \mathrm{M} 50$ will be ON.

API	D	OR \#			S1 S S_{2}					Logical operation							Applicable model								
221																									
Bit device					Word device											16-bit instruction (5 steps)									
	X	Y	M	S	K	H	KnX	KnY	KnM							KnS	T	C	D	V	Z	:OR \#	Continuity		-
S_{1}					*	*	*	*	*	*	*	*	*	*	*		instruction								
S_{2}					*	*	*	*	*	*	*	*	*	*	*		Continuity								
- Note: \# represents \&, \|, or ^. Please refer to specifications for more information about device ranges.																- Flag:	instruction None								

Explanation

Example

\mathbf{S}_{1} : Source device 1; \mathbf{S}_{2} : Source device 2

The instruction is used to compare the value in \mathbf{S}_{1} with that in \mathbf{S}_{2}. If the comparison result is not 0 , the condition of the instruction is met. If the comparison result is 0 , the condition of the instruction is not met.

- The instruction OR\# is connected to a contact in parallel.

API No.	16-bit instruction	32-bit instruction	ON				OFF			
221	OR\&	DOR\&	S_{1}	\&	S_{2}	$\neq 0$	S_{1}	\&	S_{2}	$=0$
222	OR\|	DOR\|	S_{1}	\|	S_{2}	$\neq 0$	S_{1}	\|	S_{2}	$=0$
223	OR^	DOR^	S_{1}	\wedge	S_{2}	$\neq 0$	S_{1}	\wedge	S_{2}	$=0$

\&: Logical AND operation

- |: Logical OR operation
- \quad : Logical exclusive OR operation
- If a 32-bit counter is used, the 32-bit instruction DOR\# must be used. If a 32-bit counter and the 16 -bit instruction OR\# are used, a program error will occur, and the ERROR LED indicator on the DVP-10PM series motion controller used will blink. (C200~C255 are 32-bit counters.)
logical AND operation on each pair of corresponding bits in C0 and C10, and the operation result is not $0, Y O$ is ON .
When X2 and M30 are ON, M60 is ON. When a logical OR operator performs the logical OR operation on each pair of corresponding bits in the 32-bit register (D11, D10) and the 32-bit register (D21, D20), and the operation result is not $0, \mathrm{M} 60$ is ON . Besides, when the logical XOR operator performs the logical exclusive OR operation on each pair of corresponding bits in the 32-bit counter C235 and the 32-bit register (D201, D200), and the operation result is not $0, \mathrm{M} 60$ is ON .

5 Applied Instructions and Basic Usage

Explanation

- \mathbf{S}_{1} : Source device 1; \mathbf{S}_{2} : Source device 2
- The instruction is used to compare the value in \mathbf{S}_{1} with that in \mathbf{S}_{2}. Take the instruction $\mathrm{LD}=$ for instance. If the comparison result is that the value in \mathbf{S}_{1} is equal to that in $\mathbf{S}_{\mathbf{2}}$, the condition of the instruction is met. If the comparison result is that the value in $\mathbf{S}_{\mathbf{1}}$ is not equal to that in $\mathbf{S}_{\mathbf{2}}$, the condition of the instruction is not met.
- The instruction LD※ can be connected to a busbar directly.

API No.	16-bit instruction	32-bit instruction	ON	OFF
224	LD $=$	DLD $=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
225	LD $>$	DLD $>$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
226	$\mathrm{LD}<$	DLD $<$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{1} \geqq \mathbf{S}_{\mathbf{2}}$
228	$\mathrm{LD}<>$	DLD $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
229	$\mathrm{LD}<=$	DLD $<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
230	LD $>=$	DLD $>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

- If a 32-bit counter is used, the 32-bit insturciton DLD※ must be used. If a 32-bit counter and the 16-bit instruction LD※ are used, ,a program error will occur, and the ERROR LED indicator on the DVP-10PM series motion controller used will blink. (C200~C255 are 32-bit counters.)

Example

- When the value in C10 is equal to K200, Y10 is ON.
- When the value in D200 is greater than K-30, and X1 is ON, Y11 is set to ON.
- When the value in C200 is less than K678,493, or when M3 is ON, M50 is ON.

5 Applied Instructions and Basic Usage

API 232 238	D	AND $\%$			S1 S ${ }^{\text {d }}$					Comparing values								Applicable model							
											10PM														
		Bit device			Word device											16 -bit instruction (5 steps)									
		Y	M	S	K	H	KnX	KnY	KnM								KnS	T	C	D	V	Z	AND*	Continuity	- -
					*	*	*	*	*	*	*	*	*	*	*		instruction	----------							
S_{2}					*	*	*	*	*	*	*	*	*	*		32-bit in	Continuity								
- Note: $※$ represents $=,>,<,<>, \leqq$, or \geqq Please refer to specifications for more information about device ranges.																- Flag:	instruction ne								

Explanation

\mathbf{S}_{1} : Source device $1 ; \mathbf{S}_{\mathbf{2}}$: Source device 2

- The instructions are used to compare the value in \mathbf{S}_{1} with that in \mathbf{S}_{2}. Take the instruction AND= for instance. If the comparison result is that the value in \mathbf{S}_{1} is equal to that in \mathbf{S}_{2}, the condition of the instruction is met. If the comparison result is that the value in \mathbf{S}_{1} is not equal to that in $\mathbf{S}_{\mathbf{2}}$, the condition of the instruction is not met.
- The instruction AND※ is connected to a contact in series.

API No.	16-bit instruction	32-bit instruction	ON	OFF
232	AND =	DAND =	$\mathrm{S}_{1}=\mathrm{S}_{2}$	$\mathrm{S}_{1} \neq \mathrm{S}_{2}$
233	AND >	DAND >	$\mathrm{S}_{1}>\mathrm{S}_{2}$	$\mathrm{S}_{1} \leqq \mathrm{~S}_{2}$
234	AND <	DAND <	$\mathrm{S}_{1}<\mathrm{S}_{2}$	$\mathrm{S}_{1} \geqq \mathrm{~S}_{2}$
236	AND < >	DAND < >	$\mathrm{S}_{1} \neq \mathrm{S}_{2}$	$\mathrm{S}_{1}=\mathrm{S}_{2}$
237	AND < =	DAND < =	$\mathrm{S}_{1} \leqq \mathrm{~S}_{2}$	$\mathrm{S}_{1}>\mathrm{S}_{2}$
238	AND > =	DAND > =	$\mathrm{S}_{1} \geqq \mathrm{~S}_{\mathbf{2}}$	$\mathrm{S}_{1}<\mathrm{S}_{2}$

- If a 32-bit counter is used, the 32-bit insturciton DAND※ must be used. If a

32-bit counter and the 16-bit instruction AND※ are used, ,a program error will occur, and the ERROR LED indicator on the DVP-10PM series motion controller used will blink. (C200~C255 are 32-bit counters.)

Example When X 0 is ON and the present value in C 10 is equal to $\mathrm{K} 200, \mathrm{Y} 10$ is ON .

- When X 1 is OFF and the value in D0 is not equal to $K-10, \mathrm{Y} 11$ is set to ON.
- When X2 is ON and the value in (D11,D10) is less than 678,493 , or when M3 is $\mathrm{ON}, \mathrm{M} 50$ is ON .

5 Applied Instructions and Basic Usage

Explanation

- \mathbf{S}_{1} : Source device 1; \mathbf{S}_{2} : Source device 2

Example instruction is not met.

- The instruction OR※ is connected to a contact in parallel. controller used will blink. (C200~C255 are 32-bit counters.) or equal to K100,000, M60 is ON.

The instructions are used to compare the value in $\mathbf{S}_{\mathbf{1}}$ with that in $\mathbf{S}_{\mathbf{2}}$. Take the instruction $O R=$ for instance. If the comparison result is that the value in \mathbf{S}_{1} is equal to that in \mathbf{S}_{2}, the condition of the instruction is met. If the comparison result is that the value in $\mathbf{S}_{\mathbf{1}}$ is not equal to that in $\mathbf{S}_{\mathbf{2}}$, the condition of the

API No.	16-bit instruction	32-bit instruction	ON	OFF
240	OR $=$	DOR $=$	$\mathbf{S}_{1}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
241	OR $>$	DOR $>$	$\mathbf{S}_{1}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{1} \leqq \mathbf{S}_{\mathbf{2}}$
242	OR $<$	DOR $<$	$\mathbf{S}_{1}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{1} \geqq \mathbf{S}_{\mathbf{2}}$
244	OR $<>$	DOR $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
245	OR $<=$	DOR $<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
246	OR $>=$	DOR $>=$	$\mathbf{S}_{1} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

- If a 32-bit counter is used, the 32-bit insturciton DOR※ must be used. If a 32-bit counter and the 16-bit instruction OR※ are used, , a program error will occur, and the ERROR LED indicator on the DVP-10PM series motion
- When X 1 is ON, or when the present value in C10 is equal to $\mathrm{K} 200, \mathrm{Y} 0$ is ON .
- When X2 and M30 are ON, or when the value in (D101, D100) is greater than

Explanation

Example 1

Example 2

When the 16-bit instruction is executed, the high eight bits in \mathbf{S} are interchanged with the low eight bits in \mathbf{S}.
When the 32-bit instruction is executed, the high eight bits in \mathbf{S} are interchanged with the low eight bits in $\mathbf{S}+1$.

- Generally, the pulse instructions SWAPP and DSWAPP are used.
 bits in D10.

S: Source device

 interchanged with the low eight bits in \mathbf{S}, and the high eight bits in $\mathbf{S}+1$ are- When XO is ON, the high byte in DO is interchanged with the low byte in DO.
- When X0 is ON, the high eight bits in D11 are interchanged with the low eight bits in D11, and the high eight bits in D10 are interchanged with the low eight

5
 Applied Instructions and Basic Usage

Explanation

Example

- \mathbf{S}_{1} : Minimum random value; $\mathbf{S}_{\mathbf{2}}$: Maximum random value; \mathbf{D} : Result

16 -bit instruction: The value in \mathbf{S}_{1} and the value in \mathbf{S}_{2} are in the range of K 0 to K32,767.
32-bit instruction: The value in $\mathbf{S}_{\mathbf{1}}$ and the value in $\mathbf{S}_{\mathbf{2}}$ are in the range of K 0 to K2,147,483,647.

- The value in \mathbf{S}_{1} must be less than the value in \mathbf{S}_{2}. If the value in \mathbf{S}_{1} is greater than the value in \mathbf{S}_{2}, an operation error will occur.
- When XO is ON, the instruction RAND is used to generate a random value in the range of the value in D0 to the value in D10, and the random value is stored in D20.

X0				
RAND	D0	D10	D20	

Explanation

- \mathbf{S}_{1} : Source device; \mathbf{S}_{2} : Slope (Unit: 0.001); \mathbf{S}_{3} : Offset; \mathbf{D} : Destination device
- The values in $\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}$, and $\mathbf{S}_{\mathbf{3}}$ must be in the range of -32767 to 32767 .
- Equation: $\mathbf{D}=\left(\mathbf{S}_{1} \times \mathbf{S}_{2}\right) \div 1000+\mathbf{S}_{3}$
- To obtain the value in \mathbf{S}_{2}, users have to use the slope equation below, round the result to the nearest integer, and get a 16-bit integer. To obtain the value in \mathbf{S}_{3}, the users have to use the offset equation below, round the result to the nearest integer, and get a 16-bit integer.
- Slope equation: $\mathbf{S}_{2}=[($ Maximum destination value-Minimum destination value) \div (Maximum source value-Minimum source value)] $\times 1,000$
- Offset equation: $\mathbf{S}_{3}=$ Minimum destination value-Minimum source value $\times \mathbf{S}_{2} \div 1,000$
- Output curve

Example 1

Suppose the values in $\mathbf{S}_{1}, \mathbf{S}_{2}$, and \mathbf{S}_{3} are 500,168 , and -4 respectively. When
XO is ON, the instruction SCAL is executed, and a scale is stored in DO.
Equation: D0=(500×168) $\div 1000+(-4)=80$

SO	SCAL	K500	K168	K-4	D0

5 Applied Instructions and Basic Usage

Example 2

Additional

 remark- Suppose the values in $\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}$, and $\mathbf{S}_{\mathbf{3}}$ are 500, -168, and 534 respectively. When X10 is ON, the instruction SCAL is executed, and a scale value is stored in D10.
- Equation: D10 $=(500 \times-168) \div 1000+534=450$

- Only when a slope and an offset are known can the instruction SCAL be used. If a slope and an offset are unknown, it is suggested that users should use the instruction SCLP.
- The value in \mathbf{S}_{2} must be in the range of $-32,768$ to 32,767 (The actual value in $\mathbf{S}_{\mathbf{2}}$ must be in the range of $-32,768$ to 32,767 .) If the value in $\mathbf{S}_{\mathbf{2}}$ is not in the range, please use the instruction SCLP instead.
- If users use the slop equation above, the maximum source value must be greater than the minimum source value, and the maximum destination value do not have to be greater than the minimum destination value.
- If the value in \mathbf{D} is greater than 32,767 , the value stored in \mathbf{D} will be 32,767 . If the value in \mathbf{D} is less than $-32,768$, the value stored in \mathbf{D} will be $-32,768$.

Explanation

\mathbf{S}_{1} : Source device; \mathbf{S}_{2} : Parameter (Unit: 0.001); \mathbf{D} : Destination device
16-bit instruction: The setting of $\mathbf{S}_{\mathbf{2}}$ is described below.

Device number	Parameter	Setting range
$\mathbf{S}_{\mathbf{2}}$	Maximum source value	$-32768 \sim 32767$
$\mathbf{S}_{\mathbf{2}}+1$	Minimum source value	$-32768 \sim 32767$
$\mathbf{S}_{\mathbf{2}}+2$	Maximum destination value	$-32768 \sim 32767$
$\mathbf{S}_{\mathbf{2}}+3$	Minimum destination value	$-32768 \sim 32767$

- If the 16 -bit instruction is used, $\mathbf{S}_{\mathbf{2}}$ will occupy four consecutive devices.
- 32-bit instruction: The setting of \mathbf{S}_{2} is decribed below.

Device number	Parameter	Setting range	
		Integer	Floating-point value
$\mathrm{S}_{2}, \mathrm{~S}_{2}+1$	Maximum source value	$\begin{aligned} & -2,147,483,648 ~ \\ & 2,147,483,647 \end{aligned}$	32-bit floating-point values available
$\mathbf{S}_{\mathbf{2}}+2, \mathbf{S}_{\mathbf{2}}+3$	Minimum source value		
$\mathbf{S}_{\mathbf{2}}+4, \mathrm{~S}_{\mathbf{2}}+5$	Maximum destination value		
$\mathbf{S}_{\mathbf{2}}+6, \mathbf{S}_{\mathbf{2}}+7$	Minimum destination value		

- If the 32-bit instruction is used, $\mathbf{S}_{\mathbf{2}}$ will occupy eight consecutive devices.
- Equation: $\mathbf{D}=\left[\left(\mathbf{S}_{1}-\right.\right.$ Minimum source value $) \times($ Maximum destination value-Minimum destination value)] \div (Maximum source value-Minimum source value)+Minimum destination value
$-\quad$ Relation between the source value in \mathbf{S}_{1} and the destination value in \mathbf{D} :
$y=k x+b$
$\mathrm{y}=$ Destination value (D)
$\mathrm{k}=$ Slope=(Maximum destination value-Minimum destination value) \div (Maximum source value-Minimum source value)
$x=$ Source value (\mathbf{S}_{1})
$\mathrm{b}=$ Offset $=$ Minimum destination value-Minimum source value \times Slope
- After the parameters above are substituted for y, k, x, and b in the equation $y=k x+b$, the equation below will be obtained.
$y=k x+b=D=k \mathbf{S}_{1}+b=$ Slope $\times \mathbf{S}_{1}+$ Offset $=$ Slope $\times \mathbf{S}_{1}+$ Minimum destination value - Minimum source value \times Slope $=$ Slope $\times\left(\mathbf{S}_{1}-\right.$ Minimum source value) + Minimum destination value $=\left(\mathbf{S}_{1}-\right.$ Minimum source value $) \times($ Maximum destination value-Minimum destination value) \div (Maximum source value-Minimum source value) + Minimum destination value
- If the value in \mathbf{S}_{1} is greater than the maximum source value, the value in \mathbf{S}_{1} will be equal to the maximum source value. If the value in \mathbf{S}_{1} is less than the minimum source value, the value in \mathbf{S}_{1} will be equal to the minimum source value. After input values and parameters are set, an output curve will be gotten.

5 Applied Instructions and Basic Usage

Example 1

Example 2
Suppose the value in \mathbf{S}_{1} is 500 , the maximum source value in D0 is 3,000 , the minimum source value in D1 is 200, the maximum destination value in D2 is 500 , and the minimum destination value in D3 is 30 . When X0 is ON, the instruction SCLP is executed, and a scale is stored in D10.
Equation: D10 $=[(500-200) \times(500-30)] \div(3,000-200)+30=80.35$
80.35 is rounded to the nearest integer, and becomes 80.80 is stored in D10.

Suppose the value in \mathbf{S}_{1} is 500 , the maximum source value in D0 is 3,000 , the minimum source value in D1 is 200, the maximum destination value in D2 is 30 , and the minimum destination value in D3 is 500 . When X0 is ON, the instruction SCLP is executed, and a scale is stored in D10.
Eequation: D10 $=[(500-200) \times(30-500)] \div(3,000-200)+500=449.64$ 449.64 is rounded to the nearest integer, and becomes 450.450 is stored in D10.

Additional remark

- Suppose \mathbf{S}_{1} is D100, the value in D100 is F500, the maximum source value in D0 is F3000, the minimum source value in D2 is F200, the maximum destination value in D4 is F500, and the minimum destination value in D6 is F30. When X0 is ON, M1162 is set to ON, the instruction DSCLP is executed, and a scale is stored in D10.
- Equation: D10=[(F500-F200)×(F500-F30)] $\div($ F3000-F200)+F30=F80.35 F80.35 is rounded to the nearest integer, and becomes F80. F80 is stored in D10.

16-bit instruction: The value in \mathbf{S}_{1} is in the range of the minimum source value and the maximum source value, i.e. the value in $\mathbf{S}_{\mathbf{1}}$ is in the range of $-32,768$ to 32,767 . If the value in \mathbf{S}_{1} exceeds the minimum source value/the maximum source value, the minimum source value/the maximum source value will be used.

- 32-bit instruction: The integer in \mathbf{S}_{1} is in the range of the minimum source value and the maximum source value, i.e. the integer in \mathbf{S}_{1} is in the range of $-2,147,483,648$ to $2,147,483,647$. If the integer in \mathbf{S}_{1} exceeds the minimum source value/the maximum source value, the minimum source value/the maximum source value will be used.
- 32-bit instruction: The floating-point value in \mathbf{S}_{1} is in the range of the minimum source value and the maximum source value, i.e. the floating-point value in \mathbf{S}_{1}
is a 32-bit floating-point value available. If the floating-point value in \mathbf{S}_{1} exceeds the minimum source value/the maximum source value, the minimum source value/the maximum source value will be used.
- If users use the instruction, the maximum source value must be greater than the minimum source value, and the maximum destination value does not have to be greater than the minimum destination value.

Explanation

Example

S: Pointer

- If the conditional contact connected to CJN is ON, the next address will be executed. If the conditional contact connected to CJN is not ON, the address to which \mathbf{S} points will be executed.
- If some part of the main program O100 does not need to be executed, users can use CJN or CJNP to shorten the scan time. Besides, if a dual output is used, users can use CJ or CJP.
- If the program specified by a pointer is prior to the instruction CJN, a watchdog timer error will occur, and the main program O100 will not be executed. Please use the instruction carefully.
- The instruction CJN can specify the same pointer repeatedly. The pointer specified by CJN can not be the same as the pointer specified by CALL, otherwise an error will occur.
- When the instruction CJN/CJNP in a program is executed, the actions of the devices in the program are as follows.

1. The states of the Y devices, the states of the M devices, and the states of the S devices in the program remain the same as those before the execution of the jump.
2. The 10 millisecond timers in the program stop counting.
3. The general counters in the program stop counting, and the general applied instructions in the program are not executed.
4. If the instructions which are used to reset the timers in the program are driven before the jump is executed, the timers will still be reset during the execution of the jump.

- When X0 is OFF, the execution of the program jumps from address 0 to address $N(P 1)$, and the addresses between address 0 and address N are skipped.
- When XOis ON, the execution of the program starts from address 0 , and the instruction CJN is not executed.
(Negated conditional jump)

5 Applied Instructions and Basic Usage

API	JMP			(S)				Unconditional jump									licable model
257																	10PM
	Bit device			Word device										JMP bit instruction (3 steps)			
	Y	M	S	K	H	KnX	KnY \mid KnM \mid	KnS\|	T	C	D	V	Z				
Note: The operand S can be a pointer. S is in the rage of $\mathrm{P} 0 \sim \mathrm{P} 255$. The instruction does not need to be A pointer can not be modified by a V														32-bit - Flag	\qquad ne	-	$-$

- The function of JMP is similar to the function of CJ. CJ must be driven by a

Explanation

Example

 contact whereas JMP does not have to be driven by a contact.- The pulse instruction JMPP is not supported.
- After address 0 is scanned, address N will be executed whether there is a

Explanation
The instruction BRET does not have to be driven by a contact.
After the instruction BRET is executed, the instructions which should be driven by a conditional contact will seem to be connected to a busbar, and will be executed.

Example
In the general program shown below, the instructions are executed only when XO is ON .

After the instruction BRET is added, the instructions which should be driven by a contact will seem to be connected to a busbar, and will be executed.

5 Applied Instructions and Basic Usage

- S: Source device (16-bit device); D: Destination device (32-bit device) bit in \mathbf{S} is duplicated, and stored in \mathbf{D}.
- When X23 is ON, the value in D4 is transferred to D6 and D7.

Example

Bit 15 is D4 is transferred to bit 15~ bit 31 in (D7, D6). The value in (D7, D6) becomes a negative value. (The value in D4 is also a negative value.)

5 Applied Instructions and Basic Usage

API	RMOV											Converting a 32-bit value into a 16-bit value					Applicable model10PM			
260				P		(S D														
Bit device					Word device											16 -bit instruction (5 s				
					K	H	KnX	KnY	KnM	KnS	T	C	D	V	Z	RMOV Continuity	RMOVP	Pulse		
S							*	*	*	*	*	*	*	*	*	*	*	instruction		instruction
D								*	*	*	*	*	*	*	*	:32-bit instructio	-			
- Note: Please refer to specifications for more information about device ranges.																- Flag: None				

Explanation

- S: Source device (32-bit device); D: Destination device (16-bit device)

Data in the 32 -bit device \mathbf{S} is transferred to the 16 -bit device \mathbf{D}. The sign bit in \mathbf{S} is retained.

- When X24 is ON, data in D6 and D7 is transferred to D4.

Example

When X24 is ON, bit 31 in D7 is transferred to bit 15 in D4, bit 0~bit 14 in D6 are transferred, and bit 15~bit 30 in D6 and D7 are not transferred.

5
 Applied Instructions and Basic Usage

5.7 Motion Control Function Block Table

Type	Name	Description	Page No.
Uniaxial motion control function blocks	Absolute single-speed motion	Starting absolute single-speed motion	5-152
	Relative single-speed motion	Starting relative single-speed motion	5-156
	Absolute two-speed motion	Starting absolute two-speed motion	5-160
	Relative two-speed motion	Starting relative two-speed motion	5-163
	Inserting single-speed motion	Inserting single-speed motion	5-166
	Inserting two-speed motion	Inserting two-speed motion	5-170
	JOG motion	Starting JOG motion	5-173
	Manual pulse generator mode	Enabling a manual pulse generator mode	5-176
	Electronic gear motion	Starting electronic gear motion	5-179
	Returning home	Starting motion of returning home	5-181
	Stopping uniaxial motion	Stopping the motion of the axis specified	5-183
	Parameter setting 1	Setting motion parameters	5-186
	Parameter setting 2	Setting motion parameters	5-187
	Reading the present position/speed of an axis	Reading the present position/speed of an axis	5-189
	State of an axis	Reading and clearing the present erroneous state of an axis	5-191
	Setting the present position of an axis	Setting the present position of an axis	5-193
	Setting the polarities of input terminals	Setting the polarities of input terminals	5-194
Multiaxial motion control function blocks	Multiaxial absolute linear interpolation	Starting multiaxial absolute linear interpolation	5-196
	Multiaxial relative linear interpolation	Starting multiaxial relative linear interpolation	5-197
	Stopping multiaxial linear interpolation	Stopping multiaxial linear interpolation	5-200
Other motion control function blocks	High-speed counter	Starting a high-speed counter	5-203
	High-speed timer	Starting a high-speed timer	5-206
	Setting high-speed comparison	Starting high-speed comparison	5-209
	Resetting high-speed comparison	Resetting high-speed comparison	5-211
	Setting high-speed capture	Starting high-speed capture	5-215
	High-speed masking	Starting high-speed masking	5-218
	Setting an interrupt	Setting the trigger for an interrupt subroutine	5-220

5.8 I ntroduction of the Pins in a Motion Control Function Block

5.8.1 Definitions of Input Pins/ Output Pins

Common input pins and output pins in motion control function blocks are listed below. The pins listed below do not appear in a single motion control function block. For example, a motion control function block only has one input pin, that is, it has either the Execute input pin or the Enable input pin.

Input pin			
Name	Description	Format	Setting value
Execute	Starting the motion control function block	BOOL	True/False
Enable	Starting the motion control function block	BOOL	True/False

Name	Description	Format	Setting value
Done	The execution of the function block is complete.	BOOL	There is a transition in the Done output pin's signal from low to high when the execution of motion control function block is complete.
Valid	An output value is valid.	BOOL	There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	There is a transition in the Aborted output pin's signal from low to high when the execution of the motion control function block is interrupted by a command.
Error	An error occurs in a function block.	BOOL	There is a transition in the Error output pin's signal from low to high when an error occurs in the motion control function block.

A motion control function block has either the Execute input pin or the Enable input pin. The Execute input $\mathrm{pin} /$ The Enable input pin in a motion control function block is used to start the motion control function block. A motion control function block generally has the Busy output pin and the Done output pin. The Busy output pin and the Done output pin in a function block indicate the state of the motion control function block. If the execution of motion control function block is to be interrupted by another motion control function block, the Aborted output pin will be added to the motion control function block. Besides, the Error output pin in a motion control function block is used to indicate that an error occurs in the motion control function block when the motion control function block is executed.
A motion control function block has not only the Execute input pin/the Enable input pin, but also value/state input pins. The characteristics of the value/state input pins are described below.

- Use of input values

■ If the input pin that a motion control function block has is the Execute input pin, values are used when there is a transition in the Execute input pin's signal from low to high. If a new value is created, it becomes valid when the Execute input pin is triggered again.
■ If the input pin that a motion control function block has is the Enable input pin, values are used when there is a transition in the Enable input pin's signal from low to high. Compared with the Execute input pin, the Enable input pin is used more often when a value used is updated repeatedly.

- An input value exceeds a range.

After a motion control function block is started, the input values which are not in ranges allowed will be limited, or result in an error occurring in the motion control function block. If an error occurring in a motion control function block results in an error occurring in an axis, the motion control function block is applied incorrectly. Users should prevent incorrect values from being generated in an applied

5
 Applied Instructions and Basic Usage

program.

- Output pins are mutually exclusive.
- If the input pin that a motion control function block has is the Execute input pin, only the Busy output pin, the Done output pin, the Aborted output pin, or the Error output pin can be set to True. If the Execute input pin is set to True, the Busy output pin, the Done output pin, the Aborted output pin, or the Error output pin must be set to True.
■ If the input pin that a motion control function block has is the Enable input pin, the Valid output pin and the Error output pin are mutually exclusive, and only the Valid output pin or the Error output pin can be set to True.
- Time when output data/states are valid
- If the input pin that a motion control function block has is the Execute input pin, the Done output pin, the Error output pin, the Aborted output pin, and data output are reset when there is a transition in the Execute input pin's signal from high to low, but the execution of the function block does not stop when there is a transition in the Execute input pin's signal from high to low. Even if the Execute input pin in a motion control function block is reset before the execution of the motion control function block is complete, output states will still be generated and retained for one cycle. If a motion control function block is started again before the execution of the motion control function block is complete, the motion control function block will not give feedback to the Done output pin and the Aborted output pin, and an error will occur.
- If the input pin that a motion control function block has is the Enable input pin, the Valid output pin, the Busy output pin, and the Error output pin are reset when there is a transition in the Enable input pin's signal from high to low.
- Characteristic of the Done output pin

The Done output pin in a motion control function block will be set to True after the motion control function block is executed successfully.

- Characteristic of the Busy output pin
- If the input pin that a motion control function block has is the Execute input pin, the motion control function block uses the Busy output pin to indicate that the execution of the motion control function block is not complete, and new output states (values) are expected to be generated. The Busy output pin is set to True when there is a transition in the Execute input pin's signal from low to high. When the Done output pin, the Aborted output pin, and the Error output pin are set to True, the Busy output pin are reset.
- If the input pin that a motion control function block has is the Enable input pin, the motion control function block uses the Busy output pin to indicate that the execution of the motion control function block is not complete, and new output states (values) are expected to be generated. The Busy output pin in a motion control function block is set to True when there is a transition in the Enable input pin's signal from low to high, and is set to True when the motion control function block is executed. When the Busy output pin is set to True, output states (values) still change.
- Characteristic of the Aborted output pin

The Aborted output pin in a motion control function block is set to True when the execution of the motion control function block is interrupted by a command.

- Relation between the Enable input pin and the Valid output pin

If the input pin that a motion control function block has is the Enable input pin, the motion control function block uses the Busy output pin to indicate whether output data/states are valid. The Valid output pin is set to True only when the Enable input pin is set to true or output data/state are valid. If an error occurs in a motion control function block, output data/states will not be valid, and the Valid output pin will be set to False. The Valid output pin in a motion control function block will not be reset until the error occurring in the motion control function block is eliminated, and output data/states become valid.

5

5.8.2 Timing Diagram for Input/ Output Pins

Situation 1: The execution of the motion control function block is interrupted.
Situation 2: An error occurs in the motion control function block.
Situation 3: The execution of the motion control function block is complete normally.

(1) It may take some time.

Situation 1: The motion control function block is executed normally.
Situation 2: An error occurs in the motion control function block.

5 Applied Instructions and Basic Usage

5.8.3 I ntroducing the Use of PMSoft

The use of the motion control function blocks in PMSoft is introduced below.
(1) Right-click Function Blocks in the system information area in PMSoft.

Click Add Motion Control Function Blocks... on the context menu.
(2) The Add Function Block window appears.

Users can select motion control function blocks in the Add Function Block window. If the users click Select All, all the motion control function blocks in the Add Function Block window will be selected. After users select motion control function blocks, they have to click OK.

5

(3) After the users click OK, the motion control function blocks selected in the Add Function Block window will be automatically added to Function Blocks in the system information area.

- The folders added to Function Blocks are shown below.

$\begin{aligned} & \dagger \text { SingleAxis } \\ & +\quad \text { MultiAxis } \end{aligned}$

- Definitions of the folders
- SingleAxis: Uniaxial motion (Uniaxial point-to-point motion and electronic gear synchronization)
■ MultiAxis: Multi-axis motion (multi-axis linear interpolation)
■ Others: Other functions (measuring time, high-speed comparison, high-speed capture, and setting interrupts)
(4) After the users drag motion control function blocks in folder, they can use them.

5
 Applied Instructions and Basic Usage

5.9 Delta-defined Parameter Table

Delta-defined parameters are for input pins in Delta motion control function blocks. Users can directly use Delta-defined parameters to operate motion control function blocks without having to know the descriptions of the input pins in the motion control function blocks. Delta-defined parameters are described below.

Name	Type	Value	Motion control function block	Description
TRUE	BOOL	True	All motion control function blocks	Input pin
FALSE	BOOL	False		Input pin
mcRising	BOOL	True	T_TrSeg2, T_TrSeg1, T_HomeReturn	Transition in DOG's signal from low to high
mcFalling	BOOL	False		Transition in DOG's signal from high to low
mcPositive	BOOL	True	T_HomeReturn	Returning home in the positive direction
mcNegative	BOOL	False		Returning home in the negative direction
mcSCurve	BOOL	True	T_AxisSetting2	Speed curve: S curve
mcTrapezoid	BOOL	False		Speed curve: Trapezoid curve
mcNC	BOOL	True	T_InputPolatiry	Normally-closed contact
mcNO	BOOL	False		Normally-open contact
mcUp_Up	BOOL	True	T_HTmr	A high-speed timer becomes active when its signal goes from low to high.
mcUp_Down	BOOL	False		A high-speed timer becomes active when its signal goes from high to low.
mcCmpSet	BOOL	True	T_Compare	An output is set when the condition of a comparison is met.
mcCmpRst	BOOL	False		An output is reset when the condition of a comparison is met.
mcMotor	WORD	0	T_AxisSetting2	Motor unit
mcMachine	WORD	1		Mechanical unit,
mcComp	WORD	2		Compound unit
mcUD	WORD	0	T_AxisSetting2, T_HCnt	Counting up/down
mcPD	WORD	1		Pulses+Directions
mcAB	WORD	2		A/B-phase pulses
mc4AB	WORD	3		Four times the frequency of A/B-phase pulses
IntTimer	WORD	0	T_Interrupt	An interrupt signal is triggered by a time interval.
IntX00	WORD	1		The source of an interrupt signal is $\mathrm{X0}$.
IntX01	WORD	2		The source of an interrupt signal is X 1 .
IntX02	WORD	3		The source of an interrupt signal is X 2 .
IntX03	WORD	4		The source of an interrupt signal is X3.
IntX04	WORD	5		The source of an interrupt signal is X4.
IntX05	WORD	6		The source of an interrupt signal is X 5 .
IntX06	WORD	7		The source of an interrupt signal is X6.
IntX07	WORD	8		The source of an interrupt signal is $\mathrm{X7}$.
IntStart0	WORD	1		The source of an interrupt signal is Start0.
IntStop0	WORD	2		The source of an interrupt signal is Stop0.
IntStart1	WORD	3		The source of an interrupt signal is Start1.
IntStop1	WORD	4		The source of an interrupt signal is Stop1.
mcCmpAxis1	WORD	0	T_Compare	The source of a comparison is the present position of the first axis.
mcCmpAxis2	WORD	1		The source of a comparison is the present position of the second axis.
mcCmpAxis3	WORD	2		The source of a comparison is the present position of the third axis.

Name	Type	Value	Motion control function block	Description
mcCmpAxis4	WORD	3	T_Compare	The source of a comparison is the present position of the fourth axis.
mcCmpC200	WORD	4		The source of a comparison is the value of C200.
mcCmpC204	WORD	5		The source of a comparison is the value of C204.
mcCmpC208	WORD	6		The source of a comparison is the value of C208.
mcCmpC212	WORD	7		The source of a comparison is the value of C212.
mcCmpCLR0	WORD	0		The device used for a comparison is CLR0.
mcCmpCLR1	WORD	1		The device used for a comparison is CLR1.
mcCmpY0	WORD	0		The device used for a comparison is Y0.
mcCmpY1	WORD	1		The device used for a comparison is Y1.
mcCmpY2	WORD	2		The device used for a comparison is Y2.
mcCmpY3	WORD	3		The device used for a comparison is Y3.
mcCmpRstC200	WORD	4		The device used for a comparison is C200.
mcCmpRstC204	WORD	5		The device used for a comparison is C204.
mcCmpRstC208	WORD	6		The device used for a comparison is C208.
mcCmpRstC212	WORD	7		The device used for a comparison is C212.
mcCapAxis1	WORD	0	T_Capture	The source of capture is the present position of the first axis.
mcCapAxis2	WORD	1		The source of capture is the present position of the second axis.
mcCapAxis3	WORD	2		The source of capture is the present position of the third axis.
mcCapAxis4	WORD	3		The source of capture is the present position of the fourth axis.
mcCapC200	WORD	4		The source of capture is the value of C200.
mcCapC204	WORD	5		The source of capture is the value of C204.
mcCapC208	WORD	9		The source of capture is the value of C208.
mcCapC212	WORD	7		The source of capture is the value of C212.
mcCapPG0	WORD	0		The source of a capture signal is PG0.
mcCapMPGB0	WORD	1		The source of a capture signal is MPGB0.
mcCapMPGA0	WORD	2		The source of a capture signal is MPGA0.
McCapLSN0	WORD	3		The source of a capture signal is LSNO.
McCapLSP0	WORD	4		The source of a capture signal is LSPO.
McCapDOG0	WORD	5		The source of a capture signal is DOG0.
mcCapStop0	WORD	6		The source of a capture signal is Stop0.
mcCapStart0	WORD	7		The source of a capture signal is Start0.
mcCapPG1	WORD	8		The source of a capture signal is PG1.
mcCapMPGB1	WORD	9		The source of a capture signal is MPGB1.
mcCapMPGA1	WORD	10		The source of a capture signal is MPGA1.
mcCapLSN1	WORD	11		The source of a capture signal is LSN1.
mcCapLSP1	WORD	12		The source of a capture signal is LSP1.
McCapDOG1	WORD	13		The source of a capture signal is DOG1.
mcCapStop1	WORD	14		The source of a capture signal is Stop1.
mcCapStart1	WORD	15		The source of a capture signal is Start1.
mcX0	WORD	0		The source of a capture signal is X 0 .
mcX1	WORD	1		The source of a capture signal is X 1 .
mcX2	WORD	2		The source of a capture signal is X 2 .
mcX3	WORD	3		The source of a capture signal is X3.
mcX4	WORD	4		The source of a capture signal is X 4 .

5 Applied Instructions and Basic Usage

Name	Type	Value	Motion control function block	Description
mcX5	WORD	5	T_Capture	The source of a capture signal is X 5 .
mcX6	WORD	6		The source of a capture signal is X 6 .
mcX7	WORD	7		The source of a capture signal is X 7 .
mcX10	WORD	8		The source of a capture signal is X 10 .
mcX11	WORD	9		The source of a capture signal is X 11.
mcX12	WORD	10		The source of a capture signal is X 12 .
mcX13	WORD	11		The source of a capture signal is X 13 .

5.10 Uniaxial Motion Control Function Blocks

5.10.1 Absolute Single-speed Motion

En	T_AbsSegl	Eno
Axis		Done
Execute		Eusy
Position	Aborted	
Velocity		Error

1. Motion control function block

The motion control function block T_AbsSeg1 is used to start absolute single-speed motion. After absolute single-speed motion is started, the speed of the absolute single-speed motion will increase from the $\mathrm{V}_{\text {BIAS }}$ set to the velocity set. The speed of the absolute single-speed motion will not decrease from the velocity set to the $V_{\text {BIAS }}$ set until the present command position of the axis specified is near the target position set. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Position input pin, and the number of pulses per second is a unit for the Velocity input pin. The users can change the unit used by means of the motion control function block T_AxisSetting2.

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	DVP10PM00M: K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
Position	Absolute position	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	The value of the Position input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity	Target speed	DWORD	$\begin{gathered} \text { K1~ } \\ \text { K2,147,483,647 } \end{gathered}$	When the motion control function block is executed, the value of the Velocity input pin is updated repeatedly.

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal when motion is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.

5 Applied Instructions and Basic Usage

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

The number of pulses is a unit for the Position input pin, and the number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Example

Purposes:

- After the first single-speed motion is complete, the second single-speed motion will be executed.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.
The motion control function block named FIRST is set so that the first axis moves at a speed of 2,000 pulses per second, and moves for 10,000 pulses. The motion control function block named SECOND is set so that the first axis moves at a speed of 3,000 pulses per second, and moves for 15,000 pulses.

- After the first single-speed motion is complete, the second single-speed motion will be executed. Steps:
(a) Set Execute1 to True.
(b) Wait for a transition in Done2's signal from low to high or a transition in Error2's signal from low to high.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.
Steps:
(a) Set Execute1 to True.
(b) Set Test to ON when Busy1 is set to True.
(c) Wait for a transition in Done2's signal from low to high or a transition in Error2's signal from low to high.
Timing diagram:
First

- After the first single-speed motion is complete, the second single-speed motion will be executed. After the execution of the motion control function block named FIRST is complete, the motion control function block named SECOND will be executed. The first axis moves for 25,000 pulses.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.
When Error2 is set to True, the first axis moves for 10,000 pulses. The motion control function block named SECOND is invalid.

5. Module which is supported

The motion control function block T_AbsSeg1 supports DVP10PM00M.

5 Applied Instructions and Basic Usage

5.10.2 Relative Single-speed Motion

En	T_RelSegl	Eno
Axis		Done
Execute		Busy
Distance		Aborted
Velocity		Error

1. Motion control function block

The motion control function block T_RelSeg1 is used to start relative single-speed motion. After relative single-speed motion is started, the speed of the relative single-speed motion will increase from the $V_{\text {BIAS }}$ set to the velocity set. The speed of the relative single-speed motion will not decrease from the velocity set to the $V_{\text {BIAS }}$ set until the distance for which the relative single-speed motion moves is the distance set. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.

2. Input pins/Output pins

Name						Function	Data type				Setting value	Time when a value is valid
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.								
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False									
Distance	Relative distance	DWORD	K-2,147,483,648~									
K2,147,483,647	The value of the Distance input pin is valid when there is a transition in the Execute input pin's signal from low to high.											
Velocity	Target speed	DWORD	K1~K2,147,483,647	When the motion control function block is executed, the value of the Velocity input pin is updated repeatedly.								

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal when motion is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

5 Applied Instructions and Basic Usage

4. Example

Purposes:

- After the first single-speed motion is complete, the second single-speed motion will be executed.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.
The motion control function block named FIRST is set so that the first axis moves at a speed of 2,000 pulses per second, and moves for 10,000 pulses. The motion control function block named SECOND is set so that the first axis moves at a speed of 3,000 pulses per second, and moves for 15,000 pulses.

- After the first single-speed motion is complete, the second single-speed motion will be executed. Steps:
(a) Set Execute1 to True.
(b) Wait for a transition in Done2's signal from low to high or a transition in Error2's signal from low to high.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.
Steps:
(a) Set Execute1 to True.
(b) Set Test to ON when Busy1 is set to true.
(c) Wait for a transition in Done2's signal from low to high or a transition in Error2's signal from low to high.

Timing diagram:
First

- After the first single-speed motion is complete, the second single-speed motion will be executed.

When the motion control function block named FIRST is executed, the first axis moves for 10,000 pulses. After the execution of the motion control function block named FIRST is complete, the motion control function block named SECOND will be executed. When the motion control function block named SECOND is executed, the first axis moves for 15,000 pulses.

- The second single-speed motion is executed before the execution of the first single-speed motion is complete.
When Error2 is set to True, the first axis moves for 10,000 pulses. The motion control function block named SECOND is invalid.

5. Module which is supported

The motion control function block T_RelSeg1 supports DVP10PM00M.

5 Applied Instructions and Basic Usage

5.10.3 Absolute Two-speed Motion

En	T_AbsSeg2	Eno
Axis		Done
Execute		Eusy
Positionl	Aborted	
Velocityl	Enor	
Position2		
Velocity2		

1. Motion control function block

The motion control function block T_AbsSeg2 is used to start absolute two-speed motion. After absolute two-speed motion is started, the speed of the absolute two-speed motion will increase from the $\mathrm{V}_{\text {BIAS }}$ set to the V (I) set. The speed of the absolute two-speed motion will not increase/decrease from the $V(I)$ set to the $V(I I)$ set until the present command position of the axis specified is near the P (I) set. The speed of the absolute two-speed motion will not decrease from the V (II) set to the $\mathrm{V}_{\text {BIAS }}$ set until the present command position of the axis specified is near the $P(I I)$ set. The P (I) set must be between the present command position of the axis specified and the P (II) set. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Position1 input pin/the Position2 input pin, and the number of pulses per second is a unit for the Velocity 1 input pin/the Velocity 2 input pin. The users can change the unit used by means of the motion control function block T_AxisSetting2.

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
Position1	Absolute position of the first motion	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	The value of the Position 1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Velocity1	Target speed of the first motion	DWORD	K1~K2,147,483,647	The value of the Velocity1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Position2	Absolute position of the second motion	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$ (If the value of the Position1 input pin is greater than 0 , the value of the Position2 input pin must be greater than or equal to the value of the Position1 input pin. If the value of the Position1 input pin is less than or equal to 0 , the value of the Position2 input pin must be less than or equal to the value of the Position1 input pin.)	The value of the Position2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity2	Target speed of the second motion	DWORD	K1~K2,147,483,647	The value of the Velocity2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal when motion is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.

5 Applied Instructions and Basic Usage

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

The number of pulses is a unit for the Position1 input pin/the Position2 input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Example

Purposes:

- The motion control function block T_AbsSeg2 is used to start absolute two-speed motion of an axis.
The first motion is set so that the first axis moves at a speed of 2,000 pulses per second, and moves for 10,000 pulses. The second motion is set so that the first axis moves at a speed of 3,000 pulses per second, and moves for 15,000 pulses.

After the motion control function block is started, the first axis moves for 10,000 pulses at a speed of 2,000 pulses per second, and moves for 15,000 pulses at a speed of 3,000 pulses per second.
5. Module which is supported

The motion control function block T_AbsSeg2 supports DVP10PM00M.

5.10.4 Relative Two-speed Motion

En	T_RelSeg2	Eno
Axis		Done
Execute		Busy
Distancel		Aborted
Velocityl	Error	
Distance2		
Velocity2		

1. Motion control function block

The motion control function block T_RelSeg2 is used to start relative two-speed motion. After relative two-speed motion is started, the speed of the relative two-speed motion will increase from the $\mathrm{V}_{\text {BIAS }}$ set to the $V(I)$ set. The speed of the relative two-speed motion will not increase/decrease from the V (I) set to the V (II) set until the number of pulses output is near the value of the Distance1 input pin. The speed of the relative two-speed motion will not decrease from the V (II) set to the $V_{\text {BIAS }}$ set until the number of pulses output is near the value of the Distance2 input pin. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Distance1 input pin/the Distance 2 input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.

5 Applied Instructions and Basic Usage

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
Distance1	Relative distance for which the first motion moves	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	The value of the Distance1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity1	Target speed of the first motion	DWORD	K1~K2,147,483,647	The value of the Velocity1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Distance2	Relative distance for which the second motion moves	DWORD	K-2,147,483,648~ K2,147,483,647 (If the value of the Distance1 input pin is a positive value, the value of the Distance2 input pin must be a positive value. If the value of the Distance1 input pin is a negative value, the value of the Distance2 input pin must be a negative value.)	The value of the Distance 2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity2	Target speed of the second motion	DWORD	K1~K2,147,483,647	The value of the Velocity2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal when motion is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

The number of pulses is a unit for the Distance1 input pin/the Distance 2 input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

5 Applied Instructions and Basic Usage

4. Example

Purpose:

- The motion control function block T_AbsSeg2 is used to start relative two-speed motion of an axis. The first motion is set so that the first axis moves at a speed of 2,000 pulses per second, and moves for 10,000 pulses. The second motion is set so that the first axis moves at a speed of 3,000 pulses per second, and moves for 15,000 pulses.

After the motion control function block is started, the first axis moves for 10,000 pulses at a speed of 2,000 pulses per second, and moves for 15,000 pulses at a speed of 3,000 pulses per second.
5. Module which is supported

The motion control function block T_RelSeg2 supports DVP10PM00M.

5.10.5 I nserting Single-speed Motion

En	T_TrSegl	Eno
Axis		Done
Execute		Busy
DogEdge		Aborted
Distance		Error
Velocity		

1. Motion control function block

The motion control function block T_TrSeg1 is used to insert single-speed motion. The speed of motion increases from the $\mathrm{V}_{\text {BIAS }}$ set to the velocity set. After DOG's signal goes from low to high or from high to low, the DVP-10PM series motion controller used will continue sending pulses. The speed of the motion will not decrease from the velocity set to the $\mathrm{V}_{\text {BIAS }}$ set until the number of pulses output is near the value of the Distance input pin. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the

Velocity input pin. The users can change the unit used by means of the motion control function block T_AxisSetting2. If the value of the DogEdge input pin is mcRising, motion will be triggered by a transition in DOG's signal from low to high. If the value of the DogEdge input pin is mcFalling, motion will be triggered by a transition in DOG's signal from high to low.

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
DogEdge	Transition in DOG's signal from low to high or from high to low	BOOL	mcRising (True)/ mcFalling (False)	The value of the DogEdge input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Distance	Distance for which motion moves after a transition in DOG's signal from low to high or from high to low	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	The value of the Distance input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity	Target speed	DWORD	K1~K2,147,483,647	The value of the Velocity input pin is valid when there is a transition in the Execute input pin's signal from low to high.

5
 Applied Instructions and Basic Usage

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal when motion is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2. If the value of the DogEdge input pin is mcRising, motion will be triggered by a transition in DOG's signal from low to high. If the value of the DogEdge input pin is mcFalling, motion will be triggered by a transition in DOG's signal from high to low.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Examples

Example 1:

- The motion control function block T_TrSeg1 is used to insert single-speed motion which is triggered by a transition in DOG's signal from high to low.
The motion control function block named T_TrSeg1_U1 is set so that the first axis moves at a speed of 3,000 pulses per second, and will move for 5,000 pulses after a transition in DOG's signal from high to low. After the first axis moves for 5,000 pulses, Done will be set to True.

Example2:

- The motion control function block T_TrSeg1 is used to insert single-speed motion which is triggered by a transition in DOG's signal from low to high.
The motion control function block named T_TrSeg1_U1 is set so that the first axis moves at a speed of 3,000 pulses per second, and will move for 5,000 pulses after a transition in DOG's signal from low to high. After the first axis moves for 5,000 pulses, Done will be set to True.

5 Applied Instructions and Basic Usage

5. Module which is supported

The motion control function block T_TrSeg1 supports DVP10PM00M.

5.10.6 I nserting Two-speed Motion

En	T_TrSeg2	Eno
Axis		Done
Execute		Busy
Velocityl		Aborted
DogEdge		Error
Distance		
Velocity2		

1. Motion control function block

The motion control function block T_TrSeg2 is used to insert two-speed motion. The speed of motion increases from the $\mathrm{V}_{\text {BIAS }}$ set to the $\overline{\mathrm{V}}(\mathrm{I})$ set. After DOG's signal goes from low to high or from high to low, the speed of the motion will increase/decrease from the V (I) set to the V (II) set. The motion will not stop until the number of pulses output is near the value of the Distance input pin. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. The users can change the unit used by means of the motion control function block T_AxisSetting2. If the value of the DogEdge input pin is mcRising, motion will be triggered by a transition in DOG's signal from low to high. If the value of the DogEdge input pin is mcFalling, motion will be triggered by a transition in DOG's signal from high to low.

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
DogEdge	Transition in DOG's signal from low to high or from high to low	BOOL	mcRising (True)/ mcFalling (False)	The value of the DogEdge input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity1	Target speed before a transition in DOG's signal from low to high or from high to low	DWORD	K1~K2,147,483,647	The value of the Velocity 1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Distance	Distance for which motion moves after a transition in DOG's signal from low to high or from high to low	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	The value of the Distance input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity2	Target speed after a transition in DOG's signal from low to high or from high to low	DWORD	K1~K2,147,483,647	The value of the Velocity 2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.

5
 Applied Instructions and Basic Usage

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal when motion is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2. If the value of the DogEdge input pin is mcRising, motion will be triggered by a transition in DOG's signal from low to high. If the value of the DogEdge input pin is mcFalling, motion will be triggered by a transition in DOG's signal from high to low.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Example

The motion control function block T_TrSeg2 is used to insert two-speed motion which is triggered by a transition in DOG's signal from low to high.
The motion control function block named T_TrSeg2_U1 is set so that the first axis moves at a speed of 3,000 pulses per second, and will move for 2,000 pulses at a speed of 1,000 pulses per second after a transition in DOG's signal from low to high.

After the first axis moves for 2,000 pulses, Done will be set to True.
5. Module which is supported

The motion control function block T_TrSeg2 supports DVP10PM00M.

5.10.7 J OG Motion

En	T_Jog
Axis	Eno
Positive Enable	Busy
NegativeEnable	Aborted
Velocity	Error

1. Motion control function block

The motion control function block T_Jog is used to start JOG motion. The value of the Axis input pin indicates an axis number, and the value of the Velocity input pin indicates the speed of JOG motion. If the PositiveEnable input pin is set to True, positive JOG motion will be started. If the NegativeEnable input pin is set to True, negative JOG motion will be started. The number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.

5 Applied Instructions and Basic Usage

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
PositiveEnable	Enabling positive JOG motion	BOOL	True/False	- If the PositiveEnable input pin and the NegativeEnable input pin are set to True simultaneously, positive JOG motion will be enabled, and the NegativeEnable input pin will be reset to False. - If the PositiveEnable input pin is set to True after the NegativeEnable input pin is set to True, the NegativeEnable input pin will be reset to False, the negative JOG motion will stop, and the positive JOG motion will be enabled.
NegativeEnable	Enabling negative JOG motion	BOOL	True/False	- If the PositiveEnable input pin and the NegativeEnable input pin are set to True simultaneously, positive JOG motion will be enabled, and the NegativeEnable input pin will be reset to False. - If the NegativeEnable input pin is set to True after the PositiveEnable input pin is set to True, the PositiveEnable input pin will be reset to False, the positive JOG motion will stop, and the negative JOG motion will be enabled.
Velocity	Target speed	DWORD	K1~K2,147,483,647	When the motion control function block is executed, the value of the Velocity input pin is updated repeatedly.

Output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the PositiveEnable input pin's signal from low to high or when there is a transition in the NegativeEnable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when motion stops. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the PositiveEnable input pin's signal from high to low or when there is a transition in the NegativeEnable input pin's signal from high to low. - If the PositiveEnable input pin and the NegativeEnable are set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the PositiveEnable input pin's signal from high to low or when there is a transition in the NegativeEnable input pin's signal from high to low.

The number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Example

The motion control function block T_Jog is used to start JOG motion. Positive JOG motion is enabled by EnableP, and negative JOG motion is enabled by EnableN.
The first axis moves at a speed of 10,000 pulses per second. If EnableP is set to 1, the first axis will move in the positive direction. If EnableN is set to 1, the first axis will move in the negative direction.

5 Applied Instructions and Basic Usage

When EnableP is set to 1 , the first axis moves at a speed of 10,000 pulses per second in the positive direction. When EnableN is set to 1, the first axis moves at a speed of 10,000 pulses per second in the negative direction. When EnableP and EnableN are not set to 1, the first axis stops moving.
5. Module which is supported

The motion control function block T_Jog supports DVP10PM00M.

5.10.8 Manual Pulse Generator Mode

En	T_MPG	Eno
Axis		Valid
Enable		Busy
Reset		Aborted
RatioNum		Error
RatioDen		InputPules
	InputFreq	

1. Motion control function block

The motion control function block T_MPG is used to enable a manual pulse generator mode. The value of the Axis input pin indicates an axis number. The motion of the axis specified follows the operation of a manual pulse generator. The relation between the position of the axis specified and the input pulses generated by the manual pulse generator used is determined by the RatioNum input pin and the RatioDen input pin. The speed at which the manual pulse generator used responds depends on the value of the Tacc input pin and the value of the Tdec input pin. Users can set the Tacc input pin and the Tdec input pin in the motion control function block T_AxisSetting1.

The input terminals which can be connected to a manual pulse generator are shown below.

()	-		24		+24V		X0		X2		X4		$\times 6$		X10+	X11+		x ${ }_{\text {2 }}$ +		X13+	
			N	,	-	S/	S	X1		X3		X5		X7		X10-	X1	1-	X12		X13-
DVP-10PM (AC Power IN, DC Signal IN)																					
Y0	Y1		Y2		Y		Y10		Y11+		Y12		Y13+		Y14+	+ Y1		Y1		Y17+	
CO		C1		C2		C3		Y10-		Y11-		Y12-		Y13-	Y14-		Y15-		Y16-		Y17-

The terminals in the red frame are for the first axis \sim the sixth axis.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	Manual pulse generator mode	BOOL	True/False	-
Reset	Resetting the manual pulse generator used	BOOL	True/False	The value of the Reset input pin is valid when there is a transition in the Enable input pin's signal from low to high.
RatioNum	Numerator of an electronic gear ratio	DWORD	K0~K32,767	When the motion control function block is executed, the value of the RatioNum input pin is updated repeatedly.
RatioDen	Denominator of an electronic gear ratio	DWORD	K1~K32,767	When the motion control function block is executed, the value of the RatioDen input pin is updated repeatedly.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when motion stops. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Busy	The motion control function block is being executed.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - If the Enable input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.

5 Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Name			Function				Data type	Output range		Update
	Number of pulses generated by the manual pulse generator used	DWORD	K-2,147,483,648~ K2,147,483,647	When the motion control function block is executed, the value of the InputPulses output pin is updated repeatedly.						
	Frequency of pulses generated by the manual pulses generator used	DWORD	K0~K2,147,483,647	When the motion control function block is executed, the value of the InputFreq output pin is updated repeatedly.						
InputFreq										

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Module which is supported

The motion control function block T_MPG supports DVP10PM00M.

5.10.9 Electronic Gear Motion

En	T_GearIn	Eno
Axis		Valid
Enable		Eusy
Reset		Aborted
RatioNum	Enor	
RatioDen	InputPules	
		InputFreq

1. Motion control function block

The value of the RatioNum input pin is the numerator of an electronic gear ratio. The value of the RatioDen input pin is the denominator of an electronic gear ration. The Reset input pin is used to clear the number of input pulses. The speed at which the electronic gear used responds does not depend on the value of the Tacc input pin and the value of the Tdec input pin. The electronic gear used operates in accordance with the source of input. The input terminals for electronic gear motion are the same as the input terminals which can be connected to a manual pulse generator.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Slave axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	Enabling electronic gear motion	BOOL	True/False	-
Reset	Resetting the InputPulses output pin	BOOL	True/False	The value of the Reset input pin is valid when there is a transition in the Enable input pin's signal from low to high.
RatioNum	Numerator of an electronic gear ratio	DWORD	K-32,767~K32,767	When the motion control function block is executed, the value of the RatioNum input pin is updated repeatedly.
RatioDen	Denominator of an electronic gear ratio	DWORD	K1~K32,767	When the motion control function block is executed, the value of the RatioDen input pin is updated repeatedly.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when motion stops. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.

5 Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - If the Enable input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Value output pin				
Name	Function	Data type	Output range	

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Module which is supported

The motion control function block T_Gearln supports DVP10PM00M.

5 Applied Instructions and Basic Usage

5.10.10 Returning Home

En	T_HomeReturn
Axis	Eno
Execute	Done
Direction	Busy
DogEdge	Error
HomePosition	
VRT	
VCR	
Signal_N	
Distance_P	

1. Motion control function block

The motion control function block T-HomeReturn is used to start motion of returning home. The value of the Axis input pin indicates an axis number, and the value of the Direction input pin indicates whether the axis specified returns home in the positive direction or in the negative direction. The value of the VRT input pin indicates the speed at which the axis specified returns home. The value of the DogEdge input pin indicates whether motion is triggered by a transition in DOG's signal from low to high or from high to low. The value of the VCR input pin indicates the speed to which the speed of the axis specified decreases. The value of the Signal_N input pin is the number of zero pulses. The value of the Distance_P is the number of supplementary pulses needed. After motion of returning home is complete, the value of the HomePosition input pin will be taken as the present position of the axis specified. Motion of returning home is shown below.

Position (1): Position [1] is at the right side of the home and DOG, and DOG is OFF. Position (2)*: Position [2] is at the right side of the home, and DOG is ON.
*: Position (2) does not support the fifth axis and the sixth axis.
2. Input pins/Output pins

Name Function Data type Setting value	Time when a value is valid			
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is starte when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	

5
 Applied Instructions and Basic Usage

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Direction	Direction in which the axis specified returns home	BOOL	mcNegative (False)/ mcPositive (True)	The value of the Direction input pin is valid when there is a transition in the Execute input pin's signal from low to high.
DogEdge	Transition in DOG's signal from low to high or from high to low	BOOL	mcFalling (False)/ mcRising (True)	The value of the DogEdge input pin is valid when there is a transition in the Execute input pin's signal from low to high.
HomePosition	Home position	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	The value of the HomePosition input pin is valid when there is a transition in the Execute input pin's signal from low to high.
VRT	Speed at which the axis specified returns home	DWORD	K1~K1000000	The value of the VRT input pin is valid when there is a transition in the Execute input pin's signal from low to high.
VCR	Speed to which the speed of the axis specified decreases	DWORD	K1~VRT	The value of the VCR input pin is valid when there is a transition in the Execute input pin's signal form low to high.
Signal_N	Number of zero pulses	WORD	K0~K32,767	The value of the Signal_N input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Distance_P	Number of supplementa ry pulses	WORD	K-32768~K32,767	The value of the Distance_P input pin is valid when there is a transition in the Execute input pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal from low to high when motion of returning home is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is complete, the Done output pin will be set to False in the next cycle.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	- The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The axis specified is in motion before the motion control function block is executed.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Module which is supported

The motion control function block T-HomeReturn supports DVP10PM00M.

5.10.11 Stopping Uniaxial Motion

En	T_AxisStop	Eno
Axis		Done
Execute		Busy
		Enror

1. Motion control function block

The motion control function block T_AxisStop is used to stop the motion of the axis specified. The value of the Axis input pin indicates an axis number.

5
 Applied Instructions and Basic Usage

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal from low to high when motion of returning home is complete.	There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is complete, the Done output pin will be set to False in the next cycle.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The motion of the axis specified is not uniaxial motion, gear motion, or cam motion.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

Error
$\begin{array}{l}\text { The motion control function block conflicts with other } \\ \text { motion control function blocks. }\end{array}$

Troubleshooting

Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.
4. Example

The single-speed motion of an axis is started, and then the motion control function block T_AxisStop is used to stop the motion.
The motion control function block named First is used to start single-speed motion. It is set so that the first axis moves for 50,000 pulses at a speed of 10,000 per second. The motion control function block named Second is used to stop the motion of the first axis.

The motion control function block named First is started. Before Done 1 is set to True, Execute 2 is used to start the motion control function block named Second.

After the motion control function block named First is started, the first axis will move at a speed of 10,000 pulses per second. After the motion control function block named Second is started, Aborted1 will be set to True, Busy1 will be set to False, and the first axis will stop moving. When the motion control function block named Second is used to stop the motion of the first axis, no motion can be started. If any motion is started, an error will occur.

5 Applied Instructions and Basic Usage

5. Module which is supported

The motion control function block T_AxisStop supports DVP10PM00M.

5.10.12 Parameter Setting I

En	T_AxisSettingl	Eno
Axis		Done
Execute		Busy
Vmax		Error
Vbias		
Tacc		
Tdec		

1. Motion control function block

The motion control function block T_AxisSetting1 is used to set motion parameters. The value of the Axis input pin indicates an axis number. Users can set the maximum speed of the axis specified, the start-up speed of the axis specified, the time it takes for the start-up speed of the axis specified to increase to its maximum speed, and the time it takes for the maximum speed of the axis specified to decrease to its start-up speed. The setting of the Unit input pin in the motion control function block T_AxisSetting2 determines the unit for the Vmax input pin and the unit for the Vbias input pin.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
Vmax	Maximum speed	DWORD	K1~K2,147,483,647	The value of the Vmax input pin is valid when there is a transition in the Execute input pin's signal from low tot high.
Vbias	Start-up speed	DWORD	K0~K2,147,483,647	The value of the Vbias input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Tacc	Acceleration time (Unit: ms)	WORD	K0~K32,767	The value of the Tacc input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Tdec	Deceleration time (Unit: ms)	WORD	K0~K32,767	The value of the Tdec input pin is valid when there is a transition in the Execute input pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal from low to high when motion of returning home is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is complete, the Done output pin will be set to False in the next cycle. ${ }^{\circ}$
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Module which is supported

The motion control function block T_AxisSetting1 supports DVP10PM00M.

5.10.13 Parameter Setting II

En	T_AxisSetting2
Axis	Eno
Execute	Done
Vcurve	Busy
OutputType	Error
Unit	
PulkeRev	
DistanceRev	

1. Motion control function block

The motion control function block T_AxisSetting2 is used to set motion parameters. The value of the Axis input pin indicates an axis number. Users can set the velocity curve of the axis specified, an output type, and a unit. The setting of a unit requires the number of pulses it takes for a motor to rotate once and the distance for which the axis specified moves when the motor rotates once.

5 Applied Instructions and Basic Usage

There are three types of units. They are motor units, compound units, and mechanical units. The setting of a unit requires the number of pulses it takes for a motor to rotate once (the value of the PulseRev input pin) and the distance for which the axis specified moves when the motor rotates once (the value of the DistanceRev input pin). The units for positions and speeds are as shown below.

	Motor unit	Compound unit	Mechanical unit
Position	pulse	$\mu \mathrm{m}$	$\mu \mathrm{m}$
	pulse	mdeg	mdeg
	pulse	10^{-4} inches	10^{-4} inches
Speed	pulse/second	centimeter/minute	pulse/second
	pulse/second	10 degrees/minute	pulse/second
	pulse/second	inch/minute	pulse/second

2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	l -
Vcure	Velocity curve	BOOL	mcTrapezoid: False mcSCurve: True	The value of the Vcurve input pin is valid when there is a transition in the Execute input pin's signal from low to high.
OutputType	Output type	WORD	mcUD: 0 mcPD: 1 mcAB: 2 mc4AB: 3	The value of the OutputType input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Unit	Unit	WORD	mcMotor: 0 mcMachine: 1 mcComp: 2	The value of the Unit input pin is valid when there is a transition in the Execute input pin's signal from low to high.
PulseRev	Number of pulses it takes for a motor to rotate once	WORD	K1~K2,147,483,647	The value of the PulseRev input pin is valid when there is a transition in the Execute input pin's signal from low to high.
DistanceRev	Distance for which the axis specified moves when the motor used rotates once	WORD	K1~K2,147,483,647	The value of the DistanceRev input pin is valid when there is a transition in the Execute input pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Done output pin's signal from low to high when motion of returning home is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low. - If the Execute input pin is set to False when the execution of the motion control function block is complete, the Done output pin will be set to False in the next cycle.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Module which is supported

The motion control function block T_AxisSetting2 supports DVP10PM00M.

5.10.14 Reading the Present Position/ Speed of an Axis

1. Motion control function block

The motion control function block T_MotionObserve is used to read the present position/speed of an axis. The value of the Axis input pin indicates an axis number. After the motion control function block is started, users can read the present position of the axis specified through the Position output pin, and the speed of the axis specified through the Velocity output pin.
2. Input pins/Output pins

Input pin					
Name	Function	Data type	Setting value	Time when a value is valid	
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Enable input pin's signal from low to high.	
Enable	Manual pulse generator mode	BOOL	True/False		

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	The execution of the motion control function block is complete.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Error input pin's signal from low to high.
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Value output pin							
Name	Function	Data type				Output range	Update
Position	Present position (Pulse unit)	DWORD	K-2,147,483,648~ K2,147,483,647	When the motion control function block is executed, the value of the Position output pin is updated repeatedly.			
Velocity	Present speed (Pulse unit)	DWORD	K0~K2,147,483,647	When the motion control function block is executed, the value of the Velocity output pin is updated repeatedly.			

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Module which is supported The motion control function block T_MotionObserve supports DVP10PM00M.

5 Applied Instructions and Basic Usage

5.10.15 State of an Axis

En	T_AxisStatus	Eno
Axis		Valid
Enable	Busy	
ClearEror	Enror	
		Mode
		AxisReady
	AxisEnor	
		AxisEnoriD

1. Motion control function block

The motion control function block is T_AxisStatus is used to read and clear the present erroneous state of an axis. The value of the Axis input pin indicates an axis number. Users can clear the present erroneous state of the axis specified by means of the ClearError input pin. The value of the AxisErrorID output pin indicates the present erroneous state of the axis specified.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	Reading the present erroneous state of the axis specified.	BOOL	True/False	- -
ClearError	The erroneous state of the axis specified is cleared when there is a transition in the ClearError input pin's signal from low to high.	BOOL	True/False	The value of the ClearError input pin is valid when the motion control function block is executed.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	- There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - There is a transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.

5
 Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Value output pin				
Name	Function	Data type	Output range	Update
Mode	Mode of motion	WORD	H0~H32x (*1)	When the motion control function block is executed, the value of the Mode output pin is updated repeatedly.
AxisReady	Ready flag for the axis specified	BOOL	True/False	When the motion control function block is executed, the value of the AxisReady output pin is updated repeatedly.
AxisError	Axis error flag	BOOL	True/False	When the motion control function block is executed, the value of the AxisError output pin is updated repeatedly.
AxisErrorlD	Error code	WORD	H0002~HC4FF	When the motion control function block is executed, the value of the AxisErrorID output pin is updated repeatedly.

*1: Value of the Mode output pin

Value	Definition
H0	Idle
H100	Uniaxial motion is being stopped.
H101	Absolute single-speed motion
H102	Relative single-speed motion
H103	Absolute two-speed motion
H104	Relative two-speed motion
H105	Inserting single-speed motion
H106	Inserting two-speed motion
H107	JOG motion
H108	Manual pulse generator mode
H109	Motion of returning home
H10A	Electronic gear motion
H300	Multiaxial interpolation is being stopped.
H31x	Multiaxial absolute linear interpolation
H32x	Multiaxial relative linear interpolation

Please refer to appendix A in chapter 9 for more information about error codes.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Module which is supported

The motion control function block is T_AxisStatus supports DVP10PM00M.

5.10.16 Setting the Present Position of an Axis

En	T_SetPosition	Eno
Axis		Done
Execute		Eusy
Position	Enor	

1. Motion control function block

The motion control function block T_SetPosition is used to set the present position of an axis. The value of the Axis input pin indicates an axis number. Users can set the present position of the axis specified by means of the Position input pin. Note: To prevent errors from occurring, please avoid using the motion control function block to set the present position of the master axis involved in cam motion or gear motion.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
Position	Present position of the axis specified	DWORD	$\begin{aligned} & \text { K-2,147,483,648~ } \\ & \text { K2,147,483,647 } \end{aligned}$	The value of the Position input pin is valid when there is a transition in the Execute input pin's signal from low to high.

State output pin						
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Done	The execution of the motion control function block fis complete.	BOOL	The writing of a position is complete.	- There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.		

5 Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	- There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Module which is supported

The motion control function block T_SetPosition supports DVP10PM00M.

5.10.17 Setting the Polarities of I nput Terminals

En T_InputPolariw Eno	
Enable	Valid
X0_Dog0	Doz0_x0
X1_P90	Fg0_X1
X2_Dogl	Dog1_X2
X3_Pg1	Pg1_X3
X4_Dog2	Doz2_X4
XS_P22	$\mathrm{Pg} 2_{2} \mathrm{XS}$
86_Doz3	Doz3_X6
X7_P3	$\mathrm{Pb}_{3} \mathrm{X} 7$
X10_mpz ${ }^{\text {A }}$	$\mathrm{mpg}^{\text {a }}$ - 10
X11_mpg	mpzE_X11
X12_Dog4	Dog4_x12
X13_Dog5	Dozs_X13
	Busy

1. Motion control function block

The motion control function block T_InputPolarity is used to set the polarities of the input terminals on the DVP-10PM series motion controller used. Users can set the polarities of the input terminals on the DVP-10PM series motion controller used by means of input pins.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Enable	Manual pulse generator mode	BOOL	True/False	

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
X0_Dog0	Polarity	BOOL	mcNO: False moNC: True	When the motion control function block is executed, the values of the input pins are updated repeatedly.
X1_Pg0	Polarity	BOOL		
X2_Dog1	Polarity	BOOL		
X3_Pg1	Polarity	BOOL		
X4_Dog2	Polarity	BOOL		
X5_Pg2	Polarity	BOOL		
X6_Dog3	Polarity	BOOL		
X7_Pg3	Polarity	BOOL		
X10_mpgA	Polarity	BOOL		
X11_mpgB	Polarity	BOOL		
X12_Dog4	Polarity	BOOL		
X13_Dog5	Polarity	BOOL		

5
 Applied Instructions and Basic Usage

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Module which is supported

The motion control function block T_InputPolarity supports DVP10PM00M.

5.11 Multiaxial Motion Control Function Blocks

5.11.1 Multiaxial Absolute Linear Interpolation

En	T_AbsMoveLinear
AxesGroup	Eno
Execute	Done
Position	Busy
Velocity	Error

1. Motion control function block

The motion control function block T_AbsMoveLinear is used to start multiaxial absolute linear interpolation. Users can set the axes which execute interpolation by means of the AxesGroup input pin, set the target positions of the axes specified by means of the Position input pin, and set the speed of the axes specified by means of the Velocity input pin.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
AxesGroup	Axes which execute interpolation	WORD[6]	[,_,_,_,_,] 0 : Not setting axes n : Adding the $\mathrm{n}^{\text {th }}$ axis (n is in the range of 1 to 6.$)$ (The first cell must be set.)	The value of the AxesGroup input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
Position	Target positions	DWORD[6]	$\begin{gathered} {[,-,-,-,-\prime]} \\ \mathrm{K}-2,147,483,648 \\ \mathrm{~K} 2,147,483,647 \end{gathered}$	The value of the Position input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity	Speed of interpolation	DWORD	K1~K2,147,483,647	The value of the Velocity input pin is valid when there is a transition in the Execute input pin's signal from low to high.

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	There is a transition in the Done output pin's signal from low to high when the execution of the motion control function block is complete.	There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	Input values are incorrect.	There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	The execution of the motion control function block is interrupted by a command.	- There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Troubleshooting

| Error |
| :--- | :--- |
| The values of input pins in the motion control function
 block are incorrect. |

Check whether the values of the input pins are in the ranges allowed.
Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.
4. Module which is supported

The motion control function block T_AbsMoveLinear supports DVP10PM00M.

5.11.2 Multiaxial Relative Linear Interpolation

En	T_RelMoveLinear
AxesGroup	Eno
Execute	Done
Distance	Busy
Velocity	Error

1. Motion control function block

The motion control function block T_RelMoveLinear is used to start multiaxial relative linear interpolation. Users can set the axes which execute interpolation by means of the AxesGroup input pin, set the distances for which the axes specified move by means of the Distance input pin, and set the
speed of the axes specified by means of the Velocity input pin.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
AxesGroup	Axes which execute interpolation	WORD[6]	[,_,_,_,_,] 0: Not setting axes n : Adding the $\mathrm{n}^{\text {th }}$ axis (n is in the range of 1 to 6.$)$ (The first cell must be set.)	The value of the AxesGroup input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
Distance	Distances for which the axes specified move	DWORD[6]	$\begin{gathered} {[,-,-,-,-\prime]} \\ \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	The value of the Distance input pin is valid when there is a transition in the Execute input pin's signal from low to high.
Velocity	Speed of interpolation	DWORD	K1~K2,147,483,647	The value of the Velocity input pin is valid when there is a transition in the Execute input pin's signal from low to high.

State output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high		e when there is a transition in an tput pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	There is a transition in the Done output pin's signal from low to high when the execution of the motion control function block is complete.		There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.		There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	Input values are incorrect.		There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

5 Applied Instructions and Basic Usage

Name		Function	Data type	Time when there is a transition in an output pin's signal from low to high
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	Time when there is a transition in an output pin's signal from high to low	
The execution of	-There is a transition in the the motion control function block is interrupted by a command.	Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.		

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

4. Example

Purpose:

- The motion control function block T_AbsMoveLinear and the motion control function block T_RelMoveLinear are used to start the absolute linear interpolation executed by the axes specified and the relative linear interpolation executed by the axes specified.

Local Symbols						
Class...	Identifiers	Address	Type...	Initial	Comment...	
VAR	Group1		WORD[6]	$[0(6)]$		
VAR	Group2		WORD[6]	$[0(6)]$		
VAR	Position		DWORD[6]	$[0(6)]$		
VAR	Distance		DWORD[6]	$[0(6)]$		

5 Applied Instructions and Basic Usage

- Create the two identifiers Group1 and Group2 in the local symbol table in O100. Group1 is an array composed of 6 words. Group2 is an array composed of 6 words.
- Create the two identifiers Position and Distance in the local symbol table in O100. Position is an array composed of 6 double words. Distance is an array composed of 6 double words.
- When the program is executed, the array indicated by Group1 is set to [$1,2,3,0,0,0$]. The first axis, the second axis, and the third axis are used to execute linear interpolation.
- When the program is executed, the array indicated by Group2 is set to $[4,5,6,0,0,0]$. The fourth axis, the fifth axis, and the sixth axis are used to execute linear interpolation.
- When the program is executed, the array indicated by Position is set to [15000, 30000, $-15000,0$, $0,0]$. [15000, 30000, $-15000,0,0,0]$ indicates the target positions of the absolute linear interpolation executed by the first axis, the second axis, and the third axis.
- When the program is executed, the array indicated by Distance is set to [1000, 10000, -10000, 0, 0, $0]$. $[1000,10000,-10000,0,0,0]$ indicates the distances for which the fourth axis, the fifith axis, and the sixth axis move when the fourth axis, the fifith axis, and the sixth axis execute relative linear interpolation.
- After M1 is set to ON, the multiaxial absolute linear interpolation set will be started.
- After M10 is set to ON, the multiaxial absolute linear interpolation set will be started.
- Users can use the motion control function block T_MotionObserve to check whether the positions of the axes which execute the linear interpolation set are correct.

5. Module which is supported

The motion control function block T_RelMoveLinear supports DVP10PM00M.

5.11.3 Stopping Multiaxial Linear I nterpolation

En	T_GroupStop	Eno
Execute		Done
AxesGroup	Busy	
		Error

1. Motion control function block

The motion control function block T_GroupStop is used to stop multiaxial linear interpolation. Users can set the axes which execute interpolation by means of the AxesGroup input pin.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Execute	Linear interpolation is stopped when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
AxesGroup	Axes which execute interpolation	WORD[6]	[,-, -, ,','] 0: Not setting axes n : Adding the $\mathrm{n}^{\text {th }}$ axis (n is in the range of 1 to 6.) (The first cell must be set.)	The value of the AxesGroup input pin is valid when there is a transition in the Execute input pin's signal from low to high.

State output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high		when there is a transition in an put pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	There is a transition in the Done output pin's signal from low to high when the execution of the motion control function block is complete.		There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.		There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.
Error	An error occurs in the motion control function block.	BOOL	Input values are incorrect.		There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Example

Purpose:

- The motion control function block T_AbsMoveLinear and the motion control function block T_RelMoveLinear are used to start the absolute linear interpolation executed by the axes specified

5 Applied Instructions and Basic Usage

and the relative linear interpolation executed by the axes specified.

Local Symbols											
Class...	Identifiers	Address	Type...	Initial	Comment...						
VAR	Group1		WORD[6]	$[0(6)]$							
VAR	Position		DWORD[6]	$[0(6)]$							

- Create the identifier Group1 in the local symbol table in O100. Group1 is an array composed of 6 words.
- Create the identifier Position in the local symbol table in O100. Position is an array composed of 6 double words.
- When the program is executed, the array indicated by Group1 is set to [1, 2, 3, 4, 5, 6]. The first axis, the second axis, the third axis, the fourth axis, the fifth axis, and the sixth axis are used to execute linear interpolation.
- When the program is executed, the array indicated by Position is set to [15000, 30000, 1000, 10000, -10000, -15000]. [15000, 30000, 1000, 10000, $-10000,-15000$] indicates the target positions of the absolute linear interpolation executed by the first axis, the second axis, the third axis, the fourth axis, the fifth axis, and the sixth axis.
- After M1 is set to ON, the multiaxial absolute linear interpolation set will be started.
- Set M10 to ON when M1 is ON. When the multiaxial absolute linear interpolation set is stopped, the Aborted output pin the the motion control function block T_AbsMoveLinear is True, and the Done output pin in the motion control function block T_GroupStop is True.

5. Module which is supported

The motion control function block T_GroupStop supports DVP10PM00M.

5.12 Other Motion Control Function Blocks

5.12.1 High-speed Counter

En	T_HCnt	Eno
Channel		Valid
Enable		Busy
ExtRstEN		Error
InputType	CountVahe	
InitialVabue		

1. Motion control function block

The motion control function block T_HCnt is used to start a high-speed counter. The value of the Channel input pin indicates a counter number, and the value of the InputType input pin indicates an input pulse type. The ExtRstEN input pin is used to set an external reset switch. The value of the InitialValue input pin is the initial value in the counter specified, and the value of the CountValue output pin is the value in the counter specified.
The input terminals for the high-speed counters in a DVP-10PM series motion controller are shown below.

$X 0$ and $X 1$ are for high-speed counter $0 ; X 2$ and $X 3$ are for high-speed counter $1 ; X 4$ and $X 5$ are for high-speed counter 2 ; $X 6$ and $X 7$ are for high-speed counter 3 ; $\mathrm{X} 10+, \mathrm{X} 10-, \mathrm{X} 11+$, and $\mathrm{X} 11-$ are for high-speed counter $4 ; \times 12+, \times 12-$, X13+, and X13- are for high-speed counter 5.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Channel	Counter number	WORD	$0 \sim 5(* 1)$	The value of the Channel input pin is valid when there is a transition in the Enable input pin's signal from low to high.

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-
InputType	Input pulse type	WORD	mcUD: 0 mcPD: 1 mcAB: 2 mc4AB: 3	When the motion control function block is executed, the value of the InputType input pin is updated repeatedly.
ExtRstEN	External reset switch	BOOL	True/False (*2)	The value of the ExtRstEN input pin is valid when there is a transition in the Enable input pin's signal from low to high.
InitialValue	Initial value in the counter specified	DWORD	K0~2,147,483,647	The value of the InitialValue input pin is valid when there is a transition in the Enable input pin's signal from low to high.

State output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high		ee when there is a transition in an tput pin's signal from high to low
Valid	An output value is valid.	BOOL	There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.		There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.		There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	Input values are incorrect. - The source specified has been occupied.		There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

5 Applied Instructions and Basic Usage

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The counter specified has been used.	Use another counter, or stop the counter which has been used.

4. Example

Purpose:

- The first axis sends pulses to high-speed counter 4. Users can check whether the number of pulses output is the same as the number of pulses input. The external wiring required is shown below.

$\mathrm{Y} 10+$ is connected to $\times 10+$. Y10- is connected to X10.Y11+ is connected to X11+. Y11- is connected to X11-.

5 Applied Instructions and Basic Usage

- The pulses output by the first axis are $A / B-$ phase pulses.
- After M21 is set to ON, high-speed counter 4 will be started.
- The value of POS is 30,000 , and the value of VEL is 10,000 .
- After M20 is set to ON, the absolute single-speed motion set will be started.
- Compare the value in D0 (the value in high-speed counter 4) with the value in D2 when M3 is ON.

5. Module which is supported

The motion control function block T_HCnt supports DVP10PM00M.

5.12.2 High-speed Timer

En	T_HTrur	Eno
Channel		Valid
Enable	Busy	
TrizgerMode		Error
	TimerVabue	

1. Motion control function block

The motion control function block T_HTmr is used to start a high-speed timer. The value of the Channel input pin indicates a timer number, the value of the TriggerMode indicates a mode of triggering the measurement of time, and the value of the TimerValue output pin the value in the timer specified. $0.01 \mu \mathrm{~s}$ is a unit. The high-speed timer numbers available are the same as the high-speed counter numbers available.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Channel	Timer number	WORD	$0 \sim 5(* 1)$	The value of the Channel input pin is valid when there is a transition in the Enable input pin's signal from low to high.

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-
TriggerMode	Mode of triggering the measurement of timer	BOOL	mcUp_Down: False mcUp_Up: True	When the motion control function block is executed, the value of the TriggerMode input pin is updated repeatedly.

State output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high		e when there is a transition in an tput pin's signal from high to low
Valid	An output value is valid.	BOOL	There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.		There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.		There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	Input values are incorrect. - The source specified has been occupied.		There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Value output pin				
Name	Function	Data type	Output range	Time when a value is valid
TimeValue	Value in the timer specified	DWORD	K0~2,147,483,647	When the motion control function block is executed, the value of the TimerValue output pin is updated repeatedly. If there is no trigger, the value in the timer specified will remain unchanged.

5 Applied Instructions and Basic Usage

*1: Value of the Channel input pin

Value	Definition	Terminal
0	C200	X10
1	C 204	X 11
2	C 208	X 12
3	C 212	X 13
4	C 216	X0
5	C 220	X1

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The timer specified has been used.	Use another timer, or stop the timer which has been used.

4. Example

Purpose:

- Users can use the motion control function block T_InputPolarity to simulate the state of the terminal for a high-speed timer.

- After MO is set to ON, the motion control function block T_InputPolarity will be started.
- After M100 is set to ON, high-speed timer 3 will be started.
- Set M12 to ON.
- Set M12 to OFF.
- The value of the TimerValue input pin indicates the time it takes for M12 to be turned from ON to OFF. If the value of the TimerValue input pin is multiplied by 0.01 , the product gotten will be the number of microseconds.

5. Module which is supported

The motion control function block T_HTmr supports DVP10PM00M.

5.12.3 Setting High-speed Comparison

En	T_Compare
Channel	Eno
Enable	Valid
Source	Busy
CmpMode	Enor
OutputDevice	
OutputMode	
CmpVabue	

1. Motion control function block

The motion control function block T_Compare is used to start high-speed comparison. The value of the Channel input pin indicates a comparator number, the value of the Source input pin indicates a source, the value of the CmpMode input pin indicates a comparison condition, and the value of the OutputDevice indicates an output device.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Channel	Comparator number	WORD	0~7	The value of the Channel input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-
Source	Source	WORD	mcCmpAxis1: 0 mcCmpAxis2: 1 mcCmpAxis3: 2 mcCmpAxis4: 3 mcCmpC200: 4 mcCmpC204: 5 mcCmpC208: 6 mcCmpC212: 7	The value of the Source input pin is valid when there is a transition in the Enable input pin's signal from low to high.
CmpMode	Comparison condition	WORD	$\begin{gathered} 1:= \\ 2: \geqq \\ 3: \leqq \end{gathered}$	The value of the CmpMode input pin is valid when there is a transition in the Enable input pin's signal from low to high.
OutputDevice	Output device	WORD	mcCmpYo: 0 mcCmpY1: 1 mcCmpY2: 2 mcCmpY3: 3 mcCmpRstC200: 4 mcCmpRstC204: 5 mcCmpRstC208: 6 mcCmpRstC212: 7	The value of the OutputDevice input pin is valid when there is a transition in the Enable input pin's signal from low to high.
OutputMode	Output mode	BOOL	mcCmpSet: True mcCmpRst: False	The value of the OutputMode input pin is valid when there is a transition in the Enable input pin's signal from low to high.

Input pin						
Name	Function	Data type	Setting value	Time when a value is valid		
CmpValue	Value with which a source is compared	DWORD	K-2,147,483,647~ K2,147,483,647	The value of the CmpValue input pin is valid when there is a transition in the Enable input pin's signal from low to high.		

State output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high		me when there is a transition in an tput pin's signal from high to low
Valid	An output value is valid.	BOOL	There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.		There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.		There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	Input values are incorrect. - The source specified has been occupied.		There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Please note that the number of high-speed comparators plus the number of high-speed capturers is 8 at most.

- Source
- mcCmpAxis1: Present position of the first axis
- mcCmpAxis2: Present position of the second axis
- mcCmpAxis3: Present position of the third axis
- mcCmpAxis4: Present position of the fourth axis
- mcCmpC200: Present value in C200
- mcCmpC204: Present value in C204
- mcCmpC204: Present value in C208
- mcCmpC204: Present value in C212

Output device

- mcCmpY0: YO
- mcCmpY1: Y1

■ mcCmpY2: Y2

- mcCmpY3: Y3
- mcCmpRstC200: Resetting C200
- mcCmpRstC204: Resetting C204
- mcCmpRstC208: Resetting C208
- mcCmpRstC212: Resetting C212
- Output mode
- The device specified is $\mathrm{Y} 0, \mathrm{Y} 1, \mathrm{Y} 2$, or Y 3 .

McCmpSet: Enabling the output device specified
McCmpRst: Diabling the output device specified
■ The device specified is C200, C204, C208, or C212.
McCmpSet: The value in the counter specified is cleared.
McCmpRst: The counter specified counts.
3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The comparator specified has been used.	Use another comparator.

4. Module which is supported

The motion control function block T_Compare supports DVP10PM00M.

5.12.4 Resetting High-speed Comparison

En	T_CmpRstOut
Enable	Eno
CLRY0	Valid
CLRY1	CmpY0
CLRY2	CmpY1
CLRY3	CmpYY
CLRC200Rst	CmpC200
CLRC204Rst	CmpC204
CLRC208Rst	CmpC208
CLRC212Rst	CmpC212
	Busy

1. Motion control function block

The motion control function block T_CmpRstOut is used to reset high-speed comparison. CLRYO, CLRY1, CLRY2, CLRY3, CLRC200Rst, CLRC204Rst, CLRC208Rst, and CLRC212Rst determine the output devices which will be reset. The values of the output pins indicate whether the output devices Y0, Y1, Y2, Y3, C200, C204, C208, and C212 are enabled or disabled.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-

Applied Instructions and Basic Usage

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
CLRYO	Resetting the output devices Y0, Y1, Y2, Y3, C200, C204, C208, and C212	BOOL	True/False	When the motion control function block is executed, the values of these input pins are updated repeatedly.
CLRY1				
CLRY2				
CLRY3				
CLRC200Rst				
CLRC204Rst				
CLRC208Rst				
CLRC212Rst				

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The source specified has been occupied.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Value output pin				
Name	Function	Data type	Output range	Time when a value is valid
CmpY0	States of the output devices Y0, Y1, Y2, Y3, C200, C204, C208, and C212	BOOL	True/False	- When the Valid output pin is set to True, the values of these output pins are updated repeatedly.
CmpY1				
CmpY2				
CmpY3				
CmpC200				
$\begin{aligned} & \hline \text { CmpC204 } \\ & \hline \text { CmpC208 } \end{aligned}$				
CmpC212				

5 Applied Instructions and Basic Usage

3. Troubleshooting

Error

The values of input pins in the motion control function block are incorrect.

Troubleshooting

Check whether the values of the input pins are in the ranges allowed.
4. Example

Purpose:

- Two high-speed comparators are set. When the conditions set are met, users can check whether the output devices specified are set/reset. The external wiring required is shown below.

$\mathrm{Y} 10 \pm$ are connected to $\mathrm{X} 10 \pm$.
$\mathrm{Y} 11 \pm$ are connected to X11 \pm.
C2 is connected to 24 G .
Y 2 is connected to XO .
S / S is connected to +24 V .

5
 Applied Instructions and Basic Usage

- If the program is executed, the pulses output by the first axis will be A/B-phase pulses, the motion control function block T_CmpRstOut will be started, and the states of output devices will be read.
- After M53 is set to ON, a high-speed counter will be started.
- After M1 is set to ON, high-speed comparator 0 will be started.

Setting high-speed comparator 0: If the number of pulses output by the first axis is greater than or equal to 50,000, Y2 will be set to ON.

- After M10 is set to ON, high-speed comparator 1 will be started.

Setting high-speed comparator 1: If the value in C200 is equal to 5,000 , the value in C 200 will be cleared to 0 .

- After M40 is set to ON, the first axis will move for 100,000 pulses.
- If the value in C200 is equal to 5,000 , and M31 is ON, the comparison condition set for high-speed comparator 1 is met, and the value in C200 is cleared to 0 . The value in C 200 will be cleared to 0 next time the value in C 200 becomes 5,000 . If M31 is not reset, high-speed comparator 1 will not act next time the comparison condition set for high-speed comparator 1 is met.
- If the number of pulses output by the first axis is 100,000 , the comparison condition set for high-speed comparator 0 is met, and Y 2 is set to ON . When Y 2 is set to ON , the users can check whether XO is ON.
- If $X O$ is ON , the comparison condition set for high-speed comparator 0 is met. The users can turn XO OFF by means of M22.

5. Module which is supported

The motion control function block T_CmpRstOut supports DVP10PM00M.

5.12.5 Setting High-speed Capture

En	T_Capture	Eno
Charnel		Valid
Enable		Busy
Source		Error
TrizgerDevice	CapVahe	
InitialVahue		

1. Motion control function block

The motion control function block T_Capture is used to start high-speed capture. The value of the Channel input pin indicates a capturer number. The value of the Source input pin indicates a source, the value of the TriggerDevice input pin indicates the device which triggers the capture of a value, the value of the InitialValue input pin is an initial value, and the value of the CapValue output pin is the value captured.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
Channel	Capturer number	WORD	0~7	The value of the Channel input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-
Source	Source	WORD	mcCapAxis1: 0 mcCapAxis2: 1 mcCapAxis3: 2 mcCapAxis4: 3 mcCapC200: 4 mcCapC204: 5 mcCapC208: 6 mcCapC212: 7	The value of the Source input pin is valid when there is a transition in the Enable input pin's signal from low to high.
TriggerDevice	Device which triggers the capture of a value	WORD	$\begin{gathered} \text { mcX0 (0): X0 } \\ \text { mcX1 (1): } \times 1 \\ \text { mcX2 (2): } \times 2 \\ \text { mcX3 (3): } \times 3 \\ \text { mcX4 (4): } \times 4 \\ \text { mcX5 (5): } \times 5 \\ \text { mcX6 (6): } \times 6 \\ \text { mcX7 (7): } \times 7 \\ \text { mcX10 (8): } \times 10 \\ \text { mcX11 (9): } \times 11 \\ \text { mcX12 (10): } \times 12 \\ \text { mcX13 (11): X13 } \end{gathered}$	The value of the TriggerDevice input pin is valid when there is a transition in the Enable input pin's signal from low to high.

5
 Applied Instructions and Basic Usage

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
InitialValue	Initial value	DWORD	$\begin{gathered} \text { K-2,147,483,648~ } \\ \text { K2,147,483,647 } \end{gathered}$	The value of the InitialValue input pin is valid when there is a transition in the Enable input pin's signal from low to high.

State output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high		ne when there is a transition in an tput pin's signal from high to low
Valid	An output value is valid.	BOOL	There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.		There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.		There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The source specified has been occupied.		There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Value output pin						
Name	Function	Data type	Output range	Time when a value is valid		
CapValue	Value which is captured	DWORD	K-2,147,483,648~ K2,147,483,647	When the motion control function block is executed, the value of the CapValue output pin is updated repeatedly. If there is no trigger, the value captured will remain unchanged.		

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The capturer specified has been used.	Use another capturer.

4. Example

Purpose:

- Two high-speed capturers are used. If external terminals are turned ON , the present position of the first axis and the present value in C 200 will be captured. The motion control function block

T_InputPolarity is used to set the polarity of the external terminal which triggers the capture of the present position of the first axis, and the polarity of the external terminal which triggers the capture of the present value in C200. The external wiring required is shown below.

- The pulses output by the first axis are A/B-phase pulses. After the motion control function block T_MotionObserve is enabled, the present position of the first axis and the present speed of the first axis will be read.
- After M53 is set to ON, a high-speed counter will be started.
- After M1 is set to ON, high-speed capturer 0 will be started.

Setting high-speed capturer 0: If X0 is turned ON, the present position of the first axis will be captured.

5 Applied Instructions and Basic Usage

- After M10 is set to ON, high-speed capturer 1 will be started.

Setting high-speed capturer 1: If X10 is turned ON, the present value in C200 will be captured.

- After M40 is set to ON, the positive JOG motion of the first axis will be started.
- If M101 is turned ON, X0 will become a normally-closed contact, there will be a transition in XO's signal from low to high, and the value in DO will change.
- If M109 is turned ON, X10 will become a normally-closed contact, there will be a transition in X10's signal from low to high, and the value in D10 will change.

5. Module which is supported

The motion control function block T_Capture supports DVP10PM00M.

5.12.6 High-speed Masking

1. Motion control function block

The motion control function block T_CapMask is used to start high-speed masking. The MaskValue input pin determines the range which will be masked. After high-speed masking is started, if the relative difference between the value captured this time and the value captured last time is in the range which can be masked, the signal which triggers the capture of the value this time will be disregarded.
2. Input pins/Output pins

Name						Function	Data type	Setting value	Time when a value is valid
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-					
MaskValue	Range which is masked	DWORD	K0~2,147,483,647	When the motion control function block is executed, the value of the MaskValue input pin is updated repeatedly.					

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	Input values are incorrect. - The source specified has been occupied.	There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.

4. Example

- Purpose

A high-speed capturer and the motion control function block T_CapMask are used. If the present position of the first axis is in the range (the value of the CapValue output pin \pm the value of the MaskValue input pin) which is masked, it will not be captured after an external device is set to ON.

- After the program is executed, the present position of the first axis and the present speed of the first axis will be read.
- After the value in D20 is set to 0 , and M20 is turned ON, the first axis will output 0 pulses.
- Set the value in D12 to 100. After M1 is turned ON, high-speed capturer 0 will be started.

Setting high-speed capturer 0 : If $X 0$ is turned $O N$, the present position of the first axis will be captured.

- Set the value in D10 to 500. After M10 is turned ON, the high-speed masking specified will be started.
- After M101 is set to ON, there will be a transition in X0's signal from low to high, and the value of

5 Applied Instructions and Basic Usage

the CapValue output pin will still be 100.

- After the value in D20 is set to 500 , and M20 is turned ON. The first axis will output 500 pulses.
- After M101 is set to ON, there will be a transition in XO's signal from low to high, and the value of the CapValue output pin will still be 100.
- After the value in D20 is set to 600, and M20 is turned ON. The first axis will output 600 pulses.
- After M101 is set to ON, there will be a transition in X0's signal from low to high, and the value of the CapValue output pin will become 600.

5. Module which is supported

The motion control function block T_CapMask supports DVP10PM00M.

5.12.7 Setting an I nterrupt

En	T_Interupt	Eno
IntSrc		Valid
Enable		Busy
TimePeriod	Enror	

1. Motion control function block

The motion control function block T_Interrupt is used to set the trigger for an interrupt subroutine. The value of the IntSCR input pin indicates the trigger for an interrupt subroutine. If the interrupt set is a time interrupt, the value of the TimePeriod input pin indicates the cycle of the interrupt.
2. Input pins/Output pins

Input pin				
Name	Function	Data type	Setting value	Time when a value is valid
IntSrc	Setting an interrupt	WORD	IntTimer: 0 IntX00: 1 IntX01: 2 IntX02: 3 IntX03: 4 IntX04: 5 IntX05: 6 IntX06: 7 IntX07: 8	The value of the IntSrc input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-
TimePeriod	Cycle of a time interrupt (Unit: ms) (Not applicable to terminal interrupts)	WORD	K1~K65,535	When the motion control function block is executed, the value of the TimePeriod input pin is updated repeatedly.

5 Applied Instructions and Basic Usage

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An Interrupt is enabled.	BOOL	There is a transition in the Valid output pin's signal from low to high when an interrupt is enabled.	- There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	- There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high. - There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	- Input values are incorrect. - The source specified has been occupied.	- There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

3. Troubleshooting

Error

The values of input pins in the motion control function block are incorrect.

Troubleshooting

Check whether the values of the input pins are in the ranges allowed.
4. Example

Purpose:

- A time interrupt and an external interrupt are used. Users can use the motion control function block T_InputPolarity to simulate the state of an external terminal.
10 :

11:

O100:

- After MO is set to ON, the motion control function block T_InputPolarity will be started.

5 Applied Instructions and Basic Usage

- After M30 is set to ON, the time interrupt IO and the external interrupt II will be started.
- After the time interrupt IO is started, it will be executed every three seconds, and the value in D9000 will increase by one every three seconds.
- After the external interrupt I1 is started, the users can simulate the state of X0 by setting M1. If M1 is turned from OFF to ON, the value in D9001 will increase by one.

5. Module which is supported

The motion control function block T_Interrupt supports DVP10PM00M.

6 Multiaxial Interpolation

6.1 I ntroduction of Multiaxial I nterpolation

DVP-10PM series motion controllers support multiaxial interpolation. Users can execute linear interpolation by means of the instruction TO.

6.2 Description of TO

A DVP-10PM series motion controller can start and stop linear interpolation by means of the instruction
TO. The use of TO to set linear interpolation is described below.

- CR\#2: Starting interpolation

- Data

Device	Setting
$\mathbf{S}, \mathbf{S}_{+1}$	Axes specified
$\mathbf{S}_{+2}, \mathbf{S}_{+3}$	Speed of interpolation
$\mathbf{S}_{+4}, \mathbf{S}_{+5}$	Poistion of the X-axis
$\mathbf{S}_{+6}, \mathbf{S}_{+7}$	Poistion of the Y-axis
$\mathbf{S}_{+8}, \mathbf{S}_{+9}$	Poistion of the Z-axis
$\mathbf{S}_{+10}, \mathbf{S}_{+11}$	Poistion of the A-axis
$\mathbf{S}_{+12}, \mathbf{S}_{+13}$	Poistion of the B-axis
$\mathbf{S}_{+14}, \mathbf{S}_{+15}$	Poistion of the C-axis

- The device $\left(\mathbf{S}, \mathbf{S}_{+1}\right)$ is described below.

Bit	31:12	11:10	9:8	7:6	$\mathbf{5 : 4}$	3:2	1:0
Axis number	Not used	C-axis	B-axis	A-axis	Z-axis	Y-axis	X-axis

- Evey axis is controlled by two bits in $\left(\mathbf{S}, \mathbf{S}_{+1}\right)$.

Value	Definition
$\mathbf{0}$	Not participating in interpolation
$\mathbf{1}$	Participating in interpolation
$\mathbf{2}$	Not used
$\mathbf{3}$	Not used

CR\#3: Stopping interpolation

- Data

Device	Setting
$\mathbf{S}, \mathbf{S}_{+1}$	Axes specified

- The device $\left(\mathbf{S}, \mathbf{S}_{+1}\right)$ is described below.

Bit	$\mathbf{3 1 : 1 2}$	11:10	$\mathbf{9 : 8}$	$\mathbf{7 : 6}$	$\mathbf{5 : 4}$	$\mathbf{3 : 2}$	1:0
Axis number	Not used	C-axis	B-axis	A-axis	Z-axis	Y-axis	X-axis

- Evey axis is controlled by two bits in $\left(\mathbf{S}, \mathbf{S}_{+1}\right)$.

Value	Definition
$\mathbf{0}$	Not participating in interpolation
$\mathbf{1}$	Stopping linear interpolation

6 Multiaxial Interpolation

Value	Definition
$\mathbf{2}$	Not used
$\mathbf{3}$	Not used

■ Users can set the parameters of the axes participating in linear interpolation by means of D1816, D1896, D1976, D2056, D2136, and D2216..

Bit\#	Parameter of the axis	Bit\#	Parameter of the axis
$\mathbf{0}$	Unit (Note 1)	$\mathbf{8}$	Direction in which the axis returns home (Note 3)
$\mathbf{1}$		$\mathbf{9}$	Mode of returning home (Note 3)
$\mathbf{2}$	Ratio (Note 2)	$\mathbf{1 0}$	Mode of triggering the return to home (Note 3)
$\mathbf{3}$		$\mathbf{1 1}$	Direction in which the motor rotates (Note 3)
$\mathbf{4}$		$\mathbf{1 2}$	Relative/Absolute coordinates (Note 3)
$\mathbf{5}$	Output type(Note 2)	$\mathbf{1 3}$	Mode of triggering the calculation of the target position (Note 3)
$\mathbf{6}^{\boldsymbol{*}}$		PWM mode (Note 3)	$\mathbf{1 4}$
$\mathbf{7}$		$\mathbf{1 5}$	

Note 1:

b1	b0	Unit
$\mathbf{0}$	$\mathbf{0}$	Motor unit
$\mathbf{0}$	$\mathbf{1}$	Mechanical unit
$\mathbf{1}$	$\mathbf{0}$	Compound unit
$\mathbf{1}$	$\mathbf{1}$	

	Motor unit	Compound unit	Mechanical unit
Position	pulse	um	
	pulse	mdeg	
	pulse	10^{-4} inches	
Speed	pulse/second	centimeter/minute	
	pulse/second	10 degrees/minute	
	pulse/second	inch/minute	

Note 2:

b3	b2	Ratio	b5	b4	Description
0	0	100	0	0	Positive-going pulse+Negative-going pulse
0	1	101	0	1	Pulse+Direction
1	0	102	1	0	A/B-phase pulse (two phases and two inputs)
1	1	103	1	1	

Note 3:

Bit\#	Description
6	Bit 6=1: Enabling a PWM mode (1) If positive JOG motion is started, Y0~Y3 will execute PWM. (2) If single-speed motion is started, Y0~Y3 will send single-phase pulses. (3) Pulse width: D1838, D1918, D1998, and D2078 (4) Output period: D1842, D1922, D2002, and D2082
8	Bit 8=0: The value indicating the present command position of the axis decreases progressively.
9 Bit 8=1: The value indicating the present command position of the axis increases	
progressively.	

Bit\#	Description
13	Bit 13=0: The calculation of the target position of the axis is triggered by a transition in DOG's signal from low to high.
$14=$Bit $13=1$ The calculation of the target position of the axis is triggered by a transition in (The setting of bit 13 is applicable to the insertion of single-speed motion, and the insertion of two-speed motion.)	
14	Bit 14=0: Trapezoid curve Bit 14=1: S curve

Users can use M1792, M1872, M2032, M2112, M2192, and M2272 to judge whether the axes complete the execution of linear interpolation..

6 Multiaxial Interpolation

MEMO

7 CANopen Communication Card

7.1 Introduction of DVP-FPMC: CANopen Communication Card

DVP-FPMC is a CANopen communication card for a DVP-10PM series motion controller to conduct data exchange. The functions of DVP-FPMC are as follows.

- It conforms to the CANopen standard protocol DS301 v4.02.
- It supports an NMT protocol.
- It supports an SDO protocol.
- It supports the CANopen standard protocol DS402 v2.0. Four motion axes at most are supported.
- Motion axes support a profile position mode.

7.2 Specifications

- CANopen connector

Item	Specifications
Transmission method	CAN
Electrical isolation	500 V DC
Type	Removable connector $(5.08 \mathrm{~mm})$
Transmission cable	2 communication cables, 1 shielded cable, and 1 ground

- Ethernet connector

Item	Specifications
Transmission method	Ethernet
Electrical isolation	500 V DC
Type	Removable connector (5.08 mm)
Transmission cable	2 communication cables, 1 shielded cable, and 1 ground

- Communication

Item	Specifications
Protocol type	PDO, SDO, SYNC (synchronous object), EMCY (emergency object), NMT, Heartbeat
Serial transmission speed	500 kbps, 1 Mbps (bits per second)
Product code	254
Equipment type	0 (Non-profile)
Company ID	477 (Delta Electronics, Inc.)

- Electrical specifications

Item	Specifications
Supply voltage	24 V DC (-15~20\%) (A DVP-10PM series motion controller supplies power through its internal bus.)
Electric energy consumption	1.7 W
Insulation voltage	500 V
Weight	Approximately 66 g

- Environmental specifications

Item	Specifications
Noise immunity	ESD (IEC 61131-2, IEC 61000-4-2): 8 kV air discharge, 4 kV contact discharge EFT (IEC 61131-2, IEC $61000-4-4$): Power line: 2 kV ; Digital I/O: 1 kV ; Analog \& Communication I/O: 1 kV Damped-Oscillatory Wave: Power line: 1 kV ; Digital I/O: 1 kV RS (IEC 61131-2, IEC $61000-4-3$): $80 \mathrm{MHz} \sim 1000 \mathrm{MHz}, 1.4 \mathrm{GHz} \sim 2.0 \mathrm{GHz}, 10 \mathrm{~V} / \mathrm{m}$
Operation/Storage	Operation: $0^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}$ (Temperature), $50 \sim 95 \%$ (Humidity), pollution degree 2 Storage: $-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ (Temperature), $5 \sim 95 \%$ (Humidity)
Vibration/Shock resistance	International standards IEC 61131-2, IEC 68-2-6 (TEST Fc)/IEC 61131-2 \& IEC 68-2-27 (TEST Ea)
Standard	IEC 61131-2

7 cANopen Communication Card

7.3 Product Profile and I nstallation

Product profile:

(1) CANopen connector
(2) Ethernet connector
(3) CANopen indicator
(4) Ethernet indicator
(5) Communication connector

Installing DVP-FPMC on a DVP-10PM series motion controller, and connecting it to a communication cable:

7.4 Parameters for Control Registers

- Normal mode: Common parameters

CR number	Function	Attribute	Data type	Length
$\# 001$	Firmware version of DVP-FPMC	R	Word	1
$\# 052$	CANopen synchronous packet sending setting	R / W	Word	1
$\# 053$	CANopen node ID setting	R / W	Word	1
$\# 054$	CANopen transmission speed setting	R / W	Word	1
$\# 055$	CANopen SDO/NMT timeout	R / W	Word	1
$\# 056$	DVP-FPMC error status	R / W	Word	1
$\# 059$	Network IP address and port setting for DVP-FPMC	R / W	Word	1
$\# 062$	Ethernet connection command and status	R / W	Word	3
$\# 063$	IP address and port setting for an Ethernet master	R / W	Word	1
$\# 064$	Length of data to be transmitted through Ethernet	R / W	Word	512
$\# 065$	Data to be transmitted through Ethernet	R	Word	1
$\# 066$	Length of data to be received through Ethernet	R / W	Word	512
$\# 067$	Data to be received through Ethernet	R / W	Word	1
$\# 070$	Node ID of an SDO server	R / W	Word	1
$\# 071$	SDO access command and status	R / W	Word	1
$\# 072$	SDO OD index	R / W	Word	512
$\# 073$	SDO OD transmission/reception register 1	R / W	Word	512
$\# 074$	SDO OD transmission/reception register 2	R/W	Word	512
$\# 075$	SDO OD transmission/reception register 3	R/W	Word	1
$\# 076$	SDO OD transmission/reception register 4			
$\# 080$	NMT command			

7 CANopen Communication Card

- A2 mode: Four-axis parameters

$\begin{gathered} \text { CR } \\ \text { number } \end{gathered}$	Function	Attribute	Data type	Length
\#010	CANopen bus scan	R/W	Word	1
\#020	CANopen bus communication status	R	Word	1
\#040	Error status of a server	R	Word	1
\#050	CANopen bus control command	R/W	Word	1
\#090	Data written into a DVP-FPMC QBuffer	R/W	Word	32
\#091	Address of the data written into a DVP-FPMC QBuffer	R/W	Word	32
\#092	Data read from a DVP-FPMC QBuffer	R/W	Word	32
\#093	Address of the data read from a DVP-FPMC QBuffer	R/W	Word	32
\#n00	Node ID	R	Word	1
\#n01	Manufacturer ID	R	Word	1
\#n02				
\#n03	Product ID	R	Word	1
\#n04				
\#n05	Firmware version	R	Word	1
\#n06				
\#n07	Product type	R	Word	1
\#n08				
\#n09	CANopen node communication status	R	Word	1
\#n10	Emergency error code	R	Word	1
\#n11	Manufacturer's error code	R	Word	1
\#n12				
\#n20	Servo drive status	R	Word	1
\#n21	Present motion mode of a servo drive	R	Word	1
\#n22	Servo drive position	R	Word	1
\#n23				
\#n40	Node control command	R/W	Word	1
\#n50	SDO access command and status	R/W	Word	1
\#n51	SDO OD (object dictionary) index	R/W	Word	1
\#n52	SDO transmission/reception register 1	R/W	Word	512
\#n53	SDO transmission/reception register 2	R/W	Word	512
\#n54	SDO transmission/reception register 3	R/W	Word	512
\#n55	SDO transmission/reception register 4	R/W	Word	512
\#n60	Servo drive control	R/W	Word	1
\#n61	Motion mode selection	R/W	Word	1
\#n70	Target position of a profile position mode	R/W	Word	1
\#n71				
\#n72	Target speed of a profile position mode	R/W	Word	1
\#n73				
\#n74	Acceleration time of a profile position mode (ms)	R/W	Word	1
\#n75				
\#n76	Deceleration time of a profile position mode (ms)	R/W	Word	1
\#n77				
\#n78	Profile position settings	R/W	Word	1
\#n80	Homing method	R/W	Word	1
\#n81	Home offset	R/W	Word	1
\#n82				
\#n83	Homing speed	R/W	Word	1

7 cANopen Communication Card

CR number	Function	Attribute	Data type	Length
\#n85	Speed at which motion homes after a transition in a DOG signal	R/W	Word	1
\#n86				
\#n87	Homing acceleration time	R/W	Word	1
\#n88				
\#n89	Enabling a homing mode	R/W	Word	1
\#n90	Target position of an interpolation mode	R/W	Word	1
\#n91				
\#n92	Enabling an interpolation mode	R/W	Word	1

- CANopen common mode

CR number	Function	Attribute	Data type	Length
$\# 500$	CANopen mode switch	R / W	Word	1
$\# 504$	Enabling a heartbeat protocol	R / W	Word	1
$\# 505$	Execution status of a heartbeat protocol	R	Word	1
$\# 506$	Heartbeat statuses	R	Word	1

- Object dictionary parameters

CR number	Function	Attribute	Data type	Length
\#H'1006	Synchronization cycle setting	R/W	DWord	1
\#H'1017	DVP-FPMC heartbeat cycle setting	R/W	Word	1
\#H'1400~\#H'143F	Parameter settings for a RPDO	R/W	Word	3
\#H'1600~\#H'163F	Parameter settings for RPDO data mapping	R/W	DWord	4
\#H'1800~\#H'183F	Parameter settings for a TPDO	R/W	Word	3
\#H'1A00~\#H'1A3F	Parameter settings for TPDO data mapping	R/W	Dword	4
\#H'2000~\#H'207F	PDO data registers	R/W	Word	4

7.5 Descriptions of Control Registers

- Normal mode: Common parameters

CR\#001: Firmware version of DVP-FPMC

[Description]
The firmware version of DVP-FPMC is displayed in a hex value, e.g. H'8161 indicates that the data of issuing the firmware of DVP-FPMC is "Afternoon, August 16 ".

CR\#052: CANopen synchronous packet sending setting
[Description]
The control register has two functions.

- The low byte of CR052 sets up a CANopen synchronous function. If the value of the low byte is 1 , DVP-FPMC will send out a synchronous packet. If the value is 0 , the function will be disabled.
- The high byte of CR052 sets up a synchronous cycle. Setting value $\times 5=$ Value in D1040. If the value of the high byte is greater than 0 , the synchronization between the DVP-10PM series motion controller used and DVP-FPMC will be enabled.

Bit	Bit [15:8]	Bit [7:0]
Value	Synchronous cycle	Enabling the sending of a synchronous packet

CR\#053: CANopen node ID setting

[Description]
The control register is used to set a CANopen node ID. A CANopen node ID is in the range of 5 to 127 . Default value: 127

7 CANopen Communication Card

CR\#054: CANopen transmission speed setting

[Description]

The control register is used to set a CANopen transmission speed. The setting status is indicated by bit 15. If bit 15 is 1 , the setting is in progress. If bit 15 is 0 , the setting is completed. For example, if the CANopen transmission speed required is $1000 \mathrm{~kb} / \mathrm{s}$, users can write K1000 into CR\#054.

Bit	Bit [15]	Bit [14:0]
Setting value	Setting status $0:$ Completed $1:$ In progress	$1000:$ CANopen speed $=1000 \mathrm{~kb} / \mathrm{s}$ $500:$ CANopen speed $=500 \mathrm{~kb} / \mathrm{s}$

CR\#055: CANopen SDO/NMT timeout

[Description]

The control register is used to set a CANopen SDO/NMT timeout.
Unit: Millisecond
Default value: 1000

CR\#056: DVP-FPMC error status

[Description]
The control register is used to display the error status of DVP-FPMC. Please refer to the table below for more information.

Error status	Value	Resolution
CANopen connection error	C1	Check the CANopen nodes of the present slaves.
Ethernet connection error	E1	Check the connection between the communication module and Ethernet.

CR\#059: Network IP address and port setting for DVP-FPMC
[Description]
The control register is used to set an IP address and a port number for DVP-FPMC.
Data length: 3 words
Default IP address: 192.168.0.100
Port number: 1024
Please refer to the example below. (IP address: 192.168.0.100; Port number: 1024)

Word 0		Word 1		Word 2
H-byte	L-byte	H-byte	L-byte	
192	168	0	100	

CR\#062: Ethernet connection command and status

[Description]
The control register is used to set an Ethernet connection command, and obtain a connection status.

- H'0: Disconnected
- H'30: Connected
- H'10: Sending a connection command
- H'20: Sending a disconnection command

7 CANopen Communication Card

CR\#063: IP address and port setting for an Ethernet master
[Description]
The control register is used to set an IP address and a port number for an Ethernet master.
Data length: 3 words
Please refer to the table below for more information.

Word 0		Word 1		Word 2
H-byte	L-byte	H-byte	L-byte	
192	168	0	100	

CR\#064~CR\#67: Length of data to be transmitted/received through Ethernet/Data to be

[Description]

The control register is used to set the data to be accessed through Ethernet. The maximum capacity is 1024 bytes.

- Sending data: After users write a data length data into CR\#064, and data into CR\#65, DVP-FPMC will automatically clear values in the two control registers to 0 .
- Receiving data: Users read the contents of CR\#066 first, and then read the data in CR\#067.

CR\#070: Node ID of an SDO server

[Description]
The control register is used to set the node ID of an SDO server. A node ID is in the range of 1 to 127 .

CR\#071: SDO access command and status

[Description]
The control register is used to set an SDO access command, and obtain a status. Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:4]	Bit [3]	Bit [2:0]
			Command: 0: Completed	
Setting value	Subindex of length (Unit: Byte) index	Range: 1~8 If users want to write data, they have to specify a data length.	Error flag	1: Writing (including a check) 2: Reading (including a check) 3: Writing (not including a check)
			4: Reading (not including a check)	

Example: SDO data transmission

1. Specify the OD index of an SDO server (CR\#070) in CR\#072.
2. Set the data to be transmitted in CR\#073~CR\#076.
3. Refer to the table above. Specify a subindex in bit 15~bit 8 in CR\#071, and an SDO access command.

7 CANopen Communication Card

CR\#072: SDO OD index

[Description]
The control register is used to specify a target OD index.
Range: H'0000~H'FFFF.

CR\#073~CR\#76: SDO OD transmission/reception register 1~SDO OD transmission/reception register 4

[Description]

The data to be accessed through an SDO protocol is stored in the four control registers. The maximum capacity is 1024 bytes. If an error occurs during SDO data transmission, an error code will be stored in CR\#073 and CR\#074. If CR\#073~CR\#076 are used at a time, CR\#073 functions as the LSB and CR\#076 functions as the MSB.

CR\#080: NMT command

[Description]
If DVP-FPMC is a master, an NMT command can be used to change a network status. Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:0]
Setting value	Network management command 1: Enabling node communication 2: Disabling node communication 128: Switch an operation mode 129: Resetting node communication	Node ID of a slave

- Parameters for an A2 mode

An A2 mode is one of the applications of DVP-FPMC specifically for Delta ASDA-A2 series servo drives. In an A2 mode, CANopen node ID 1~CANopen ID 4 are for ASDA-A2 series servo drives, and CR\#100~CR\#499 correspond to servo parameters. CR\#100~CR\#199 are control registers for node ID 1, CR\#200~CR\#299 are control registers for node ID 2, CR\#300~CR\#399 are control registers for node ID 3, CR\#400~CR\#499 are control registers for node ID 4. n in a control register number represents the digit in the hundreds place of the control register number. It is in the range of 1 to 4. Control registers for ASDA-A2 application are applicable only in an A2 mode.

CR\#010: CANopen bus scan

[Description]

The control register is used to scan CANopen node ID 1~CANopen node ID 4. Bit 0~bit 3 in CR\#010 correspond to node 1~node 4 . If a bit is 1 , its corresponding node will be scanned, and the contents of the control register will be cleared automatically. Please refer to the table below for more information.

Bit	Bit [15:4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]
Node number	Reserved	Node 4	Node 3	Node 2	Node 1

7 CANopen Communication Card

CR\#020: CANopen bus communication status
[Description]
Two consecutive bits in the control register are used to display a node communication status.
00: Disconnected
01: Connected
11: Ready
Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:6]	Bit [5:4]	Bit [3:2]	Bit [1:0]
Node number	Reserved	Node 4	Node 3	Node 2	Node 1

CR\#040: Error status of a server
[Description]
The control register is used to display the error status of a servo drive. Bit 0~bit 3 in CR\#010 correspond to node 1~node 4. If an error occurs, its corresponding bit will be 1. If an error reset command is executed, the contents of the register will be cleared automatically. Please refer to the table below for more information.

Bit	Bit [15:4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]
Node number	Reserved	Node 4	Node 3	Node 2	Node 1

CR\#050: CANopen bus control command

[Description]
The control register is used to send bus control commands to the nodes connected successfully in a CANopen network. If the value in the control register is 1 , the servos which have been connected are ON. If the value in the control registers is 128 , the servos which have been connected are OFF. If the value in the control register is 129 , the errors which appear are cleared. After the setting of the control register is completed, the contents of the register will be cleared automatically. Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:0]
Value	Reserved	1: All servos are ON. 128: All servos are OFF. 129: All errors are cleared.

7 cANopen Communication Card

CR\#090~CR\#093: Data written into/read from a DVP-FPMC QBuffer/Address of the data written into/read from a DVP-FPMC QBuffer

[Description]

A QBuffer is designed for accessing several inconsecutive control registers by means of executing TO/FROM once. PLC scan time can be reduced by decreasing the number of times TO/FROM is executed. QBuffer access operation is described below.
For example, after the inconsecutive control register numbers CR\#170, CR\#171, CR\#280, CR\#289, and CR\#376 are written into the QBuffer address CR\#91, DVP-FPMC will connect the data in CR\#170, CR\#171, CR\#280, CR\#289, and CR\#376 with CR\#90 automatically. Users only need to access CR\#90, and the data in CR\#170, CR\#171, CR\#280, CR\#289, and CR\#376 can be modified.

Registers in a DVP-10PM
series motion controller

CR\#90 QBuffer data		CR\#91 QBuffer address	
1	Data A	1	170
2	Data B	2	171
3	Data C	3	280
4	Data D	4	289
5	Data E	5	376
6		6	
	:		
32		32	

CR\#376 Data E

CR\#n00: Node ID

[Description]
The control register is used to display the node ID of a servo drive in a CANopen network.
Node ID=1: CR\#100=1
Node ID=2: CR\#200=2
Node ID=3: CR\#300=3
Node ID=4: CR\#400=4

CR\#n01~CR\#n02: Manufacturer ID

[Description]

The control registers are used to display the manufacturer ID of an ASDA-A2 series servo drive.
Data type: Double word

CR\#n03~CR\#n04: Product ID

[Description]
The control registers are used to display the product ID of an ASDA-A2 series servo drive.
Data type: Double word

CR\#n05~CR\#n06: Firmware version

[Description]

The control registers are used to display the firmware version of an ASDA-A2 series servo drive.
Data type: Double word

7 CANopen Communication Card

CR\#n07~CR\#n08: Product type

[Description]
The control registers are used to display the product type of an ASDA-A2 servo drive.
Data type: Double word

CR\#n09: CANopen node communication status

[Description]
The control register is used to display a node communication status in a CANopen network. Please refer to the table below for more information.

Status	Value
Disconnected	H'1
Connected	H'2
Operation mode	H'5
Error	H'6
Reset	H'7

CR\#n10: Emergency error code
[Description]
The control register is used to display an error code defined by a CANopen protocol when an error occurs in a certain node.

CR\#n11~CR\#n12: Manufacturer's error code

[Description]

The control registers are used to display an error code defined by a manufacturer when an error occurs in an ASDA-A2 series servo drive. Please refer to Delta ASDA-A2 User Manual for more information about error codes.

CR\#n20: Servo drive status

[Description]

The value in the control register indicates the present status of an ASDA-A2 series servo drive. Please refer to the table below for more information.

Status word															
X	OM	OM	OM	X	TR	R M	X	WR	X	QS	X	FT	SO	X	R S
5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

- RS: The servo drive is ready. After the initialization of the servo drive is completed, the bit will be 1 .
- SO: The servo drive is ON. The bit will be 1 if the servo drive is ON.
- FT : It is an error flag. If an error occurs in the servo drive, the bit will be 1 .
- QS: If the bit is 1 , the servo drive can be stopped urgently.
- WR: It is a warning flag. If the servo drive sends a warning message, the bit will be 1.
- RM: If the bit is 1 , remote monitoring can be executed.
- TR: If the execution of a motion command is completed, the bit will be 1.
- OM [14:12]: The bits indicate the statuses of motion modes. Please see the table below for more information.

	Profile position mode	Homing mode	Interpolation mode
OM $[12]$	A target position has been set successfully.	A homing mode is being executed.	An interpolation mode is being executed.
OM $[13]$	Following error	Homing error	X

	Profile position mode	Homing mode	Interpolation mode
$\mathrm{OM}[14]$	X	X	Enabling synchronization

CR\#n21: Present motion mode of a servo drive
[Description]
The control register is used to display the present motion mode of a servo drive.

Value	Motion mode
0×01	Profile position mode
0×06	Homing mode
0×07	Interpolation mode

CR\#n22~CR\#n23: Servo drive position

[Description]

The control registers are used to display the present position of a servo drive.
Data type: Double word

CR\#n40: Node control command
[Description]
The control register is used to send a node control command to the node connected. If the value in the control register is 1 , the servo which has been connected is ON. If the value in the control registers is 128, the servo which has been connected is OFF. If the value in the control register is 129, the error which appears is cleared. Please refer to the table below for more information.

Bit	Bit $[15: 8]$	Bit [7:0]
Value	Reserved	1: The servo which has been connected is ON. 128: The servo drive which has been connected is OFF. 129: The error which appears is cleared.

7 cANopen Communication Card

CR\#n50: SDO access command and status
[Description]
The control register is used to set an SDO access command, and obtain a status. Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:4]	Bit [3]	Bit [2:0]
			Command: 0: Completed	
Setting value	Subindex of a target OD index	Range: 1~8 If users want to write data, they have to specify a data length.	Error flag	1: Writing (including a check) 2: Reading (including a check) 3: Writing (not including a check)
			4: Reading (not including a check)	

Example: SDO data transmission

1. Specify the OD index of an SDO server in CR\#n51.
2. Set the data to be transmitted in CR\#n52~CR\#n55.
3. Refer to the table above. Specify a subindex in bit 15~bit 8 in CR\#n50, and an SDO access command.

CR\#n51: SDO OD (object dictionary) index
[Description]
The control register is used to specify the OD index of a node.
Range: H'0000~H'FFFF.

CR\#n52~CR\#n55: SDO transmission/reception register 1~SDO transmission/reception register 4
[Description]
The data to be accessed through an SDO protocol is stored in the four control registers. The maximum capacity is 1024 bytes. If an error occurs during SDO data transmission, an error code will be stored in CR\#n52 and CR\#n53. If CR\#n52~CR\#n55 are used at a time, CR\#n52 functions as the LSB and CR\#n55 functions as the MSB.

7 CANopen Communication Card

CR\#n60: Servo drive control

[Description]

The control register is used to send a control command to an ASDA-A2 series servo drive. Please refer to the table below for more information.

- EO: The servo drive is enabled. The servo drive will be ON if the bit is 1 .
- FR: The error occurs in the servo is cleared. The servo drive will clear the error which appears if the bit is 1 .
- OM: It is used to control the function of motion modes. Please refer to the table below for more information.

	Profile position mode	Homing mode	Interpolation mode
OM [4]	Setting a new target position	Enabling a homing mode	X
OM $[5]$	A target position is allowed to be changed during motion.	X	X
OM [6]	Absolute/Relative positioning	X	X

Note: "X" indicates "Reserved".

CR\#n61: Motion mode selection

[Description]

The control register is used to set the motion mode of a servo drive. Please refer to the table below for more information.

Setting value	Motion mode
0×01	Profile position mode
0×06	Homing mode
0×07	Interpolation mode

CR\#n70~CR\#n71: Target position of a profile position mode

[Description]

The control registers are used to set the target position of a profile position mode.
Data type: Double word

CR\#n72~CR\#n73: Target speed of a profile position mode

[Description]
The control registers are used to set the target speed of a profile position mode.
Data type: Double word

CR\#n74~CR\#n75: Acceleration time of a profile position mode
[Description]
The control registers are used to set the acceleration time of a profile position mode.
Data type: Double word

CR\#n76~CR\#n77: Deceleration time of a profile position mode

[Description]

The control registers are used to set the deceleration time of a profile position mode.
Data type: Double word

7 cANopen Communication Card

CR\#n78: Profile position settings

[Description]

The control register is used to set a profile position mode. A profile position mode can be absolute positioning or relative positioning.

- 0: Positioning is completed.
- 1: A profile position mode is absolute positioning. The value in the control register will be cleared to 0 after positioning is completed.
- 2: A profile position mode is relative positioning. The value in the control register will be cleared to 0 after positioning is completed.
- 3: A profile position mode is absolute positioning. The value in the control register will be retained after positioning is completed.

CR\#n80: Homing method

[Description]
The control register is used to set a homing method.
Range: 1~35
For more information, please refer to chapter 13 in CiA DSP402 V2.0.

CR\#n81~CR\#n82: Home offset

[Description]
The control registers are used to set a home offset.
Range: -2,147,483,648~2,147,483,647
Data type: Double word

CR\#n83~CR\#n84: Homing speed
[Description]
The control registers are used to set a homing speed.
Range: 0~2,147,483,647
Data type: Double word

CR\#n85~CR\#n86: Speed at which motion homes after a transition in a DOG signal
[Description]
The control registers are used to set the speed at which motion homes after a transition in a DOG signal.
Range: 0~2,147,483,647
Data type: Double word

CR\#n87~CR\#n88: Homing acceleration time
[Description]
The control registers are used to set homing acceleration time.
Range: 0~2,147,483,647
Data type: Double word

CR\#n89: Enabling a homing mode

[Description]
A homing mode will be executed if the value in the control register is 1. After homing is completed, the value in the control register will be cleared to 0 automatically.

7 cANopen Communication Card

CR\#n90~CR\#n91: Target position of an interpolation mode

[Description]

The control registers are used to set the target position of an interpolation mode.
Range: -2,147,483,648~2,147,483,647
Data type: Double word
CR\#n92: Enabling an interpolation mode

[Description]

An interpolation mode will be executed if the value in the control register is 1 . An interpolation mode will be disabled if the value in the control register is 0 .

- CANopen common mode

CR\#500: CANopen mode switch

[Description]

The control register is used to switch the CANopen mode of DVP-FPMC. If the value in the control register is 1, the CANopen mode of DVP-FPMC is an A2 mode. If the value in the control register is 2 , the CANopen mode of DVP-FPMC is a normal mode.
Default value: 1
Control registers for an A2 mode will be unavailable if the CANopen mode of DVP-FPMC is a normal mode. Control registers for a normal mode will be unavailable if the CANopen mode of DVP-FPMC is an A2 mode.

CR\#504: Enabling a heartbeat protocol

[Description]

If a heartbeat protocol is enabled in a common mode, the heartbeat mechanisms of node ID 1~nod ID 16 (slaves) will be enabled by a master. If the value in the control register is 0 , a heartbeat protocol is disabled. If the value in the control register is 1 , a heartbeat protocol is enabled.

CR\#505: Execution statuses of a heartbeat protocol

[Description]

The control register is used to display the execution statuses of the heartbeat protocol executed by node ID 1~node ID 16. If the value in the control register is 0 , the execution of a heartbeat protocol is completed. If the value in the control register is 1 , a heartbeat protocol is being executed.

CR\#506: Heartbeat statuses

[Description]

The control register is used to display the heartbeat statuses of node ID1~node ID 16. Node ID 1~node ID 16 correspond to bit $0 \sim$ bit 15 . If the heartbeat mechanism of a slave is enabled successfully, the bit corresponding to the salve is 1 . If the heartbeat mechanism of a slave is not enabled, the bit corresponding to the salve is 0 . In addition, if a slave is disconnected from a master, the bit corresponding to the slave is 0 .

7 cANopen Communication Card

- Object dictionary parameters

CR\#H'1006: Synchronization cycle setting
[Description]
The control register is used to set a time interval (unit) for the sending of CANopen synchronization packets in a normal mode.
Unit: $\mu \mathrm{s}$
Data type: Double word
Default value: 5000
A synchronization cycle is measured by the millisecond now. The time less than one millisecond is ignored. It is suggested that the minimum synchronization cycle for 1 PDO~3 PDOs in a CANopen network should be 3 milliseconds, and the minimum synchronization cycle for 4 PDOs ~ 8 PDOs should be 4 milliseconds. That is to say, one millisecond will be added to a minimum synchronization cycle if four PDOs are added.

CR\#H'1017: DVP-FPMC heartbeat cycle setting

[Description]
The control register is used to set a heartbeat cycle.
Unit: Millisecond
Default value: 0
If the value in the control register is 0 , the heartbeat mechanism of DVP-FPMC is not enabled.

CR\#H'1400~CR\#H'143F: Parameter settings for a RPDO
[Description]
The control registers are used to set the parameters for RPDO in a normal mode. The capacity of the control registers is 3 words. Please refer to the table below for more information.

Transmission method	PDO ID	
Word 2	Word 1 (High)	Word 0 (Low)

- PDO ID: A CANopen POD ID occupies two words.

Default values:
CR\#H'1400=H180+FPMC DVP-FPMC node ID (CR\#053)
CR\# H'1401=H280+FPMC DVP-FPMC node ID (CR\#053)
CR\#H'1403=H380+FPMC DVP-FPMC node ID (CR\#053)
CR\#H'1404=H480+FPMC DVP-FPMC node ID (CR\#053)

- Transmission method: If the value set is in the range of 1 to 240 , the sending of a PDO is synchronized with the sending of a CANopen packet, and is executed every synchronization cycle. If the value set is in the range of 241 to 255 , no PDO is sent.
Default value: 241

7 CANopen Communication Card

CR\#H'1600~CR\#H'163F: Parameter settings for RPDO data mapping

[Description]

The control registers are used to set parameters for RPDO data mapping in a normal mode. A RPDO parameter is composed of a double word. The first word is used to set an OD Index. The high byte of the second word is used to set a subindex, and the low byte is used to set a data type. A bit is a unit for setting a data type. Please refer to the figure below for more information.

$\begin{aligned} & \text { OD index } \\ & (1600 \sim 163 F) \end{aligned}$	RPDO mapping format			PDO databuffer	
				$\begin{gathered} \text { Index } \\ (2000 \sim 207 \mathrm{~F}) \end{gathered}$	Subindex 1
	Index	Subindex	Length (Data)		Subindex 2
					Subindex 3
					Subindex 4

CR\#H'1800~CR\#H'183F: Parameter settings for a TPDO

[Description]

The control registers are used to set the parameters for TPDO in a normal mode. The capacity of the control registers is 3 words. Please refer to the table below for more information.

```
Transmission method
PDO ID
Word 2
Word 1 (High) Word 0 (Low)
```

- PDO ID: A CANopen POD ID occupies two words.

Default values:
CR\#H'1800=H200+ DVP-FPMC node ID (CR\#053)
CR\# H'1801=H300+ DVP-FPMC node ID (CR\#053)
CR\#H'1803=H400+ DVP-FPMC node ID (CR\#053)
CR\#H'1804=H500+ DVP-FPMC node ID (CR\#053)

- Transmission method: If the value set is in the range of 1 to 240 , the sending of a PDO is synchronized with the sending of a CANopen packet, and is executed every synchronization cycle. If the value set is in the range of 241 to 255 , no PDO is sent.
Default value: 241

Transmission method	PDO ID	
Word 2	Word 1 (High)	Word 0 (Low)

CR\#H'1A00~CR\#H'1A3F: Parameter settings for TPDO data mapping
[Description]
The control registers are used to set parameters for TPDO data mapping in a normal mode. A TPDO parameter is composed of a double word. The first word is used to set an OD Index. The high byte of the second word is used to a subindex, and the low byte is used to set a data type (unit: bit). Please refer to the figure below for more information.

TPDO mapping format

$\underset{(1 A 00 \sim 1 A 3 F)}{\text { OD index }} \quad$ Index \quad Subindex	Length (Data)

PDO	data buffer
Index $(2000 \sim 207 F)$	Subindex 1
	Subindex 2
	Subindex 3
	Subindex 4

7 cANopen Communication Card

CR\#H'2000~CR\#H'207F: PDO data registers

[Description]
Data registers storing the data for PDO access. DVP-FPMC takes CR\#H'2000~CR\#H'207F in an OD as data registers. Every index has 4 subindices in which data can be stored. The size of a subindex is one word. If the size of the data to be accessed is bigger than one word, users have to use several subindex areas for data transmission.

- Object dictionary for DVP-FPMC

Index (Hexadecimal value)	Object name	Number of subindices	Name	Data type	Attribute	Mapping target
1000	VAR	1	Product type	UNSIGNED32	RO	N
1006	VAR	1	Synchronization cycle	UNSIGNED32	RW	N
1018	ARRAY	5	Product information	UNSIGNED32	RO	N
1200	ARRAY	3	SDO parameter of a master	UNSIGNED32	RO	N
1280	ARRAY	4	SDO parameter of a slave	UNSIGNED32	RO	N
:	:	:	:	:	:	:
128F	ARRAY	4	SDO parameter of a slave	UNSIGNED32	RO	N
1400	ARRAY	6	RPDO parameter	UNSIGNED32	RW	N
:	:	:	:	:	:	:
143F	ARRAY	6	RPDO parameter	UNSIGNED32	RW	N
1600	ARRAY	9	RPDO mapping parameter	UNSIGNED32	RW	N
:	.	:	:	:	:	:
163F	ARRAY	9	RPDO mapping parameter	UNSIGNED32	RW	N
1800	ARRAY	6	TPDO parameter	UNSIGNED32	RW	N
:	:	:	:	:	:	:
183F	ARRAY	6	TPDO parameter	UNSIGNED32	RW	N
1A00	ARRAY	9	TPDO mapping parameter	UNSIGNED32	RW	N
:	:	:	:	:	:	:
1A3F	ARRAY	9	TPDO mapping parameter	UNSIGNED32	RW	N
2000	ARRAY	5	PDO data register	UNSIGNED32	RW	Y
:	:	:	.	:	:	:
207F	ARRAY	5	PDO data register	UNSIGNED32	RW	Y
6000	ARRAY	5	Mode switch	UNSIGNED8	R	Y
6100	ARRAY	17	Servo drive control	UNSIGNED16	R	Y
6120	ARRAY	17	Parameter of a profile position mode	UNSIGNED32	R	Y
6200	ARRAY	5	Present motion mode of a servo drive	UNSIGNED8	RW	Y
6300	ARRAY	5	Servo drive status	UNSIGNED16	RW	Y
6320	ARRAY	5	Servo drive position	UNSIGNED32	RW	Y

7 CANopen Communication Card

7.6 Setting a DVP-FPMC Mode

- A2 mode

In an A2 mode, DVP-FPMC communicates with four Delta ASDA-A2 series servo drives through a CANopen network. During the communication, DVP-FPMC functions as a master, and the servo drives functions as slaves. The communication structure required is show below. The default node ID of DVP-FPMC is 127. The objects which are connected are node ID 1~ node ID 4. After users assign node ID 1~node ID4 to the servo drives, the servo drives can exchange data with DVP-FPMC.

In the A2 mode, there are six PDOs for the setting of servo parameters. The users can monitor the statuses of the servo drives directly by accessing control registers in a CANopen network. They do not need to set PDO parameters. Four PDOs are assigned to DVP-FPMC, and two PDOs are assigned to the servo drives. Please refer to the table below for more information.

PDO	Master (transmission)	Slave (transmission)
1	Target position of a profile position mode (CR\#n70~CR\#n71) Target speed of a profile position mode (CR\#n72~CR\#n73)	
2	Acceleration time of a profile position mode (CR\#n74~CR\#n75) Deceleration time of a profile position mode (CR\#n76~CR\#n77)	
3	Servo drive control (CR\#n60)	
4	Target position of an interpolation mode (CR\#n90~CR\#n91)	Servo drive status (CR\#n20) Present motion mode of a servo drive (CR\#n21)
5		Servo drive position (CR\#n22~CR\#n23)
6		

Setting communication in an A2 mode:

- Setting the ASDA-A2 series servo drives

Before creating a CANopen connection, the users have to set the servo drives to CANopen mode.

1. Set P1-01 to H'OB. (The servo drive is set to CANopen mode.)
2. Set P3-00. The value of P3-00 indicates a node number. It is in the range of H'01 to H'04.
3. Set P3-01 to H'0403. The value of P3-01 indicates a baud rate. (If the high byte of the value of P3-01 is 2, the baud rate used is 500 kbps . If the high byte of the value of P3-01 is 4 , the baud rate used is 1 Mbps .) The baud rates which are supported by DVP-FPMC now are 1 Mbps and 500 kbps. (Default: 1 Mbps)

- Setting DVP-FPMC

After the setting of the CNopen parameters in the servo drives connected is completed, the users can create a CANopen network by means of DVP-FPMC.

1. Write 1 into CR\#500. DVP-FPMC is set to A2 mode.
2. Write a node ID into CR\#053. The default node ID of DVP-FPMC is 127.
3. Write H'FFFF into CR\#010. All servo drives which are connected are scanned.
4. Read the value in CR\#010 by means of the instruction FROM, and check whether the value in CR\#010 is cleared to 0.
5. Write 1 into CR\#050. All servo drives which has been connected are set to ON.

- Normal mode

In a normal mode, users have to set the PDO parameters in DVP-FPMC and the slaves which are connected. They have to use FROM/TO to set control registers in DVP-FPMC, and use an SDO protocol to set the PDO parameters in the servo drives connected. The steps of setting the PDO parameters in DVP-FPMC are as follows.

1. Setting PDO transmission parameters

The setting of PDO parameters includes the setting of a frame ID and the setting of a synchronization cycle. A frame ID is in the range of H'181 to H'578. Please note that the frame ID and the synchronization cycle in the PDO for a master must be the same as the frame ID and the synchronization cycle in the PDO for the slave connected. There are two kinds of PDOs: transmit and receive PDOs (TPDO and RPDO).

- Setting a TPDO

CR\#H'1800~CR\#H'183F in DVP-DPMC function as TPDOs. They communicate with a slave's RPDOs. For example, the OD index H'1800 (TPDO) in a master communicates with the OD index H'143F (RPDO) in a slave. The synchronization cycle set is 240 , and the frame ID set is H'181.
DVP-FPMC

CR\# Transmit PDO

H'1800	Synchronization cycle=240	Frame ID = H'181

OD index Receive PDO

H'143F	Synchronization cycle=240	Frame ID=H'181

- Setting a RPDO

CR\#H'1400~CR\#H'143F in DVP-DPMC function as RPDOs. They communicate with a slave's TPDOs. For example, the OD index H'1438 (RPDO) in a master communicates with the OD index H'1800 (TPDO) in a slave. The synchronization cycle set is 5 , and the frame ID set is H'400.

7 CANopen Communication Card

2. Setting PDO mapping parameters

The setting of PDO mapping parameters includes the setting of a mapping target and the setting of a data length in a PDO data buffer. The maximum data length which can be set is 64 bits, that is to say, four subindices in a PDO data buffer can be occupied at a time. For example, the mapping target set is the second subindex in CR\#H'200A, and the data length set is 48 bits. Subindex 2~subindex 4 in the PDO data buffer used are occupied.

3. Setting PDO data

Write the data to be transmitted by a PDO into the OD indices set. For example, subindex 2~subindex 4 in CR\#H'200A in DVP-FPMC is TPDO data, and subindex 1~subindex 3 in CR\#H'203F in the slave connected is RPDO data. After communication is enabled, data will be transmitted/received every synchronization cycle.

PDO databuffer		PDO data buffer	
200A	Data to be transmitted to a slave	203F	Data received from DVP-FPMC
200A	Data to be transmitted to a slave	203F	Data received from DVP-FPMC
200A	Data to be transmitted to a slave	203F	Data received from DVP-FPMC

7.7 Ethernet Mode of DVP-FPMC

DVP-FPMC supports Ethernet connection. It can be connected to an Ethernet device or a PC. If DVP-FPMC is connected to a PC, PMSoft can be used to upload/download a program and monitor devices. Users only need to connect the communication port on DVP-FPMC to a communication port on equipment. Please refer to section 9.3 for more information about installing hardware. If DVP-FPMC is connected to a PC, the Ethernet LED indicator will be ON. Please check the setting of hardware or the setting of the PC connected if the Ethernet LED indicator is not ON.

7 cANopen Communication Card

7.7.1 Communication between DVP-FPMC and an HMI

- Configuration

In this example, two DVP-10PM series motion controllers equipped with DVP-FPMC exchange data with the HMI DOP-B10E615 through Ethernet. The hardware configuration required is shown below. The program in the HMI controls $\mathrm{Y} 0 \sim \mathrm{Y} 7$ on the two DVP-10PM series motion controllers.

- Setting DVP-FPMC

In this example, DVP-FPMC functions as a slave. The IP address of DVP-FPMC needs to be set.
The IP address of the equipment to be connected and Ethernet connections do not need to be set. Users need to write the IP address of DVP-FPMC into CR\#59. Please refer to 7.5 for more information about setting CR\#59. Take the IP address 192.168.0.100 for instance. The program in DVP-PM is shown below.

I

7 caNopen Communication Card

- Setting an HMI

An HMI is used as a master. It is connected to two slaves. The IP address of the HMI and Ethernet connections need to be set. The steps of creating the connection between the HMI and DVP-FPMC are as follows.

1. Click Configuration... on the Options menu.
```
Options Window Help
```


Configuration..

Communication Setting

2. Click the Main tab, and then select DOP-B10E615 65536 Colors in the HMI Type drop-down list box.

3. Click Communication Setting on the Options menu.

Options $\underline{\text { Window }}$ Help
Configuration ...
Commurication Setting

4. Click the Ethernet tab.

5. After users click, they have to type a link name in the Link Name box, and select Delta DVP TCPIIP in the Controller drop-down list box.

6. The users have to set the IP address of DVP- FPMC in the Communication Parameter section.

Communication Parameter
Controller IP : Port
:---

7. After the users select the link name created in step 5 in the Input window for an element, they can operate the memory defined by the element by means of Ethernet.

The HMI needs to control Y0~Y7 on two DVP-10PM series motion controllers which function as slaves. The interface required is shown below. The buttons $\mathrm{Y} 0 \sim Y 7$ correspond to $\mathrm{Y} 0 \sim \mathrm{Y} 7$ on EtherLink1 and EtherLink2, that is to say, they correspond to Y0~Y7 on the two slaves connected. After the setting described above is completed, the HMI can connect to the two slaves by means of Ethernet.

7.7.2 Communication between DVP-FPMC and PMSoft

Before users create communication between DVP-FPMC and PMSoft, they have to use COMMG to create an Ethernet driver. An Ethernet driver can be used to upload the program in a DVP-10PM series motion controller, download a program into a DVP-10PM series motion controller, and monitor a DVP-10PM series motion controller.

- Wiring hardware

Users can connect the network port on DVP-FPMC to a network port on a PC by means of a network cable. If DVP-FPMC is connected to a PC, the Ethernet LED indicator on DVP-FPMC will be ON. Please check the setting of hardware and or the setting of the PC is the Ethernet LED indicator is not ON .

- Setting a PC

1. Click Internet Protocol (TCP/IP) in the Local Area Connection Properties window, and then click Properties.

This connection uses the following items:

Transmission Control Protocol/Internet Protocol. The default wide area network protocol that provides communication across diverse interconnected networks.

Show icon in notification area when connected
Notify me when this connection has limited or no connectivity

> OK

Cancel
2. Select the Use the following IP address option button in the Internet Protocol (TCP/IP) Properties window. Type 192.168.0.55 in the IP address box. The last number is in the range of 1 to 255 , bit it can not be 100 . Type 255.255 .255 .0 in the Subnet mask box, and click OK.

7 cANopen Communication Card

- Setting PMSoft

1. Click Add in the COMMGR window, and then create an Ethernet driver in the Driver Properties window.

The IP Address set is 192.168.0.100, and the port number set is 502 .

7
 CANopen Communication Card

2. Start PMSoft, and click Communication Setting on the Communication menu. In the Communication Setting window, select the driver created in the first step in the Driver drop-down list box, and select the IP address 192.168.1.100. After OK is clicked, users can upload/download a program and monitor devices by means of Ethernet.

3. Downloading a program: If users want to download a program, they can click ay on the toolbar, or click Download Program on the Communication menu. The procedure for downloading a program through Ethernet is the same as the procedure for downloading a program through a general communication port.
4. Uploading a program: If users want to upload a program, they can click Nㅓㄹ on the toolbar, or click Upload Program on the Communication menu. The procedure for uploading a program through Ethernet is the same as the procedure for uploading a program through a general communication port.
5. Monitoring a DVP-10PM series motion controller: If users want to monitor a DVP-10PM series motion controller, they can click on the toolbar, or click Monitoring on the Communication menu. The procedure for monitoring a DVP-10PM series motion controller through Ethernet is the same as the procedure for monitoring a DVP-10PM series motion controller through a general communication port.

7.8 LED I ndicators and Troubleshooting

- CANopen LED indicator

LED indicator	Description	Resolution
The green light is OFF.	A CANopen cable is not connected.	Check whether cables are connected correctly.
The green light is ON.	A CANopen cable is connected normally.	No action is required.

- Ethernet LED indicator

LED indicator	Description	Resolution
The green light is OFF.	DVP-FPMC is not connected to a network.	Check whether a network cable is connected correctly.
The green light is ON.	DVP-FPMC is connected to a network normally.	No action is required.
The green light blinks.	There is data exchange.	

7 CANopen Communication Card

MEMO

8 High-speed Comparison and High-speed Capture

8.1 High-speed Comparison and High-speed Capture

A DVP-10PM series motion controller sets and reads values by means of the instructions FROM and TO. The use of FROM/TO to set high-speed comparison and high-speed capture, and to read values is described below.

- Control

Device	Control	Resetting output devices	Setting a range which is masked
S	Initial group number $\mathrm{n}(\mathrm{n}=0 \sim 7)$	0	0
S_{+1}	0	1	2
$\left(S_{+3}, S_{+2}\right)$	Control register whose group number is n		
$\left(\mathrm{S}_{+5}, \mathrm{~S}_{+4}\right)$	Data registers whose group numbers are n		
$\left(\mathrm{S}_{+7}, \mathrm{~S}_{+6}\right)$	Control register whose group number is $\mathrm{n}+1$		
$\left(\mathrm{S}_{+9}, \mathrm{~S}_{+8}\right)$	Data registers whose group numbers are $\mathrm{n}+1$		
:	:		
$\left(\mathrm{S}_{+31}, \mathrm{~S}_{+30}\right)$	Control register whose group number is $\mathrm{n}+7$		
$\left(\mathrm{S}_{+33}, \mathrm{~S}_{+32}\right)$	Data registers whose group numbers are $\mathrm{n}+7$		
N	Data length $=2+m * 4$ m=number of groups (8 groups at most can be used.)		

Reading

Device	Reading the values in counters	Reading the states of output devices/Enabling capture
S	Initial group number $\mathrm{n}(\mathrm{n}=0 \sim 7)$	0
S_{+1}	0	1
($\mathrm{S}_{+3}, \mathrm{~S}_{+2}$)	Control register whose group number is n	States of output devices
$\left(\mathrm{S}_{+5}, \mathrm{~S}_{+4}\right)$	Data registers whose group numbers are n	Enabling capture (8 bits)
($\mathrm{S}_{+7}, \mathrm{~S}_{+6}$)	Control register whose group number is $\mathrm{n}+1$	
$\left(\mathrm{S}_{+9}, \mathrm{~S}_{+8}\right)$	Data registers whose group numbers are $\mathrm{n}+1$	
	:	
$\left(\mathrm{S}_{+31}, \mathrm{~S}_{+30}\right)$	Control register whose group number is $\mathrm{n}+7$	
$\left(\mathrm{S}_{+33}, \mathrm{~S}_{+32}\right)$	Data registers whose group numbers are $\mathrm{n}+7$	
N	Data length $=2+\mathrm{m}^{*} 4$ m=number of groups (8 groups at most can be used.)	

- Control/Reading
(1) The format of a control register in a high-speed comparison mode is described below.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Item			Comparison result	Output action	Condition	Comparison source										

8 High-speed Comparison and High-speed Capture

Item	Bit	Setting value	DVP-10PM series motion controller
Comparison source	[3-0]	0	Present position of the X-axis
		1	Present position of the Y-axis
		2	Present position of the Z-axis
		3	Present position of the A-axis
		4	Value in C200
		5	Value in C204
		6	Value in C208
		7	Value in C212
Comparison condition	[5-4]	1	Equal to ($=$)
		2	Greater than or equal to (\geqq)
		3	Less than or equal to (\leqq)
Output action	[7-6]	0	Set
		1	Reset
		2, 3	No output
Comparison result	[11-8]	0	Y0
		1	Y1
		2	Y2
		3	Y3
		4	Clearing the value in C200
		5	Clearing the value in C204
		6	Clearing the value in C208
		7	Clearing the value in C212

(2) The format of a control register in a high-speed capture mode is described below.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Item	Trigger				-						Setting		Capture source			

Item	Bit	Setting value	DVP-10PM series motion controller
Capture source	[3-0]	0	Present position of the X -axis
		1	Present position of the Y-axis
		2	Present position of the Z-axis
		3	Present position of the A-axis
		4	Value in C200
		5	Value in C204
		6	Value in C208
		7	Value in C212
Setting	[5-4]	0	Capture mode
External trigger	[15-12]	0	X0
		1	X1
		2	X2
		3	X3
		4	X4
		5	X5
		6	X6
		7	X7
		8	X10
		9	X11
		10	X12
		11	X13
		12	-

8 High-speed Comparison and High-speed Capture

Item	Bit	Setting value	DVP-10PM series motion controller
External trigger	[15-12]{}	13	-
		15	-
		15	-

8.2 High-speed Comparison

A high-speed comparison is shown below. Users use FROM/TO to read/write values so that they can compare data.

※ The dotted lines are data procedures, and the solid lines are control procedures.
Block (A): The instruction TO is used to write data into control registers (block C) and data registers (block D).
Block (B): The instruction FROM is used to read data from control registers (block C) and data registers (block D).
Block (C): User set a comparison source (block E), a comparison condition (block F), and an output terminal (block G) in a control register in accordance with the value it receives by means of TO.
Block (D): The value that users write into data registers by means of the instruction TO is compared with a comparison source (block E).
Block (E): The present positions of four axes, the values in C200, C204, C208, and C212 are comparison sources.
Block (F): There are three comparison conditions, they are equal to, greater than or equal to, and less than or equal to. If block D and block E meet the comparison condition set, the output terminal selected will be set to ON, the counter selected will be reset, the output terminal selected will be reset to OFF, or the counter selected will not be reset.
Block (G): If a comparison condition is met, Y0, Y1, Y2, Y3, C200, C204, C208, or C212 will be set or reset.
Procedure for a high-speed comparison: The instruction TO is used to write data into control registers and data registers (block A). \rightarrow The comparison source set (block E) is compared with the value in data registers (block D). The comparison result meets the condition set (block F). \rightarrow Y0, Y1, Y2, Y3, C200, C204, C208, or C212 will be set or reset (block G).

- Example

【Description】

The high-speed counter C204 is used. If the value in C204 is greater than 100, Y1 will be set to ON. If the value in C204 is greater than 300, Y 1 will be reset to OFF. Two comparators are used in a program. One comparator is used to set Y1 to ON, and the other is used to reset Y1 to OFF. When Y 1 is set to ON , no LED indicator on DVP10PM00M will indicate that Y 1 is ON , but users can know whether Y 1 is ON by means of its external wiring. As a result, the terminal C 1 is connected to the terminal $24 \mathrm{G}, \mathrm{Y} 1$ is connected to $\mathrm{X} 7, \mathrm{~S} / \mathrm{S} 2$ is connected to +24 V . A manual pulse generator is used, and is connected to X 2 and X 3 .

8 High－speed Comparison and High－speed Capture

【Steps】
1．After O 100 is started，the initial setting of two high－speed comparisons will be carried out．
（1） $\mathrm{DO}=0 \rightarrow$ Initial group number $\mathrm{n}=0$
（2）$D 1=0$
（3）D20 $=10 \rightarrow$ Writing 10 values by means of the instruction TO（two groups of high－speed comparison values）
（4） $\mathrm{D} 60=10 \rightarrow$ Reading 10 values by means of the instruction FROM（two high－speed comparison values）
2．Two groups of high－speed comparison values are set when M 1 is ON ．
（1）First group：The value in（D3，D2）is H125．\rightarrow The comparison source set is C204．（The value of bit $3 \sim$ bit 0 is 5 ．）The comparison condition set is greater than or equal to．（The value of bit $5 \sim$ bit 4 is 2．）The output action selected is set．（The value of bit7～bit 6 is 0 ．）The terminal selected is Y 1 （The value of bit11～bit 8 is 1．）
（2）First group：The value in（D5，D4）is K100．If the value in C204 is greater or equal to K100， Y1 will be set to ON．
（3）Second group：The value in（D7，D6）is H165．\rightarrow The comparison source set is C204．（The value of bit 3～bit 0 is 5 ．）The comparison condition set is greater than or equal to．（The value of bit $5 \sim$ bit 4 is 2．）The output action selected is reset．（The value of bit7～bit 6 is 1 ．）The terminal selected is Y 1 ．（The value of bit11～bit 8 is 1．）
（4）Second group：The value in（D9，D8）is K300．If the value in C204 is greater or equal to K300，Y1 will be reset to OFF．
3．The two high－speed comparisons are started when M 2 is ON ．
4．The setting of the two high－speed comparisons is read when M3 is ON．

圆 MonitorTable
Devioe No． Radiu Value C204 d32u 0 Comment D44 d32u 100 D48 d32u 300 D44 d16u 0 D41 d16u 0 D42 h32 00000125 D44 d32u 100 D46 h32 00000165 D48 d32s 300

5．When M4 is ON，K1 is moved to M1204～M1207．C204 is started when M5 is set to ON．（Mode of counting：Pulse／Direction）
6．Use the manual pulse generator，and check whether C204 counts．

圆 MonitorIable				－10
Device No．	Radix	Value	Comment	
C204	d32u	95		
D44	d32u	100		
D48	d32u	300		

7．Use the manual pulse generator．Check whether X7 on the DVP－10PM series motion controller used is ON when the value in C 204 is greater than 100．If X 7 is $\mathrm{ON}, \mathrm{Y} 1$ is set to ON ．
8．Use the manual pulse generator．Check whether X7 on the DVP－10PM series motion controller used is OFF when the value in C 204 is greater than 300 ．If X 7 is OFF， Y 1 is reset to OFF．

8 High-speed Comparison and High-speed Capture

【Program in PMSoft】

8 High－speed Comparison and High－speed Capture

8．3 High－speed Capture

A deviation often occurs when the present position of an axis or the value in C200／C204／C208／C212 is read．To prevent a deviation from occurring，users read a value immediately by setting an input terminal to ON．Capture is described below．

Block（A）：The instruction TO is used to write data into control registers（block B）．
Block（B）：Users set a capture source（block D），set bit 5～bit 4 to 0 （block E），and set a trigger（block F） in a control register．
Block（C）：The capture of a value（block D ）is triggered by an input terminal，and the value captured is stored in data registers．
Block（D）：The present positions of four axes，the values in C200，C204，C208，and C212 are capture sources．
Block（E）：Capture mode
Block（F）：External trigger
Block（G）：The instruction FROM is used to read data from control registers（block C）and data registers （block B）．The values stored in the data registers are values captured．
Procedure for a high－speed capture：The instruction TO is used to write data into control registers （block A）．\rightarrow An input terminal is set to ON（block F）．\rightarrow The present position of the X－axis／Y－axis／Z－axis／A－axis，or the value in C200／C204／C208／C212 is captured（block D）．The value captured is stored in data registers（block C）．\rightarrow Users read the value captured by means of the
instruction FROM．
－Example

【Description】

Start the high－speed counter C204．The value in C204 is captured when X5 is set to ON．A manual pulse generator is used，and is connected to X 2 and X 3 ．

【Steps】

1．When M 1002 in O 100 is ON ，the initial setting of high－speed capture is carried out．
（1） $\mathrm{D} 0=0 \rightarrow$ Initial group number $\mathrm{n}=0$
（2）$D 1=0$
（3）D20 $=6 \rightarrow$ Writing 6 values by means of the instruction TO（Only one value is captured．）
（4）$D 60=10 \rightarrow$ Reading 6 values by means of the instruction FROM（Only one value is captured．）
2．When M 1 is ON ，the high－speed capture is set．
（1）The value in（D3，D2）is H5005．\rightarrow The capture source set is C204．（The value of bit 3 －bit 0 is 5）．The mode selected is a capture mode．（The value of bit $5 \sim$ bit 4 is 0 ．）The trigger selected is X 5 ．（The value of bit $15 \sim$ bit 12 is 5 ．）
（2）The value in（D5，D4）is K100．Users can set（D5，D4）by themselves．
3．The high－speed capture is started when M 2 is ON ．

8

4．The setting of the high－speed capture is read when M3 is ON．

腽 MonitorTable				－可
Device No．	Radix	Value	Comment	
C204	d32u	0		
D44	d32u	100		
D48	d32u	300		
D40	d16u	0		
D41	d16u	0		
D42	h32	00005005		
D44	d32u．	100		

5．When M4 is ON，K1 is moved to M1204～M1207．C204 is started when M5 is set to ON．（Mode of counting：Pulse／Direction）
6．Use a manual pulse generator，and check whether C204 counts．

7．Use the manual pulse generator，and set X 5 to ON ．
8．The value captured is read when M 3 is ON ．When X 5 is ON ，the value in C 204 is captured．The value captured is 677 ．

圆 Monitoriable				－0®
Device No．	Radiy	Value	Comment	
C204	d32u	726		
D44	d32u	677		
		L		When X 5 is ON ， the value in C204
D40	d16u	0		is captured．
D41	d16u	0		
D42	h32	00005005		
D44	d32u	677		

8 High-speed Comparison and High-speed Capture

【 Program in PMSoft】

9.1 Appendix A: Error Code Table

After a program is written into a DVP-10PM series motion controller, the ERROR LED indicator will blink and an error flag will be ON if an error occurs in O100 or an Ox motion subroutine. The reason for the error occurring in O 100 or an Ox motion subroutine may be that the use of operands (devices) is incorrect, syntax is incorrect, or the setting of motion parameters is incorrect. Users can know the reasons for the errors occurring in a DVP-10PM series motion controller by means of the error codes (hexadecimal codes) stored in error registers.

- Error message table

Program block	0100						
Error type	Program error	Motion error					
		X-axis	Y-axis	Z-axis	A-axis	B-axis	C-axis
Error flag	M1953	M1793	M1873	M2033	M2113	M2193	M2273
Error register	D1802	D1857	D1937	D2017	D2097	D2177	D2257
Step number	D1803	D1869					
Program block	Ox						
Error type	Program error	Motion error					
		X-axis	Y-axis	Z-axis	A-axis	B-axis	C-axis
Error flag	M1793	M1793	M1873	M2033	M2113	M2193	M2273
Error register	D1857	D1857	D1937	D2017	D2097	D2177	D2257
Step number	D1869	D1869					

- Program error codes and motion error codes (hexadecimal codes)

Error code	Description	Error code	Description
0002	The subroutine used has no data.	0031	The positive-going pulses generated by motion are inhibited.
0003	CJ, CJN, and JMP have no matching pointers.	0032	The negative-going pulses generated by motion are inhibited.
0004	There is a subroutine pointer in the main program.	0033	The motor used comes into contact with the left/right limit switch set.
0005	Lack of a subroutine	0040	A device exceeds the device range available.
0006	A pointer is used repeatedly in the same program.	0041	A communication timeout occurs when MODRD/MODWR is executed.
0007	A subroutine pointer is used repeatedly.	0044	An error occurs when a device is modified by a 16-bit index register/32-bit index register.
0008	The pointer used in JMP is used repeatedly in different subroutines.	0045	The conversion into a floating-point number is incorrect.
0009	The pointer used in JMP is the same as the pointer used in CALL.	0E18	The conversion into a binary-coded decimal number is incorrect.
000A	A pointer is the same as a subroutine pointer.	0E19	Incorrect division operation (The divisor is 0.$)$
0011	Target position (I) is incorrect.	C401	General program error
0012	Target position (II) is incorrect.	C402	LD/LDI has been used more than nine times.
0021	Velocity (I) is incorrect.	C404	There is more than one nested program structure supported by RPT/RPE.
0022	Velocity (II) is incorrect.	C405	SRET is used between RPT and RPE.
0023	The velocity $\left(\mathrm{V}_{\mathrm{RT}}\right)$ of returning home is incorrect.	C4EE	There is no M102 in the main program, or there is no M2 in a motion subroutine.
0024	The velocity $\left(\mathrm{V}_{\mathrm{CR}}\right)$ to which the velocity of the axis specified decreases when the axis returns home is incorrect.	C4FF	A wrong instruction is used, or a device used exceeds the range available.
0025	The JOG speed set is incorrect.		

MEMO

[^0]: - S: Number of times a loop is executed

 Explanation \quad There is only one RPT-RPE loop in a program. If there is more than one RPT-RPE loop in a program, an error will occur.

