

Industrial Automation Headquarters

Delta Electronics, Inc. Taoyuan Technology Center No.18, Xinglong Rd., Taoyuan City, Taoyuan County 33068, Taiwan TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia

Delta Electronics (Jiangsu) Ltd. Wujiang Plant 3 1688 Jiangxing East Road, Wujiang Economic Development Zone Wujiang City, Jiang Su Province, P.R.C. 215200 TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Greentech (China) Co., Ltd. 238 Min-Xia Road, Pudong District, ShangHai, P.R.C. 201209 TEL: 86-21-58635678 / FAX: 86-21-58630003

Delta Electronics (Japan), Inc. Tokyo Office 2-1-14 Minato-ku Shibadaimon, Tokyo 105-0012, Japan TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc. 1511, Byucksan Digital Valley 6-cha, Gasan-dong, Geumcheon-gu, Seoul, Korea, 153-704 TEL: 82-2-515-5303 / FAX: 82-2-515-5302

Delta Electronics Int'l (S) Pte Ltd. 4 Kaki Bukit Ave 1, #05-05, Singapore 417939 TEL: 65-6747-5155 / FAX: 65-6744-9228

Delta Electronics (India) Pvt. Ltd. Plot No 43 Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India TEL : 91-124-4874900 / FAX : 91-124-4874945

Americas Delta Products Corporation (USA) Raleigh Office P.O. Box 12173,5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3800 / FAX: 1-919-767-8080

Delta Greentech (Brasil) S.A. Sao Paulo Office Rua Itapeva, 26 - 3° andar Edificio Itapeva One-Bela Vista 01332-000-São Paulo-SP-Brazil TEL: 55 11 3568-3855 / FAX: 55 11 3568-3865

Europe

Deltronics (The Netherlands) B.V. Eindhoven Office De Witbogt 20, 5652 AG Eindhoven, The Netherlands TEL: 31-40-2592850 / FAX: 31-40-2592851

DVP-0179720-01

*We reserve the right to change the information in this manual without prior notice.

DVP-10PM Application Manual (Programming)

2014-02-12

DVP-10PM Application Manual

Contents

Chap	oter 1 Program Framework of a DVP-PM Series Motion Controller	
1.1	Structure of O100	1-1
1.1	1.1 Manual Function of O100	1-2
1.2	Structure of Ox Motion Subroutines	1-3
1.3	Structure of P Subroutines	1-4
1.4	Using O100, Ox Motion Subroutines, and P Subroutines	1-6
1.4	4.1 Structure of a Program	1-6

Chapter 2 Hardware Specifications and Wiring

2.1 Hai	rdware Specifications	2-1
2.1.1	Specifications for Power	2-1
2.1.2	Electrical Specifications for Input Terminals/Output Terminals	2-1
2.1.3	Dimensions	2-4
2.2 Wir	ring	2-5
2.2.1	Installation of a DVP-10PM Series Motion Controller in a Control Box	2-6
2.2.2	Wiring Power Input	2-6
2.2.3	Safety Wiring	2-7
2.2.4	Wiring Input/Output Terminals	2-7
2.2.5	Wiring a DVP-10PM Series Motion Controller and an Inferior Servo D	rive 2-14
2.3 Coi	mmunication Ports	2-24
2.3.1	COM1 (RS-232 Port)	2-24
2.3.2	COM2 (RS-485 Port)	2-25
2.3.3	COM3 (RS-232/RS-485 Port)	2-25

Chapter 3 Devices

Device Lists			
Values, Constants, and Floating-point Numbers	3-4		
External Input Devices and External Output Devices	3-6		
Auxiliary Relays	3-8		
Stepping Relays	3-8		
.6 Timers			
Counters	3-9		
Registers	3-14		
1 Data Registers	3-15		
2 Index Registers	3-15		
Pointers	3-16		
	 Values, Constants, and Floating-point Numbers External Input Devices and External Output Devices Auxiliary Relays Stepping Relays Timers Counters Registers 1 Data Registers 2 Index Registers 		

3.10	Specail Auxiliary Relays and Special Data Registers	3-16	
3.11	Functions of Special Auxiliary Relays and Special Data Registers	3-30	
3.12	Special Data Registers for Motion Axes	3-44	
3.1	2.1 Descriptions of the Special Data Registers Related to Motion	3-47	
3.1	2.2 Introduction of Modes of Motion	3-68	
3.1	2.3 Special Data Registers for Motion Axes	3-69	
Chap	ter 4 Basic Instructions		
4.1	Table of Basic Instructions	4-1	
4.2	Descriptions of the Basic Instructions	4-3	
Chap	ter 5 Applied Instructions and Basic Usage		
5.1	Table of Applied Instructions	5-1	
5.2	Structure of an Applied Instruction	5-4	
5.3	Processing Values	5-7	
5.4	Using Index Registers to Modify Operands	5-9	
5.5	Instruction Index	5-10	
5.6	Descriptions of the Applied Instructions		
	(API 00~09) Loop control	5-13	
	(API 10~19) Transfer and comparison	5-22	
	• (API 20~29) Arithmetic	5-35	
	• (API 30~39) Rotation and move	5-47	
	(API 40~49) Data processing	5-58	
	(API 50) High-speed processing	5-72	
	(API 61~69) Convenience	5-73	
	• (API 78~87) I/O	5-80	
	(API 100~101) Communication	5-85	
	(API 110~175) Floating-point value	5-94	
	(API 215~223) Logical operation	5-125	
	(API 224~246) Comparison instructions	5-128	
	• (API 147, 154, 202, 203, 256~260) Other instructions	5-131	
5.7	Motion Control Function Block Table	5-144	
5.8	Introduction of the Pins in a Motion Control Function Block	5-145	
5.8	.1 Definitions of Input Pins/Output Pins	5-145	
5.8	.2 Timing Diagram for Input/Output Pins	5-147	
5.8	.3 Introducing the Use of PMSoft	5-148	
5.9	5.9 Delta-defined Parameter Table		
5.10	Uniaxial Motion Control Function Blocks	5-152	
5.1	0.1 Absolute Single-speed Motion	5-152	
5.1	0.2 Relative Single-speed Motion	5-156	

5.10	0.3	Absolute Two-speed Motion	5-160
5.10	0.4	Relative Two-speed Motion	5-163
5.10	0.5	Inserting Single-speed Motion	5-166
5.10	0.6	Inserting Two-speed Motion	5-170
5.10).7	JOG Motion	5-173
5.10). 8	Manual Pulse Generator Mode	5-176
5.10	0.9	Electronic Gear Motion	5-179
5.10	0.10	Returning Home	5-181
5.10	D.11	Stopping Uniaxial Motion	5-183
5.10	0.12	Parameter Setting I	5-186
5.10	0.13	Parameter Setting II	5-187
5.10	0.14	Reading the Present Position/Speed of an Axis	5-189
5.10	0.15	State of an Axis	5-191
5.10	0.16	Setting the Present Position of an Axis	5-193
5.10	0.17	Setting the Polarities of Input Terminals	5-194
5.11	Mul	tiaxial Motion Control Function Blocks	5-196
5.11	1.1	Multiaxial Absolute Linear Interpolation	5-196
5.11	1.2	Multiaxial Relative Linear Interpolation	5-197
5.11	1.3	Stopping Multiaxial Linear Interpolation	5-200
5.12	Oth	er Motion Control Function Blocks	5-203
5.12	2.1	High-speed Counter	5-203
5.12	2.2	High-speed Timer	5-206
5.12	2.3	Setting High-speed Comparison	5-209
5.12	2.4	Resetting High-speed Comparison	5-211
5.12	2.5	Setting High-speed Capture	5-215
5.12	2.6	High-speed Masking	5-218
5.12	2.7	Setting an Interrupt	5-220
Chapt	er 6	Multiaxial Interpolation	
6.1	Intro	oduction of Multiaxial Interpolation	6-1
6.2	Des	cription of TO	6-1
Chapt	er 7	CANopen Communication Card	
7.1	Intro	oduction of DVP-FPMC: CANopen Communication Card	7-1
7.2	Spe	cifications	7-1
7.3	Pro	duct Profile and Installation	7-2
7.4	Para	ameters for Control Registers	7-2
7.5	Des	criptions of Control Registers	7-4
7.6	Sett	ing a DVP-FPMC Mode	7-19
7.7	Ethe	ernet Mode of DVP-FPMC	7-21

7.7.	1 Communication between DVP-FPMC and an HMI	7-22
7.7.	2 Communication between DVP-FPMC and PMSoft	7-24
7.8	LED Indicators and Troubleshooting	7-27
Chapt	er 8 High-speed Capture and High-speed Comparison	
8.1	High-speed Comparison and High-speed Capture	8-1
8.2	High-speed Comparison	8-3
8.3	High-speed Capture	8-6
Chapte	ter 9 Appendix	
9.1	Appendix A: Error Code Table	9-1

Delta DVP-PM series motion controllers can put axes in particular positions at high-speeds, create linear interpolations, and circular interpolations. They can execute basic instructions, applied instructions, motion instructions, and G-codes. Different DVP-PM series motion controllers support different program frameworks and functions. The functions that DVP-PM series motion controllers support are shown in the table below.

Function		DVP-20PM	DVP-10PM
Pro	Main program O100	0	0
Program	Ox motion subroutines	0	×
am	P subroutines	0	0
	General instructions/Applied instructions	0	0
Instruction	Motion instructions	0	×
l	G-codes	0	×
n	M-codes	0	×
	JOG motion	0	0
	Returning home	0	0
	Variable motion	0	0
Un:	Single-speed motion	0	0
Uniaxial motion	Inserting single-speed motion	0	0
	Two-speed motion	0	0
not	Inserting two-speed motion	0	0
ion	Triggering single-speed motion by means of an external signal	0	×
	Manual pulse generator mode	0	0
	Cyclic/Noncyclic electronic cam motion	0	×

In this chapter, the basic program frameworks of DVP-PM series motion controllers are described. Owing to the fact that the functionality of a DVP-PM series motion controller is composed of sequence control and positioning control, a program comprises O100, Ox motion subroutines, and P subroutines. O100, Ox motion subroutines, and P subroutines are described in this chapter. Basic instructions, applied instructions, motion instructions, and G-codes will be introduced in other chapter 4~chapter 6. The specifications for DVP-PM series motion controllers are shown in the table below.

Specifications	DVP-10PM	DVP-20PM
High-speed output	4 axes (1000 kHz)	3 axes (500 kHz)
PWM	Precision: 0.3%@200 kHz	-
High-speed counter	6 input terminals (2 differential input terminals, and 4 input terminals whose collectors are open collectors)	2 input terminals
Program capacity	64K steps	64K steps
Execution speed	LD: 0.14 us MOV: 2 us DMUL: 7.6 us DEMUL: 6.1 us	-

1.1 Structure of O100

O100 is a sequence control program. It is the main program in a DVP-PM series motion controller. It only supports basic instructions and applied instructions. Users can use these two types of instructions to process I/O data, call P subroutines, and enable Ox motion subroutines (Ox0~Ox99). O100 functions as a main program. Motion subroutines are enabled through O100. There is hierarchical relation between O100 and motion subroutines. The characteristics of O100 are described below.

- 1. There are two methods of enabling O100.
 - If the STOP/RUN switch of a DVP-PM series motion controller module is turned form the "STOP" position to the "RUN" position when the DVP-PM series motion controller is powered, M1072 will be ON, and O100 will run.

 If a DVP-PM series motion controller is powered, users can use communication to set M1072 to ON, and to run O100.

 O100 is scanned cyclically. The scan of the main program O100 starts from the starting flag O100. After the ending instruction M102 is scanned, the scan of the main program O100 will go back to the starting flag O100.

- 3. There are three methods of disabling O100.
 - If the STOP/RUN switch of a DVP-PM series motion controller is turned form the "RUN" position to the "STOP" position when the DVP-PM series motion controller is powered, M1072 will be OFF, and O100 will stop. If O100 stops, Ox motion subroutines and P subroutines will not be executed.
 - If a DVP-PM series motion controller is powered, users can use communication to set M1072 to OFF, and to stop O100. If O100 stops, Ox motion subroutines and P subroutines will not be executed.
 - If an error occurs when O100 is compiled or when O100 runs, O100 will stop automatically. Please refer to appendix A in chapter 9 for more information about error codes.
- O100 supports basic instructions and applied instructions. Users can write a control program according to their needs. They can set the parameters of motion instructions, and motion subroutine numbers (Ox0~Ox99) in O100.
 - O100 does not support motion instructions and G-codes. Motion instructions and G-codes must be used in the motion subroutines Ox0~Ox99. Please refer to section 1.2 for more information.
 - O100 can call P subroutines. Please refer to section 1.3 for more information.
- 5. The description of O100 is shown below.

O100	Description	
	•	
Enabling O100	Starting flag O100 (If O100 is a ladder diagram in PMSoft, the starting flag in O100 will be set automatically, and users do not have to write the starting flag.)	
Disabling O100	Ending instruction M102 (If O100 is a ladder diagram in PMSoft, the ending instruction M102 will be set automatically, and users do not have to write the ending instruction M102.)	
Executing O100	 The STOP/RUN switch of a DVP-PM series motion controller is turned form the "STOP" position to the "RUN" position. 	
0100	2. Users use communication to set M1072 to ON.	
Operation characteristic	O100 is scanned cyclically.	
Instructions supported	Basic instructions and applied instructions are supported.	
Number	There is only one O100 in a program.	
	1. It is a sequence control program.	
Characteristic	2. It can enable the motion subroutines Ox0~Ox99, and call P subroutines.	
and function	 If O100 is used with Ox motion subroutines and P subroutines, O100, the Ox motion subroutines, and the P subroutines can be arranged in any order. 	

1.1.1 Manual Function of O100

Users can set manual motion modes by means of special registers in O100. (Please refer to section 3.12 for more information.)

1.2 Structure of Ox Motion Subroutines

The motion subroutines Ox0~Ox99 are motion control programs. They are subroutines which control the motion of the axes of a DVP-PM series motion controller. Ox0~Ox99 support basic instructions, applied instructions, motion instructions, and G-codes. They can call P subroutines. Users can control the paths of the axes of a DVP-PM series motion controller through Ox motion subroutines. The characteristics of Ox motion subroutines are described below.

- 1. There are two methods of enabling an Ox motion subroutine.
 - When O100 runs, users can set motion subroutine numbers in O100. (The motion subroutine numbers must be in the range of Ox0 to Ox99. The users can set a motion subroutine number in O100 by setting D1868. The value in D1868 must be in the range of H8000 to H8063.) If the users want to enable an Ox motion subroutine, they have to set M1074 to ON or set bit 12 in D1846 to ON.
 - Before an Ox motion subroutine is enabled, users have to make sure that no Ox motion subroutine runs.

2. Whenever an Ox motion subroutine is enabled, it is executed once. After O100 enables an Ox motion subroutine, the execution of the Ox motion subroutine will start from the starting flag in the Ox motion subroutine. After the ending instruction M2 in the Ox motion subroutine is executed, the execution of the Ox motion subroutine will stop.

If X0 is ON, the motion subroutine Ox10 will be enabled. After the ending instruction M2 in Ox10 is executed, the execution of Ox10 will stop. (Ox10 is executed once. If Ox10 needs to be executed again, X0 has to be set to ON.)

- 3. There are four methods of disabling an Ox motion subroutine.
 - If the STOP/RUN switch of a DVP-PM series motion controller is turned form the "RUN" position to the "STOP" position when the DVP-PM series motion controller is powered, M1072 will be OFF, O100 will stop, and Ox motion subroutines will not be executed.
 - Users can stop the execution of Ox motion subroutines by means of the external terminal Stop0.
 - If a DVP-PM series motion controller is powered, users can use communication to set the value in D1846 to 0, or to set M1074 to OFF, and to stop the execution of Ox motion subroutines.
 - If an error occurs when an Ox motion subroutine is compiled or when an Ox motion subroutine is

executed, the execution of the Ox motion subroutine will stop automatically. Please refer to appendix A in chapter 9 for more information about error codes.

- 4. An Ox motion subroutine supports basic instructions, applied instructions, motion instructions, and G-codes. Users can write a motion program according to their needs. They can control the motion of the axes of a DVP-PM series motion controller by setting the parameters of the axes.
 - Basic instructions, applied instructions, motion instructions and G-codes must be used in the motion subroutines Ox0~Ox99.
 - Ox motion subroutines can call P subroutines. Please refer to section 1.3 for more information.
- 5. The description of Ox motion subroutines is shown below.

Ox motion subroutine	Description
Enabling an Ox motion	There are 100 Ox motion subroutines (Ox0~Ox99). (If an Ox motion subroutine is a ladder diagram in PMSoft, the starting flag in the Ox motion
subroutine	subroutine will be set automatically, and users do not have to write the starting flag.)
Disabling an Ox motion subroutine	Ending instruction M2 (If an Ox motion subroutine is a ladder diagram in PMSoft, the ending instruction M2 will be set automatically, and users do not have to write the ending instruction M2.)
	1. If users set bit 12 in D1846 or M1074 to ON when O100 runs, an Ox motion subroutine will be enabled.
Executing an Ox motion	 If users use communication to set bit 12 in D1846 or M1074 to ON when O100 runs, an Ox motion subroutine will be enabled.
subroutine	3. Users can stop the execution of Ox motion subroutines by means of the external terminal Stop0.
	Note: Before an Ox motion subroutine is enabled, users have to make sure that no Ox motion subroutine runs.
Operation characteristic	Whenever an Ox motion subroutine is enabled, it is executed once. If an Ox motion subroutine needs to be executed again, it has to be enabled again.
Instructions supported	Basic instructions, applied instructions, motion instructions, and G-codes are supported. Note: Users have to avoid using pulse instructions.
Number	There are 100 Ox motion subroutines in a program. If users want to enable a motion subroutine number, they have to set D1868, and set bit 12 in D1846 or M1074 to ON.
Characteristic	 Ox0~Ox99 are motion subroutines. (They can only be enabled by O100.) An Ox motion subroutine can be enabled/disabled by an external terminal, a program, or communication.
and function	3. Ox motion subroutines can call P subroutines.
	 If Ox motion subroutines are used with O100 and P subroutines, the Ox motion subroutines, O100, and the P subroutines can be arranged in any order.

1.3 Structure of P Subroutines

P subroutines are general subroutines. They can be called by O100 and Ox motion subroutines. If P subroutines are called by O100, the P subroutines will support basic instructions and applied instructions. If P subroutines are called by Ox0~Ox99, the P subroutines will support basic instructions, applied instructions, motion instructions, and G-codes. After O100 or an Ox motion subroutine calls a P subroutine, the P subroutine will be executed. After SRET in the P subroutine is executed, the lines under the instruction which calls the P subroutine will be executed.

- 1. There are two methods of enabling a P subroutine.
 - O100 can call P subroutines.
 - Ox motion subroutines can call P subroutines.
- 2. Whenever a P subroutine is called, it is executed once. After O100 or an Ox motion subroutine calls a P subroutine, the P subroutine will be executed. After the ending instruction SRET in the P subroutine is executed, the execution of the P subroutine will stop, and the lines under the instruction which calls the P subroutine will be executed.

The subroutine P0 supports basic instructions and applied instructions. The subroutine P2 supports basic instructions, applied instructions, motion instructions, and G-codes.

- 3. There are three methods of disabling a P subroutine.
 - If the STOP/RUN switch of a DVP-PM series motion controller is turned form the "RUN" position to the "STOP" position when the DVP-PM series motion controller is powered, M1072 will be OFF, O100 will stop, and Ox motion subroutines and P subroutines will not be executed.
 - If a DVP-PM series motion controller is powered, users can use communication to set the value in D1846 to 0, or to set M1074 to OFF, to stop the execution of Ox motion subroutines, and to stop the execution of P subroutines.
 - If an error occurs when a P subroutine is executed, the execution of the P subroutine will stop automatically. Please refer to appendix A in chapter 9 for more information about error codes.
- 4. If P subroutines are called by O100, the P subroutines will support basic instructions and applied instructions. If P subroutines are called by Ox0~Ox99, the P subroutines will support basic instructions, applied instructions, motion instructions, and G-codes.
- 5. The description of P subroutines is shown below.

P subroutine	Description
Enabling a P	There are 256 P subroutines (P0~P255).
subroutine	(If a P subroutine is a ladder diagram in PMSoft, the starting flag in the P subroutine will be set automatically, and users do not have to write the starting flag.)
Disabling a P subroutine	Ending instruction SRET (If a P subroutine is a ladder diagram in PMSoft, the ending instruction SRET will be set automatically, and users do not have to write the ending instruction SRET.)

P subroutine	Description	
Executing a P subroutine	 O100 can call P subroutines. Ox motion subroutines can call P subroutines. 	
Operation characteristic	Whenever a P subroutine is enabled, it is executed once. If a Pn subroutine needs to be executed again, it has to be enabled again.	
Instruction supported	 If P subroutines are called by O100, the P subroutines will support basic instructions and applied instructions. If P subroutines are called by Ox motion subroutines, the P subroutines will support basic instructions, applied instructions, motion instructions, and G-codes. Note: If P subroutines are called by Ox motion subroutines, users have to avoid using pulse instructions. 	
Number	There are 256 P subroutines in a program.	
Characteristic and function	 P subroutines are general subroutines. P subroutines can be called by O100 and Ox motion subroutines. If P subroutines are used with O100 and Ox motion subroutines, the P subroutines, O100, and the Ox motion subroutines can be arranged in any order. 	

1.4 Using O100, Ox Motion Subroutines, and P Subroutines

O100, Ox motion subroutines, and P subroutines are introduced in section 1.1-section 1.3. In this section, a program composed of O100, Ox motion subroutines, and P subroutines is described.

1.4.1 Structure of a Program

Suppose a program is composed of O100, Ox0, Ox3, P1, and P2. The five program blocks are shown below.

In order to describe the program, the program is divided into 5 sections (section (1)~section (5)).

The program is described below.

- 1. Section (1)-section (5) are created in numerical order, but they can be arranged in any order.
- 2. There is only one O100. O100 can not be called by another program, but it can freely call Ox motion subroutines and P subroutines.
- 3. Ox motion subroutines can be called by O100 and P subroutines, and it can call P subroutines.
- 4. P subroutines can be called by O100 and Ox motion subroutines, and it can call Ox motion subroutines.

Note:

- 1. One Ox motion subroutine is executed at a time. If Ox0 is executed, Ox3 can not be executed. If Ox3 is executed, Ox0 can not be executed.
- 2. After O100 or a P subroutine enables an Ox motion subroutine, the next line will be executed, and the execution of the Ox motion subroutine will be ignored.

3. Whenever an Ox motion subroutine is enabled, it is executed once. If an Ox motion subroutine needs to be executed again, it has to be enabled again.

The instructions supported by O100, Ox0, Ox3, P1 and P3 are described below. (O: Supported; X: Not supported)

Section	O100	Ox0 and Ox3	P1	P2
Basic instruction	0	0	О	0
Applied instruction	0	0	0	0
Motion instruction	Х	0	0	Х
G-code	Х	0	0	Х
Description	-	-	P1 is called by Ox0, and therefore it supports motion instructions and G-codes.	P2 is called by O100, and therefore it does not support motion instructions and G-codes.

Additional remark:

	Main program	Subroutine	Motion subroutine
Order	In any order	In any order	In any order
Execution	It runs normally.	P subroutines can be called by O100 or Ox motion subroutines.	Ox motion subroutines can be called by O100 or P subroutines.
Operation	It is scanned cyclically.	Whenever a subroutine is called, it is executed once.	Whenever a motion subroutine is called, it is executed once.
Number	1 main program	256 subroutines They can be used according to users' needs.	100 motion subroutines They can be used according to users' needs.

2.1 Hardware Specifications

Electrical specifications and wiring are described in this chapter. Please refer to chapter 5-chapter 6 for more information about the writing of a program and the use of instructions. For more information about the peripherals purchased, please refer to the manuals attached to them.

2.1.1 Specifications for Power

ltem	10PM
Supply voltage	100~240 V AC (-15%~10%), 50/60 Hz±5%
Fuse	2 A/250 V AC
Power Consumption	60 V A
24 V DC power	500 mA
Power protection	24 V DC output is equipped with a short circuit protection and an overcurrent protection.
Surge voltage withstand level	1500 V AC (Primary-secondary), 1500 V AC (Primary-PE), 500 V AC (Secondary-PE)
Insulation	Above 5 MΩ
impedance	(The voltage between all input terminals/output terminals and the ground is 500 V DC.)
Noise immunity	ESD: 8 kV air discharge
Noise minunity	EFT: Power line: 2 kV; digital I/O: 1 kV; analog & communication I/O: 250 V
Ground	The diameter of the ground should not be less than the diameters of the cables connected to the terminals L and N. (If several DVP-10PM series motion controllers are used, please use single-point ground.)
Operation/Storage	Operation:0°C~55°C (Temperature), 5~95% (Humidity), pollution degree 2
Operation/Storage	Storage: -25°C ~70°C (Temperature), 5~95% (Humidity)
Vibration/Shock resistance	International standards IEC 61131-2, IEC 68-2-6 (TEST Fc)/IEC 61131-2 & IEC 68-2-27 (TEST Ea)
Weight	Approximately 478/688 g

2.1.2 Electrical Specifications for Input Terminals/Output Terminals

Electrical specifications for input terminals:

DVP10PM00M: Four-axis mode

Terminal	Description	Response	Maximum input		
Terminar	Description	Response	Current	Voltage	
X0~X7	 They are single/A/B-phase input terminals. DOG signals for the X-axis, the Y-axis, the Z-axis, and the A-axis: X0, X2, X4, and X6 PG signals for the X-axis, the Y-axis, the Z-axis, and the A-axis: X1, X3, X5, and X7 	200 kHz	15 mA	24 V	
X10+, X10-, X11+, and X11-	Differential terminals for a manual pulse generator (differential terminals for a counter)	200 kHz	15 mA	5~24 V	
X12+, X12-, X13+, and X13-	Differential terminals for a counter	200 kHz	15 mA	5~24 V	

DVP10PM00M: Six-axis mode

Terminal	Description	Response	Maximum input		
Terminar	1. They are single/A/B-phase input terminals. 2. DOG signals for the X-axis, the Y-axis, the	Response	Current	Voltage	
	1. They are single/A/B-phase input terminals.				
X0~X7		200 kHz	15 mA	24 V	
X10+, X10-, X11+, and X11-	Differential terminals for a manual pulse generator (differential terminals for a counter)	200 kHz	15 mA	5~24 V	

Terminal	Description	Response	Maximum input		
Terminal	Description	Response	Current	Voltage	
X12+, X12-, X13+, and X13-	 Differential terminals for a counter DOG signals for the B-axis and the C-axis: (X12+, X12-) and (X13+, X13-) PG signals should ne used with I/O extension modules. 	200 kHz	15 mA	5~24 V	

Electrical specifications for output terminals:

■ DVP10PM00M: Four-axis mode

Terminal	Description	Response	Maximum current output
Y0~Y3	They are high-speed output terminals whose collectors are open collectors. (PWM) PG signals	200 kHz	40 mA
Y10+, Y10-, Y12+, Y12-, Y14+, Y14-, Y16+, and Y16-	U/D: Counting up P/D: Pulse A/B: A phase	1000 kHz	40 mA
Y11+, Y11-, Y13+, Y13-, Y15+, Y15-, Y17+, Y17-	U/D: Counting down P/D: Direction A/B: B phase	1000 kHz	40 mA

DVP10PM00M: Six-axis mode

Terminal	Description	Response	Maximum current output
Y0, C0, Y2, and C2	They are high-speed output terminals whose collectors are open collectors. U/D: Counting up P/D: Pulse A/B: A phase	200 kHz	40 mA
Y1, C1, Y3, and C3	They are high-speed output terminals whose collectors are open collectors. U/D: Counting down P/D: Direction A/B: B phase	200 kHz	40 mA
Y10+, Y10-, Y12+, Y12-, Y14+, Y14-, Y16+, and Y16-	U/D: Counting up P/D: Pulse A/B: A phase	1000 kHz	40 mA
Y11+, Y11-, Y13+, Y13-, Y15+, Y15-, Y17+, and Y17-	U/D: Counting down P/D: Direction A/B: B phase	1000 kHz	40 mA

Digital input terminals:

■ DVP-10PM series motion controller

Specificati	Item	Differential input terminal	24 V DC common terminal	Remark		
Specificati	0113	High speed				
Wiring type		Independent wiring	A current flows into the terminal S/S (sinking), or a current flows from the terminal S/S.	#1: Users can filter pulses by		
Input indicator		LED indicator (If the LED ind input terminal is ON, the inp indicator corresponding to a input terminal is OFF.)	setting a digital input terminal to ON after the pulses in 10 ms~60 ms are received. Besides, they can filter			
Input volta	ige	5~24 V DC	24 V DC	high-frequency pulses by		
Maximum input current		15 mA		setting the terminals for a manual pulse generator to ON when the frequency of pulses		
Action Off→On		20	received is in the range of 10			
level On→Off		30	kHz to 2600 kHz.			
Response time/Noise reduction [#]	•	10 ms	/0.5 us			

Digital output terminals:

DVP-10PM series motion controller

Specifications	ltem	Differential output terminal	Transistor output terminal			
Maximum frequency of output signals		1 MHz	200 kHz			
Output indicato	or	LED indicator (If the LED indicator corresponding to an output terminal is ON, the output terminal is ON. If the LED indicator corresponding to an output terminal is OFF, the output terminal is OFF.)				
Output termina	I	Y10~Y17	Y0~Y3			
Working voltage		5 V DC	5~30 V DC			
Maximum outp	ut current	40 mA 40 mA				
Isolation		Power isolation	Optocoupler			
O	Resistance	< 25 mA	0.5A/output terminal (4 A/COM)			
Current specifications	Inductance		12 W (24 V DC)			
Bulb			2 W (24 V DC)			
Response Off→On		0.2 us				
time	On→Off	0	2 u5			
Overcurrent pro	otection	1	N/A			

2.1.3 Dimensions

Profile

DVP-10PM series motion controller

- (1) Communication port cover
- (2) Input/Output terminal cover
- ③ Input LED indicators
- (4) Input/Output terminals
- (5) Connector cover
- Input/Output terminal numbers
- Function card/memory card cover
- (8) Output LED indicators
- (9) DIN rail mounting clip
- (1) COM2 (RS-485 port)
- (1) STOP/RUN switch
- (12) COM1 (RS-232 port)
- (13) Battery compartment
- (14) Battery
- (5) Function card slotPOWER LED indicator, RUN
- LED indicator, ERROR LED indicator, and BATTERY LED indicator
- (17) Connector
- 18 Set screw
- (19) Mounting hole

Open the COM1 cover.

Please change the battery in a minute.

Take out the RS-485 terminals.

Part	Description
COM2 (RS-485 port)	Master/Slave mode
STOP/RUN switch	Running/Stopping the DVP-10PM series motion controller
COM1 (RS-232 port)	Slave mode (It can be used with COM2 at the same time.)

Arrangement of terminals: Please refer to section 2.1.2 for more information.

DVP-10PM series motion controller

÷	•	24G	+24V	X0	X2	X4	X6	X10+	X11+	X12+	X13+	
	L	N	• S	/S X	(1 X	(3)	(5)	(7 X	10- X [,]	11- X1	12- X	13-
DVP-10PM (AC Power IN, DC Signal IN)												
Y0	Y1	Y2	Y3	Y10+	Y11+	Y12+	Y13+	Y14+	Y15+	Y16+	Y17+	
	:0 (21	C2 (C3 Y1	0- Y1	1. V	12- Y	13- Y	14- Y1	15- Y	16- Y	17-

2.2 Wiring

A DVP-10PM series motion controller is an OPEN-TYPE device. It should be installed in a control cabinet free of airborne dust, humidity, electric shock and vibration. To prevent non-maintenance staff from operating a DVP-10PM series motion controller, or to prevent an accident from damaging a DVP-10PM series motion controller, the control cabinet in which a DVP-10PM series motion controller is installed should be equipped with a safeguard. For example, the control cabinet in which a DVP-10PM series motion controller is installed can be unlocked with a special tool or key.

DO NOT connect AC power to any of I/O terminals, otherwise serious damage may occur. Please check all wiring again before a DVP-10PM series motion controller is powered up. Make sure that the ground

terminal 🕒 on a DVP-10PM series motion controller is correctly grounded in order to prevent

electromagnetic interference.

2.2.1 Installation of a DVP-10PM Series Motion Controller in a Control Box

Installing a DIN rail:

The installation is applicable to a 35 millimeter DIN rail. Before users hang a DVP-10PM series motion controller on a DIN rail, they have to insert a slotted screw into the slots on the mounting clips, and pull out the mounting clips. After the users hang the DVP-10PM series motion controller on the DIN rail, they have to push the mounting clips back. If the users want to remove the DVP-10PM series motion controller, they have to insert a slotted screw into the slots on the mounting clips. After the users want to remove the DVP-10PM series motion controller, they have to insert a slotted screw into the slots on the mounting clips, and pull out the mounting clips. After the mounting clips are pulled out, they will not move back.

- 1. Using screws: Please mount a DVP-10PM series motion controller on a DIN rail by means of M4 screws.
- 2. A DVP-10PM series motion controller has to be installed in a closed control box. In order to ensure that the DVP-10PM series motion controller radiates heat normally, there should be space between the DVP-10PM series motion controller and the control box.

Points for attention:

- Please use O-type terminals or Y-type terminals. The specifications for terminals are on the right. The torque applied to the terminal screws used should be 9.50 kg-cm (8.25 lb-in). Please use copper conducting wires. The temperature of the copper conducting wires used should be 60/75°C.
- 2. Please do not wire NC. Please do not put the cables connected to input terminals and the cables connected to output terminals in the same cable tray.
- 3. Users have to make sure that there are no tiny metal conductors inside a DVP-10PM series motion controller when they tighten screws and wire terminals. In order to ensure that the DVP-10PM series motion controller radiates heat normally, the users have to remove the sticker on the heat hole.

2.2.2 Wiring Power Input

The power input of a DVP-10PM series motion controller is AC input. Users have to pay attention to the following points.

- 1. The voltage of AC power input is in the range of 100 V AC to 240 V AC. A live wire and a neutral wire are connected to L and N. If 110 V AC power or 220 V AC power is connected to +24V or an input terminal on a DVP-10PM series motion controller, the DVP-10PM series motion controller will be damaged.
- 2. The AC power input of a DVP-10PM series motion controller, and the AC power input of the I/O module connected to the DVP-10PM series motion controller must be ON or OFF at the same time.
- 3. The length of the cable connected to the ground terminal on a DVP-10PM series motion controller is at least 1.6 millimeters.
- 4. If a power cut lasts for less than 10 milliseconds, the DVP-10PM series motion controller used will keep running without being affected. If a power cut lasts for long, or if the voltage of the power input of DVP-10PM series motion controller decreases, the DVP-10PM series motion controller will stop running, and the output terminals will be OFF. When the power input returns to normal, the DVP-10PM series motion controller will resume. (Users have to notice that there are latching auxiliary relays and registers in a DVP-10PM series motion controller when they write a program.)
- 5. The maximum current which can flows from the power output terminal +24V is 0.5 A. Please do not connect any external power to +24V. The current flows into any input terminal must be in the range of 6 mA to 7 mA. If there are 16 input terminals, 100 mA will be required. As a result, the current that flows

D>50mm

from +24 V to an external load can not be greater than 400 mA.

2.2.3 Safety Wiring

A DVP-10PM series motion controller controls many devices, and the activity of any device affects the activity of other devices. If any device breaks down, the whole automatic control system will go out of control, and dangers will occur. As a result, it is suggested that users should create the protection circuit shown below when they wire power input.

- ① Alternating-current power input: 100~240 VAC, 50/60 Hz
- Circuit breaker
- ③ Emergency stop: The emergency stop button can be used to cut off power when an emergency occurs.
- ④ Power indicator
- (5) Load through which a alternating current passes
- 6 3 A fuse
- ⑦ DVP-10PM series motion controller
- ⑧ Direct-current power output: 24 V DC, 500 mA

2.2.4 Wiring Input/Output Terminals

 The power input of a DVP-10PM series motion controller is DC power input. Sinking and sourcing are current driving capabilities of a circuit. They are defined as follows.

2. Wiring differential input terminals

The direct-current signals ranging in voltage from 5 V to 24 V can pass through the high-speed input terminals X10~X13+ on a DVP-10PM series motion controller. The frequency of input signals can be up to 200 kHz. These high-speed input terminals are connected to a differential (two-wire) line driver. Wiring of differential input terminals (used for high speed and noise):

If the frequency of input signals is less than 50 kHz and there is not much noise, these high-speed input terminals can be connected to the direct-current power input whose voltage is in the range of 5 V to 24 V, as shown below.

Sinking:

3. Relay output circuit

- ① Direct-current power input
- ② Emergency stop: An external switch is used.
- ③ Fuse: To protect the output circuit, a fuse having a breaking capacity in the range of 5 A to 10 A is connected to a common terminal.
- A diode is used to absorb the surge voltage which occurs when the load connected is OFF. It can lengthen the lifespan of a terminal.
 - 1. A diode is connected to a load through which a direct current passes. It is used when the power of the load connected is small.

D: 1N4001 diode

2. A diode and a zener diode are connected to a load through which a direct current passes. They are used when the power of the load is large and the load is turned ON/OFF frequently.

- (5) Incandescent lamp: Resistive load
- 6 Alternating-current power input
- Mutually exclusive output: Y4 controls the clockwise rotation of a motor, and Y5 controls the counterclockwise rotation of a motor. The interlock circuit which is formed, and the program in the DVP-10PM series motion controller ensure that there will be protective measures if an abnormal condition occurs.
- ⑧ Indicator: Neon lamp

Surge absorber: It can be used to reduce the noise of a load through which an alternating current passes.

4. Transistor output circuit

- Transistor output terminals are open collectors. If Y0/Y1 is a pulse output terminal, the output current passing through an output pull-up resistor must be larger than 0.1 A to ensure that transistor output terminals operate normally.
 - 1. Diode: It is used when the power of the load connected is small.

D: 1N4001 diode

2. Diode and zener diode: They are used when the power of the load connected is large and the load is turned ON/OFF frequently.

PLC transistoroutput

D: 1N4001 diode

- Mutually exclusive output: Y4 controls the clockwise rotation of a motor, and Y5 controls the counterclockwise rotation of a motor. The interlock circuit which is formed, and the program in the DVP-10PM series motion controller ensure that there will be protective measures if an abnormal condition occurs.
- 5. Wiring differential output terminals
 - Wiring differential output terminals on a DVP-10PM series motion controller and an ASDA-A series AC servo drive/ASDA-A+ series AC servo drive/ASDA-A2 series AC servo drive

 Wiring differential output terminals on a DVP-10PM series motion controller and an ASDA-B series AC servo drive

 Wiring differential output terminals on a DVP-10PM series motion controller and an ASDA-AB series AC servo drive

2.2.5 Wiring a DVP-10PM Series Motion Controller and an Inferior Servo Drive

Wiring a DVP-10PM series motion controller and a Delta ASDA-A series AC servo drive: Four-axis wiring

Wiring a DVP-10PM series motion controller and a Delta ASDA-A series AC servo drive: Six-axis wiring

Wiring a DVP-10PM series motion controller and a Panasonic CN5 series servo drive: Four-axis wiring

Wiring a DVP-10PM series motion controller and a Panasonic CN5 series servo drive: Six-axis wiring

Wiring a DVP-10PM series motion controller and a Yaskawa servo drive: Four-axis wiring

Wiring a DVP-10PM series motion controller and a Yaskawa servo drive: Six-axis wiring

Wiring a DVP-10PM series motion controller and a Mitsubishi MJR2 series servo drive: Four-axis wiring

Wiring a DVP-10PM series motion controller and a Mitsubishi MJR2 series servo drive: Six-axis wiring

Wiring a DVP-10PM series motion controller and a Fuji servo drive: Four-axis wiring

2.3 Communication Ports

A DVP-10PM series motion controller is equipped with COM1 (RS-232 port), COM2 (RS-485 port), and a communication card (COM3 (RS-232 or RS-485 communication)).

- **COM1:** It is an RS-232 port. It can function as a slave station. A program is edited through this port. COM1 can be used in a Modbus ASCII mode or an RTU mode.
- **COM2:** It is an RS-485 port. It can function as a master station or a slave station. It can be used in a Modbus ASCII mode or an RTU mode.
- **COM3:** It is an RS-232/RS-485 port. It can function as a slave station. It can be used in a Modbus ASCII mode.

Communication architecture:

Communication port Communication parameter	RS-232 port (COM1)	RS-485 port (COM2)	RS-232/RS-485 port (COM3)
Serial transmission rate	110~115,200 bps		110~38,400 bps
Number of data bits	7 bits~8 bits		
Parity bit	Even/Odd parity bit/Non	e	
Number of stop bits	1 data bit~2 data bits		
Register where a communication format is stored	D1036	D1120	D1109
ASCII mode	Slave station	Master station/ Slave station	Slave station
RTU mode	Slave station	Master station/ Slave station	-
Quantity of data read/written (ASCII mode)	100 re	32 registers	
Quantity of data read/written (RTU mode)	100 re	32 registers	

Default communication protocol supported by a communication port

- Modbus ASCII mode
- 7 data bits
- 1 stop bit
- Even parity bit
- Serial transmission rate: 9600 bps

2.3.1 COM1 (RS-232 Port)

 COM1 is an RS-232 port. Users can upload the program in a DVP-10PM series motion controller through COM1, and download a program to DVP-10PM series motion controller through COM1. The communication protocols that COM1 supports are Modbus ASCII and Modbus RTU, and the transmission rate supported is in the range of 9,600 bps to 57,600 bps. The communication cable DVPACAB2A30 is described below.

Communication port on a PC/TP	COM1 on a DVP-10PM series motion controller
9-pin D-SUB female connector	8-pin Mini-DIN connector
$\begin{array}{cccc} Tx & 3 & \longleftrightarrow & 4 \\ Rx & 2 & \longleftrightarrow & 5 \\ GND & 5 & \longleftrightarrow & 8 \\ & & & & & \\ & & & & & \\ & & & & &$	$\begin{array}{ccc} Rx & & & & 2 \\ Tx & & 5 & & & & 3 \\ GND & & & & & & 6 \\ 5V & & & & 7 \end{array}$

2. COM1 functions as a slave station. It can be connected to a human-machine interface.

2.3.2 COM2 (RS-485 Port)

- 1. COM2 is an RS-485 port. It can function as a master station or a slave station. The communication protocols that COM2 supports are Modbus ASCII and Modbus RTU, and the transmission rate supported is in the range of 9,600 bps to 115,200 bps.
- 2. COM2 can function as a master station or a slave station. If it functions as a master station, it can be connected to a Delta PLC, or an inferior drive such as a Delta servo drive, a Delta AC motor drive, or a temperature controller, and read/write data. If it functions as a slave station, it can be connected to a human-machine interface such as a Delta TP series HMI or DOP series HMI.

2.3.3 COM3 (RS-232/RS-485 Port)

- If COM1 (RS-232 port) and COM2 (RS-485 port) can not fulfill a communication requirement, users can use the function card DVP-F232S or DVP-F485S to add a communication interface called COM3 (RS-232/RS485 interface). The functions of DVP-F232S/DVP-F485S is the same as those of COM1, but the transmission rate that DVP-F232S/DVP-F485 supports is 9600/19200/38400 bps in an ASCII mode.
- 2. COM3 functions as a slave station. It can be connected to a human-machine interface.

MEMO

3.1 Device Lists

Functional specifications

Item		Specifications		Remark
Operatio	on of axes	Six axes operate synchronously or indepe	endently.	
	orage	The capacity of a built-in storage is 64K s	teps.	
U	Jnit	Motor unit Compound unit	Mechanical unit	
Master mode		Users can read the data in control registers in an I/O module by means of the instruction FROM and write data into control registers in an I/O module by means of the instruction TO. If the data read or written is 32-bit data, two control registers will be used.		
Slave	e mode	Not supported		
Pulse	output	There are three types of pulse output mod adopt differential output. 1. Pulse/Direction 2. Counting up/Counting down 3. A/B-phase output	les. These modes	
Movimu	um anood	Single axis: 1000K pps		
waximu	um speed	Multi-axis interpolation: 1000K pps		
	Switch	STOP/RUN switch (Manual/Automatic sv	vitch)	
	Differential input signal	X10+, X10-, X12+, X12-, X11+, X11-, X13	3+, and X13-	
Input signal	Detector	X0~X7 They can be connected to I/O modules. T number of expansion input terminals is 2 number of input terminals on a DVP-10P controller.		
	Differential output signal	Y10+, Y10-, Y12+, Y12-, Y14+, Y14-, Y10 Y11-, Y13+, Y13-, Y15+, Y15-, Y17+, and		
Output simula	General output	Y0~Y3 They can be connected to I/O modules. T number of expansion output terminals is number of output terminals on a DVP-10 controller.	256, including the	
Output signal	Serial communication port	The communication ports which can be u reading/writing of a program are as follow COM1: RS-232 port (It can function as a COM2: RS-485 port (It can function as a a slave station.) COM3 (Communication card): RS-232/R function as a slave station, and it is optio	vs. slave station.) master station or S-485 port (It can	
Special I/O module	Optional purchase	The EH2 series special right-side module supported are AD, DA, PT, TC, XA, and F right-side modules can be connected at r not occupy I/O devices.)		
Special Optional function card purchase		The function cards which are supported are 02AD, 02DA, and COM3.		
Number of ba	sic instructions	27		
	of applied uctions	130		
Number of mo	tion instructions	-		

		Item		Specifications	Remark								
		M-code	9	 Ox0~Ox99 (motion subroutine/positioning program): M02 (The execution of a program stops. (END)) M00~M01, M03~M101, and M103~M65535: The execution of a program pauses. (WAIT) (Users can use them freely.) O100 (main program in a DVP-10PM series motion controller/subtask program): M102 (The execution of a program stops. (END)) 									
		G-code	•	Not supported									
		Self-diagn	osis	Errors such as parameter errors, program errors, and external errors are displayed.									
	X	External	input relay	X0~X377; octal numbers; 256 external input relays (corresponding to external input terminals)	512 relays in total								
	Y	External	output relay	Y0~Y377, octal numbers, 256 external output relays (corresponding to external output terminals)									
											General	M0~M499; 500 general auxiliary relays (*2)	There are 4,096
		Auxiliary	$M3000 \sim M4095$ · 1096 general auxiliary relays (*3)	auxiliary relays in									
	M	relay	Latching	M500~M999; 500 latching auxiliary relays (*3)	total. They can be set to ON/OFF in a								
			Special	M1000~M2999; 2000 special auxiliary relays (Some special auxiliary relays are latching auxiliary relays.)	program.								
Relay (Bit device)	т	Timer	10 ms	T0~T255; 256 timers (*2)	There are 256 timers in total. If the present value of the timer specified by the instruction TMR matches the value set, the contact of the timer will be ON.								
ice			16-bit up	C0~C99; 100 16-bit up counters (*2)	There are 250								
			counter	C100~C199; 100 16-bit up counters (*3)	counters in total. If								
			32-bit	C210~C219; 12 32-bit up/down counters (*2)	the present value of the counter specified								
	C	Counter	up/down counter	C220~C255; 36 32-bit up/down counters (*3)	by the instruction CNT (DCNT)								
			32-bit high-speed counter	C200, C204, C208, C212, C216, and C220; 6 32-bit high-speed counters	matches the value set, the contact of the counter will be ON.								
			General	S0~S499; 500 stepping relays (*2)	There are 1,024								
	S	Stepping relay	Latching	S500~S1023; 524 stepping relays (*3)	stepping relays in total. They can be set to ON/OFF in a program.								

		ltem		Specifications	Remark	
찌	т	Present value of a timer		T0~T255; 16-bit timers; 256 timers	If the present value of a timer matches the value set, the contact of the timer will be ON.	
egi				C0~C199; 16-bit counters; 200 counters	If the present value of	
ster (Wor	Register (Word device) (Word d			C200~C255; 32-bit counters; 56 counters	a counter matches the value set, the contact of the counter will be ON.	
d d			General	D0~D199; 200 general data registers (*2)	TI 40.000	
evi		Data register	Latching	D200~D999; 800 latching data registers (*3)	There are 10,000 registers in total. Users can store data in data registers. V/Z registers are index	
Ce)				D3000~D9999; 7000 latching data registers (*3)		
	D		Special	D1000~D2999; 2000 special data registers (Some special data registers are latching data registers.)		
			Index	V0~V7 (16-bit registers); Z0~Z7 (32-bit registers); 16 index registers (*1)	registers.	
Pointer	Р	Used with CJ, CJN, CALL, or JMP		P0~P255; 256 pointers	It is used with CJ, CJN, CALL, or JMP.	
	к	Decim	al evetom	K-32,768~K32,767 (16-bit operation)		
Q		Decimal system		K-2,147,483,648~K2,147,483,647 (32-bit operation)		
Constant	onsta H He		imal system	H0000~HFFFF (16-bit operation); H00000000~HFFFFFFFF (32-bit operation)		
nt	F Floating-point number			32-bit operation: $\pm 1.1755 \times 10^{-38} \sim \pm 3.4028 \times 10^{+38}$ (The IEEE 754 standard is used.)		

*1: They are non-latching devices, and can not be changed.

*2: They are non-latching devices. Users can change them to latching devices by setting parameters.

*3: They are latching devices. Users can change them to non-latching devices by setting parameters.

*4: They are latching devices, and can not be changed.

Latching and non-latching memory devices

	General auxiliary relays			Special auxiliary relays
	M0~M499	M500~M999	M3000~M4095	M1000~M2999
Auxiliary relay	Non-latching Latching Non-latching		Non-latching	(They are in the general auxiliary relay range.)
(M)	Start: D1200 (K500)*1 End: D1201 (K999) *1		,	Some special auxiliary relays are latching auxiliary relays. They can not be changed.

	10 ms
Timer	T0~T255
(T)	Non-latching
	Start: D1202 (K-1) *2; End: D1203 (K-1) *2

	16-bit up counters		32-bit up/down counters	
Counter	C0~C99	C100~C199	C200, C204, and C208~C219	C220~C255
(C)	Non-latching	Latching	Non-latching	Latching
	Start: D1204 (K100)		Start: D1206 (K220)	
	End: D1205 (K199)		End: D1207 (K255)	

	Initial stepping relays	General stepping relay	Latching stepping relay
Stepping relay	S0~S9	S10~S499	S500~S1023
(S)	Non-la	itching	Latching
	Sta	K1023)	

	General data registers	Latching data registers	Special data registers
			D1000~D2999
Data register (D)	D0~D999	D3000~D9999	(They are between the general data register range and the latching data register range.)
	Non-latching	Latching	Some appaiel data registera are latebing data
	Start: D1210 (K200) *3		Some special data registers are latching data registers. They can not be changed.
	End: D1211 (K9999) *3		registere. They can not be changed.

*1: If the value in D1200 is 0, and the value in D1201 is 4095, the DVP-10PM series motion controller used will automatically skip M1000~M2999, and M0~M999 and M3000~M4095 will be changed to latching devices.

*2: K-1 indicates that the timers are non-latching devices.

- *3: If the value in D1210 is 0, and the value in D1211 is 9999, the DVP-10PM series motion controller used will automatically skip D1000~D2999, and D0~M999 and D3000~D9999 will be changed to latching devices.
- When power is switched ON/OFF, or when the DVP-10PM series motion controller used switches between a manual mode and an automatic mode, the action of general devices are as shown below.

Memory type	Power OFF=>ON	STOP=>RUN	RUN=>STOP	Clearing all non-latching devices (M1031 is ON.)	Clearing all latching devices (M1032 is ON.)	Factory setting
Non-latching	Cleared Unchanged	Linchongod	Cleared when M1033 is OFF	Cleared	Unchanged	0
		Unchanged	Unchanged when M1033 is ON			
Latching	Unchanged		ged	Unchanged	Cleared	0

3.2 Values, Constants, and Floating-point Numbers

Constant	K Decimal system	16-bit operation: K-32,768~K32,767 32-bit operation: K-2,147,483,648~K2,147,483,647	
Constant	н	Hexadecimal system	16-bit operation: H0~HFFFF 32-bit operation: H0~HFFFFFFF
Floating-point number	F 32-bit number		32-bit operation: $\pm 1.1755 \times 10^{-38} \sim \pm 3.4028 \times 10^{+38}$ (The IEEE 754 standard is used.)

A DVP-10PM series motion controller performs operations on five types of values according to various control purposes. The functions of the five types of values are described below.

1. Binary number (BIN)

The values on which a DVP-10PM series motion controller performs operations, and the values stored in the DVP-10PM series motion controller are binary numbers. Binary numbers are described below.

- Bit:A bit is the basic unit of information in the binary system. Its state is either 1 or 0.Nibble:A nibble is composed of four consecutive bits (e.g. b3~b0). Nibbles can be used to
represent 0~9 in the decimal system, or 0~F in the hexadecimal system.
- Byte: A byte is composed of two consecutive nibbles (i.e. 8 bits, b7~b0). Bytes can be used to represent 00~FF in the hexadecimal system.
- Word: A word is composed of two consecutive bytes (i.e. 16 bits, b15~b0). Words can be used to represent 0000~FFFF in the hexadecimal system.
- Double word: A double word is composed of two consecutive words (i.e. 32 bits, b31~b0). Double words can be used to represent 0000000~FFFFFFF in the hexadecimal system.

The relation among bits, nibbles, bytes, words, and double words in the binary system is shown below.

2. Octal number (OCT)

The external input terminal numbers and the external output terminal numbers on a DVP-10PM series motion controller are octal numbers.

- External input terminals: X0~X7, X10~X17... (Device numbers)
- External output terminals: Y0~Y7, Y10~Y17... (Device numbers)
- 3. Decimal number (DEC)
 - A decimal number can be used as the setting value of a timer, or the setting value of a counter, e.g. TMR T0 K50 (K indicates that the value following it is a constant.).
 - A decimal number can be used as an S/M/T/C/D/V/Z/P device number, e.g. M10 and T30.
 - A decimal number can be used as an operand in an applied instruction, e.g. MOV K123 D0 (K indicates that the value following it is a constant.).
- 4. Binary-coded decimal number (BCD)

A decimal value is represented by a nibble or four bits, and therefore sixteen consecutive bits can represent a four-digit decimal value. A binary-coded decimal number is mainly used as the input value of a DIP switch, or the value displayed on a seven-segment display.

- 5. Hexadecimal Number (HEX)
 - A hexadecimal number can be used as an operand in an applied instruction, e.g. MOV H1A2B D0 (H indicates that the value following it is a constant.).

Constant (K): A decimal number in a DVP-10PM series motion controller is generally preceded by K. For example, K100 represents the decimal number 100.

Exception:

If K is used with an X/Y/M/S device, a nibble device, a byte device, a word device, or a double word device will be formed.

Example:

K1Y10 represents a device composed of 4 bits, K2Y10 represents a device composed of 8 bits, K3Y10 represents a device composed of 12 bit, and K4Y10 represents a device composed of 16 bits. K1M100 represents a device composed of 4 bits, K2M100 represents a device composed of 8 bits, K3M100 represents a device composed of 12 bit, and K4M100 represents a device composed of 16 bits.

Constant (H): A hexadecimal number in a DVP-10PM series motion controller is generally preceded by H. For example, the hexadecimal number H100 represents the decimal number 256.

Floating-point number (F): A floating-point number in a DVP-10PM series motion controller is generally preceded by F. For example, the floating-point number F3.123 represents 3.123.

Value table:

-	number IN)	Octal number (OCT)	Decimal number (DEC)	Binary-code num (BC	ber	Hexadecimal Number (HEX)
DVP-10PM s cont	perations in a series motion roller	X/Y device number	Constant (K) M/S/T/C/D/V/Z/P device number	Input value of a I the value dis seven-segm	played on a ent display	Constant (H)
0 0 0 0	0 0 0 0	0	0	0 0 0 0	0 0 0 0	0
0 0 0 0	0001	1	1	0 0 0 0	0 0 0 1	1
0 0 0 0	0010	2	2	0 0 0 0	0 0 1 0	2
0 0 0 0	0 0 1 1	3	3	0 0 0 0	0 0 1 1	3
0 0 0 0	0 1 0 0	4	4	0 0 0 0	0 1 0 0	4
0 0 0 0	0 1 0 1	5	5	0 0 0 0	0 1 0 1	5
0 0 0 0	0 1 1 0	6	6	0 0 0 0	0 1 1 0	6
0 0 0 0	0 1 1 1	7	7	0 0 0 0	0 1 1 1	7
0 0 0 0	1 0 0 0	10	8	0 0 0 0	1 0 0 0	8
0 0 0 0	1 0 0 1	11	9	0 0 0 0	1 0 0 1	9
0 0 0 0	1010	12	10	0 0 0 1	0 0 0 0	А
0 0 0 0	1011	13	11	0 0 0 1	0 0 0 1	В
0 0 0 0	1 1 0 0	14	12	0 0 0 1	0 0 1 0	С
0 0 0 0	1 1 0 1	15	13	0 0 0 1	0 0 1 1	D
0 0 0 0	1 1 1 0	16	14	0 0 0 1	0 1 0 0	E
0 0 0 0	1 1 1 1	17	15	0 0 0 1	0 1 0 1	F
0 0 0 1	0 0 0 0	20	16	0 0 0 1	0 1 1 0	10
0 0 0 1	0 0 0 1	21	17	0 0 0 1	0 1 1 1	11
	•	:	:	:		:
	:	:	:	:		:
	:	:	:	:		:
	:	:	:	:		:
	:	:	:	:		:
0 1 1 0	0 0 1 1	143	99	1 0 0 1	1 0 0 1	63

3.3 External Input Devices and External Output Devices

Input devices: X0~X377

Input device numbers are octal numbers. A DVP-10PM series motion controller has 256 input devices at most (X0~X7, X10~X17,, X370~X377).

Output devices: Y0~Y377 Output device numbers are octal numbers. A DVP-10PM series motion controller has 256 output devices at most (YX0~Y7, Y10~Y17,, Y370~Y377).

Functions of input devices:

After X devices in a DVP-10PM series motion controller are connected to an input device, the input signals sent to the DVP-10PM series motion controller will be read. There is no limitation on the number of times the Form A contact/the Form B contact of an X device can be used in a program. The state of an X device varies with the state of the input device to which the X device is connected.

Users can turn X devices ON/OFF by means of M1304.

If M1304 is OFF, X devices can not be turned ON/OFF by means of PMSoft. If M1304 is ON, X devices can be turned ON/OFF by means of PMSoft. However, if users use PMSoft to turn ON/OFF X devices in a DVP-10PM series motion controller when M1304 is ON, the function of updating input signals will be disabled.

Functions of output devices:

A Y device sends a signal to drive the load connected to it. There are two types of output devices. They are relays and transistors. There is no limitation on the number of times the Form A contact/the Form B contact of a Y device can be used in a program. However, it is suggested that a Y device should be

used once in a program. If a Y device is used more than once in a program, the state of the Y device depends on the Y device used last time.

The state of Y0 depends on circuit (2), that is, the state of X10 determines the state of Y0.

The procedure for processing the program in a DVP-10PM series motion controller is described below.

- Regenerating an input signal:
 - 1. Before a DVP-10PM series motion controller executes a program, it reads the states of the input signals sent to it into its input memory.
 - 2. If the states of the input signals change during the execution of the program, the states of input signals stored in the input memory will not change until the DVP-10PM series motion controller reads the states of the input signals sent to it next time.
 - The time it takes for an input device in the program to receive the state of an external signal is about 10 milliseconds. (The time it takes for a contact in the program to receive the state of an external signal may be affected by the time it takes for the program to be scanned.)
- Processing a program: After the DVP-10PM series motion controller reads the states of the input signals stored in the input memory, the execution of the instructions in the program will start from the beginning of the program. After the program is executed, the states of the Y devices used in the program will be stored in the device memory in the DVP-10PM series motion controller.
- Regenerating an output signal:
 - After M102 is executed, the states of the Y devices stored in the device memory will be sent to the latch memory in the DVP-10PM series motion controller.
 - 2. The time it takes for a relay to be turned form ON to OFF or turned from OFF to ON is about 10.
 - The time it takes for a transistor to be turned form ON to OFF or turned from OFF to ON is about 10~20 milliseconds.

3.4 Auxiliary Relays

	General auxiliary relay	M0~M499 (500 general auxiliary relays) Users can change M0~M499 to latching devices by setting parameters.	4.000
Auxiliary relay (M)	Latching auxiliary relay	M500~M999 and M3000~M4095 (1,596 latching auxiliary relays) Users can change M0~M499 to non-latching devices by setting parameters.	4,096 auxiliary relays in total
	Special auxiliary relay	M1000~M2999 (2,000 special auxiliary relays) Some of them are latching devices.	

Auxiliary relay (M): Auxiliary relay numbers are decimal numbers.

Functions of auxiliary relays:

An M device has an output coil and a Form A contact/Form B contact. There is no limitation on the number of times an M device can be used in a program. Users can combine control loops by means of M devices, but can not drive external loads by means of M devices. There are three types of auxiliary relays.

1.	General auxiliary relay:	If a power cut occurs when a DVP-10PM series motion controller runs, the general auxiliary relays in the DVP-10PM series motion controller will be reset to OFF. When the supply of electricity is restored, the general auxiliary relays are still OFF.
2.	Latching auxiliary relay:	If a power cut occurs when a DVP-10PM series motion controller runs, the latching auxiliary relays will remain in their last states. When the supply of electricity is restored, the latching auxiliary relays remain unchanged.
3.	Special auxiliary relay:	Every auxiliary relay has its own specific function. Please do not use the auxiliary relays which are not defined. Users can refer to section 3.10 for more information about special auxiliary relays and special data registers, and refer to section 3.11 for more information about the functions of special auxiliary relays and functions of special data registers.

3.5 Stepping Relays

Stepping relay (S): Stepping relay numbers are decimal numbers.

Stepping relay	General stepping relay	S0~S499 (490 general stepping relays) Users can change S0~S499 to latching devices by setting parameters.	1,024 stepping
(S)	Latching stepping relay	S500~S1023 (524 latching stepping relays) Users can change S500~S1023 to non-latching devices by setting parameters.	relays in total

Functions of stepping relays:

There are 1024 stepping relays (S0~S1023). An S device has an output coil and a Form A contact/Form B contact. There is no limitation on the number of times an S device can be used in a program. Users can not drive external loads by means of S devices. An S device can be used as a general auxiliary relay.

3.6 Timers

Timer (T): Timer numbers are decimal numbers.

Timer	10 ms	T0~T255 (256 general timers)
(T)	General timer	Users can change T0~T255 to latching devices by setting parameters.

Functions of timers:

10 milliseconds are a unit of measurement for time. A timer counts upwards for measuring time which elapses. If the present value of a timer is equal to the value set, the output coil of the timer will be ON. The

value set can be a decimal value preceded by K, or the value in a data register.

Actual time measured by a timer= Unit of measurement for time x Setting value

1. If the instruction TMR is executed, a timer will count for measuring time which elapses once. If the value of a timer matches the value set, the output coil of the timer will be ON.

- If X0 is ON, the timer T0 will count upwards from the present time value every 10 milliseconds. If the present timer value matches the setting value K100, the output coil T0 will be ON.
- If X0 is OFF, or there is a power cut, the present value in T0 will become 0, and the output coil T0 will be OFF.

Setting value: Actual time measured by a timer= Unit of measurement for time x Setting value 1. Constant preceded by K: A setting value can be a constant preceded by K.

2. Value in a data register: A setting value can be the value in a data register.

3.7 Counters

Counter (C): Counter numbers are decimal numbers.

		16-bit up counter	C0~C199 (200 16-bit up counters)	236	If the present value of the counter specified by the instruction CNT
		32-bit up/down counter	C220~C255 (36 32-bit up/down counters) (Accumulation)	counters in total	(DCNT) matches the value set, the contact of the counter will be ON.
c	Counter	32-bit high-speed counter	C200, C204, C208, C212, C216, and C220 (6 32-bit high-speed counters)	6 counters in total	Input contact of C200: X0/X1 Input contact of C204: X2/X3 Input contact of C208: X4/X5 Input contact of C212: X6/X7 Input contact of C216: X10+/X10-/X11+/X11- Input contact of C220: X12+/X12-/X13+/X13-

Characteristics of counters:

Item	16-bit counter	32-bit counter		
Туре	General counter	General counter	High-speed counter	
Direction	Counting up	Counting up/down	·	
Setting value	0~32,767	-2,147,483,648~+2,147	,483,647	
Specification of a setting value	Constant preceded by K, or value stored in a data register	a Constant preceded by K, or value stored in two consecutive data registers		
Change of the present value	If the present value matches the setting value, the counter will stop counting.	Even if the present value matches the setting value, the counter will keep counting.		
Output contact	If the present value matches the setting value, the output contact will be ON.	Counting up: If the press setting value, the output Counting down: If the pr setting value, the output OFF.	t contact will be ON. resent value matches the	

Item	16-bit counter	32-bit counter		
Resetting of a contact	If the instruction RST is executed, the present value will becomes zero, and the contact will be reset to OFF.			
Actions of contacts	After the scan of a program is complete, the contacts will act.	After the scan of a program is complete, the contacts will act.	If the present value matches the setting value, the contact will be ON.	

Functions of counters:

If the input signal of a counter is turned from OFF to ON, and the present value of the counter matches the value set, the output coil of the counter will be ON. A setting value can be a constant preceded by K, or the value stored in a data register.

16-bit counter:

- 1. The setting value of a 16-bit counter must be in the range of K0 to K32,767. (K0 is equal to K1. If the setting value of a counter is K0 or K1, the output contact of the counter will be ON after the counter counts for the first time.)
- 2. If a power cut occurs when a general counter in a DVP-20PM series motion controller counts, the present value of the counter will be cleared. If a power cut occurs when a latching counter counts, the present value of the counter and the state of the contact of the counter will be retained, and the latching counter will not continue counting until power is restored.
- 3. If users move a value greater than the setting value of C0 to C0 by means of the instruction MOV, the contact C0 will be ON, and the present value of the counter will become the setting value next time X1 is turned from OFF to ON.
- 4. The setting value of a counter can be a constant preceded by K, or the value stored in a data register. (The special data registers D1000~D2999 can not be used.)
- 5. If the setting value of a counter is a value preceded by K, the setting value can only be a positive value. If the setting value of a counter is the value stored in a data register, the setting value can be a positive value or a negative value. If a counter counts up from the present value 32,767, the next value following 32,767 will be -32,768.

Example:

- 1. If X0 is ON, the instruction RST will be executed, the present value of C0 will become zero, and the output contact will be reset to OFF.
- 2. If X01 is turned from OFF to ON, the present value of the counter will increase by one.
- 3. If the present value of C0 matches the setting value K5, the contact C0 will be ON (Present value of C0=Setting value=K5). K5 will be retained even if X1 is turned from OFF to ON again.

32-bit up/down counter:

- The setting value of a 32-bit general up/down counter must be in the range of K-2,147,483,648 to K2,147,483,647. The states of the special auxiliary relays M1208~M1255 determine whether the 32-bit general up/down counters C220~C255 count up or count down. For example, C208 will count up if M1208 is OFF, and C208 will count down if M1208 is ON.
- 2. The setting value of a 32-bit up/down counter can be a constant preceded by K, or the value stored in two consecutive data registers. (The special data registers D1000~D2999 can not be used.) A setting value can be a positive value, or a negative value.
- 3. If a power cut occurs when a general counter in a DVP-10PM series motion controller counts, the present value of the counter will be cleared. If a power cut occurs when a latching counter counts, the present value of the counter and the state of the contact of the counter will be retained, and the latching counter will not continue counting until power is restored.
- 4. If a counter counts up from the present value 2,147,483,647, the next value following 2,147,483,647 will be -2,147,483,648. If a counter counts down from the present value -2,147,483,648, the next value following -2,147,483,648 will be 2,147,483,647.

Example:

LD	X10	X10				
OUT	M1255		(M1255)	I		
LD	X11	X11			1	
RST	C255		RST	C255		
LD	X12	X12				
DCNT	C255 K-5		DCNT	C255	K-5	
LD	C255	C255	YO	I		
OUT	Y0	1 ''				

- 1. M1255 is driven by X10. The state of M1255 determines whether C255 counts up or counts down.
- 2. If X11 is turned form OFF to ON, the instruction RST will be executed, the present value of C255 will become 0, and the contact will be OFF.
- 3. If X12 is turned form OFF to ON, the present value of the counter will increase by one or decrease by one.
- If the present value of the counter C255 increases from K-6 to K-5, the contact C255 will be turned form OFF to ON. If the present value of the counter C255 decreases from K-5 to K-6, the contact C255 will be turned from ON to OFF.
- 5. If users move a value greater than the setting value of C255 to C255 by means of the instruction MOV, the contact C255 will be ON, and the present value of the counter will become the setting value next time X11 is turned from OFF to ON.

32-bit high-speed counter:

- DVP-10PM series motion controller (C200, C204, C208, C212, C216, and C220)
 - 1. The setting value of a 32-bit high-speed counter must be in the range of K-2,147,483,648 to K2,147,483,647.
 - 2. Mode of counting:

	Мс	ode of counting	Resetting	External	
Counter	Device	Setting value	a counter	reset terminal	External input terminal
C200	K1M1200	 Mode of counting 0: U/D* 1: P/D* 	M1203	X10	X0, X1, and S/S
C204	K1M1204	2: A/B* (One time the frequency	M1207	X11	X2, X3, and S/S
C208	K1M1208	of A/B-phase inputs) 3: 4A/B (Four	M1211	X12	X4, X5, and S/S
C212	K1M1212	times the frequency of A/B-phase	M1215	X13	X6, X7, and S/S
C216	K1M1216	inputs) Mode of measuring time	M1219	X0	X10+, X10-, X11+, and X11-
C220	K1M1220	5: General mode 6: Cyclic mode	M1223	X1	X12+, X12-, X13+, and X13-

Note: U/D: Counting up/Counting down; P/D: Pulse/Direction; A/B: A phase/B phase

 C200: Users can select a mode of counting by setting M1200 and M1201. Input signals are controlled by X0 and X1. If M1203 is ON, the function of resetting C200 will be enabled. Resetting signals are controlled by X10.

 C204: Users can select a mode of counting by setting M1204 and M1205. Input signals are controlled by X2 and X3. If M1207 is ON, the function of resetting C204 will be enabled. Resetting signals are controlled by X11.

 C208: Users can select a mode of counting by setting M1208 and M1209. Input signals are controlled by X4 and X5. If M1211 is ON, the function of resetting C208 will be enabled. Resetting signals are controlled by X12.

 C212: Users can select a mode of counting by setting M1212 and M1213. Input signals are controlled by X6 and X7. If M1215 is ON, the function of resetting C212 will be enabled. Resetting signals are controlled by X13.

 C216: Users can select a mode of counting by setting M1216 and M1217. Input signals are controlled by X10 and X11. If M1219 is ON, the function of resetting C216 will be enabled. Resetting signals are controlled by X0.

C220: Users can select a mode of counting by setting M1221 and M1220. Input signals are controlled by X12 and X13. If M1223 is ON, the function of resetting C220 will be enabled. Resetting signals are controlled by X1.

- 3. The setting value of a 32-bit high-speed counter can be a constant preceded by K, or the value stored in two consecutive data registers. (The special data registers D1000~D2999 can not be used.) A setting value can be a positive value, or a negative value.
- 4. If a power cut occurs when a general counter in a DVP-10PM series motion controller counts, the present value of the counter will be cleared. If a power cut occurs when a latching counter counts, the present value of the counter and the state of the contact of the counter will be retained, and the latching counter will not continue counting until power is restored.
- 5. If a counter counts up from the present value 2,147,483,647, the next value following 2,147,483,647 will be -2,147,483,648. If a counter counts down from the present value -2,147,483,648, the next value following -2,147,483,648 will be 2,147,483,647.

3.8 Registers

Registers are classified according to their characters. There are four types of registers.

1.	General register:	If the STOP/RUN switch on a DVP-10PM series motion controller is turned from the STOP position to the RUN position, or a DVP-10PM series motion controller is disconnected, the values in the general registers will become 0. If M1033 in a DVP-10PM series motion controller is turned ON, the values in the general registers will be retained after the STOP/RUN switch on the DVP-10PM series motion controller is turned from the RUN position to the STOP position, and will become 0 after the module is disconnected.
2.	Latching register:	If a module is disconnected, the values in the latching registers will be retained.
		If users want to clear the value in a latching register, they can use the instruction RST or ZRST.
3.	Special data register:	Every special data register has its definition and purposes. System states, error messages, and states monitored are stored in special data registers. Please refer to section 3.10 and section 3.11 for more information about special auxiliary relays and special data registers.
4.	Index register (V)/(Z):	V devices are 16-bit registers, and Z devices are 32-bit registers. There are 8 V devices (V0~V7), and 8 Z devices (Z0~Z7) in a DVP-10PM series motion controller.

3.8.1 Data Registers

The value in a data register is a 16-bit value. The highest bit in a 16-bit data register represents an algebraic sign. The value stored in a data register must be in the range of -32,768 to +32,767. Two 16-bit data registers can be combined into one 32-bit data register (D+1, D). The highest bit in a 32-bit data register represents an algebraic sign. The value stored in a 32-bit data register must be in the range of -2,147,483,648 to +2,147,483,647.

	General data register	D0~D199 (200 general data registers in total) Users can change them to latching devices by setting parameters.	
Data register (D)	Latching data register	D200~D999 and D3000~D9999 (7,800 latching data register in total) Users can change them to non-latching devices by setting parameters.	10,000 data registers in total
	Special data register	D1000~D2999 (2,000 special data registers in total) Some of them are latching devices.	

3.8.2 Index Registers

Index register (V)/(Z)	V0~V7	16 index
	Z0~Z7	registers in total

V devices are 16-bit registers. Data can be freely written into a V device, and data can be freely read from a V device. If a V device is used as a general register, it can only be used in a 16-bit instruction.

Z devices are 32-bit registers. If a Z device is used as a general register, it can only be used in a 32-bit instruction.

X0					
−Ĩ⊢	_	MOV	K8	V0	1
					١
		DMOV	K14	Z1	 2
		MOV	D0@V0	D2@Z1	
		DMOV	D3@Z1	D4@V0	

If X0 is ON, the value in V0 will be 8, and the value in Z1 will be 14, the value in D8 will be moved to D16, and the value in D17 will be moved to D12.

If a V device or a Z device is an index register used to modify an operand, the V device or the Z device can be used in a 16-bit instruction and a 32-bit instruction.

Index registers are like general operands in that they can be used in movement instructions and comparison instructions. They can be used to modify word devices (KnX/KnY/KnM/KnS/T/C/D devices) and bit devices (X/Y/M/S devices).

There are 8 V devices (V0~V7), and 8 Z devices (Z0~Z7) in a DVP-10PM series motion controller.

*Constants and some instructions do not support the use of index registers. Please refer to section 5.4 for more information about using index registers to modify operands.

*To prevent error from occurring, if a V device or a Z device is used to modify an operand, the effective address which is formed can not be in the range of D1000 to D2999, and can not be in the range of M1000 to M2999.

3.9 Pointers

Pointer	N	Used with a master control loop	N0~N7 (8 poniters)	Used with a master control loop
Fonter	Ρ	Used with CJ, CJN, or JMP	P0~P255 (256 pointers)	Used with CJ, CJN, or JMP

Pointer (P): A pointer is used with API 00 CJ, API 256 CJN, or API 257 JMP. Please refer to chapter 5 for more information about the use of CJ/CJN/JMP.

• Conditional jump (CJ):

- If X0 is ON, the execution of the program will jump from address 0 to address N, and the part of the program between address 0 and address N will not be executed.
- If X0 is OFF, the execution of the program starts from address 0, and the instruction CJ will not be executed.

3.10 Special Auxiliary Relays and Special Data Registers

Special auxiliary relays (special M devices) and special data registers (special D devices) are shown in the tables below. Some device numbers in the tables are marked with *. Users can refer to section 3.11 for more information. If the attribute of a device is "R", the users can only read data from the device. If the attribute of a device is "R/W", the users can read data from the device, and write data into the device. In addition, "-" indicates that the state of a special auxiliary relay is unchanged, or the value in a special data register is unchanged. "#" indicates that a special auxiliary relay or a special data register in a DVP-10PM series motion controller is set according to the state of the DVP-10PM series motion controller. The users can read a setting value, and refer to the manual for more information.

Special		Off	STOP	RUN				
М	Function	Û	Û	Û	Attribute	Latching	Default	Page
device		On	RUN	STOP				
M1000*	If the motion controller runs, M1000 will be a normally-open contact (Form A contact). When the motion controller runs, M1000 is ON.	Off	On	Off	R	No	Off	3-30
M1001*	If the motion controller runs, M1001 will be a normally-closed contact (Form B contact). When the motion controller runs, M1001 is OFF.	On	Off	On	R	No	On	3-30
M1002*	A positive-going pulse is generated at the time when the motion controller runs. The width of the pulse is equal to the scan cycle.	Off	On	Off	R	No	Off	3-30
M1003*	A negative-going pulse is generated at the time when the motion controller runs. The width of the pulse is equal to the scan cycle.	On	Off	On	R	No	On	3-30
M1008	The watchdog timer is ON.	Off	Off	-	R	No	Off	-
M1009	The low voltage signal has ever occurred.	Off	-	-	R	No	Off	-
M1011	10 millisecond clock pulse (The pulse is ON for 5 milliseconds, and is OFF for 5 milliseconds.)	Off	-	-	R	No	Off	-
M1012	100 millisecond clock pulse (The pulse is ON for 50 milliseconds, and OFF for 50 milliseconds.)	Off	-	-	R	No	Off	-
M1013	1 second clock pulse (The pulse is ON for 0.5 seconds, and OFF for 0.5 seconds.)	Off	-	-	R	No	Off	-
M1014	1 minute clock pulse (The pulse is ON for 30 seconds, and OFF for 30 seconds.)	Off	-	-	R	No	Off	-
M1020	Zero flag (for the instructions SFRD and SFWR)	Off	-	-	R	No	Off	-
M1022	Carry flag (for the instructions SFWR, RCR, and RCL)	Off	-	-	R	No	Off	-

Special		Off	STOP	RUN				
M device	Function	↓ On	↓ RUN	↓ STOP	Attribute	Latching	Default	Page
ucvice	Incorrect request for communication (If a PC or an HMI is	Un	RUN	310P				
M1025	connected to a DVP-10PM series motion controller, and the DVP-10PM series motion controller receives illegal request for communication during data transmission, M1025 will be set to ON, and an error code will be stored in D1025.)	Off	Off	-	R	No	Off	-
M1026	Selecting a RAMP mode	Off	-	-	R/W	No	Off	-
M1029	The sending of pulses through CH0 (Y0, Y1) is complete.	Off	-	-	R	No	Off	
M1031	All the non-latching devices are cleared.	Off	-	-	R/W	No	Off	-
M1032	All the latching devices are cleared.	Off	-	-	R/W	No	Off	-
M1033	Data is retained when the DVP-10PM series motion controller does not run.	Off	-	-	R/W	No	Off	-
M1034	All the outputs are disabled.	Off	-	-	R/W	No	Off	-
M1035	Using STOP0/START0 as external I/O terminals.	Off	Off	Off	R/W	No	Off	-
M1039*	1 0	Off	-	-	R/W	No	Off	3-34
M1048	Status of the alarm	Off	-	-	R	No	Off	-
M1049	Monitoring the alarm	Off	-	-	R/W	No	Off	-
M1072	The DVP-10PM series motion controller is made to run. (Communication)	Off	On	Off	R/W	No	Off	-
M1077	The battery voltage is low, or malfunctions, or there is no battery.	Off	-	-	R/W	No	Off	-
M1087	The low voltage signal occurs.	Off	-	-	R/W	No	Off	-
M1120*	The setting of the communication through COM2 (RS-485 port) is retained. After M1120 is set to ON, changing the value in D1120 will be invalid.	Off	Off	-	R/W	No	Off	3-31
M1121	The transmission of the RS-485 data is ready.	Off	On	-	R	No	Off	-
M1122	Request for sending the data	Off	Off	-	R/W	No	Off	-
M1123	The reception of the data is complete.	Off	Off	-	R/W	No	Off	-
M1124	The reception of the data is ready.	Off	Off	-	R	No	Off	-
M1125	The reception of the data is reset.	Off	Off	-	R/W	No	Off	-
M1127	The sending/reception of the data is complete.	Off	Off	-	R/W	No	Off	-
M1128	The data is being sent/received.	Off	Off	-	R	No	Off	-
M1129	Reception timeout	Off	Off	-	R/W	No	Off	-
M1136	The setting of the communication through COM3 (communication card) is retained.	Off	-	-	R	No	Off	3-31
M1138*	The setting of the communication through COM1 (RS-232 port) is retained. After M1138 is set to ON, changing the value in D1036 will be invalid.	Off	-	-	R/W	No	Off	3-31
M1139*	Selecting an ASCII mode or an RTU mode when COM1 (RS-232 port) is in a slave mode. (OFF: ASCII mode; ON: RTU mode)	Off	-	-	R/W	No	Off	3-31
M1140	The data that users receive by means of MODRD/MODWR is incorrect.	Off	Off	-	R	No	Off	-
M1141	The values of parameters of MODRD/MODWR are incorrect.	Off	Off	-	R	No	Off	-
M1143*	Selecting an ASCII mode or an RTU mode when COM2 (RS-485 port) is in a slave mode. (OFF: ASCII mode; ON: RTU mode) Selecting an ASCII mode or an RTU mode when COM2 (RS-485 port) is in a master mode. (M1143 is used with MODRD/MODWR.) (OFF: ASCII mode; ON: RTU mode)	Off	-	-	R/W	No	Off	3-31
M1161	8-bit mode (ON: 8-bit mode; OFF: 16-bit mode)	Off		-	R/W	No	Off	-
	Using decimal integers or binary floating-point values when SCLP is executed.		-	-				-
M1162	ON: Binary floating-point values	Off	-	-	R/W	No	Off	-
	OFF: Decimal integers							
M1168	SMOV: Mode of operation	Off	-	-	R/W	No	Off	-
	C200: Selecting a mode of counting	Off	-	-	R/W	No	Off	-
M1200				1				1
M1200 M1201	C200: Selecting a mode of counting	Off	-	-	R/W	No	Off	-

Special		Off	STOP	RUN	A			D
M device	Function	↓ On	↓ RUN	↓ STOP	Attribute	Latching	Default	Page
M1204	C204: Selecting a mode of counting	Off	-	-	R/W	No	Off	-
M1205	C204: Selecting a mode of counting	Off	-	-	R/W	No	Off	-
M1207	Resetting C204	Off	-	-	R/W	No	Off	-
M1208	C208: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1209	C209: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1210	C210: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1211	C211: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1212	C212: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1213	C213: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1214	C214: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1215	C215: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1216	C216: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1217	C217: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1218	C218: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1219	C219: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1220	C220: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1221	C221: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1222	C222: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1223	C223: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1224	C224: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1225	C225: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1226	C226: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1227	C227: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1228	C228: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1229	C229: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1230	C230: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1231	C231: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1232	C232: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1233	C233: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1234	C234: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1235	C235: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1236	C236: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1237	C237: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1238	C238: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1239	C239: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1240	C240: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1241	C241: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1242	C242: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1243	C243: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1244	C244: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1245	C245: Selecting a mode of counting (On: Counting down)	Off	-	-	R/W	No	Off	-
M1246	C246: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1247	C247: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1248	C248: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1249	C249: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1250	C250: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1251	C251: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1252	C252: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1253	C253: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1254	C254: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1255	C255: Selecting a mode of counting (On: Counting down)	Off	-	-	R	No	Off	-
M1303	Interchanging high bits with low bits when XCH is executed	Off	-	-	R/W	No	Off	-
M1304*	The input terminals can be set to ON or OFF.	Off	-	-	R/W	No	Off	3-37
M1744*	Resetting the M-code in the Ox motion subroutine	Off	Off	-	R/W	No	Off	3-38

Special		Off	STOP	RUN				
M device	Function	₽ ₽	↓ RUN	↓ STOP	Attribute	Latching	Default	Page
uevice	Disabling the Viewig from returning home in the Ovientian	On	RUN	510P				
M1745	Disabling the X-axis from returning home in the Ox motion subroutine	Off	-	-	R/W	No	Off	-
M1760	Using a radian or a degree in the Ox motion subroutine	Off	-	-	R/W	No	Off	-
M1792	The X-axis is ready.	On	On	On	R	No	On	3-38
M1793*	X-axis motion error (M1793 is reset at the time when the X-axis operates.)	Off	-	-	R/W	No	Off	3-39
M1794*	If an M code in an Ox motion subroutine is executed, M1794 will be ON. (M1794 is reset to OFF at the time when the Ox motion subroutine is executed.)	Off	-	Off	R	No	Off	-
M1795	If M0 in an Ox motion subroutine is executed, M1795 will be ON. (M1795 is reset to OFF at the time when the Ox motion subroutine is executed.)	Off	-	-	R	No	Off	-
M1796	If M2 in an Ox motion subroutine is executed, M1796 will be ON. (M1796 is reset to OFF at the time when the Ox motion subroutine is executed.)	Off	On	-	R	No	Off	-
M1808	Zero flag in the Ox motion subroutine	Off	-	-	R	No	Off	-
M1809	Borrow flag in the Ox motion subroutine	Off	-	-	R	No	Off	-
M1810	Carry flag in the Ox motion subroutine	Off	-	-	R	No	Off	-
M1811	An error occurs in a floating-point operation in the Ox motion subroutine.	Off	Off	-	R	No	Off	-
M1825	Disabling the Y-axis from returning home	Off	-	-	R/W	No	Off	-
M1872	The Y-axis is ready.	On	On	On	R	No	On	3-38
M1873*	Y-axis motion error (M1873 is reset at the time when the Y-axis operates.)	Off	-	-	R	No	Off	3-39
M1920	Using a radian or a degree in O100	Off	-	-	R/W	No	Off	-
M1952	O100 is ready.	On	Off	On	R	No	On	-
M1953*	An error occurs in O100.	Off	-	-	R/W	No	Off	3-35
M1957	Status of the STOP/RUN switch (Automatic/Manual switch)	Off	On	-	R	No	Off	-
M1968	Zero flag in O100	Off	-	-	R	No	Off	-
M1969	Borrow flag in O100	Off	-	-	R	No	Off	-
M1970	Carry flag in O100	Off	-	-	R	No	Off	-
M1971	An error occurs in a floating-point operation in O100.	Off	-	-	R	No	Off	-
M1985	Disabling the Z-axis from returning home	Off	-	-	R/W	No	Off	-
M2032	The Z-axis is ready.	On	On	On	R	No	On	3-38
M2033*	Z-axis motion error (M2033 is reset at the time when the Z-axis operates.)	Off	-	-	R/W	No	Off	3-39
M2065	Disabling the A-axis from returning home	Off	-	-	R/W	No	Off	-
M2112	The A-axis is ready.	On	On	On	R	No	On	3-38
M2113*	A-axis motion error (M2113 is reset at the time when the A-axis operates.)	Off	-	-	R/W	No	Off	3-39
M2145	Disabling the B-axis from returning home	Off	-	-	R/W	No	Off	-
M2192	The B-axis is ready.	On	On	On	R	No	On	3-38
M2193*	B-axis motion error (M2193 is reset at the time when the B-axis operates.)	Off	-	-	R/W	No	Off	3-39
M2225	Disabling the C-axis from returning home	Off	-	-	R/W	No	Off	-
M2272	The C-axis is ready.	On	On	On	R	No	On	3-38
M2273*	C-axis motion error (M2273 is reset at the time when the X-axis operates.)	Off	-	-	R/W	No	Off	3-39

Special			STOP					
D device	Function	↓ On	₽ RUN	↓ STOP	Attribute	Latching	Default	Page
D1000*	Watchdog timer (Unit: ms)	200	-	-	R/W	No	200	3-30
D1002	Size of the program	65535	-	-	R	No	65535	-
D1003	Checksum of the program	-	-	-	R	Yes	0	-
D1005	Firmware version of the DVP-10PM series motion controller (factory setting)	#	-	-	R	No	#	-
D1008	Step address at which the watchdog timer is ON	0	-	-	R	No	0	-
D1010	Present scan time (Unit: 1 millisecond)	0	-	-	R	No	0	-
D1011	Minimum scan time (Unit: 1 millisecond)	0	-	-	R	No	0	-
D1012	Maximum scan time (Unit: 1 millisecond)	0	-	-	R	No	0	-
D1020	Filtering the inputs X0~X7 (Unit: ms)	10	-	-	R/W	No	10	3-31
D1025	Code for a communication request error	0	0	-	R	No	0	-
D1036*	Communication protocol of COM1	H'86	-	-	R/W	No	H'86	3-31
D1038*	Delay which is allowed when an RS-485 port on the DVP-10PM series motion controller functions as a slave station (Setting range: 0~3000; Unit: 10 ms)	-	-	-	R/W	Yes	0	3-34
D1039*	Fixed scan time (Unit: ms)	0	-	-	R/W	No	0	3-34
D1050 ↓	Modbus communication data is processed. The DVP-10PM series motion controller automatically converts the ASCII data in D1070~D1085 to hexadecimal	0	-	-	R	No	0	-
D1055	values.							
D1056	Present value of CH0 in the function card 2AD	0	#	-	R	No	0	-
D1057	Present value of CH1 in the function card 2AD	0	#	-	R	No	0	-
D1070 ↓ D1085	Modbus communication data is processed. A DVP-10PM series motion controller has an RS-485 communication instruction. After a receptor receives the command sent by an RS-485 communication instruction, it will reply with a message which will be stored in D1070~D1085. Users can view the message by D1070~D1085.	0	-	-	R	No	0	-
D1089 ↓ D1099	Modbus communication data is processed. A DVP-10PM series motion controller has an RS-485 communication instruction. The command sent by the RS-485 communication instruction is stored in D1089~D1099. Users can check whether the command is correct by viewing the values in D1089~D1099.	0	-	-	R	No	0	-
D1109	Communication protocol of COM3 (communication card)	H'86	-	-	R/W	No	H'86	3-31
D1110	Number by which the sum of several values of CH0 in the function card 2AD is divided	0	#	-	R	No	0	-
D1111	Number by which the sum of several values of CH1 in the function card 2AD is divided	0	#	-	R	No	0	-
D1116	Present value of CH0 in the function card 2DA	0	-	-	R/W	No	0	-
D1117	Present value of CH1 in the function card 2DA	0	-	-	R/W	No	0	-
D1120*	Communication protocol of COM2 (RS-485 port)	H'86	-	-	R/W	No	H'86	3-31
D1121	Communication address of the DVP-10PM series motion controller	-	-	-	R/W	Yes	1	-
D1122	Number characters which remain to be sent	0	0	-	R	No	0	-
D1123	Number of characters which remain to be received	0	0	-	R	No	0	-
D1124	Start-of-text character (STX)	H'3A	-	-	R/W	No	H'3A	-
D1125	First terminator (END High)	H'0D	-	-	R/W	No	H'0D	-
D1126	Second terminator (END Low)	H'0A	-	-	R/W	No	H'0A	-
D1129	Communication timeout (Unit: ms)	0	-	-	R/W	No	0	-
D1130	Error code that a slave station sends by means of Modbus when the RS-485 port on the DVP-10PM series motion controller functions as a master station	0	0	-	R	No	0	-
D1140*	Number of right-side modules (8 right-side modules at most)	0	-	-	R	No	0	3-37
D1142*	Number of X devices in a digital module	0	-	-	R	No	0	3-37
D1143*	Number of Y devices in a digital module	0	-	-	R	No	0	3-37
D1149	ID of a function card (0: No card inserted; 3: COM3; 8: 2AD; 9: 2DA)	0	-	-	R	No	0	-

Special		Off	STOP					
D device	Function	↓ On	₽UN	₽ STOP	Attribute	Latching	Default	Page
D1200*	Starting latching auxiliary relay address	-	KUN	-	R/W	Yes	500	3-37
D1200	Terminal latching auxiliary relay address	-	-	-	R/W	Yes	999	3-37
D1201*	Starting latching timer address	-	-	-	R/W	Yes	-1	3-37
D1202	Terminal latching timer address	-	-	-	R/W	Yes	-1	3-37
D1203	Starting latching 16-bit counter address		_	_	R/W	Yes	100	3-37
D1204	Terminal latching 16-bit counter address	-	-	_	R/W	Yes	199	3-37
D1206*	Starting latching 32-bit counter address	-	-	-	R/W	Yes	220	3-37
D1207*	Terminal latching 32-bit counter address	-	-	-	R/W	Yes	255	3-37
D1208*	Starting latching stepping relay address	-	-	-	R/W	Yes	500	3-37
D1209*	Terminal latching stepping relay address	-	-	-	R/W	Yes	1023	3-37
D1210*	Starting latching data register address	-	-	-	R/W	Yes	200	3-37
D1211*	Terminal latching data register address	-	-	-	R/W	Yes	9999	3-37
D1313*	Value of the second in the real-time clock (RTC): 00~59	-	-	-	R/W	Yes	0	-
D1314*	Value of the minute in the real-time clock (RTC): 00~59	-	-	-	R/W	Yes	0	-
D1315*	Value of the hour in the real-time clock (RTC): 00~23	-	-	-	R/W	Yes	0	-
D1316*	Value of the day in the real-time clock (RTC): 1~31	-	-	-	R/W	Yes	1	-
D1317*	Value of the month in the real-time clock (RTC): 01~12	-	-	-	R/W	Yes	1	-
D1318*	Value of the week in the real-time clock (RTC): 1~7	-	-	-	R/W	Yes	2/5	-
D1319*	Value of the year in the real-time clock (RTC): 00~99 (A.D.)	-	-	-	R/W	Yes	8/10	-
D1320*	ID of the first right-side module	0	-	-	R	No	0	3-38
D1321*	ID of the second right-side module	0	-	-	R	No	0	3-38
D1322*	ID of the third right-side module	0	-	-	R	No	0	3-38
D1323*	ID of the fourth right-side module	0	-	-	R	No	0	3-38
D1324*	ID of the fifth right-side module	0	-	-	R	No	0	3-38
D1325*	ID of the sixth right-side module	0	-	-	R	No	0	3-38
D1326*	ID of the seventh right-side module	0	-	-	R	No	0	3-38
D1327*	ID of the eighth right-side module	0	-	-	R	No	0	3-38
D1400	Enabling the interrupt	0	-	-	R/W	No	0	-
D1401	Cycle of the time interrupt (Unit: ms)	0	-	-	R/W	No	0	-
D1500	Data block used by FROM/TO	LIGOGO			Р	No	LICOCO	
D1500	It corresponds to CR#0.	H6260	-	-	R	No	H6260	-
D1501	Data block used by FROM/TO							
\downarrow	They correspond to CR#1~CR#199.	0	-	-	R/W	No	0	-
D1699								
D1700	Ox motion subroutine which is executed	0	-	-	R	No	0	-
D1702	Step address which is executed in the Ox motion subroutine	0	-	-	R	No	0	-
D1703*	M-code which is executed in the Ox motion subroutine	0	-	-	R	No	0	3-38
D1704	Dwell duration of the Ox motion subroutine which is set	0	-	-	R	No	0	-
D1705	Present dwell duration of the Ox motion subroutine	0	-	-	R	No	0	-
D1706	Number of times the instruction RPT in the Ox motion subroutine is executed	0	-	-	R	No	0	-
D1707	Number of times the instruction RPT in the Ox motion subroutine has been executed	0	-	-	R	No	0	-
D1736	Dwell duration of O100 which is set	0	-	-	R	No	0	-
D1737	Present dwell duration of O100	0	-	-	R	No	0	-
D1738	Number of times the instruction RPT in O100 is executed	0	-	-	R	No	0	-
D1739	Number of times the instruction RPT in O100 has been executed	0	-	-	R	No	0	-
D1799*	Polarities of the input terminals	0	-	-	R/W	No	0	3-39
D1800*	States of the input terminals	0	-	-	R	No	0	3-39
D1802*	O100 error code	0	-	-	R/W	No	0	3-40
D1803*	Step address in O100 at which an error occurs	0	0	-	R/W	No	0	3-40
D1806	Filter coefficient for the input terminals	0	-	-	R/W	No	0	3-40

3 Devices

Special		Off	STOP					
D device	Function	Û	Û	↓ ↓	Attribute	Latching	Default	Page
device	Number of pulses it takes for the mater of the X avia to rotate	On	RUN	STOP				
D1818	Number of pulses it takes for the motor of the X-axis to rotate once (Low word)							
D1819	Number of pulses it takes for the motor of the X-axis to rotate once (High word)	-	-	-	R/W	Yes	2000	-
D1820	Distance generated after the motor of the X-axis rotate once (Low word)							
	Distance generated after the motor of the X-axis rotate once	-	-	-	R/W	Yes	1000	-
D1821	(High word)							
D1822	Maximum speed (V_{MAX}) at which the X-axis rotates (Low word)							
D1823	Maximum speed (V _{MAX}) at which the X-axis rotates (High word)	-	-	-	R/W	Yes	500K	-
D1824	Start-up speed (V _{BIAS}) at which the X-axis rotates (Low word)					Vaa	0	
D1825	Start-up speed (V _{BIAS}) at which the X-axis rotates (High word)	-	-	-	R/W	Yes	0	-
D1826	JOG speed (V _{JOG}) at which the X-axis rotates (Low word)					Vee	5000	
D1827	JOG speed (V _{JOG}) at which the X-axis rotates (High word)	-	-	-	R/W	Yes	5000	-
D1828	Speed (V _{RT}) at which the X-axis returns home (Low word)					N	501/	
D1829	Speed (V _{RT}) at which the X-axis returns home (High word)	-	-	-	R/W	Yes	50K	-
D1830	Speed (V_{CR}) to which the speed of the X-axis decreases when the axis returns home (Low word)							
D1831	Speed (V_{CR}) to which the speed of the X-axis decreases when the axis returns home (High word)	-	-	-	R/W	Yes	1000	-
D1832*	Number of PG0 pulses for the X-axis	-	-	-	R/W	Yes	0	-
D1833*	Supplementary pulses for the X-axis	-	-	-	R/W	Yes	0	-
D1834*	Home position of the X-axis (Low word)	-	-	-	R/W	Yes	0	-
D1835	Home position of the X-axis (High word)	-	-	-	R/W	Yes	0	-
D1836	Time (T_{ACC}) it takes for the X-axis to accelerate	-	-	-	R/W	Yes	500	-
D1837	Time (T_{DEC}) it takes for the X-axis to decelerate	-	-	-	R/W	Yes	500	-
	Target position of the X-axis (P (I)) (Low word)	0	-	-	R/W	No	0	-
D1838	Pulse width for the X-axis (Low word)	0	-	-	R/W	No	0	-
	Target position of the X-axis (P (I)) (High word)	0	-	-	R/W	No	0	-
D1839	Pulse width for the X-axis (High word)	0	-	-	R/W	No	0	-
D1840	Speed at which the X-axis rotates (V (I)) (Low word)	1000	-	-	R/W	No	1000	-
D1841	Speed at which the X-axis rotates (V (I)) (High word)	1000	-	-	R/W	No	1000	-
	Target position of the X-axis (P (II)) (Low word)	0	-	-	R/W	No	0	-
D1842	Output period for the X-axis (Low word)	0	-	-	R/W	No	0	-
	Target position of the X-axis (P (II)) (High word)	0	-	-	R/W	No	0	-
D1843	Output period for the X-axis (High word)	0	-	-	R/W	No	0	-
D1844	Speed at which the X-axis rotates (V (II)) (Low word)							
D1845	Speed at which the X-axis rotates (V (II)) (High word)	2000	-	-	R/W	No	2000	-
D1846*	Operation command for the X-axis	0	-	0	R/W	No	0	3-42
D1847*	X-axis's mode of operation	0	-	-	R/W	No	0	3-42
	Present command position of the X-axis (Pulse) (Low word)	•						
D1848	Position of the slave axis (Low word)	0	-	-	R/W	No	0	-
D1040	Present command position of the X-axis (Pulse) (High word)					Nia	0	
D1849	Position of the slave axis (High word)	0	-	-	R/W	No	0	-
D1850	Present command speed of the X-axis (PPS) (Low word)		0	0	D 44/	NI-	0	
D1851	Present command speed of the X-axis (PPS) (High word)	0	0	0	R/W	No	0	-
D1852	Present command position of the X-axis (Unit) (Low word)					Nia	0	
D1853	Present command position of the X-axis (Unit) (High word)	0	-	-	R/W	No	0	-
D1854	Present command speed of the X-axis (Unit) (Low word)	_	_	_		NI-		
D1855	Present command speed of the X-axis (Unit) (High word)	0	0	0	R/W	No	0	-
D1856*	State of the X-axis	0	-	-	R	No	0	3-43
D1857*	X-axis error code	0	-	-	R	No	0	3-39
D1858	Electronic gear ratio of the X-axis (Numerator)	-	-	-	R/W	Yes	1	-
				1	R/W	Yes	1	-

Special		Off	STOP					
D	Function	Û	Û	Û	Attribute	Latching	Default	Page
device	Frequency of pulses generated by the manual pulse generator	On	RUN	STOP				
D1860	for the X-axis (Low word)	0	0	-	R/W	No	0	-
	Frequency of pulses sent by the master axis (Low word)							
D1861	Frequency of pulses generated by the manual pulse generator for the X-axis (High word)	0	0	-	R/W	No	0	-
	Frequency of pulses sent by the master axis (High word)							
D1862	Number of pulses generated by the manual pulse generator for the X-axis (Low word)	0	-	-	R/W	No	0	-
	Position of the master axis							
D1863	Number of pulses generated by the manual pulse generator for the X-axis (High word)	0	-	-	R/W	No	0	-
	Position of the master axis							
D1864*	Response speed of the manual pulse generator for the X-axis Mode of stopping Ox0~Ox99 (K1: The execution of Ox0~Ox99 will resume next time Ox0~Ox99 are started. K2: The next instruction will be executed next time Ox0~Ox99 are started.	-	-	-	R/W R/W	Yes Yes	5 0	-
	Others: Ox0~Ox99 are executed again.)							
D1866	Electrical zero of the X-axis (Low word)	-	-	-	R/W	Yes	0	-
D1867	Electrical zero of the X-axis (High word)	-	-	-	R/W	Yes	0	-
D1868*	Setting an Ox motion subroutine number	0	0	-	R/W	Yes	0	3-34
D1869	Step address in the Ox motion subroutine at which an error occurs	0	-	-	R/W	No	0	-
D1872	Enabling a Y device when the Ox motion subroutine is ready (High byte: K1; Low byte: Starting Y device address)	0	-	-	R/W	No	0	-
D1873	Enabling a Y device when an M-code in the Ox motion subroutine is executed (High byte: K1; Low byte: Starting Y device address)	-	-	-	R/W	Yes	0	-
D1874	Using an X device to reset the M-code	0	-	-	R/W	No	0	-
D1875*	Starting the X-axis manually (ZRN, MPG, JOG-, JOG+)	-	-	-	R/W	Yes	0	-
D1896*	Setting the parameters of the Y-axis	-	-	-	R/W	Yes	0	3-40
D1898	Number of pulses it takes for the motor of the Y-axis to rotate once (Low word)	_	_	_	R/W	Yes	2000	_
D1899	Number of pulses it takes for the motor of the Y-axis to rotate once (High word)				10,00	100	2000	
D1900	Distance generated after the motor of the Y-axis rotate once (Low word)	-	_	_	R/W	Yes	1000	_
D1901	Distance generated after the motor of the Y-axis rotate once (High word)							
D1902	Maximum speed (V_{MAX}) at which the Y-axis rotates (Low word)							
D1903	Maximum speed (V_{MAX}) at which the Y-axis rotates (High word)	-	-	-	R/W	Yes	500K	-
D1904	Start-up speed (V_{BIAS}) at which the Y-axis rotates (Low word)	-	-	-	R/W	Yes	0	-
D1905	Start-up speed (V_{BIAS}) at which the Y-axis rotates (High word)							
D1906	JOG speed (V_{JOG}) at which the Y-axis rotates (Low word)	-	-	-	R/W	Yes	5000	-
D1907	JOG speed (V _{JOG}) at which the Y-axis rotates (High word)							
D1908	Speed (V_{RT}) at which the Y-axis returns home (Low word)	-	-	-	R/W	Yes	50K	-
D1909	Speed (V_{RT}) at which the Y-axis returns home (High word)							
D1910	Speed (V_{CR}) to which the speed of the Y-axis decreases when the axis returns home (Low word)	-	_	_	R/W	Yes	1000	_
D1911	Speed (V_{CR}) to which the speed of the Y-axis decreases when the axis returns home (High word)							
D1912	Number of PG0 pulses for the Y-axis	-	-	-	R/W	Yes	0	-
D1913	Supplementary pulses for the Y-axis	-	-	-	R/W	Yes	0	-
D1914 D1915	Home position of the Y-axis (Low word) Home position of the Y-axis (High word)	-	-	-	R/W	Yes	0	-
D1916	Time (T_{ACC}) it takes for the Y-axis to accelerate	-	-	-	R/W	Yes	500	-
D1310			1	1				1

Special		Off	STOP					
D device	Function	Û	<u></u>	Û	Attribute	Latching	Default	Page
device		On		STOP				
D1918	Target position of the Y-axis (P (I)) (Low word)	0	-	-	R/W	No	0	-
	Pulse width for the Y-axis (Low word)	0	-	-	R/W	No	0	-
D1919	Target position of the Y-axis (P (I)) (High word)	0	-	-	R/W	No	0	-
	Pulse width for the Y-axis (High word)	0	-	-	R/W	No	0	-
D1920	Speed at which the Y-axis rotates (V (I)) (Low word)	1000	-	-	R/W	No	1000	-
D1921	Speed at which the Y-axis rotates (V (I)) (High word)							
D1922	Target position of the Y-axis (P (II)) (Low word)	0	-	-	R/W	No	0	-
	Output period for the Y-axis (Low word)	0	-	-	R/W	No	0	-
D1923	Target position of the Y-axis (P (II)) (High word)	0	-	-	R/W	No	0	-
	Output period for the Y-axis (High word)	0	-	-	R/W	No	0	-
D1924	Speed at which the Y-axis rotates (V (II)) (Low word)	2000	-	-	R/W	No	2000	-
D1925	Speed at which the Y-axis rotates (V (II)) (High word)							
D1926*	Y-axis: Operation command	0	-	0	R/W	No	0	3-42
D1927*	Y-axis: Mode of operation	0	-	-	R/W	No	0	3-42
D1928	Present command position of the Y-axis (Pulse) (Low word)	0	-	-	R/W	No	0	-
D1929	Present command position of the Y-axis (Pulse) (High word)						_	
D1930	Present command speed of the Y-axis (PPS) (Low word)	0	0	0	R/W	No	0	-
D1931	Present command speed of the Y-axis (PPS) (High word)				-			
D1932	Present command position of the Y-axis (Unit) (Low word)	0	-	-	R/W	No	0	-
D1933	Present command position of the Y-axis (Unit) (High word)							
D1934	Present command speed of the Y-axis (Unit) (Low word)	0	0	0	R/W	No	0	-
D1935	Present command speed of the Y-axis (Unit) (High word)							
D1936*	State of the Y-axis	0	-	-	R	No	0	3-43
D1937*	Y-axis error code	0	-	-	R	No	0	3-39
D1938	Electronic gear ratio of the Y-axis (Numerator)	-	-	-	R/W	Yes	1	-
D1939	Electronic gear ratio of the Y-axis (Denominator)	-	-	-	R/W	Yes	1	-
D1940	Frequency of pulses generated by the manual pulse generator for the Y-axis (Low word)	0	_	0	R/W	No	0	_
D1941	Frequency of pulses generated by the manual pulse generator for the Y-axis (High word)	Ū		Ū			Ŭ	
D1942	Number of pulses generated by the manual pulse generator for the Y-axis (Low word)	0			R/W	No	0	
D1943	Number of pulses generated by the manual pulse generator for the X-axis (High word)	0	-	_		INO	0	-
D1944	Response speed of the manual pulse generator for the Y-axis	-	-	-	R/W	Yes	5	-
D1946	Electrical zero of the Y-axis (Low word)					Vee	0	
D1947	Electrical zero of the Y-axis (High word)	-	-	-	R/W	Yes	0	-
D1955*	Starting the Y-axis manually (ZRN, MPG, JOG-, JOG+)	-	-	-	R/W	Yes	4	-
D1976	Setting the parameters of the Z-axis	-	-	-	R/W	Yes	0	3-40
D1978	Number of pulses it takes for the motor of the Z-axis to rotate once (Low word)				DAA	Vaa	2000	
D1979	Number of pulses it takes for the motor of the Z-axis to rotate once (High word)	-	-	-	R/W	Yes	2000	-
D1980	Distance generated after the motor of the Z-axis rotate once (Low word)				DAA	Vee	1000	
D1981	Distance generated after the motor of the Z-axis rotate once (High word)	-	-	-	R/W	Yes	1000	-
D1982	Maximum speed (V _{MAX}) at which the Z-axis rotates (Low word)					Var	FOOL	
D1983	Maximum speed (V _{MAX}) at which the Z-axis rotates (High word)	-	-	-	R/W	Yes	500K	-
D1984	Start-up speed (V _{BIAS}) at which the Z-axis rotates (Low word)				D 44	N/		
D1985	Start-up speed (V _{BIAS}) at which the Z-axis rotates (High word)	-	-	-	R/W	Yes	0	-
D1986	JOG speed (V_{JOG}) at which the Z-axis rotates (Low word)				D 447		5000	
		-		-	R/W	Yes	5000	-

Special		Off	STOP					
D device	Function	1 U	↓ Ū	Φ Ω	Attribute	Latching	Default	Page
D1988	Press (1/1) at which the Z axis returns here (Law word)	On	RUN	STOP				
D1988 D1989	Speed (V_{RT}) at which the Z-axis returns home (Low word)	-	-	-	R/W	Yes	50K	-
	Speed (V_{RT}) at which the Z-axis returns home (High word) Speed (V_{CR}) to which the speed of the Z-axis decreases when							
D1990	the axis returns home (Low word)		-	-	R/W	Yes	1000	-
D1991	Speed (V_{CR}) to which the speed of the Z-axis decreases when the axis returns home (High word)							
D1992	Number of PG0 pulses for the Z-axis	-	-	-	R/W	Yes	0	-
D1993	Supplementary pulses for the Z-axis	-	-	-	R/W	Yes	0	-
D1994	Home position of the Z-axis (Low word)	_	-	_	R/W	Yes	0	-
D1995	Home position of the Z-axis (High word)					163		-
D1996	Time (T _{ACC}) it takes for the Z-axis to accelerate	-	-	-	R/W	Yes	500	-
D1997	Time (T _{DEC}) it takes for the Z-axis to decelerate	-	-	-	R/W	Yes	500	-
D1998	Target position of the Z-axis (P (I)) (Low word)	0	-	-	R/W	No	0	-
D1990	Pulse width for the Z-axis (Low word)	0	-	-	R/W	No	0	-
D1000	Target position of the Z-axis (P (I)) (High word)	0	-	-	R/W	No	0	-
D1999	Pulse width for the Z-axis (High word)	0	-	-	R/W	No	0	-
D2000	Speed at which the Z-axis rotates (V (I)) (Low word)	1000				NI-	1000	
D2001	Speed at which the Z-axis rotates (V (I)) (High word)	1000	-	-	R/W	No	1000	-
	Target position of the Z-axis (P (II)) (Low word)	0	-	-	R/W	No	0	-
D2002	Output period for the Z-axis (Low word)	0	-	-	R/W	No	0	-
_	Target position of the Z-axis (P (II)) (High word)	0	-	-	R/W	No	0	-
D2003	Output period for the Z-axis (High word)	0	-	-	R/W	No	0	-
D2004	Speed at which the Z-axis rotates (V (II)) (Low word)						_	
D2005	Speed at which the Z-axis rotates (V (II)) (High word)	2000	- 000	-	R/W	No	2K	-
D2006	Z-axis: Operation command	0	-	0	R/W	No	0	3-42
D2000	Z-axis: Mode of operation	0	-	-	R/W	No	0	3-42
D2007	Present command position of the Z-axis (Pulse) (Low word)	- U	•		1.7.00		0	10 12
D2000	Present command position of the Z-axis (Pulse) (Low word) Present command position of the Z-axis (Pulse) (High word)	0	-	-	R/W	No	0	-
D2003	Present command speed of the Z-axis (PPS) (Low word)							
D2010	Present command speed of the Z-axis (PPS) (Low word)	0	0	0) R/W	No	0	-
D2011	Present command position of the Z-axis (FFS) (high word)							
	Present command position of the Z-axis (Unit) (Low Word) Present command position of the Z-axis (Unit) (High word)	0	-	-	R/W	No	0	-
D2013	Present command position of the Z-axis (Unit) (high word) Present command speed of the Z-axis (Unit) (Low word)							
D2014		0	0	0	R/W	No	0	-
D2015	Present command speed of the Z-axis (Unit) (High word)					NI-		0.40
D2016	State of the Z-axis	0	-	-	R	No	0	3-43
D2017*	Z-axis error code	0	-	-	R	No	0	3-39
D2018	Electronic gear ratio of the Z-axis (Numerator)	-	-	-	R/W	Yes	1	-
D2019	Electronic gear ratio of the Z-axis (Denominator)	-	-	-	R/W	Yes	1	-
D2020	Frequency of pulses generated by the manual pulse generator for the Z-axis (Low word)	0	_	0	R/W	No	0	_
D2021	Frequency of pulses generated by the manual pulse generator for the Z-axis (High word)							
D2022	Number of pulses generated by the manual pulse generator for the Z-axis (Low word)	_					_	
D2023	Number of pulses generated by the manual pulse generator for the Z-axis (High word)	0	-	-	R/W	No	0	-
D2024	Response speed of the manual pulse generator for the Z-axis	-	-	-	R/W	Yes	5	-
D2026	Electrical zero of the Z-axis (Low word)					100		
D2020	Electrical zero of the Z-axis (High word)	-	-	-	R/W	Yes	0	-
D2029	Step address in the Oz motion subroutine at which an error	-	-	-	R/W	Yes	0	-
	occurs (reserved, not available presently)				D/\//	Vac		2 40
D2056	Setting the parameters of the A-axis	-	-	-	R/W	Yes	0	3-40
D2058	Number of pulses it takes for the motor of the A-axis to rotate once (Low word)	_	-	_	R/W	Yes	2000	_
D2059	Number of pulses it takes for the motor of the A-axis to rotate once (High word)							

Special		Off	STOP							
D	Function	Û	Û		Attribute	Latching	Default	Page		
device		On	RUN	STOP						
D2060	Distance generated after the motor of the A-axis rotate once (Low word)	-	-	_	R/W	Yes	1000	_		
D2061	Distance generated after the motor of the A-axis rotate once (High word)									
D2062	Maximum speed (V_{MAX}) at which the A-axis rotates (Low word)									
D2063	Maximum speed (V_{MAX}) at which the A-axis rotates (High word)	-	-	-	R/W	Yes	500K	-		
D2064	Start-up speed (V_{BIAS}) at which the A-axis rotates (Low word)	_	_	-	R/W	Yes	0	_		
D2065	Start-up speed (V_{\text{BIAS}}) at which the A-axis rotates (High word)					100	Ŭ			
D2066	JOG speed (V_{JOG}) at which the A-axis rotates (Low word)	-	_	_	R/W	Yes	5000	_		
D2067	JOG speed (V_{JOG}) at which the A-axis rotates (High word)					100				
D2068	Speed (V_{RT}) at which the A-axis returns home (Low word)	-	_	_	R/W	Yes	50K	_		
D2069	Speed (V_{RT}) at which the A-axis returns home (High word)					163	001			
D2070	Speed (V_{CR}) to which the speed of the A-axis decreases when the axis returns home (Low word)				R/W	Vaa	1000			
D2071	Speed (V_{CR}) to which the speed of the A-axis decreases when the axis returns home (High word)	-	-	-	K/VV	Yes	1000	-		
D2072	Number of PG0 pulses for the A-axis	-	-	-	R/W	Yes	0	-		
D2073	Supplementary pulses for the A-axis	-	-	-	R/W	Yes	0	-		
D2074	Home position of the A-axis (Low word)	-	-	-	R/W	Yes	0	-		
D2075	Home position of the A-axis (High word)	-	-	-	R/W	Yes	0	-		
D2076	Time (T _{ACC}) it takes for the A-axis to accelerate	-	-	-	R/W	Yes	500	-		
D2077	Time (T _{DEC}) it takes for the A-axis to decelerate	-	-	-	R/W	Yes	500	-		
	Target position of the A-axis (P (I)) (Low word)	0	-	-	R/W	No	0	-		
D2078	Pulse width for the A-axis (Low word)	0	-	-	R/W	No	0	-		
	Target position of the A-axis (P (I)) (High word)	0	-	-	R/W	No	0	-		
D2079	Pulse width for the A-axis (High word)	0	-	-	R/W	No	0	-		
D2080	Speed at which the A-axis rotates (V (I)) (Low word)	•					0			
D2080	Speed at which the A-axis rotates (V (I)) (Low word)	1000	-	-	R/W	No	1000	-		
	Target position of the A-axis (P (II)) (Low word)	0	-	-	R/W	No	0	-		
D2082	Output period for the A-axis (Low word)	0	-	-	R/W	No	0	-		
	Target position of the A-axis (P (II)) (High word)	0	-	-	R/W	No	0	-		
D2083	Output period for the A-axis (1 (iii)) (1 iigh word)	0	-	-	R/W	No	0	-		
D2084	Speed at which the A-axis rotates (V (II)) (Low word)	0	0				11/10	INO	0	
D2084	Speed at which the A-axis rotates (V (II)) (Low Wold) Speed at which the A-axis rotates (V (II)) (High word)	2000	-	-	R/W	No	2K	-		
D2085	A-axis: Operation command	0	-	0	R/W	No	0	3-42		
D2080	A-axis: Operation Command A-axis: Mode of operation	0	-	-	R/W	No	0	3-42		
	Present command position of the A-axis (Pulse) (Low word)	0	-	-	R/W	INO	0	3-42		
D2088		0	-	-	R/W	No	0	-		
D2089	Present command position of the A-axis (Pulse) (High word)									
D2090	Present command speed of the A-axis (PPS) (Low word)	0	0	0	R/W	No	0	-		
D2091	Present command speed of the A-axis (PPS) (High word)									
D2092	Present command position of the A-axis (Unit) (Low word)	0	-	-	R/W	No	0	-		
D2093	Present command position of the A-axis (Unit) (High word)									
D2094	Present command speed of the A-axis (Unit) (Low word)	0	0	0	R/W	No	0	-		
D2095	Present command speed of the A-axis (Unit) (High word)									
D2096	State of the A-axis	0	-	-	R	No	0	3-43		
D2097*	A-axis error code	0	-	-	R	No	0	3-39		
D2098	Electronic gear ratio of the A-axis (Numerator)	-	-	-	R/W	Yes	1	-		
D2099	Electronic gear ratio of the A-axis (Denominator)	-	-	-	R/W	Yes	1	-		
D2100	Frequency of pulses generated by the manual pulse generator for the A-axis (Low word)	0	-	0	R/W	No	0	-		
D2101	Frequency of pulses generated by the manual pulse generator for the A-axis (High word)	0	-	0	R/W	No	0	-		
D2102	Number of pulses generated by the manual pulse generator for the A-axis (Low word)	0	-	-	R/W	No	0	-		

Special		Off	STOP					
D	Function	Û	Û	Û	Attribute	Latching	Default	Page
device		On	RUN	STOP				
D2103	Number of pulses generated by the manual pulse generator for the A-axis (High word)	0	-	-	R/W	No	0	-
D2104	Response speed of the manual pulse generator for the A-axis	-	-	-	R/W	Yes	5	-
D2136	Setting the parameters of the B-axis	-	-	-	R/W	Yes	0	3-40
D2138	Number of pulses it takes for the motor of the B-axis to rotate once (Low word)	-	-	-	R/W	Yes	2000	-
D2139	Number of pulses it takes for the motor of the B-axis to rotate once (High word)	-	-	-	R/W	Yes	2000	-
D2140	Distance generated after the motor of the B-axis rotate once (Low word)	-	-	-	R/W	Yes	1000	-
D2141	Distance generated after the motor of the B-axis rotate once (High word)				R/W	Yes	1000	
D2142	Maximum speed (V_{MAX}) at which the B-axis rotates (Low word)	-	-	-	R/W	Yes	500K	-
D2143	Maximum speed (V_{MAX}) at which the B-axis rotates (High word)	-	-	-	R/W	Yes	500K	
D2144	Start-up speed (V _{BIAS}) at which the B-axis rotates (Low word)	-	-	-	R/W	Yes	0	-
D2145	Start-up speed (V _{BIAS}) at which the B-axis rotates (High word)				R/W	Yes	0	
D2146	JOG speed (V _{JOG}) at which the B-axis rotates (Low word)	-	-	-	R/W	Yes	5000	-
D2147	JOG speed (V _{JOG}) at which the B-axis rotates (High word)				R/W	Yes	5000	
D2148	Speed (V _{RT}) at which the B-axis returns home (Low word)	-	-	-	R/W	Yes	50K	-
D2149	Speed (V _{RT}) at which the B-axis returns home (High word)	-	-	-	R/W	Yes	50K	-
D2150	Speed (V_{CR}) to which the speed of the B-axis decreases when the axis returns home (Low word)	-	-	-	R/W	Yes	1000	-
D2151	Speed (V_{CR}) to which the speed of the B-axis decreases when the axis returns home (High word)	-	-	-	R/W	Yes	1000	-
D2152	Number of PG0 pulses for the B-axis	-	-	-	R/W	Yes	0	-
D2153	Supplementary pulses for the B-axis	-	-	-	R/W	Yes	0	-
D2154	Home position of the B-axis (Low word)	-	-	-	R/W	Yes	0	-
D2155	Home position of the B-axis (High word)	-	-	-	R/W	Yes	0	-
D2156	Time (T _{ACC}) it takes for the B-axis to accelerate	-	-	-	R/W	Yes	500	-
D2157	Time (T _{DEC}) it takes for the B-axis to decelerate	-	-	-	R/W	Yes	500	-
D2158	Target position of the B-axis (P (I)) (Low word)	0	-	-	R/W	No	0	-
D2159	Target position of the B-axis (P (I)) (High word)	0	-	-	R/W	No	0	-
D2160	Speed at which the B-axis rotates (V (I)) (Low word)	1000	-	-	R/W	No	1000	-
D2161	Speed at which the B-axis rotates (V (I)) (High word)	1000	-	-	R/W	No	1000	-
D2162	Target position of the B-axis (P (II)) (Low word)	0	-	-	R/W	No	0	-
D2163	Target position of the B-axis (P (II)) (High word)	0	-	-	R/W	No	0	-
D2164	Speed at which the B-axis rotates (V (II)) (Low word)	2000	-	-	R/W	No	2K	-
D2165	Speed at which the B-axis rotates (V (II)) (High word)	2000	-	-	R/W	No	2K	-
D2166	B-axis: Operation command	0	-	0	R/W	No	0	3-42
D2167	B-axis: Mode of operation	0	-	-	R/W	No	0	3-42
D2168	Present command position of the B-axis (Pulse) (Low word)	0	-	-	R/W	No	0	-
D2169	Present command position of the B-axis (Pulse) (High word)	0	-	-	R/W	No	0	-
D2170	Present command speed of the B-axis (PPS) (Low word)	0	0	0	R/W	No	0	-
D2171	Present command speed of the B-axis (PPS) (High word)	0	0	0	R/W	No	0	-
D2172	Present command position of the B-axis (Unit) (Low word)	0	-	-	R/W	No	0	-
D2173	Present command position of the B-axis (Unit) (High word)	0	-	-	R/W	No	0	-
D2174	Present command speed of the B-axis (Unit) (Low word)	0	0	0	R/W	No	0	-
D2175	Present command speed of the B-axis (Unit) (High word)	0	0	0	R/W	No	0	-
D2176	State of the B-axis	0	-	-	R	No	0	3-43
D2177	B-axis error code	0	-	-	R	No	0	3-39
D2178	Electronic gear ratio of the B-axis (Numerator)	-	-	-	R/W	Yes	1	-
D2179	Electronic gear ratio of the B-axis (Denominator)	-	-	-	R/W	Yes	1	-
D2180	Frequency of pulses generated by the manual pulse generator for the B-axis (Low word)	0	-	0	R/W	No	0	-

Special D device	Function	Off ↓ On	STOP ↓ RUN	RUN ↓ STOP	Attribute	Latching	Default	Page
D2181	Frequency of pulses generated by the manual pulse generator for the B-axis (High word)	0	-	0	R/W	No	0	-
D2182	Number of pulses generated by the manual pulse generator for the B-axis (Low word)	0	-	-	R/W	No	0	-
D2183	Number of pulses generated by the manual pulse generator for the B-axis (High word)	0	-	-	R/W	No	0	-
D2184	Response speed of the manual pulse generator for the B-axis	-	-	-	R/W	Yes	5	-
D2216	Setting the parameters of the C-axis	-	-	-	R/W	Yes	0	3-40
D2218	Number of pulses it takes for the motor of the C-axis to rotate once (Low word)	-	-	-	R/W	Yes	2000	-
D2219	Number of pulses it takes for the motor of the C-axis to rotate once (High word)	-	-	-	R/W	Yes	2000	-
D2220	Distance generated after the motor of the C-axis rotate once (Low word)	-	-	-	R/W	Yes	1000	-
D2221	Distance generated after the motor of the C-axis rotate once (High word)	-	-	-	R/W	Yes	1000	-
D2222	Maximum speed (V_{MAX}) at which the C-axis rotates (Low word)	-	-	-	R/W	Yes	500K	-
D2223	Maximum speed (V_{MAX}) at which the C-axis rotates (High word)	-	-	-	R/W	Yes	500K	-
D2224	Start-up speed (V _{BIAS}) at which the C-axis rotates (Low word)	-	-	-	R/W	Yes	0	-
D2225	Start-up speed (V _{BIAS}) at which the C-axis rotates (High word)	-	-	-	R/W	Yes	0	-
D2226	JOG speed (V _{JOG}) at which the C-axis rotates (Low word)	-	-	-	R/W	Yes	5000	-
D2227	JOG speed (V _{JOG}) at which the C-axis rotates (High word)	-	-	-	R/W	Yes	5000	-
D2228	Speed (V_{RT}) at which the C-axis returns home (Low word)	-	-	-	R/W	Yes	50K	-
D2229	Speed (V_{RT}) at which the C-axis returns home (High word)	-	-	-	R/W	Yes	50K	-
D2230	Speed (V _{CR}) to which the speed of the C-axis decreases when the axis returns home (Low word)		-	-	R/W	Yes	1000	-
D2231	Speed (V $_{\rm CR}$) to which the speed of the C-axis decreases when the axis returns home (High word)	-	-	-	R/W	Yes	1000	-
D2232	Number of PG0 pulses for the C-axis	-	-	-	R/W	Yes	0	-
D2233	Supplementary pulses for the C-axis	-	-	-	R/W	Yes	0	-
D2234	Home position of the C-axis (Low word)	-	-	-	R/W	Yes	0	-
D2235	Home position of the C-axis (High word)	-	-	-	R/W	Yes	0	-
D2236	Time (T _{ACC}) it takes for the C-axis to accelerate	-	-	-	R/W	Yes	500	-
D2237	Time (T _{DEC}) it takes for the C-axis to decelerate	-	-	-	R/W	Yes	500	-
D2238	Target position of the C-axis (P (I)) (Low word)	0	-	-	R/W	No	0	-
D2239	Target position of the C-axis (P (I)) (High word)	0	-	-	R/W	No	0	-
D2240	Speed at which the C-axis rotates (V (I)) (Low word)	1000	-	-	R/W	No	1000	-
D2241	Speed at which the C-axis rotates (V (I)) (High word)	1000	-	-	R/W	No	1000	-
D2242	Target position of the C-axis (P (II)) (Low word)	0	-	-	R/W	No	0	-
D2243	Target position of the C-axis (P (II)) (High word)	0	-	-	R/W	No	0	-
D2244	Speed at which the C-axis rotates (V (II)) (Low word)	2000	-	-	R/W	No	2K	-
D2245	Speed at which the C-axis rotates (V (II)) (High word)	2000	-	-	R/W	No	2K	-
D2246 D2247	C-axis: Operation command C-axis: Mode of operation	0	-	0	R/W R/W	No	0	- 3-42
D2247 D2248	-	0	-	-		No		3-42
D2248 D2249	Present command position of the C-axis (Pulse) (Low word) Present command position of the C-axis (Pulse) (High word)	0	-	-	R/W R/W	No No	0	-
D2249 D2250		0	- 0	- 0	R/W	NO	0	-
D2250 D2251	Present command speed of the C-axis (PPS) (Low word) Present command speed of the C-axis (PPS) (High word)		0	0	R/W R/W	NO NO	0	-
D2251	Present command position of the C-axis (PPS) (high word)	0	-	-	R/W	No	0	-
D2252 D2253	Present command position of the C-axis (Unit) (Low Wold) Present command position of the C-axis (Unit) (High word)	0	-	-	R/W	No	0	-
D2253	Present command speed of the C-axis (Unit) (Low word)	0	0	0	R/W	No	0	-
D2254	Present command speed of the C-axis (Unit) (Low word) Present command speed of the C-axis (Unit) (High word)	0	0	0	R/W	No	0	_
D2255	State of the C-axis	0	-	-	R	No	0	3-43
52200					R	No	0	3-43
D2257	C-axis error code	0	- 1	- 1	R			

Special D	l Function		STOP ₽	RUN ₽	Attribute	Latching	Default	Page
device		On	RUN	STOP				
D2259	Electronic gear ratio of the C-axis (Denominator)	-	-	-	R/W	Yes	1	-
D2260	Frequency of pulses generated by the manual pulse generator for the C-axis (Low word)	0	-	0	R/W	No	0	-
D2261	Frequency of pulses generated by the manual pulse generator for the C-axis (High word)	0	-	0	R/W	No	0	-
D2262	Number of pulses generated by the manual pulse generator for the C-axis (Low word)	0	-	-	R/W	No	0	-
D2263	Number of pulses generated by the manual pulse generator for the C-axis (High word)	0	-	-	R/W	No	0	-
D2264	Response speed of the manual pulse generator for the C-axis	-	-	-	R/W	Yes	5	-

3.11 Functions of Special Auxiliary Relays and Special Data Registers

M1000~M1003

 M1000: If the DVP-10PM series motion controller runs, M1000 will be a normally-open contact (Form A contact). When the DVP-10PM series motion controller runs, M1000 is ON.

- M1001: If the DVP-10PM series motion controller runs, M1001 will be a normally-closed contact (Form B contact). When the DVP-10PM series motion controller runs, M1001 is OFF.
- 3. M1002: A positive-going pulse is generated at the time when the DVP-10PM series motion controller runs. The width of the pulse is equal to the scan cycle. If users want to initialize the DVP-10PM series motion controller, they can use the contact.
- 4. M1003: A negative-going pulse is generated at the time when the DVP-10PM series motion controller runs. The width of the pulse is equal to the scan cycle.

D1000

 The watchdog timer is used to monitor a scan cycle. If the scan cycle is greater than the watchdog timer value, the ERROR LED indicator on the DVP-10PM series motion controller will be turned ON, and all the output devices will be turned OFF.
 The watchdog timer is initially set to 200. If the program is long, or the operation is complex, users can change the watchdog timer value by means of the instruction MOV. In the example below, the watchdog timer value is changed to 300.

- Initial pulse
- 3. The maximum value which can be stored in the watchdog timer is 32,767. However, the larger the watchdog timer value is, the more time it takes to detect any operation error. As a result, if there is no complex operation resulting in a scan cycle longer than 200 milliseconds, it is suggested that the watchdog timer value should be less than 200.
- 4. If an opration is complex, the scan cycle may be long. Users can check whether the scan cycle is greater than the value stored in D1000 by monitoring D1010~D1012. If the scan cycle is greater than the value stored in D1000, the users can change the value in D1000.

Inputfilter

- Users can set the time it takes for the input terminals X0~X7 to respond by setting D1020. The value in D1020 must be in the range of 0 to 20. (Unit: ms)
- If the DVP-10PM series motion controller is turned form OFF to ON, the value in S D1020 will automatically become 10.

3. If the program below is executed, the time is takes for the input terminals X0~X7 to respond will be 0 milliseconds. Owing to the fact that the input terminals are connected to resistor-capacitor circuits in series, the shortest time it takes for the input terminals to respond is 50 microseconds.

- Normally-open contact
- 4. If high-spedd counters and interrupts are used in a program, the value in D1020 does not have any effect.

The communication ports with which a DVP-10PM series motion controller is equipped are COM1 (RS-232 port) and COM2 (RS-485 port). They support Modbus ASCII/RTU. The maximum speed available is 115,200 bps. COM3 (RS-232/RS-485 communication card) supports Modbus ASCII. The maximum speed available is 38,400 bps. COM1, COM2, and COM3 can be used simultaneously.

- COM1 can only be used as a slave station. It supports ASCII/RTU, and the adjustment of a communication speed. The maximum speed available is 115,200 bps. It supports the modification of the number of data bits.
- COM2 COM2 can be used as a master station or a slave station. It supports ASCII/RTU, and the adjustment of a communication speed. The maximum speed available is 115,200 bps. It supports the modification of the number of data bits.
- COM3 can only be used as a slave station. It supports the ASCII communication format 7, E, 1 (7 data bits, even parity bit, 1 stop bit), and the adjustment of a communication speed. The maximum speed available is 38,400 bps. COM2 and COM3 can not be used as slave stations simultaneously.

port M1120, M1136, M1138, M1139, M1143, D1036, D1109, and D1120

Communication

- ⊘ Setting a communication format:
 - COM1 1. D1036 is used to set a communication format. Bit 8~bit 15 in D1036 do not support the setting of a communication format.
 - 2. M1138: The setting of the communication through COM1 is retained.
 - 3. M1139: Selecting an ASCII mode or an RTU mode
 - COM2 1. D11120 is used to set a communication format.
 - 2. M1120: The setting of the communication through COM2 is retained.
 - 3. M1143: Selecting an ASCII mode or an RTU mode
 - COM3 1. D1109 is used to set a communication format. Bit 0~bit 3 and Bit 8~bit 15 in D1036 do not support the setting of a communication format.
 - 2. M1136: The setting of the communication through COM3 is retained.

Communication format:

	Contents	S	0			1			
b0	Data length			b0=0: 7		b0=1:8			
b1	b1 Parity bit		b2, b1=00 :			None			
b1 b2				b2, b1=01	:	Odd			
IJZ				b2, b1=11	:	Even			
b3	Stop bit			b3=0: 1 bit		b3=1: 2 bits			
	b7~b4=0001	(H1)	: 110		bps				
	b7~b4=0010	(H2)	:	150	bps				
	b7~b4=0011	(H3)	(H3) : 300		bps				
	b7~b4=0100	(H4)	:	600	bps				
	b7~b4=0101	(H5)	:	1,200	bps				
b7~b4	b7~b4=0110	(H6)	: 2,400 bps						
57~54	b7~b4=0111	(H7)	: 4,800 bps						
	b7~b4=1000	(H8)	:	9,600	bps				
	b7~b4=1001	(H9)	:	19,200	bps				
	b7~b4=1010	(HA)	:	38,400	bps				
	b7~b4=1011	(HB)	:	57,600	bps				
	b7~b4=1100	(HC)	:	115,200	bps				
b8	Start character		b	8=0: None		b8=1: D1124			
b9	First terminator		b	9=0: None		b9=1: D1125			
b10	Second termina	ator	b1	10=0: None		b10=1: D1126			
b15~b11	Undefined								

Example 1: Modifying the communication format of COM2

If users want to modify the communication format of COM2 on a DVP-10PM series motion controller, they have to add the program shown below to the top of the program in the DVP-10PM series motion controller. After the STOP/RUN switch on the DVP-10PM series motion controller is turned from the STOP position to the RUN position, the state of M1120 will be detected during the first scan cycle. If M1120 is ON, the setting of COM2 will be changed in accordance with the value in D1120.

The communication format of COM2 is changed to the ASCII format 9600, 7, E 1 (9,600bps, 7 data bits, even parity bit, 1 stop bit).

Notes:

- 1. If COM2 on a DVP-10PM series motion controller is used as a slave station, no communication instruction can exist in the program in the DVP-10PM series motion controller.
- 2. If the STOP/RUN switch on a DVP-10PM series motion controller is turned from the RUN position to the STOP position after the communication format of COM2 is modified, the new communication format of COM2 will not be changed.
- 3. If users disconnect a DVP-10PM series motion controller and then power it up after they modify the communication format of COM2, the new communication format of COM2 will be restored to its factory setting.

Example 2: Modifying the communication format of COM1

If users want to modify the communication format of COM1 on a DVP-10PM series motion controller, they have to add the program shown below to the top of the program in the DVP-10PM series motion controller. After the STOP/RUN switch on the DVP-10PM series motion controller is turned from the STOP position to the RUN position, the state of M1138 will be detected during the first scan cycle. If M1138 is ON, the setting of COM1 will be changed in accordance with the value in D1036.

The communication format of COM1 is changed to the ASCII format 9600, 7, E 1 (9,600bps, 7 data bits, even parity bit, 1 stop bit).

Notes:

- 1. If the STOP/RUN switch on a DVP-10PM series motion controller is turned from the RUN position to the STOP position after the communication format of COM1 is modified, the new communication format of COM1 will not be changed.
- 2. If users disconnect a DVP-10PM series motion controller and then power it up after they modify the communication format of COM1, the new communication format of COM1 will be restored to its factory setting.

Example 3: Modifying the communication format of COM3

The communication format of COM3 is 7, E 1 (7 data bits, even parity bit, 1 stop bit). If users want to change the communication speed of COM3 on a DVP-10PM series motion controller to 38,400 bps, they have to add the program shown below to the top of the program in the DVP-10PM series motion controller. After the STOP/RUN switch on the DVP-10PM series motion controller is turned from the STOP position to the RUN position, the state of M1136 will be detected during the

first scan cycle. If M1136 is ON, the setting of COM3 will be changed in accordance with the value in D1109.

The communication speed of COM3 is changed to 38,400 bps.

Example 4: Using COM1/COM2 in an RTU mode COM1: (9,600, 8, E, 1, RTU)

COM2: (9,600, 8, E, 1, RTU)

Communication timeout

D1038

Fixed scan time

M1039 and D1039

If an RS-485 port on a DVP-10PM series motion controller functions as a slave station, users can set a communication timeout. The value in D1038 is in the range of 0 to 3,000 (0 to 30 seconds). The unit used is 10 milliseconds. If the value in D1038 is not in the range of 0 to 3,000, the value in D1038 will become 0. The value in D1038 must be less than the value in D1000.

1. If M1039 is ON, the time it takes for the program to be scanned will depend on the value in D1039. If the execution of a program is complete, the program will not be scanned again until the fixed scan time set elapses. If the value in D1039 is less than the time it takes for a program to be scanned, the time it takes for a program to be scanned, will be given priority.

2. The values stored in D1010~D1012 include the value stored in D1039.

Setting an OX motion subroutine number

M1074 and D1868

- Users can specify an Ox motion subroutine by setting D1868. The steps of setting D1868 are as follows.
- 1. The users have to set bit 14 in D1868 to 1, set bit 15 in D1868 to 1, or set bit 14 and bit 15 in D1868 to 1. Besides, the users have to write K99 (H63) into bit 0~bit 13 in D1868, that is, the Ox motion subroutine number specified is Ox99. To sum up, the users have to write H8063 into D1868.
- 2. After M1074 is set to ON, the Ox motion subroutine specified by D1868 will be executed.

The program is shown below.

In the main program O100, X0 starts the motion subroutine Ox99. There are six high-speed counters.

High-speed counting

M1200 and C200 M1204 and C204 M1208 and C208 M1212 and C212 M1216 and C216 M1220 and C220

1						
		Counter	Mode	of counting	External	External input
	Number	number	Device	Setting value	resetting terminal	terminal
) 	1	C200	K1M1200	0: U/D* 1: P/D*	X10/M1203	X0, X1, and S/S
3	2	C204	K1M1204	2: A/B* (One time the	X11/M1207	X2, X3, and S/S
5	3	C208	K1M1208	frequency of A/B-phase	X12/M1211	X4, X5, and S/S
)	4	C212	K1M1212	inputs) 3: 4A/B (Four	X13/M1215	X6, X7, and S/S
	5	C216	K1M1216	times the frequency of	X0/M1219	X10+, X10-, X11+, and X11-
	6	C220	K1M1220	A/B-phase inputs)	X1/M1223	X12+, X12-, X13+, and X13-

*1. U/D: Counting up/Counting down; P/D: Pulse/Direction; A/B: A phase/B phase

*2. The input terminals of the first counter~the fourth counter are transistors whose collectors are open collectors. The input terminals of the fifth counter~the sixth counter are differential input terminals.

The steps of setting the second counter are as follows.

- 1. Write K2 into K1M1204.
- 2. Enable C204.

The program for step 1 and step 2 is shown below.

3. If users want to clear the present counter value by means of an external signal, they have to write HA into K1M1024.

M1027	M1026	M1025	M1204
1	0	1	0

4. C204 is enabled. If X11 is ON, the present value of C204 will become zero. The program for step 3 and step 4 is shown below.

	There ar	e six niyi	i-speed iii	1013.						
High-speed	Number	Counter		Mode of	of measurin	ng time		External	Storage	
timing	Number	Counter	Device		Setting	g value		signal	device	
	1	C200	K1M1200					X10	C201	
M1200 and C201				Bit3	Bit2	Bit1	Bit0			
M1204 and C205	2	C204	K1M1204	x	Enabling	x	Selecting	X11	C205	
M1208 and C209					a timer		a mode			
M1212 and C213	3	C208	K1M1208		abling a tim			X12	C209	
M1216 and C217		0200	1111200			,	The interval	,2	0200	
M1220 and C221	4	C212	K1M1212		between the rising edge of a pulse and the falling edge of the		X13	C213		
	· .				lse is measi		age of the			
	5	C216	K1M1216	•	1: Cyclic m	,	ne interval	XO	C217	
				· · · ·	tween the ris	· ·				
	6	C220	K1M1220	pu	lse and the i xt pulse is m	rising e	dge of the	X1	C221	
			بنام منام الم					1	1	

There are six high-speed timers

Example 1: Using the third timer in a general mode

- 1. Users have to select the general mode, and enable the timer, that is, they have to write K4 into K1M1208.
- 2. C208 is enabled. The interval between the rising edge of a pulse received through X12 and the falling edge of the pulse is measured. The interval is written into C209. (Unit: 0.01 microseconds)

The program is shown below.

Example 2: Using the third timer in a cyclic mode

- 1. Users have to write K5 into K1M1208.
- 2. C208 is enabled. The interval between the rising edge of a pulse received through X12 and the rising edge of the next pulse is measured. The interval is written into C209. (Unit: 0.01 microseconds)

The program is shown below.

The cyclic mode is used to measure a frequency.

1. D1140: Number of right-side modules (AD, DA, XA, PT, TC, RT, HC, PU) (8 right-side modules at most)

Detecting expansion

- 2. D1142: Number of X devices in a digital module
- 3. D1143: Number of Y devices in a digital module

D1140, D1142, and D1143

Latching device range

- 1. Users can set latching device ranges. The devices in the range of a starting latching device address and a terminal latching device address are latching devices.
- 2. Please refer to section 3.1 for more information.

D1200~D1211

If M1304 in a DVP-10PM series motion controller is ON, the X devices in the DVP-10PM series motion controller can be turned ON/OFF by means of PMSoft.

M1304

D1313~D1319

1. Special data registers which are related to the real-time clock in a DVP-10PM series motion controller

Device	Name	Function
D1313	Second	0~59
D1314	Minute	0~59
D1315	Hour	0~23
D1316	Day	1~31
D1317	Month	1~12
D1318	Week	1~7
D1319	Year	0~99 (A.D.)

- 2. If the value of the second in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 0. If the value of the minute in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 0. If the value of the hour in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 0. If the value of the day in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 0. If the value of the day in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 1. If the value of the month in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 1. If the value of the week in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 1. If the value of the week in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 1. If the value of the week in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 1. If the value of the week in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 1. If the value of the year in the real-time clock in a DVP-10PM series motion controller is incorrect, it will become 0.
- 3. The real-time clock in a DVP-10PM series motion controller is a latching device. If it is disconnected and then powered up, it will continue measuring time. It is suggested that users should calibrate the real-time clock in a DVP-10PM series motion controller after it is powered up.

- Right-side special I/O module ID 2.
- 1. If a DVP-10PM series motion controller is connected to special I/O modules, the IDs of the special I/O modules will be stored in D1320~D1327.

2. ID's of the special I/O modules which can be connected to a DVP-10PM series motion controller:

D1320~D1327

	I/O module	ID (Hexadecimal value)	I/O module	ID (Hexadecimal value)
	DVP04AD-H2	H'6400	DVP01PU-H2	H'6110
	DVP04DA-H2	H'6401	DVP04PT-H2	H'6402
	DVP04TC-H2	H'6403	DVP06XA-H2	H'6604
	DVP-PM	H'6260	DVP01HC-H2	H'6120
1.	D1400 is an inter	rupt register. If users	set a bit in D1400 to	ON, an interrupt will

Interrupt register

D1400 and D1401

Bit#	Interrupt	Interrupt number
0	Time interrupt	10
1	External terminal START0/X0	1
2	External terminal STOP0/X1	12
3	External terminal START1/X2	3
4	External terminal STOP1/X3	4
5	External terminal X4	15
6	External terminal X5	16
7	External terminal X6	7
8	External terminal X7	18

- 2. If an interrupt enabled is a time interrupt, users can write the cycle of the interrupt into D1401.
- 3. There are two types of interrupts.
 - External interrupt: If an interrupt is triggered by the rising edge/falling edge of a pulse received through an external terminal, the execution of the present program will stop, and the interrupt will be executed. After an interrupt is executed, the program which is executed before the interrupt is triggered will be executed.
 - Time interrupt: The execution of the present program stops at regular intervals. Whenever the execution of the present program stops, an interrupt is executed.
 - If users want to clear the M-code in D1703, they have to set M1744 to ON. If M1744 is set to ON, the value in D1703 will be cleared, and M1794 will be reset.
 - If an M code in an Ox motion subroutine is executed, M1794 will be ON. The M-code which is executed is stored in D1703.

M1744, M1794, and D1703

Clearing the

M-code which

is executed

Ready flag

M1792, M1872, M2032, M2112, M2192, and M2272

- 1. Every motion axis uses a ready flag. The X-axis uses M1792, the Y-axis uses M1872, the Z-axis uses M2032, the A-axis uses M2112, the B-axis uses M2192, and the C-axis uses M2272. Users can use the ready flags to judge whether the axes operate.
- Description of the ready flag for the X-axis: Before the X-axis operates, M1792 is ON. When the X-axis operates, M1792 is OFF. After the first axis finishes operating, M1792 is ON.

Clearing the motion error	1. If errors occur in the X-axis, the Y-axis, the Z-axis, the A-axis, the B-axis, and the C-axis, M1793, M1873, M2033, M2113, M2193, and M2273 will be ON, and the error messages which appear will be stored in D1857, D1937, D2017, D2097, D2177, and D2257.
M1793 and D1857	2. If users want to eliminate the error occuring in an axis, they have to clear the error

If users want to eliminate the error occuring in an axis, they have to clear the error code in the special data register corresponding to the axis, and reset the special auxiliary relay corresponding to the axis.

If users want to turn an input terminal into a Form A contact, they have to set the bit corresponding to the input terminal to OFF. If the users want to turn an input terminal into a Form B contact, they have to set the bit corresponding to the input terminal to ON.

Reading the	
states of the	
input terminals	s,

7

X7 (PG3)

M1873 and D1937

M2033 and D2017 M2113 and D2097 M2193 and D2177 M2273 and D2257

Setting the

polarities of

the input terminals

D1800

N.	i b contact, they have		
Bit#	Polarity	Bit#	Polarity
0	X0 (DOG0)	8	X10 (MPGA)
1	X1 (PG0)	9	X11 (MPGB)
2	X2 (DOG1)	10	X12 (DOG4)
3	X3 (PG1)	11	X13 (DOG5)
4	X4 (DOG2)	12	-
5	X5 (PG2)	13	-
6	X6 (DOG3)	14	-

15

If a bit in D1800 is ON, the input terminal corresponding to the bit receives a signal. If a bit in D1800 is OFF, the input terminal corresponding to the bit does not receive a signal.

- <u>-</u>			
Bit#	State	Bit#	State
0	X0 (DOG0)	8	X10 (MPGA)
1	X1 (PG0)	9	X11 (MPGB)
2	X2 (DOG1)	10	X12 (DOG4)
3	X3 (PG1)	11	X13 (DOG5)
4	X4 (DOG2)	12	-
5	X5 (PG2)	13	-
6	X6 (DOG3)	14	-
7	X7 (PG3)	15	-

Setting a filter coefficient for the input terminals

D1806

- 1. Users can set a filter coefficient for the input terminals X0~X7 by setting the low byte in SR806.
- 2. Users can set a filter coefficient for the input terminals X10+, X10-, X11+, and X11by setting the low byte in SR806.

lter coeffi	ceint = $\frac{85000}{2^{N+4}}$ (kHz); N	l=1~19	
N	kHz	N	kHz
1	2656.25	11	2.593994
2	1328.125	12	1.296997
3	664.0625	13	0.648499
<u>ا</u>	332.0313	14	0.324249
5	166.0156	15	0.162125
;	83.00781	16	0.081062
7	41.50391	17	0.040531
8	20.75195	18	0.020266
9	10.37598	19	0.010133
)	5.187988		

- 4. If the value in D1806 is 0, no signals will be filtered.
- 5. If the value in D1806 is H000A, the filter coefficient for X0~X7 and 85000

 $=\frac{05000}{2^{10+4}}=5.187988$

MPG0/1 2^{1074} (KHz), and the signals whose frequencies are higher than 5.187988 kHz will be removed.

- 1. If an error occurs in O100, M1953 will be ON, the error code corresponding to the error will be stored in D1802, and the step address at which the error occurs will be stored in D1803.
- 2. Please refer to appendix A in chapter 9 for more information about error codes.

M1953, D1802, and D1803

O100 error

Setting the parameters of the axis D1816, D1896, D1976, D2056, D2136, and D2216

D1816 is for the X-axis, D1896 is for the Y-axis, D1976 is for the Z-axis, D2056 is for the A-axis, D2136 is for the B-axis, and D2216 is for the C-axis.

Bit#	Parameter of the axis	Bit#	Parameter of the axis
0	Unit ^{*1}	8	Direction in which the axis returns home *4
1		9	Mode of returning home ^{*4}
2	Ratio ^{*4}	10	Mode of triggering the return to home ^{*4}
3		11	Direction in which the motor rotates ^{*4}
4		12	Relative/Absolute coordinates ^{*4}
5	Output type ^{*3}	13	Mode of triggering the calculation of the target position ^{*4}
6*	PWM mode ^{*4}	14	Curve ^{*4}
7		15	

*: Only DVP-10PM series motion controllers support this function.

*1:

b1	b0	Unit		Motor unit	Compound unit	Mechanical unit
0	0	Motor unit		pulse	h	ım
0	1	Mechanical unit	Position	pulse	m	deg
1	0	Compound unit		pulse	10 ⁻⁴ i	nches
1	1			pulse	/second	centimeter/minute
			Speed	pulse	second	10
			Opeeu	puise	second	degrees/minute
				pulse	/second	inch/minute

*2:			*.	3:						
[b3	b2	Ratio	b5	b4	Description				
	0	0	10 ⁰	0	0	Positive-going pulse+Negative-going pulse				
	0	1	10 ¹	0	1	Pulse+Direction				
	1	0	10 ²	1	0	A/B-phase pulse (two				
	1	1	10 ³	1	1	phases and two inputs)				
*4:										
	Bit#		De	escriptio	on					
	6	(1) If p (2) If si (3) Pul	Enabling a PWM mode ositive JOG motion is started, ingle-speed motion is started, se width: D1838, D1918, D19 tput period: D1842, D1922, D	Y0~Y3 198, and	will ser D2078	nd single-phase pulses.				
	8	Bit 8=0	The value indicating the pre- progressively.	sent con	nmand	position of the axis decreases position of the axis increases				
	9	Bit 9=0:	Normal mode ; bit 9=1: Overv	write mo	de					
	10		to low.	-		ition in DOG's signal from high ition in DOG's signal from low				
	11		 When the motor rotates clo command position of the ax When the motor rotates clo command position of the ax 	kis incre ckwise,	ases. the val					
	12		0: Absolute coordinates 1: Relative coordinates							
	13	 Bit 12=1. Relative coordinates Bit 13=0: The calculation of the target position of the axis is triggered by a transition in DOG's signal from low to high. Bit 13=1: The calculation of the target position of the axis is triggered by a transition in DOG's signal from high to low. (The setting of bit 13 is applicable to the insertion of single-speed motion, and the insertion of two-speed motion.) 								
	14		0: Trapezoid curve 1: S curve							

Operation command	Bit#	xis, D2166 is for the B-axis, and D2 Operation command	Bit#	Operation command						
01846, D1926,	0	The motion of the axis specified is stopped by software.	8	A mode of single-speed motion is activated.						
D2006, D2086, D2166, and	1	The motion of the axis specified is started by software.	9	A mode of inserting single-speed motion is activated.						
02246	2	The axis specified operates in a JOG+ mode.	10	A mode of two-speed motion is activated.						
	3	The axis specified operates in a JOG- mode.	11	A mode of inserting two-speed motion is activated.						
	4	A mode of variable motion is activated.	12	0: The execution of the Ox motion subroutine set stops.1: The execution of the Ox motion subroutine set starts.						
	5	A manual pulse generator is operated.	-							
	6	A mode of triggering the return to home is activated.		-						
	7	-	15	-						
Modeof	D1847 is for the X-axis, D1927 is for the Y-axis, D2007 is for the Z-axis, D2087 is the A-axis, D2167 is for the B-axis, and D2247 is for the C-axis.									
operation	Bit#	Mode of operation	Bit#	Mode of operation						
	0	-	8	-						
D1847, D1927, D2007, D2087,	1	-	9	-						
D2167, and D2247	2	Mode of sending a CLR signal	10	-						
DZZ41	3	Setting the CLR output to ON/OFF	11	_						
	4	Setting the polarity of the CLR output	12							
	5	-	13	-						
	6	Limitation on the present position of the slave axis controlled by the manual pulse generator used	14	-						
	7	Mode of stopping the motor used when the motor used comes into contact with a positive limit switch/negative limit switch	15	Restoring the DVP-10PM series motion controller to the factory settings						

	Bit#	Description					
	2	 Bit 2=0: After the axis specified returns home, the CLR output will send a 130 millisecond signal to the servo drive used, and the present position of the servo drive which is stored in a register in the servo drive will be cleared. Bit 2=1: The CLR output functions as a general output. Its state is controlled by bit 3. 					
	3	Bit 3=0: The CLR output is OFF. Bit 3=1: The CLR output is ON.					
	4	Bit 4=0: The CLR output is a Form A contact. Bit 4=1: The CLR output is a Form B contact.					
		Bit 6=0: There is no limitation on the present position of the the manual pulse generator used					
	6	Bit 6=1: The present position of the slave axis controlled by the manual pulse generator used has to be in the range of the P (I) set to the P (II) set. If t present position of the slave axis controlled by the manual pulse genera used is not in the range of the P (I) set to the P (II) set, the slave axis wi decelerate and stop.					
	7	 Bit 7=0: If the motor used comes into contact with a positive limit switch/negative limit switch when it rotates, it will decelerate and stop. Bit 7=1: If the motor used comes into contact with a positive limit switch/negative limit switch when it rotates, it will stop immediately. 					
		is for the X-axis, D1936 is for the Y-axis, D2016 is for taxis, D2176 is for the B-axis, and D2156 is for the C-ax	-				
theaxis	Bit#	State of the axis	15.				
	0	Positive-going pulses are being output.					
D1856, D1936,	1	Negative-going pulses are being output.					
D2016, D2096,	2	The axis specified is operating.					
D2176, and	3	An error occurs.					
D2256	4	The axis specified pauses.					
	5	The manual pulse generator used generates positive-going pulses.					
	6	The manual pulse generator used generates negative-going pulses.					
	7	-					

3.12 Special Data Registers for Motion Axes

The special data registers for the X-axis, the Y-axis, the Z-axis, the A-axis, the B-axis, and the C-axis in a DVP-10PM series motion controller are described below. Please refer to this section for more information about the setting of the special data registers.

		-		evice n						Default	
X-a		Y-a		Z-a		A-a		Special data register	Setting range	value	
HW ^{*1}	LW ^{*1}	HW	LW	HW	LW	HW	LW				
-	D1816	-	D1896	-	D1976	-	D2056	Setting the parameters of the axis specified	Bit 0~bit 15	НО	
D1819	D1818	D1899	D1898	D1979	D1978	D2059	D2058	Number of pulses it takes for the motor of the axis specified to rotate once (A)	1~+2,147,483,647 pulses/revolution	K2,000	
D1821	D1820	D1901	D1900	D1981	D1980	D2061	D2060	Distance generated after the motor of the axis specified rotate once (B)	1~+2,147,483,647 ^{*2}	K1,000	
D1823	D1822	D1903	D1902	D1983	D1982	D2063	D2062	Maximum speed (V _{MAX}) at which the axis specified rotates	0~+2,147,483,647 ^{*3}	K500,000	
D1825	D1824	D1905	D1904	D1985	D1984	D2065	D2064	Start-up speed (V _{BIAS}) at which the axis specified rotates	0~+2,147,483,647 ^{*3}	К0	
D1827	D1826	D1907	D1906	D1987	D1986	D2067	D2066	JOG speed (V_{JOG}) at which the axis specified rotates	0~+2,147,483,647 ^{*3}	K5,000	
D1829	D1828	D1909	D1908	D1989	D1988	D2069	D2068	Speed (V_{RT}) at which the axis specified returns home	0~+2,147,483,647 ^{*3}	K50,000	
D1831	D1830	D1911	D1910	D1991	D1990	D2071	D2070	Speed (V_{CR}) to which the speed of the axis specified decreases when the axis returns home	0~+2,147,483,647 ^{*3}	K1,000	
-	D1832	-	D1912	-	D1992	-	D2072	Number of PG0 signals for the axis specified	0~+32,767 PLS	К0	
-	D1833	-	D1913	-	D1993	-	D2073	Number of supplementary pulses for the axis specified	-32,768~+32,767 PLS	К0	
D1835	D1834	D1915	D1914	D1995	D1994	D2075	D2074	Home position of the axis specified	0~±999,999 ^{*1}	К0	
-	D1836	-	D1916	-	D1996	-	D2076	Time (T_{ACC}) it takes for the axis specified to accelerate	10~+32,767 ms	K100	
-	D1837	-	D1917	-	D1997	-	D2077	Time (T _{DEC}) it takes for the axis specified to decelerate	10~+32,767 ms	K100	
D1839	D1838	D1919	D1918	D1999	D1998	D2079	D2078	Target position of the axis specified (P (I))	-2,147,483,648~ +2,147,483,647 ^{*1}	К0	
D1841	D1840	D1921	D1920	D2001	D2000	D2081	D2080	Speed at which the axis specified rotates (V (I))	0~+2,147,483,647 *1	K1000	
D1843	D1842	D1923	D1922	D2003	D2002	D2083	D2082	Target position of the axis specified (P (II))	-2,147,483,648~ +2,147,483,647 ^{*1}	ко	
D1845	D1844	D1925	D1924	D2005	D2004	D2085	D2084	Speed at which the axis specified rotates (V (II))	0~+2,147,483,647 *2	K2,000	
-	D1846	-	D1926	-	D2006	-	D2086	Operation command	Bit 0~bit 15	HO	
-	D1847	-	D1927	-	D2007	-	D2087	Mode of operation	Bit 0~bit 15	HO	
D1849	D1848	D1929	D1928	D2009	D2008	D2089	D2088	Present command position of the axis specified (Pulse)	-2,147,483,648~ +2,147,483,647 ^{*1}	К0	
D1851	D1850	D1931	D1930	D2011	D2010	D2091	D2090	Present command speed of the axis specified (PPS)	0~+2,147,483,647 PPS	К0	
D1853	D1852	D1933	D1932	D2013	D2012	D2093	D2092	Present command position of the axis specified (unit *3)	-2,147,483,648~ +2,147,483,647 ^{*1}	К0	
D1855	D1854	D1935	D1934	D2015	D2014	D2095	D2094	Present command speed of the axis specified (unit *3)	0~+2,147,483,647 PPS	К0	
-	D1856	-	D1936	-	D2016	-	D2096	State of the axis specified	Bit 0~bit 15	HO	
-	D1857	-	D1937	-	D2017	-	D2097	Axis error code	Please refer to appendix A for more information.	H0	

$3\,{ m Devices}$

		Spec	cial D de	evice n	umber					
X-a	ixis	Y-a	xis	Z-a	xis	A-a	xis	Special data register	Setting range	Default value
HW ^{*1}	LW ^{*1}	HW	LW	HW	LW	HW	LW			value
-	D1858	-	D1938	-	D2018	-	D2098	Electronic gear of the axis specified (Numerator)	1~+32,767	К1
-	D1859	-	D1939	-	D2019	-	D2099	Electronic gear of the axis specified (Denominator)	1~+32,767	K1
D1861	D1860	D1941	D1940	D2021	D2020	D2101	D2100	Frequency of pulses generated by the manual pulse generator for the axis specified	Frequency of pulses generated by the manual pulse generator for the axis specified	КО
D1863	D1862	D1943	D1942	D2023	D2022	D2103	D2102	Number of pulses generated by the manual pulse generator for the axis specified	Number of pulses generated by the manual pulse generator for the axis specified	ко
-	D1864	-	D1944	-	D2024	-	D2104	Response speed of the manual pulse generator for the axis specified	Response speed of the manual pulse generator for the axis specified	К5
D1867	D1866	D1947	D1946	D2027	D2026	-	-	Electrical zero of the axis specified	Users have to set a value according to their needs.	К0
D1868	-	-	-	-	-	-	-	Setting an Ox motion subroutine number	Users have to set a value according to their needs.	К0
D1869	-	-	-	-	-	-	-	Step address in the Ox motion subroutine executed at which an error occurs	Users have to set a value according to their needs.	К0
D1872	-	-	-	-	-	-	-	Enabling a Y device when an Ox motion subroutine is ready (High byte)	Users have to set a value according to their needs.	К0
D1873	-	-	-	-	-	-	-	Enabling a Y device when an M-code in an Ox motion subroutine is executed (High byte)	Users have to set a value according to their needs.	К0
D1874	-	-	-	-	-	-	-	Using an X device to reset the M-code	Users have to set a value according to their needs.	К0
D1875	-	D1955	-	-	-	-	-	Starting the X-axis manually (ZRN, MPG, JOG-, JOG+)	Users have to set a value according to their needs.	К0

Special D device number						Default
B-a	ixis	C-a	axis	Special data register	Setting range	value
HW	LW	HW	LW			Value
-	D2136	-	D2216	Setting the parameters of the axis specified	Bit 0~bit 15	HO
D2139	D2138	D2219	D2218	Number of pulses it takes for the motor of the axis specified to rotate once (A)	1~+2,147,483,647 pulses/revolution	K2,000
D2141	D2140	D2221	D2220	Distance generated after the motor of the axis specified rotate once (B)	1~+2,147,483,647 *2	K1,000
D2143	D2142	D2223	D2222	Maximum speed (V _{MAX}) at which the axis specified rotates	0~+2,147,483,647 ^{*3}	K500,000
D2145	D2144	D2225	D2224	Start-up speed (V _{BIAS}) at which the axis specified rotates	0~+2,147,483,647 *3	К0
D2147	D2146	D2227	D2226	JOG speed (V _{JOG}) at which the axis specified rotates	0~+2,147,483,647 ^{*3}	K5,000

-	-	evice number			Ostilas	Default value
B-a HW	axis LW	C-a	axis LW	Special data register	Setting range	
D2149	D2148	D2229	D2228	Speed (V _{RT}) at which the axis specified returns home	0~+2,147,483,647 ^{*3}	K50,000
D2151	D2150	D2231	D2230	Speed (V _{CR}) to which the speed of the axis specified decreases when the axis returns home	0~+2,147,483,647 ^{*3}	K1,000
-	D2152	-	D2232	Number of PG0 signals for the axis specified	0~+32,767 PLS	К0
-	D2153	-	D2233	Number of supplementary pulses for the axis specified	-32,768~+32,767 PLS	К0
D2155	D2154	D2235	D2234	Home position of the axis specified	0~±999,999 ^{*1}	К0
-	D2156	-	D2236	Time (T _{ACC}) it takes for the axis specified to accelerate	10~+32,767 ms	K100
-	D2157	-	D2237	Time (T _{DEC}) it takes for the axis specified to decelerate	10~+32,767 ms	K100
D2159	D2158	D2239	D2238	Target position of the axis specified (P (I))	-2,147,483,648~ +2,147,483,647 ^{*1}	К0
D2161	D2160	D2241	D2240	Speed at which the axis specified rotates (V (I))	0~+2,147,483,647 *1	K1000
D2163	D2162	D2243	D2242	Target position of the axis specified (P (II))	-2,147,483,648~ +2,147,483,647 ^{*1}	К0
D2165	D2164	D2245	D2244	Speed at which the axis specified rotates (V (II))	0~+2,147,483,647 *2	K2,000
-	D2166	-	D2246	Operation command	Bit 0~bit 15	H0
-	D2167	-	D2247	Mode of operation	Bit 0~bit 15	H0
D2169	D2168	D2249	D2248	Present command position of the axis specified (Pulse)	-2,147,483,648~ +2,147,483,647 ^{*1}	К0
D2171	D2170	D2251	D2250	Present command speed of the axis specified (PPS)	0~+2,147,483,647 PPS	К0
D2173	D2172	D2253	D2252	Present command position of the axis specified (unit ^{*3})	-2,147,483,648~ +2,147,483,647 ^{*1}	К0
D2175	D2174	D2255	D2254	Present command speed of the axis specified (unit ^{*3})	0~+2,147,483,647 PPS	КО
-	D2176	-	D2256	State of the axis specified	Bit 0~bit 15	H0
-	D2177	-	D2257	Axis error code	Please refer to appendix A for more information.	HO
-	D2178	-	D2258	Electronic gear of the axis specified (Numerator)	1~+32,767	К1
-	D2179	-	D2259	Electronic gear of the axis specified (Denominator)	1~+32,767	K1
D2181	D2180	D2261	D2260	Frequency of pulses generated by the manual pulse generator for the axis specified	Frequency of pulses generated by the manual pulse generator for the axis specified	КО
D2183	D2182	D2263	D2262	Number of pulses generated by the manual pulse generator for the axis specified	Number of pulses generated by the manual pulse generator for the axis specified	ко
-	D2184	-	D2264	Response speed of the manual pulse generator for the axis specified	Response speed of the manual pulse generator for the axis specified	K5

*1: HW: High word; LW: Low word
*2: Unit: μm/rev, mdeg/rev, and 10⁻⁴ inches/rev

*3: The unit used varies with the setting of bit 0 and bit 1 in D1816/D1896/D1976.

3.12.1 Descriptions of the Special Data Registers Related to Motion

X-a	ixis	Y-a	ixis	Z-a	axis	
HW	LW	HW	LW	HW	LW	
	D1816		D1896		D1976	Setting the parameters of the axis specified
A-a	ixis	B-a	ixis	C-a	axis	Setting the parameters of the axis specified
HW	LW	HW	LW	HW	LW	
	D2056		D2136		D2216	

[Description]

Bit 0~bit 15 in D1816 (D1896, D1976, D2056, D2136, D2216) are described below.

1. Bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216): Unit

b1	b0	Unit	Description					
0	0	Motor unit	A pulse is a unit.					
0	1	Mechanical unit	A micrometer, 10-4 inches, or a degree is a unit.					
1	0	Compound unit	Position: A micrometer, 10-4 inches, or a degree is a unit. (Mechanical unit)					
1	1		Speed: A pulse is a unit. (Motor unit)					

	Motor unit	Compound unit	Mechanical unit					
	pulse	μ	μm					
Position	pulse	ma	leg					
	pulse	10 ⁻⁴ ii	nches					
		pulse/second	centimeter/minute					
Speed		pulse/second	10 degrees/minute					
Ī		pulse/second	inch/minute					

 Position: Home position of the axis specified, target position of the axis specified (P (I)), target position of the axis specified (P (II)), and present command position of the axis specified

- Speed: Maximum speed (V_{MAX}) at which the axis specified rotates, start-up speed (V_{BIAS}) at which the axis specified rotates, JOG speed (V_{JOG}) at which the axis specified rotates, speed (V_{RT}) at which the axis specified returns home, speed (V_{CR}) to which the speed of the axis specified decreases when the axis returns home, speed at which the axis specified rotates (V (I)), and speed at which the axis specified rotates (V (II))
- Example 1:

Bit [1:0]=00⇔Motor unit

Position: Pulse

Speed: Pulse/second (PPS)

Target position of the axis specified (P (I)): 10,000 pulses

Speed at which the axis specified rotates: 10K PPS

After the DVP-10PM series motion controller sends 10,000 pulses, the axis specified can move to the target position specified. (The frequency of pulses is 10K PPS.) The distance for which the axis specified can move after a pulse is sent is calculated according to the physical quantity used.

• Example 2:

Bit [1:0]=01⇔Mechanical unit Position: µm

Speed: Centimeter/minute

. N=0

D1818 (D1898, D1978, D2058, D2138, D2218)=1,000 (pulses/revolution) D1820 (D1900, D1980, D2060, D2140, D2220)=100 (micrometers/revolution) P (I)=10,000 (micrometers) V (I)=6 (centimeters/minute)

The number of pulses sent by the DVP-10PM series motion controller and the frequency of pulses are calculated below.

Distance = $\frac{\text{Distance}}{\underbrace{\text{Revolution}}_{B}} \times \underbrace{\frac{\text{Revolution}}{\underbrace{\text{Number of pulses}}}_{I/}}_{I/} \times \text{Number of pulses}$

Number of pulses it takes for the axis specified to move to the target position

specified =
$$\frac{P(I) \mu m}{B / A}$$
 = P(I)× $\frac{A}{B}$ = 100,000 (pulses)

Speed at which the axis specified rotates (V (I)): 6 (centimeters/minute)=60,000/60 (micrometers/second)

 $Speed = \frac{Distance}{Time} = \underbrace{\frac{Distance}{Revolution}}_{B} \times \underbrace{\frac{Revolution}{Number of pulses}}_{\frac{1}{A}} \times \underbrace{\frac{Number of pulses}{Time}}_{PPS,pulse/sec}$

The frequency of pulses calculated by the DVP-10PM series motion controller

$$=V(I) \times \frac{10^4}{60} \times \frac{A}{B} = \frac{60,000}{60} \times \frac{1,000}{100} = 10,000 \text{ (PPS)}$$

• Example 3

Bit [1:0]=10 or 11 ⇒ Compound unit Position: Micrometer Speed: Pulse/second (PPS) N=0 D1818 (D1898, D1978, D2058, D2138, D2218)=2,000 (pulses/revolution) D1820 (D1900, D1980, D2060, D2140, D2220)=100 (micrometers/revolution) P (I)=10,000 (micrometers) V (I)=10K (PPS)

The number of pulses sent by the DVP-10PM series motion controller is calculated below. Number of pulses it takes for the axis specified to move to the target position specified

$$= \frac{P(I) \mu m}{B / A} = P(I) \times \frac{A}{B} = 200,000 \text{ (pulses)}$$

2. Bit 2 and bit 3 in D1816 (D1896, D1976, D2056, D2136, D2216): Ratio

Position: The home position of the axis specified, the target position of the axis specified (P (I)), the target position of the axis specified (P (II)), and the present command position of the axis specified must be multiplied by a ratio.

b3	b2	Ratio
0	0	Position×10 ⁰
0	1	Position×10 ¹
1	0	Position×10 ²
1	1	Position×10 ³

3. Bit 4 and bit 5 in D1816 (D1896, D1976, D2056, D2136, D2216): Output type

b5	b4	Output type (positive logic)	Description
05	04	Output type (positive logic)	Description
0	0	FP Clockwise pulses	Counting up/down
		RP Counterclockwise pulses	
0	1	FP Pulses	Pulses+Directions
U	I	RP Directions Clockwise Counterclockwise	r disest Directions
1	0	FP A-phase pulses	
1	1	RP B-phase pulses	A/B-phase pulses

- 4. Bit 6 in D1816 (D1896, D1976, D2056, D2136, D2216): Setting a PWM mode Bit 6=1: If positive JOG motion is started, Y0~Y3 will execute PWM.
- 5. Bit 8 in D1816 (D1896, D1976, D2056, D2136, D2216): Direction in which the axis specified returns home

Bit 8=0: The value indicating the present command position of an axis specified decreases, and the axis returns home in the negative direction.

Bit 8=1: The value indicating the present command position of an axis specified increases, and the axis returns home in the positive direction.

6. Bit 9 in D1816 (D1896, D1976, D2056, D2136, D2216): Mode of returning home Bit 9=0: Normal mode

After DOG's signal is generated, the motor used will rotate for a specific number of PG0 pulses, then rotate for a specific number of supplementary pulses, and finally stop.

Bit 9=1: Overwrite mode

After DOG's signal is generated, the motor used will rotate for a number of PG0 pulses or rotate for a number of supplementary pulses, and then stop.

- Bit 10 in D1816 (D1896, D1976, D2056, D2136, D2216): Mode of triggering the return to home Bit 10=0: The return to home is triggered by a transition in DOG's signal from high to low. Bit 10=1: The return to home is triggered by a transition in DOG's signal from low to high.
 - Bit [9:10] in D1816 (D1896, D1976, D2056, D2136, D2216) is 00.⇒The mode of returning home is a normal mode, and the return to home is triggered by a transition in DOG's signal from high to low. Steps: The motor used rotates at the speed V_{RT}. When DOG's signal is generated, the speed of the motor begins to decrease to the speed V_{CR}. After DOG's signal goes from high to low, the motor will rotate for a specific number of PG0 pulses, and then rotate for a specific number of supplementary pulses, and finally stop.

If the number of PG0 pulses or the number of supplementary pulses is not large, the speed of the motor used will decrease to the speed V_{CR} after DOG's signal is generated. After DOG's signal goes from high to low, the motor will rotate for a specific number of PG0 pulses, and then rotate for a specific number of supplementary pulses, and finally stop whether the its speed is V_{CR} .

If the number of PG0 pulses is 0, and the number of supplementary pulses is 0, the motor used will stop after DOG's signal is generated and there is a transition in DOG's signal from high to low.

 Bit [9:10] in D1816 (D1896, D1976, D2056, D2136, D2216) is 01.⇒The mode of returning home is a normal mode, and the return to home is not triggered by a transition in DOG's signal from high to low.

Steps: The motor used rotates at the speed V_{RT} . When DOG's signal is generated, the speed of the motor begins to decrease to the speed V_{CR} . After the motor rotates for a specific number of PG0 pulses, and rotate for a specific number of supplementary pulses, it will stop.

If the number of PG0 pulses or the number of supplementary pulses is not large, the speed of the motor used will decrease to the speed V_{CR} after DOG's signal is generated. After the motor rotates for a specific number of PG0 pulses, and rotates for a specific number of supplementary pulses, it will stop whether its speed is V_{CR} .

If the number of PG0 pulses is 0, and the number of supplementary pulses is 0, the motor used will stop after DOG's signal is generated.

 Bit [9:10] in D1816 (D1896, D1976, D2056, D2136, D2216) is 10.⇒ The mode of returning home is an overwrite mode, and the return to home is triggered by a transition in DOG's signal from high to low.

Steps: The motor used rotates at the speed V_{RT} . When DOG's signal is generated, the speed of the motor begins to decrease to the speed V_{CR} . After DOG's signal goes from high to low, the motor will rotate for a specific number of PG0 pulses, or rotate for a specific number of supplementary pulses, and then stop.

If the number of PG0 pulses or the number of supplementary pulses is not large, the speed of the motor used will decrease to the speed V_{CR} after DOG's signal is generated. After DOG's signal goes from high to low, the motor will rotate for a specific number of PG0 pulses, or rotate for a specific number of supplementary pulses, and then stop whether the its speed is V_{CR} .

If the number of PG0 pulses is 0, and the number of supplementary pulses is 0, the motor used will stop after DOG's signal is generated and there is a transition in DOG's signal from high to low.

 Bit [9:10] in D1816 (D1896, D1976, D2056, D2136, D2216) is 11.⇒ The mode of returning home is an overwrite mode, and the return to home is not triggered by a transition in DOG's signal from high to low.

Steps: The motor used rotates at the speed V_{RT} . When DOG's signal is generated, the speed of the motor begins to decrease to the speed V_{CR} . After the motor rotates for a specific number of PG0 pulses, or rotate for a specific number of supplementary pulses, it will stop.

If the number of PG0 pulses or the number of supplementary pulses is not large, the speed of the motor used will decrease to the speed V_{CR} after DOG's signal is generated. After the motor rotates for a specific number of PG0 pulses, or rotates for a specific number of supplementary pulses, it will stop whether its speed is V_{CR} .

If the number of PG0 pulses is 0, and the number of supplementary pulses is 0, the motor used will stop after DOG's signal is generated.

- 8. Bit 11 in D1816 (D1896, D1976, D2056, D2136, D2216): Direction in which the motor used rotates
 - Bit 11=0: When the motor rotates clockwise, the value indicating the present command position of the axis specified increases.
 - Bit 11=1: When the motor rotates clockwise, the value indicating the present command position of the axis specified decreases.
- 9. Bit 12 in D1816 (D1896, D1976, D2056, D2136, D2216): Relative/Absolute coordinates
 - Bit 12=0: Absolute coordinates
 - Bit 12=1: Relative coordinates
- 10. Bit 13 in D1816 (D1896, D1976, D2056, D2136, D2216): Mode of triggering the calculation of the target position
 - Bit 13=0: The calculation of the target position of the axis specified is triggered by a transition in DOG's signal from low to high.
 - Bit 13=1: The calculation of the target position of the axis specified is triggered by a transition in DOG's signal from high to low. (The setting of bit 13 is applicable to the insertion of single-speed motion, and the insertion of two-speed motion.)
- 11. Bit 14 in D1816 (D1896, D1976, D2056, D2136, D2216): Curve
 - Bit 14=0: Trapezoid curve
 - Bit 14=1: S curve

X-a	ixis	Y-a	xis	Z-a	axis	
HW	LW	HW	LW	HW	LW	
D1819	D1818	D1899	D1898	D1979	D1978	Number of pulses it takes for the motor of the axis
A-a	ixis	B-a	ixis	C-a	ixis	specified to rotate once (A)
HW	LW	HW	LW	HW	LW	
D2059	D2058	D2139	D2138	D2219	D2218	

1. Owing to the fact that users can set an electronic gear ratio for a servo drive, the number of pulses it takes for a servo motor to rotate once is not necessarily equal to the number of pulses which will be generated after a decoder rotates once. The relation between the number of pulses it takes for a servo drive to rotate once and an electronic gear ratio is described below.

Number of pulses it takes for a motor to rotate once (A) x Electronic gear ratio (CMX/CDV)=Number of pulses which will be generated after a decoder rotates once

The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216). If the unit selected is a mechanical unit or a compound unit, users need to set D1818 (D1898, D1978, D2058, D2138, D2218) and D1819 (D1899, D1979, D2059, D2139, D2219). If the unit selected is a motor unit, users do not need to set D1818 (D1898, D1978, D2058, D2138, D2218) and D1819 (D1899, D1979, D2059, D2138, D2218) and D1819 (D1899, D1979, D2059, D2138, D2218).

X-a	nxis	Y-a	ixis	Z-a	axis	
HW	LW	HW	LW	HW	LW	
D1821	D1820	D1901	D1900	D1981	D1980	Distance generated after the motor of the axis
A-a	axis	B-a	ixis	C-a	axis	specified rotate once (B)
HW	LW	HW	LW	HW	LW	
D2061	D2060	D2141	D2140	D2221	D2220	

[Description]

- Three units are available. They are μm/revolution, mdeg/revolution, and 10⁻⁴ inches/revolution. The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216). The value in (D1821, D1820) ((D1901, D1900), (D1981, D1980), (D2061, D2060), (D2141, D2140), (D2221, D2220)) is in the range of 1 to 2,147,483,647.
- The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216). If the unit selected is a mechanical unit or a compound unit, users need to set D1820 (D1900, D1980, D2060, D2140, D2220) and D1821 (D1901, D1981, D2061, D2141, D2221). If the unit selected is a motor unit, users do not need to set D1820 (D1900, D1980, D2060, D2140, D2220) and D4821 (D1901, D1981, D2061, D2141, D2221).

X-a	ixis	Y-a	ixis	Z-axis		Z-axis		Z-axis		
HW	LW	HW	LW	HW	LW					
D1823	D1822	D1903	D1902	D1983	D1982	Maximum speed (V _{MAX}) at which the axis				
A-a	axis	B-a	ixis	C-a	ixis	specified rotates				
HW	LW	HW	LW	HW	LW					
D2063	D2062	D2143	D2142	D2223	D2222					

[Description]

Users can set the maximum speed of motion. The value in (D1823, D1822) ((D1903, D1902), (D1983, D1982), (D2063, D2062), (D2143, D2142), (D2223, D2222)) is in the range of 0 to 2,147,483,647. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).)

 The frequency of pulses generated by motion is in the range of 10 PPS to 500K PPS. If the value in (D1823, D1822) ((D1903, D1902), (D1983, D1982), (D2063, D2062), (D2143, D2142), (D2223, D2222)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1823, D1822) ((D1903, D1902), (D1983, D1982), (D2063, D2062), (D2143, D2142), (D2223, D2222)) is less than 10, the frequency of pulses generated will be 10 PPS.

X-a	ixis	Y-a	ixis	Z-a	axis	
HW	LW	HW	LW	HW	LW	
D1825	D1824	D1905	D1904	D1985	D1984	Start-up speed (V _{BIAS}) at which the axis spec
A-a	ixis	B-a	axis	C-a	axis	rotates
HW	LW	HW	LW	HW	LW	
D2065	D2064	D2145	D2144	D2225	D2224	

- Users can set the start-up speed of motion. The value in (D1825, D1824) ((D1905, D1904), (D1985, D1984), (D2065, D2064), (D2145, D2144), (D2225, D2224)) is in the range of 0 to 2,147,483,647. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).)
- The frequency of pulses generated by motion is in the range of 0 PPS to 500K PPS. If the value in (D1825, D1824) ((D1905, D1904), (D1985, D1984), (D2065, D2064), (D2145, D2144), (D2225, D2224)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1825, D1824) ((D1905, D1904), (D1985, D1984), (D2065, D2064), (D2145, D2144), (D2225, D2224)) is less than 0, the frequency of pulses generated will be 0 PPS.
- 3. If a stepper motor system is used, the start-up speed that users set must be greater than the motor resonance frequency generated.

xis	Y-a	xis	Z-a	axis	
LW	HW	LW	HW	LW	
D1826	D1907	D1906	D1987	D1986	JOG speed (V _{JOG}) at which the axis specified
xis	B-a	ixis	C-a	ixis	rotates
LW	HW	LW	HW	LW	
D2066	D2147	D2146	D2227	D2226	
	LW D1826 xis LW	LW HW D1826 D1907 xis B-a LW HW	LW HW LW D1826 D1907 D1906 xis B-axis LW HW LW	LW HW LW HW D1826 D1907 D1906 D1987 xis B-axis C-a LW HW LW HW	LW HW LW HW LW D1826 D1907 D1906 D1987 D1986 xis B-axis C-axis LW HW LW HW

[Description]

- Users can set the JOG speed (V_{JOG}) at which the axis specified rotates. The value in (D1827, D1826) ((D1907, D1906), (D1987, D1986), (D2067, D2066), (D2147, D2146), (D2227, D2226)) is in the range of 0 to 2,147,483,647. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).
- The frequency of pulses generated by motion is in the range of 10 PPS to 500K PPS. If the value in (D1827, D1826) ((D1907, D1906), (D1987, D1986), (D2067, D2066), (D2147, D2146), (D2227, D2226)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1827, D1826) ((D1907, D1906), (D1987, D1986), (D2067, D2066), (D2147, D2146), (D2227, D2226)) is less than 10, the frequency of pulses generated will be 10 PPS.

3. $V_{MAX} > V_{JOG} > V_{BIAS}$

If the V_{JOG} set is greater than the V_{MAX} set, the actual V_{JOG} will be equal to the V_{MAX} .

If the V_{JOG} set is less than the V_{BIAS} set, the actual V_{JOG} will be equal to the V_{BIAS} , and an error will occur. 4. When an axis operates, users can not modify the JOG speed of the axis.

X-a	ixis	Y-a	ixis	Z-a	axis	
HW	LW	HW	LW	HW	LW	
D1829	D1828	D1909	D1908	D1989	D1988	Speed (V_{RT}) at which the axis specified returns
A-a	ixis	B-a	ixis	C-a	ixis	home
HW	LW	HW	LW	HW	LW	
D2069	D2068	D2149	D2148	D2229	D2228	

 Users can set the speed at which the axis specified returns home. The value in (D1829, D1828) ((D1909, D1908), (D1989, D1988), (D2069, D2068), (D2149, D2148), (D2229, D2228)) is in the range of 1 to 2,147,483,647. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).)

 The frequency of pulses generated by motion is in the range of 10 PPS to 500K PPS. If the value in (D1829, D1828) ((D1909, D1908), (D1989, D1988), (D2069, D2068), (D2149, D2148), (D2229, D2228)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1829, D1828) ((D1909, D1908), (D1989, D1988), (D2069, D2068), (D2149, D2148), (D2229, D2228)) is less than 10, the frequency of pulses generated will be 10 PPS.

4. When an axis returns home, the speed at which the axis returns home can not be changed.

X-a	axis	Y-a	xis	Z-axis		Z-axis	
HW	LW	HW	LW	HW	LW		
D1831	D1830	D1911	D1910	D1991	D1990	Speed (V _{CR}) to which the speed of the axi	
A-a	axis	B-a	ixis	C-a	axis	specified decreases when the axis returns he	
HW	LW	HW	LW	HW	LW		
D2071	D2070	D2151	D2150	D2231	D2230		

[Description]

- The value in (D1831, D1830) ((D1911, D1910), (D1991, D1990), (D2071, D2070), (D2151, D2150), (D2231, D2230)) is in the range of 1 to 2,147,483,647. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).
- The frequency of pulses generated by motion is in the range of 10 PPS to 500K PPS. If the value in (D1831, D1830) ((D1911, D1910), (D1991, D1990), (D2071, D2070), (D2151, D2150), (D2231, D2230)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1831, D1830) ((D1911, D1910), (D1991, D1990), (D2071, D2070), (D2151, D2150), (D2231, D2230)) is less than 10, the frequency of pulses generated will be 10 PPS.
- 3. When motion of returning home is executed, the speed of the motor used is the V_{RT} set. When there is a transition in DOG's signal from low to high or from high to low, the speed of the motor used decreases to the V_{CR} set.
- 4. In order for the axis specified to returns home precisely, it is suggested that the V_{CR} set should be a low speed.
- 5. When the motion of returning home is executed, the V_{CR} set can not be changed.

X-a	axis	Y-a	axis	Z-a	axis	
HW	LW	HW	LW	HW	LW	
	D1832		D1912		D1992	Number of DCO pulses for the axis aposition
A-a	axis	B-a	axis	C-a	axis	Number of PG0 pulses for the axis specified
HW	LW	HW	LW	HW	LW	
	D2072		D2152		D2232	

[Description]

The value in D1832 (D1912, D1992, D2072, D2152, D2232) is in the range of -32,768 to 32,767. If the value in D1832 (D1912, D1992, D2072, D2152, D2232) is a positive value, the axis specified will move in the direction in which it returns home. If the value in D1832 (D1912, D1992, D2072, D2152, D2232) is a negative value, the axis specified will move in the direction which is opposite to the direction in which it returns home.

^{3.} V_{MAX}>V_{RT}>V_{BIAS}

2. Please refer to the descriptions of bit 9 and bit10 in D1816 (D1896, D1976, D2056, D2136, D2216) for more information about decelerating and stopping the motor used.

X-a	axis	Y-a	ixis	Z-a	axis	
HW	LW	HW	LW	HW	LW	
	D1833		D1913		D1993	Supplementary pulses for the axis specified
A-a	axis	B-a	axis	C-a	axis	Supplementary pulses for the axis specified
HW	LW	HW	LW	HW	LW	
	D2073		D2153		D2233	

[Description]

 The value in D1833 (D1913, DD1993, D2073, D2153, D2233) is in the range of -32,768 to 32,767. If the value in D1833 (D1913, DD1993, D2073, D2153, D2233) is a positive value, the axis specified will move in the direction in which it returns home. If the value in D1833 (D1913, DD1993, D2073, D2153, D2233) is a negative value, the axis specified will move in the direction which is opposite to the direction in which it returns home.

2. Please refer to the descriptions of bit 9 and bit10 in D1816 (D1896, D1976, D2056, D2136, D2216) for more information about decelerating and stopping the motor used.

X-a	axis	Y-a	ixis	Z-axis		Z-axis		
HW	LW	HW	LW	HW	LW			
D1835	D1834	D1915	D1914	D1995	D1994	Home position of the axis specifie		
A-a	axis	B-a	ixis	C-a	ixis	FIGHTE POSITION OF THE AXIS SPECIFIE		
HW	LW	HW	LW	HW	LW			
D2075	D2074	D2155	D2154	D2235	D2234			

[Description]

- The value in (D1835, D1834) ((D1915, D1914), (D1995, D1994), (D2075, D2074), (D2155, D2154), (D2235, D2234)) is in the range of 0 to ±999,999. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).
- After the axis specified returns home, the value in (D1835, D1834) ((D1915, D1914), (D1995, D1994), (D2075, D2074), (D2155, D2154), (D2235, D2234)) will be written into (D1849, D1848) ((D1929, D1928), (D2009, D2008), (D2089, D2088), (D2169, D2168), (D2249, D2248)).

X-a	axis	Y-a	ixis	Z-a	axis		
HW	LW	HW	LW	HW	LW		
	D1836		D1916		D1996	Time (T_{ACC}) it takes for the axis specifie	
A-a	axis	B-axis		C-axis		accelerate	
HW	LW	HW	LW	HW	LW		
	D2076		D2156		D2236		

[Description]

- 1. Users can set the times it takes for the speed of the axis specified to increase from its start-up speed to its maximum speed. The value in D1836 (D1916, D1996, D2076, D2156, D2236) is in the range of 0 to 32,767. A millisecond is a unit.
- If the value in D1836 (D1916, D1996, D2076, D2156, D2236) is less than 10, it will be counted as 10. If the value in D1836 (D1916, D1996, D2076, D2156, D2236) is greater than 32,767, it will be counted as 32,767.
- 3. If users want to have a complete S curve, the maximum speed which is set must be the same as the speed at which the axis specified operates.

X-a	axis	Y-a	ixis	Z-axis		
HW	LW	HW	LW	HW LW		
	D1837		D1917		D1997	Time (T _{DEC}) it takes for the axis specified to
A-a	axis	B-axis		C-axis		decelerate
HW	LW	HW	LW	HW	LW	
	D2077		D2157		D2237	

- 1. Users can set the times it takes for the speed of the axis specified to decrease from its maximum speed to its start-up speed. The value in D1837 (D1917, D1997, D2077, D2157, D2237) is in the range of 0 to 32,767. A millisecond is a unit.
- If the value in D1837 (D1917, D1997, D2077, D2157, D2237) is less than 10, it will be counted as 10. If the value in D1837 (D1917, D1997, D2077, D2157, D2237) is greater than 32,767, it will be counted as 32,767.
- 3. If users want to have a complete S curve, the maximum speed which is set must be the same as the speed at which the axis specified operates.

X-a	axis	Y-a	ixis	Z-axis			
HW	LW	HW	LW	HW	LW		
D1839	D1838	D1919	D1918	D1999 D1998		Target position of the axis specified (P (
A-a	axis	B-axis		C-axis		ranger position of the axis specified (1)	
HW	LW	HW	LW	HW	LW		
D2079	D2078	D2159	D2158	D2239	D2238		

[Description]

The value in (D1839, D1838) ((D1919, D1918), (D1999, D1998), (D2079, D2078), (D2159, D2158), (D2239, D2238)) is in the range of -2,147,483,648 to +2,147,483,647. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).)

- 2. Target position (P (I))
 - Absolute coordinates: Bit 12 in D1816 (D1896, D1976, D2056, D2136, D2216) is 0. The target position of the axis specified indicates a distance from 0. If the target position of an axis is greater than its present command position, the motor used will rotate clockwise. If the target position of an axis is less than its present command position, the motor used will rotate clockwise.
 - Relative coordinates: Bit 12 in D1816 (D1896, D1976, D2056, D2136, D2216) is 1. The target position of an axis indicates a distance from its present command position. If the target position specified is a positive value, the motor used will rotate clockwise. If the target position specified is a negative value, the motor used will rotate counterclockwise.
- 3. The ratio used is determined by bit 2 and bit 3 in D1816 (D1896, D1976, D2056, D2136, D2216).

X-a	axis	Y-a	ixis	Z-axis		
HW	LW	HW	LW	HW	LW	
D1841	D1840	D1921	D1920	D2001 D2000		Speed at which the axis specified rotates (V (
A-a	A-axis B-axis C-axis		axis	Speed at which the axis specified totales (v (
HW	LW	HW	LW	HW	LW	
D2081	D2080	D2161	D2160	D2241	D2240	

[Description]

- The value in (D1841, D1840) ((D1921, D1920), (D2001, D2000), (D2081, D2080), (D2161, D2160), (D2241, D2240)) is in the range of -2,147,483,647 to +2,147,483,647. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).)
- The frequency of pulses generated by motion is in the range of 10 PPS to 500K PPS. If the value in (D1841, D1840) ((D1921, D1920), (D2001, D2000), (D2081, D2080), (D2161, D2160), (D2241, D2240)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1841, D1840) ((D1921, D1920), (D2001, D2000), (D2081, D2080), (D2161, D2160), (D2241, D2240)) is less than 10, the frequency of pulses generated will be 10 PPS.

- 3. $V_{MAX} > V(I) > V_{BIAS}$
- 4. When bit 4 in D1846 (D1926, D2006, D2086, D2166, D2246) is ON, the speed at which the axis specified rotates (V (I)) can be changed. If the Speed at which the axis specified rotates is a positive value, the motor used will rotate clockwise. If the Speed at which the axis specified rotates is a negative value, the motor used will rotate counterclockwise.

X-a	ixis	Y-a	ixis	Z-axis		
HW	LW	HW	LW	HW	LW	
D1843	D1842	D1923	D1922	D2003 D2002		Target position of the axis specified (P (II))
A-a	axis	B-axis		C-axis		Target position of the axis specified (F (II)
HW	LW	HW	LW	HW	LW	
D2083	D2082	D2163	D2162	D2243	D2242	

 The value in (D1843, D1842) ((D1923, D1922), (D2003, D2002), (D2083, D2082), (D2163, D2162), (D2243, D2242)) is in the range of -2,147,483,648 to +2,147,483,647. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).)

- 2. Target position (P (II))
 - Absolute coordinates: Bit 12 in (D1816 (D1896, D1976, D2056, D2136, D2216) is 0. The target position of the axis specified indicates a distance from 0. If the target position of an axis is greater than its present command position, the motor used will rotate clockwise. If the target position of an axis is less than its present command position, the motor used will rotate clockwise.
 - Relative coordinates: Bit 12 in (D1816 (D1896, D1976, D2056, D2136, D2216) is 1. The target position of an axis indicates a distance from its present command position. If the target position specified is a positive value, the motor used will rotate clockwise. If the target position specified is a negative value, the motor used will rotate counterclockwise.
- 3. The ratio used is determined by bit 2 and bit 3 in D1816 (D1896, D1976, D2056, D2136, D2216).

X-a	axis	Y-a	ixis	Z-axis		
HW	LW	HW	LW	HW	LW	
D1845	D1844	D1925	D1924	D2005 D2004		Speed at which the axis specified rotates(V
A-a	axis	xis B-axis C-axis		axis		
HW	LW	HW	LW	HW	LW	
D2085	D2084	D2165	D2164	D2245	D2244	

[Description]

- The value in (D1845, D1844) ((D1925, D1924), (D2005, D2004), (D2085, D2084), (D2165, D2164), (D2245, D2244)) is in the range of 0 to 2,147,483,647. (The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).)
- The frequency of pulses generated by motion is in the range of 10 PPS to 500K PPS. If the value in (D1845, D1844) ((D1925, D1924), (D2005, D2004), (D2085, D2084), (D2165, D2164), (D2245, D2244)) is greater than 500K, the frequency of pulses generated will be 500K PPS. If the value in (D1845, D1844) ((D1925, D1924), (D2005, D2004), (D2085, D2084), (D2165, D2164), (D2245, D2244)) is less than 10, the frequency of pulses generated will be 10 PPS.

3. $V_{MAX} > V$ (II) $> V_{BIAS}$

X-a	axis	Y-axis Z-axis		axis		
HW	LW	HW	LW	HW	LW	
	D1846		D1926		D2006	Operation command
A-a	axis	B-a	axis	C-:	axis	Operation command
HW	LW	HW	LW	HW	LW	
	D2086		D2166		D2246	

- 1. Bit 0 in D1846 (D1926, D2006, D2086, D2166, D2246): The motion of the axis specified is stopped by software.
 - The motion of the axis specified is stopped by software when bit 0 in D1846 (D1926, D2006, D2086, D2166, D2246) is turned from OFF to ON.
- 2. Bit 1 in D1846 (D1926, D2006, D2086, D2166, D2246): The motion of the axis specified is started by software.
 - The motion of the axis specified is started by software when bit 1 in D1846 (D1926, D2006, D2086, D2166, D2246) is turned from OFF to ON.
- 3. Bit 2 in D1846 (D1926, D2006, D2086, D2166, D2246): The axis specified operates in a JOG+ mode.
 - When bit 2 in D1846 (D1926, D2006, D2086, D2166, D2246), clockwise pulses are generated at the JOG speed set.
 - If bit 6 in D1816 (D1896, D1976, D2056, D2136, D2216) is ON, and bit 2 in D1846 (D1926, D2006, D2086, D2166, D2246) is ON, PWM will be executed.
- 4. Bit 3 in D1846 (D1926, D2006, D2086, D2166, D2246): The axis specified operates in a JOG- mode.
 - When bit 3 in D1846 (D1926, D2006, D2086, D2166, D2246) is ON, counterclockwise pulses are generated at the JOG speed set.
- 5. Bit 4 in D1846 (D1926, D2006, D2086, D2166, D2246): A mode of variable motion is activated.
 - After bit 4 in D1846 (D1926, D2006, D2086, D2166, D2246) is set to 1, the DVP-10PM series motion controller will execute variable motion, and it will send pulses by a pulse generator.
 - After a mode of variable motion is activated, the V_{BIAS} of the axis specified will increase to its V (I).
 When the axis operates, users can change its V (I) at will. The DVP-10PM series motion controller accelerates or decelerates according to the V (I) set.
 - Users can stop variable motion by setting bit 0 in D1846 (D1926, D2006, D2086, D2166, D2246) to 1, or by setting bit 4 in D1846 (D1926, D2006, D2086, D2166, D2246) to 0.
 - Diagram

- 6. Bit 5 in D1846 (D1926, D2006, D2086, D2166, D2246): A manual pulse generator is operated.
 - If bit 5 in D1846 (D1926, D2006, D2086, D2166, D2246) is set to ON, a manual pulse generator mode will be activated. Please refer to the descriptions of D1858~D1864 (D1938~D1944, D2018~D2024, D2098~D2104, D2178~D2184, D2258~D2264) for more information.
- 7. Bit 6 in D1846 (D1926, D2006, D2086, D2166, D2246): A mode of triggering the return to home is activated.
 - When bit 6 in D1846 (D1926, D2006, D2086, D2166, D2246) is turned from OFF to ON, a mode of triggering the return to home is activated. The mode of triggering the return to home varies with the

present command position of the axis specified. There are two situations.

Position (1): Position [1] is at the right side of the home and DOG, and DOG is OFF. Position (2): Position [2] is at the right side of the home, and DOG is ON.

*: Position (2) does not support the B-axis and the C-axis.

- 8. Bit 8 in D1846 (D1926, D2006, D2086, D2166, D2246): A mode of single-speed motion is activated.
 - After bit 8 in D1846 (D1926, D2006, D2086, D2166, D2246) is set to 1, a mode of single-speed motion will be activated. The target position of the single-speed motion and the speed of the single-speed motion depend on the P (I) and the V (I) which are set by users, and the DVP-10PM series motion controller sends pulses by a pulse generator.
 - If relative single-speed motion is activated, the sign bit of the P (I) set by users will determine the direction of the relative single-speed motion.
 - Absolute single-speed motion: If the target position of the axis specified is greater than its present command position, the motor used will rotate clockwise. If the target position of the axis specified is less than its present command position, the motor used will rotate counterclockwise.
 - After single-speed motion is activated, the speed of the absolute single-speed motion will increase from the V_{BIAS} set to the V (I) set. The speed of the absolute single-speed motion will not decrease from the V (I) set to the V_{BIAS} set until the number of pulses output is near the P (I) set.
 - V_{BIAS}: D1824 (D1904, D1984, D2054, D2134, D2214); V (I): D1840 (D1920, D2000, D2080, D2160, D2240); V_{MAX}: D1822 (D1902, D1982, D2062, D2142, D2222); P (I): D1838 (D1918, D1998, D2078, D2158, D2238); T_{ACC}: D1836 (D1916, D1996, D2076, D2156, D2236); T_{DEC}: D1837 (D1917, D1997, D2077, D2157, D2237)

- If bit 6 in D1816 (D1896, D1976, D2056, D2136, D2216) is ON, and bit 8 in D1846 (D1926, D2006, D2086, D2166, D2246) is ON, Y0~Y3 will execute PWM.
- Bit 9 in D1846 (D1926, D2006, D2086, D2166, D2246): A mode of inserting single-speed motion is activated.
 - After bit 9 in D1846 (D1926, D2006, D2086, D2166, D2246) is set to 1, a mode of inserting single-speed motion will be activated, and the DVP-10PM series motion controller will send pulses by a pulse generator. After DOG's signal goes from low to high or from high to low, the axis specified will move to the target position indicated by the P (I) set.
 - If relative single-speed motion is activated, the sign bit of the P (I) set by users will determine the direction of the relative single-speed motion.
 - Absolute single-speed motion: If the target position of the axis specified is greater than its present command position, the motor used will rotate clockwise. If the target position of the axis specified is

less than its present command position, the motor used will rotate counterclockwise.

- The speed of motion will increase from the V_{BIAS} set to the V (I) set. After DOG's signal goes from low to high or from high to low, the DVP-10PM series motion controller used will continue sending pulses. The speed of the motion will not decrease from the V (I) set to the V_{BIAS} set until the number of pulses output is near the P (I) set.
- V_{BIAS}: D1824 (D1904, D1984, D2054, D2134, D2214); V (I): D1840 (D1920, D2000, D2080, D2160, D2240); V_{MAX}: D1822 (D1902, D1982, D2062, D2142, D2222); P (I): D1838 (D1918, D1998, D2078, D2158, D2238); T_{ACC}: D1836 (D1916, D1996, D2076, D2156, D2236); T_{DEC}: D1837 (D1917, D1997, D2077, D2157, D2237)

10. Bit 10 in D1846 (D1926, D2006, D2086, D2166, D2246): A mode of two-speed motion is activated.

- After bit 10 in D1846 (D1926, D2006, D2086, D2166, D2246) is set to 1, a mode of two-speed motion will be activated. The axis specified moves at the V (I) set. After it moves to the P (I) set, it will move to the P (II) set at the V (II) set.
- Relative coordinates: The sign bit of the P (I) set by users determines the direction of motion. If the P (I) specified is a positive value, the motor used will rotate clockwise. If the P (I) specified is a negative value, the motor used will rotate counterclockwise.
- Absolute coordinates: If the target position (P (I)) of an axis is greater than its present command position, the motor used will rotate clockwise. If the target position (P (I)) of an axis is less than its present command position, the motor used will rotate counterclockwise.
- After motion is started, the speed of the motion will increase from the V_{BIAS} set to the V (I) set. The speed of the motion will not increase/decrease from the V (I) set to the V (II) set until the number of pulses output is near the P (I) set. The speed of the motion will not decrease from the V (II) to the V_{BIAS} set until the present command position of the axis specified is near the P (II) set.
- V_{BIAS}: D1824 (D1904, D1984, D2054, D2134, D2214); V (I): D1840 (D1920, D2000, D2080, D2160, D2240); V (II): D1844 (D1924, D2004, D2084, D2164, D2244); V_{MAX}: D1822 (D1902, D1982, D2062, D2142, D2222); P (I): D1838 (D1918, D1998, D2078, D2158, D2238); P (II): D1842 (D1922, D2002, D2082, D2162, D2242); T_{ACC}: D1836 (D1916, D1996, D2076, D2156, D2236); T_{DEC}: D1837 (D1917, D1997, D2077, D2157, D2237)

12. Bit 11 in D1846 (D1926, D2006, D2086, D2166, D2246): A mode of inserting two-speed motion is

activated.

- After bit 11 in D1846 (D1926, D2006, D2086, D2166, D2246) is set to 1, a mode of inserting two-speed motion will be activated. The axis specified moves at the V (I) set. After DOG's signal goes from low to high or from high to low, the axis will move to the target position indicated by the P (II) set at the V (II) set.
- Relative coordinates: The sign bit of the P (I) set by users determines the direction of motion.
- Absolute coordinates: If the target position (P (I)) of an axis is greater than its present command position, the motor used will rotate clockwise. If the target position (P (I)) of an axis is less than its present command position, the motor used will rotate counterclockwise.
- After motion is started, the speed of the motion will increase from the V_{BIAS} set to the V (I) set. After DOG's signal goes from low to high or from high to low, the speed of the motion will increase/decrease from the V (I) set to the V (II) set.
- V_{BIAS}: D1824 (D1904, D1984, D2054, D2134, D2214); V (I): D1840 (D1920, D2000, D2080, D2160, D2240); V (II): D1844 (D1924, D2004, D2084, D2164, D2244); V_{MAX}: D1822 (D1902, D1982, D2062, D2142, D2222); P (I): D1838 (D1918, D1998, D2078, D2158, D2238); P (II): D1842 (D1922, D2002, D2082, D2162, D2242); T_{ACC}: D1836 (D1916, D1996, D2076, D2156, D2236); T_{DEC}: D1837 (D1917, D1997, D2077, D2157, D2237)

- 13. Bit 12 inD1846 (D1926, D2006, D2086, D2166, D2246): The execution of the Ox motion subroutine set starts.
 - Bit 12=1: The execution of the Ox motion subroutine set starts.
 - Bit 12=0: The execution of the Ox motion subroutine set stops.

X-a	ixis	Y-axis Z-axis				
łW	LW	HW	LW	HW	LW	
	D1847		D1927		D2007	Mode of operation
A-a	ixis	B-a	axis	C-a	axis	
HW	LW	HW	LW	HW	LW	
	D2087		D2167		D2247	

[Description]

- 1. Bit 2 in D1847 (D1927, D2007, D2087, D2167, D2247): Mode of sending a CLR signal
 - Bit 2=0: After the axis specified returns home, the CLR output will send a 130 millisecond signal to the servo drive used, and the present position of the servo drive which is stored in a register in the servo drive will be cleared.
 - Bit 2=1: The CLR output functions as a general output. Its state is determined by bit 3 in D1847 (D1927, D2007, D2087, D2167, D2247).
- 2. Bit 3 in D1847 (D1927, D2007, D2087, D2167, D2247): Setting the CLR output to ON/OFF
 - Bit 3=0: The CLR output is OFF.
 - Bit 3=1: The CLR output is ON.
- 3. Bit 4 in D1847 (D1927, D2007, D2087, D2167, D2247): Setting the polarity of the CLR output
 - Bit 4=0: The CLR output is a Form A contact.
 - Bit 4=1: The CLR output is a Form B contact.

- 4. Bit 6 in D1847 (D1927, D2007, D2087, D2167, D2247): Limitation on the present position of the slave axis controlled by the manual pulse generator used
 - Bit 6=0: There is no limitation on the present position of the slave axis controlled by the manual pulse generator used.
 - Bit 6=1: The present position of the slave axis controlled by the manual pulse generator used has to be in the range of the P (I) set to the P (II) set. If the present position of the slave axis controlled by the manual pulse generator used is not in the range of the P (I) set to the P (II) set, the slave axis will decelerate and stop.
- 5. Bit 7 in D1847 (D1927, D2007, D2087, D2167, D2247): Mode of stopping the motor used when the motor used comes into contact with a positive limit switch/negative limit switch
 - Bit 7=0: If the motor used comes into contact with a positive limit switch/negative limit switch when it rotates, it will decelerate and stop.
 - Bit 7=1: If the motor used comes into contact with a positive limit switch/negative limit switch when it rotates, it will stop immediately.
- 6. Bit 15 in D1847 (D1927, D2007, D2087, D2167, D2247): Restoring the DVP-10PM series motion controller to the factory settings

xis	Y-a	xis	Z-axis		
LW	HW	LW	HW	LW	
D1848	D1929	D1928	D2009 D2008		Present command position of the axis spec
A-axis		B-axis		axis	(Pulse)
LW	HW	LW	HW	LW	
D2088	D2169	D2168	D2249	D2248	
	LW D1848 xis LW	LW HW D1848 D1929 ixis B-a LW HW	LW HW LW D1848 D1929 D1928 xis B-axis LW HW LW	LW HW LW HW D1848 D1929 D1928 D2009 xis B-axis C-a LW HW LW HW	LW HW LW HW LW D1848 D1929 D1928 D2009 D2008 xis B-axis C-axis LW HW LW LW

• Bit 15=1: The values of parameters are restored to factory settings.

[Description]

1. The value in (D1849, D1848) ((D1929, D1928), (D2009, D2008), (D2089, D2088), (D2169, D2168), (D2249, D2248)) is in the range of -2,147,483,648 to +2,147,483,647.

 The present command position of the axis specified is indicated by the number of pulses. The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216). After the axis specified returns home, the value in (D1835, D1834) ((D1915, D1914), (D1995, D1994), (D2075, D2074, (D2155, D2154), (D2235, D2234)) will be written into (D1849, D1848) ((D1929, D1928), (D2009, D2008), (D2089, D2088), (D2169, D2168), (D2249, D2248)).

X-a	axis	Y-a	xis	Z-axis		
HW	LW	HW	LW	HW LW		
D1851	D1850	D1931	D1930	D2011	D2010	Present command speed of the axis specified
A-a	A-axis B-axis		ixis	C-axis		(PPS)
HW	LW	HW	LW	HW	LW	
D2091	D2090	D2171	D2170	D2251	D2250	

[Description]

1. The value in (D1851, D1850) ((D1931, D1930), (D2011, D2010), (D2091, D2090), (D2171, D2170), (D2251, D2250)) is in the range of 0 to 2,147,483,647.

2. The present command speed of the axis specified is indicated by the number of pulses.

X-a	axis	Y-a	xis	Z-axis		
HW	LW	HW	LW	HW	LW	
D1853	D1852	D1933	D1932	D2013	D2012	Present command position of the axis specific
A-a	A-axis B-axis		C-a	axis	(Unit)	
HW	LW	HW	LW	HW	LW	
D2093	D2092	D2173	D2172	D2253	D2252	

[Description]

1. The value in (D1853, D1852) ((D1933, D1932), (D2013, D2012), (D2093, D2092), (D2173, D2172),

(D2253, D2252)) is in the range of -2,147,483,648 to +2,147,483,647.

The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216). After the axis specified returns home, the value in (D1835, D1834) ((D1915, D1914), (D1995, D1994), (D2075, D2074, (D2155, D2154), (D2235, D2234)) will be written into (D1853, D1852) ((D1933, D1932), (D2013, D2012), (D2093, D2092), (D2173, D2172), (D2253, D2252)).

X-a	ixis	Y-a	ixis	Z-axis		
HW	LW	HW	LW	HW LW		
D1855	D1854	D1935	D1934	D2015	D2014	Present command speed of the axis specified
A-a	axis	B-a	ixis	C-:	axis	(Unit)
HW	LW	HW	LW	HW	LW	
D2095	D2094	D2175	D2174	D2255	D2254	

[Description]

1. The value in (D1855, D1854) ((D1935, D1934), (D2015, D2014), (D2095, D2094), (D2175, D2174), (D2255, D2254)) is in the range of 0 to 2,147,483,647.

2. The unit used is determined by bit 0 and bit 1 in D1816 (D1896, D1976, D2056, D2136, D2216).

X-axis		Y-axis		Z-axis		
HW	LW	HW	LW	HW	LW	
	D1856		D1936		D2016	State of the axis specifie
A-axis		B-axis		C-:	axis	State of the axis specified
HW	LW	HW	LW	HW	LW	
	D2096		D2176		D2256	

[Description]

Bit#	D1856 (D1936, D2016)
0	Positive-going pulses are being output.
1	Negative-going pulses are being output.
2	The axis specified is operating.
3	An error occurs.
4	The axis specified pauses.
5	The manual pulse generator used generates positive-going pulses.
6	The manual pulse generator used generates negative-going pulses.
7	Undefined

X-a	axis	Y-axis		Z-a	axis
HW	LW	HW	LW	HW	LW
	D1857		D1937		D2017
A-axis		B-axis		C-:	axis
HW	LW	HW	LW	HW	LW

[Description]

Please refer to chapter 11 for more information.

X-a	X-axis		Y-axis		axis	Electronic gear ratio	
HW	LW	HW	LW	HW	LW	Liectionic gear ratio	
	D1858		D1938		D2018	Electronic gear ratio (Numerator)	
	D1859		D1939		D2019	Electronic gear ratio (Denominator)	
A-a	axis	B-axis		C-axis		Electronic gear ratio	
HW	LW	HW	LW	HW	LW	Liectionic gear ratio	
	D2098		D2178		D2258	Electronic gear ratio (Numerator)	
	D2099		D2179		D2259	Electronic gear ratio (Denominator)	

- 1. If bit 5 in D1846 (D1926, D2006, D2086, D2166, D2246) is set to ON, a manual pulse generator mode will be activated.
- A manual pulse generator generates A/B-phase pulses that are sent to the input terminals X10± and X11±. The relation between the position of the axis specified and the input pulses generated by the manual pulses used is shown below.

If a positive limit switch or a negative limit switch is enabled when a manual pulse generator is operated, the generation of pulses will stop. If a positive limit switch is enabled, positive-going pulses will be inhibited, and negative-going will be allowed. If a negative limit switch is enabled, negative-going pulses will be inhibited, and positive-going switch will be allowed.

3. The speed output is determined by the frequency of input pulses generated by a manual pulse generator and an electronic gear ratio.

X-a	X-axis Y-axis		Z-axis			
HW	LW	HW	LW	HW	LW	
D1861	D1860	D1941	D1940	D2021	D2020	Frequency of pulses generated by the manual
A-axis		B-axis		C-axis		pulse generator for the axis specified
HW	LW	HW	LW	HW	LW	
D2101	D2100	D2181	D2180	D2261	D2260	

[Description]

 The value in (D1861, D1860) ((D1941, D1940), (D2021, D2020), (D2101, D2100), (D2181, D2180), (D2261, D2260)) indicates the frequency of pulses generated by the manual pulse generator for the axis specified. It does not vary with the values in D1858 (D1938, D2018, D2098, D2178, D2258) and D1859 (D1939, D2019, 2099, D2179, D2259).

X-a	X-axis Y-axis		Z-axis			
HW	LW	HW	LW	HW	LW	
D1863	D1862	D1943	D1942	D2023	D2022	Number of pulses generated by the manual pulse
A-axis		B-axis		C-a	axis	generator for the axis specified
HW	LW	HW	LW	HW	LW	
D2103	D2102	D2183	D2182	D2263	D2262	

[Description]

The value in (D1863, D1862) ((D1943, D1942), (D2023, D2022), (D2103, D2102), (D2183, D2182), (D2263, D2262)) indicates the number of pulses generated by the manual pulse generator for the axis specified. If the pulses generated by the manual pulse generator for the axis specified are clockwise pulses, the value in (D1863, D1862) ((D1943, D1942), (D2023, D2022), (D2103, D2102), (D2183, D2182), (D2263, D2262)) will increase. If the pulses generated by the manual pulse generator for the axis specified are counterclockwise pulses, the value in (D1863, D1862) ((D1943, D1942), (D2023, D2022), (D2103, D2102), (D2023, D2022), (D2103, D2102), (D2183, D2182), (D2263, D2262)) will decrease.

The value in (D1863, D1862) ((D1943, D1942), (D2023, D2022), (D2103, D2102), (D2183, D2182), (D2263, D2262)) does not vary with the values in D1858 (D1938, D2018, D2098, D2178, D2258) and D1859 (D1939, D2019, 2099, D2179, D2259).

X-axis		Y-axis		Z-axis		
HW	LW	HW	LW	HW	LW	
	D1864		D1944		D2024	Response speed of the manual pulse generator
A-a	axis	B-axis		B-axis C-axis		for the axis specified
HW	LW	HW	LW	HW	LW	
	D2104		D2184		D2264	

[Description]

- 1. If the response speed set is high, the pulses output happen almost at the same time as the pulses input by the manual pulse generator used.
- 2. If the response speed set is low, the pulses output follows the pulses input by the manual pulse generator used.

/						
Setting value	Response speed					
≧5	4 ms (Initial value)					
4	32 ms					
3	108 ms					
2	256 ms					
1 or 0	500 ms					

3. Bit 8 and bit 9 in D1864 (D1944, D2024, D2104, D2184, D2264): Setting the input pulses generated by the manual pulse generator specified

b9	b8	Input type (positive logic)	Description
0	0	FP Clockwise pulses	Counting up/down
0	1	FP Pulses	Pulses+Directions
1	0	FP A-phase pulses	A/B-phase pulses
1	1	RP B-phase pulses	Four times the frequency of A/B-phase pulses

3.12.2 Introduction of Modes of Motion

- 1. There are eight modes of motions.
 - 1. Returning home
 - 2. JOG motion
 - Single-speed motion
 - 4. Inserting single-speed motion
- If more than one mode of motion is activated, they will be executed in particular order.

6. Variable motion

7. Single-speed motion

9. Two-speed motion

5. Two-speed motion

- 1. Stopping the motion of the axis specified by software
- 2. Returning home
- 3. Positive JOG motion
- 4. Negative JOG motion
- 5. Manual pulse generator mode
- 10. Inserting two-speed motion

8. Inserting single-speed motion

If a mode of motion is activated when another mode of motion is executed, the DVP-10PM series motion controller will continue executing the original mode.

3. There are two types of acceleration curves.

- Inserting two-speed motion
 Variable motion
- 8. Manual pulse generator mode

3.12.3 Special Data Registers for Motion Axes

	Speci	ial data	a regis	ters fo	r motio	on axes					Mod	e of o	opera	ation		
X-a	ixis		ixis		xis	A-a		-	DOC	Retu	Sing	Inse	Two	Inse	Varia	Man
нw	LW	HW	LW	HW	LW	HW	LW	Parameter	JOG motion	Returning home	Single-speed motion	Inserting single-speed motion	Two-speed motion	Inserting two-speed motion	Variable motion	Manual pulse generator mode
D1819	D1818	D1899	D1898	D1979	D1978	D2059	D2058	Number of pulses it takes for the motor of the axis specified to rotate once (A)	spec set.	ial da	ta reg	gister	notor s do r necha	not ne	ed to	
D1821	D1820	D1901	D1900	D1981	D1980	D2061	D2060	Distance generated after the motor of the axis specified rotate once (B)	com		d unit		specia			
-	D1816	-	D1896	-	D1976	-	D2056	Setting the parameters of the axis specified	0	0	۵	۵	٥	٥	٥	٥
D1823	D1822	D1903	D1902	D1983	D1982	D2063	D2062	Maximum speed (V _{MAX}) at which the axis specified rotates	0	0	0	0	٥	٥	٥	٥
D1825	D1824	D1905	D1904	D1985	D1984	D2065	D2064	Start-up speed (V _{BIAS}) at which the axis specified rotates	0	٥	0	0	٥	٥	٥	٥
D1827	D1826	D1907	D1906	D1987	D1986	D2067	D2066	JOG speed (V _{JOG}) at which the axis specified rotates	۵	-	-	-	-	-	-	-
D1829	D1828	D1909	D1908	D1989	D1988	D2069	D2068	Speed (V _{RT}) at which the axis specified returns home								
D1831	D1830	D1911	D1910	D1991	D1990	D2071	D2070	Speed (V _{CR}) to which the speed of the axis specified decreases when the axis returns home	-	0	-	-	_	-	-	-
-	D1832	-	D1912	-	D1992	-	D2072	Number of PG0 pulses for the axis specified								
-	D1833	-	D1913	-	D1993	-	D2073	Supplementary pulses for the axis specified								
D1835	D1834	D1915	D1914	D1995	D1994	D2075	D2074	Home position of the axis specified								
-	D1836	-	D1916	-	D1996	-	D2076	Time (T _{ACC}) it takes for the axis specified to accelerate	0	٥	0	٥	٥	٥	٥	-
-	D1837	-	D1917	-	D1997	-	D2077	Time (T _{DEC}) it takes for the axis specified to decelerate	0	۵	ø	0	٥	٥	٥	-
D1839	D1838	D1919	D1918	D1999	D1998	D2079	D2078	Target position of the axis specified (P (I))	-	-	0	0	0	٥	-	0
D1841	D1840	D1921	D1920	D2001	D2000	D2081	D2080	Speed at which the axis specified rotates (V (I))	-	-	0	0	٥	0	0	-
D1843	D1842	D1923	D1922	D2003	D2002	D2083	D2082	Target position of the axis specified (P (II))	-	-	-	-	٥	0	-	0
D1845	D1844	D1925	D1924	D2005	D2004	D2085	D2084	Speed at which the axis specified rotates (V (II))	-	-	-	-	٥	0	-	-
-	D1846	-	D1926	-	D2006	-	D2086	Operation command	٥	٥	0	٥	٥	٥	0	0

	Speci	al data	a regis	ters fo	r motic	on axes					Mod	e of o	opera	ation	1	
X-a	-		ixis		ixis		ixis		JOG	Returning	Singl	Inserting	Two-s	Inser	Varia	Manu
HW	LW	HW	LW	HW	LW	HW	LW	Parameter	JOG motion	ning home	Single-speed motion	ting single-speed motion	Two-speed motion	Inserting two-speed motion	Variable motion	Manual pulse generator mode
-	D1847	-	D1927	-	D2007	-	D2087	Mode of operation	0	0	0	٥	0	0	0	٥
D1849	D1848	D1929	D1928	D2009	D2008	D2089	D2088	Present command position of the axis specified (Pulse)	٥	0	0	0	0	0	0	۲
D1851	D1850	D1931	D1930	D2011	D2010	D2091	D2090	Present command speed of the axis specified (PPS)	٥	0	0	0	0	0	0	0
D1853	D1852	D1933	D1932	D2013	D2012	D2093	D2092	Present command position of the axis specified (Unit)	٥	0	0	0	0	0	0	0
D1855	D1854	D1935	D1934	D2015	D2014	D2095	D2094	Present command speed of the axis specified (Unit)	0	0	0	0	0	0	0	0
-	D1858	-	D1938	-	D2018	-	D2098	Electronic gear ratio of the axis specified (Numerator)	-	-	-	-	-	-	-	۵
-	D1859	-	D1939	-	D2019	-	D2099	(Denominator)	-	-	-	-	-	-	-	۲
D1861	D1860	D1941	D1940	D2021	D2020	D2101	D2100	Frequency of pulses generated by the manual pulse generator for the axis specified	-	-	-	-	-	-	-	۵
D1863	D1862	D1943	D1942	D2023	D2022	D2103	D2102	Number of pulses generated by the manual pulse generator for the axis specified	-	-	-	-	-	-	-	۵
-	D1864	-	D1944	-	D2024	-	D2104	Response speed of the manual pulse generator for the axis specified	-	-	-	-	-	-	-	0
D1865	-	-	-	-	-	-	-	Mode of stopping Ox0~Ox99	-	-	-	-	-	-	-	-
D1867	D1866	D1947	D1946	D2027	D2026	-	-	Electrical zero of the axis specified	-	-	-	-	-	-	-	-
D1868	-	-	-	-	-	-	-	Setting an Ox motion subroutine number	-	-	-	-	-	-	-	-
D1869	-	-	-	-	-	-	-	Step address in the Ox motion subroutine at which an error occurs	-	-	-	-	-	-	-	-
D1872	-	-	-	-	-	-	-	Enabling a Y device when the Ox motion subroutine is ready	٥	0	0	0	0	0	0	0
D1873	-	-	-	-	-	-	-	Enabling a Y device when an M-code in the Ox motion subroutine is executed	-	-	-	-	-	-	-	-
D1874	-	-	-	-	-	-	-	Using an X device to reset the M-code	-	-	-	-	-	-	-	-

3 Devices

	Snec	ial data	a reais	ters fo	r motic	on axes				l	Mode	e of o	opera	atior	I	
X-a		1	LW	Z-a		A-a		Parameter	JOG motion	Returning home	Single-speed motion	Inserting single-speed motion	Two-speed motion	Inserting two-speed motion	Variable motion	Manual pulse generator mode
D1875	-	D1955	-	-	-	-	-	Starting the axis specified manually (ZRN, MPG, JOG-, JOG+)	0	-	-	-	-	-	-	۲

Snec	ial data regis	ters for motic	n axes				Mod	e of (opera	ation	1	
-	axis		axis		JOG	Retu	Singl	Inserting	Two-	Inser	Varia	Manu
HW	LW	HW	LW	Parameter	motion	Returning home	Single-speed motion	ting single-speed motion	Two-speed motion	Inserting two-speed motion	Variable motion	Manual pulse generator mode
D2139	D2138	D2219	D2218	Number of pulses it takes for the motor of the axis specified to rotate once	spec set.	ial da	ta reg	gister	s do r	unit, not ne	ed to	
D2141	D2140	D2221	D2220	Distance generated after the motor of the axis specified rotate once	com		d unit			anical al data		
-	D2136	-	D2216	Setting the parameters of the axis specified	0	0	0	0	0	٥	٥	0
D2143	D2142	D2223	D2222	Maximum speed (V _{MAX}) at which the axis specified rotates	0	0	٥	0	۵	0	۲	0
D2145	D2144	D2225	D2224	Start-up speed (V _{BIAS}) at which the axis specified rotates	0	0	٥	۲	۲	0	٥	0
D2147	D2146	D2227	D2226	JOG speed (V _{JOG}) at which the axis specified rotates	0	-	-	-	-	-	-	-

Spec	cial data regis	ters for motion	on axes				Mod	e of	oper	atior	ו	
	axis		-axis	_	JOG	Retu	Sing	Inser	Two-	Inser	Varia	Manu
HW	LW	нw	LW	Parameter	JOG motion	Returning home	Single-speed motion	Inserting single-speed motion	Two-speed motion	Inserting two-speed motion	Variable motion	Manual pulse generator mode
D2149	D2148	D2229	D2228	Speed (V _{RT}) at which the axis specified returns home								
D2151	D2150	D2231	D2230	Speed (V _{CR}) to which the speed of the axis specified decreases when the axis returns home	_	0	-	-	-	-	-	-
-	D2152	-	D2232	Number of PG0 pulses for the axis specified								
-	D2153	-	D2233	Supplementary pulses for the axis specified								
D2155	D2154	D2235	D2234	Home position of the axis specified								
-	D2156	-	D2236	Time (T_{ACC}) it takes for the axis specified to accelerate	٥	٥	0	0	0	0	0	-
-	D2157	-	D2237	Time (T_{DEC}) it takes for the axis specified to decelerate	٥	٥	0	0	0	0	0	-
D2159	D2158	D2239	D2238	Target position of the axis specified (P (I))	-	-	0	0	0	0	-	۵
D2161	D2160	D2242	D2240	Speed at which the axis specified rotates (V (I))	-	-	0	0	0	0	0	-
D2163	D2162	D2243	D2242	Target position of the axis specified (P (II))	-	-	-	-	0	0	-	٥
D2165	D2164	D2245	D2244	Speed at which the axis specified rotates (V (II))	-	-	-	-	0	0	-	-
-	D2166	-	D2246	Operation command	0	0	0	0	0	0	0	۵
-	D2167	-	D2247	Mode of operation	0	0	0	0	0	0	0	0
D2169	D2168	D2249	D2248	Present command position of the axis specified (Pulse)	0	0	0	0	0	0	0	0
D2171	D2170	D2251	D2250	Present command speed of the axis specified (PPS)	0	٥	0	0	٥	٥	٥	0
D2173	D2172	D2253	D2252	Present command position of the axis specified (Unit)	٥	٥	0	0	٥	0	0	0
D2175	D2174	D2255	D2254	Present command speed of the axis specified (Unit)	0	0	0	0	0	0	0	0
-	D2178	-	D2258	Electronic gear ratio of the axis specified (Numerator)	-	-	-	-	-	-	-	0
-	D2179	-	D2259	Electronic gear ratio of the axis specified (Denominator)	-	-	-	-	-	-	-	0

3 Devices

Sner	cial data regis	ters for moti	on axes				Mod	e of (opera	ation	1	
•	axis		-axis	_	JOG n	Returning	Single	Inserting	Two-speed	Inserting	Variab	Manua
нw	LW	нw	LW	Parameter	motion	ning home	Single-speed motion	ing single-speed motion	peed motion	ing two-speed motion	Variable motion	Manual pulse generator mode
D2181	D2180	D2261	D2260	Frequency of pulses generated by the manual pulse generator for the axis specified	-	-	-	-	-	-	-	۵
D2183	D2182	D2263	D2262	Number of pulses generated by the manual pulse generator for the axis specified	-	-	-	-	-	-	-	0
-	D2184	-	D2264	Response speed of the manual pulse generator for the axis specified	-	-	-	-	-	-	-	0

◎ indicates that the special data registers are applicable to the motion.

MEMO

4.1 Table of Basic Instructions

General instructions

Instruction code	Function	Operand	Execution speed (µs)	Step	Page number
LD	Loading a Form A contact	X, Y, M, S, T, C	0.14	3	4-3
LDI	Loading a Form B contact	X, Y, M, S, T, C	0.14	3	4-3
AND	Connecting a Form A contact in series	X, Y, M, S, T, C	0.14	3	4-4
ANI	Connecting a Form B contact in series	X, Y, M, S, T, C	0.14	3	4-4
OR	Connecting a Form A contact in parallel	X, Y, M, S, T, C	0.14	3	4-5
ORI	Connecting a Form B contact in parallel	X, Y, M, S, T, C	0.14	3	4-5
ANB	Connecting circuit blocks in series	None	-	3	4-6
ORB	Connecting circuit blocks in parallel	None	-	3	4-7

Output instructions

Instruction code	Function	Operand	Execution speed (µs)	Step	Page number
OUT	Driving a coil	Y, M, S	-	3	4-7
SET	Keeping a device ON	Y, M, S	-	3	4-8
RST	Resetting a contact or a register	Y, M, S, T, C, D, V, Z	-	3	4-8

Timer and counters

API	Instruction code	Function	Operand	Execution speed (µs)	Step	Page number
96	TMR	16-bit timer	T-K or T-D	6	5	4-9
97	CNT	16-bit counter	C-K or C-D (16 bits)	2.8	5	4-9
97	DCNT	32-bit counter	C-K or C-D (32 bits)	2.8	6	4-10

Rising-edge/Falling-edge detection instructions

API	Instruction code	Function	Operand	Execution speed (µs)	Step	Page number
90	LDP	Starting rising-edge detection	X, Y, M, S, T, C	0.4	3	4-10
91	LDF	Starting falling-edge detection	X, Y, M, S, T, C	0.5	3	4-11
92	ANDP	Connecting rising-edge detection in series	X, Y, M, S, T, C	0.4	3	4-11
93	ANDF	Connecting falling-edge detection in series	X, Y, M, S, T, C	0.4	3	4-12
94	ORP	Connecting rising-edge detection in parallel	X, Y, M, S, T, C	0.5	3	4-12
95	ORF	Connecting falling-edge detection in parallel	X, Y, M, S, T, C	0.4	3	4-13

Rising-edge/Falling-edge output instruction

API	Instruction code	Function	Operand	Execution speed (us)	Step	Page number
89	PLS	Rising-edge output	Υ, Μ	0.2	3	4-14
99	PLF	Falling-edge output	Y, M	0.3	3	4-14

Other instructions

Instruction code	Function	Operand	Execution speed (us)	Step	Page number
Р	Pointer	P0~P255	-	1	4-15

4.2 Descriptions of the Basic Instructions

Instruction code	Function					Applicable model	
LD	Loading a Form A contact					10PM ✓	
Onerend	X0~X377	X0~X377 Y0~Y377 M0~M4,095 S0~S1,023 T0~T255 C0~C255					D0~D9,999
Operand	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

The instruction LD applies to the Form A contact which starts from a busbar or the Form A contact which is the start of a circuit. It reserves the present contents, and stores the state which is gotten in the accumulation register.

Instruction code:		Description:			
LD	X0	Loading the Form A contact X0			
AND	X1	Connecting the Form A contact X1 in series			
OUT	Y1	Driving the coil Y1			

Instruction code	Function					Applicable model	
LDI		Loading a Form B contact					10PM ✓
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
,	✓	\checkmark	\checkmark	✓	\checkmark	~	-

The instruction LDI applies to the Form B contact which starts from a busbar or the Form B contact which is the start of a circuit. It reserves the present contents, and stores the state which is gotten in an accumulation register.

Explanation

Instruc	tion code:	Description:
LDI	X0	Loading the Form B contact X0
AND	X1	Connecting the Form A contact X1 in series
OUT	Y1	Driving the coil Y1

Instruction code	Function					Applicable model	
AND	Connecting a Form A contact in series					10PM ✓	
Operand	X0~X377 Y0~Y377 M0~M4,095 S0~S1,023 T0~T255 C0~C255					D0~D9,999	
oporaria	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	-

Explanation

The instruction AND is used to connect a Form A contact in series. It reads the state of a contact which is connected in series, and performs the AND operation on the previous logical operation result. The final result is stored in an accumulation register.

Example

Instruct	tion code:	Description:			
LDI X1		Loading the Form B contact X1			
AND	X0	Connecting the Form A contact X0			
OUT	Y1	Driving the coil Y1			

Instruction code	Function					Applicable model	
ANI	Connecting a Form B contact in series					10PM ✓	
Operand	X0~X377 Y0~Y377 M0~M4,095 S0~S1,023 T0~T255 C0~C255					D0~D9,999	
Operand	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

The instruction ANI is used to connect a Form B contact in series. It reads the state of a contact which is connected in series, and performs the AND operation on the previous logical operation result. The final result is stored in an accumulation register.

Example Ladder diagram:

X0 X1 Y1 ╢ ┨┠

Instruction code:	Description:
-------------------	--------------

LD	X1	Loading the Form A contact X1
ANI	X0	Connecting the Form B contact X0 in series
OUT	Y1	Driving the coil Y1

Instruction code	Function					Applicable model	
OR	Connecting a Form A contact in parallel					10PM ✓	
Onerend	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
Operand	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The instruction OR is used to connect a Form A contact in parallel. It reads the state of a contact which is connected in parallel, and performs the OR operation on the previous logical operation result. The final result is stored in an accumulation register.

Ladder diagram:

Instruction code: LD X0		Description: Loading the Form A contact X0				
OR	X1	Connecting the Form A contact X1 in parallel				
OUT	Y1	Driving the coil Y1				

Instruction code	Function					Applicable model	
ORI		Connecting a Form B contact in parallel					10PM ✓
Operand	X0~X377 ✓	Y0~Y377 ✓	M0~M4,095 ✓	S0~S1,023 ✓	T0~T255 ✓	C0~C255 ✓	D0~D9,999 -

Explanation

Explanation

Example

The instruction ORI is used to connect a Form B contact in parallel. It reads the state of a contact which is connected in parallel, and performs the OR operation on the previous logical operation result. The final result is stored in an accumulation register.

Ladder diagram:

Instruct LD	ion code: X0	Description: Loading the Form A contact X0
ORI	X1	Connecting the Form B contact X1 in parallel
OUT	Y1	Driving the coil Y1

Instruction code	Function	Applicable model
ANB	Connecting circuit blocks in series	10PM ✓
Operand	None	

Explanation

The instruction ANB is used to perform the AND operation on the logical operation result reserved previously and the contents of the present accumulation register.

Block A Block B

Instruct	tion code:	Description:
LD	X0	Loading the Form A contact X0
ORI	X2	Connecting the Form B contact X2 in parallel
LDI	X1	Loading the Form B contact X1
OR	Х3	Connecting the Form A contact X3 in parallel
ANB		Connecting the circuit blocks in series
OUT	Y1	Driving the coil Y1

Instruction code	Function	Applicable model
ORB	Connecting circuit blocks in parallel	10PM ✓
Operand	None	

The instruction ORB is used to perform the OR operation on the logical operation result reserved previously and the contents of the present accumulation register.

Example

Explanation

Instruction code:		Description:
LD	X0	Loading the Form A contact X0
ANI	X1	Connecting the Form B contact X1 in series
LDI	X2	Loading the Form B contact X2
AND	X3	Connecting the Form A contact X3 in series
ORB		Connecting the circuit blocks in parallel
OUT	Y1	Driving the coil Y1

Instruction code	Function			Applicable model			
OUT		Driving a coil			10PM ✓		
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
Operand	-	\checkmark	✓	✓	-	-	-

 The logical operation result prior to the application of the instruction OUT is sent to the device specified.

Explanation

Action of a coil

	OUT			
Operation result		Contact		
	Coil	Form A contact (Normally-open contact)	Form B contact (Normally-closed contact)	
False	Off	OFF	ON	
True	On	ON	OFF	

Instruction code:		Description:
LDI	X0	Loading the Form B contact X0
AND	X1	Connecting the Form A contact X1 in series
OUT	Y1	Driving the coil Y1

Instruction code	Function			Applicable model			
SET		Keeping a device ON			10PM ✓		
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
Operand	-	\checkmark	\checkmark	\checkmark	-	-	-

When the instruction SET is driven, the device specified is set to ON. Whether the instruction SET is still driven or not, the device specified remains ON. Users can set the device specified to OFF by means of the instruction RST.

	Lac
Example)

Instruction code:		Description:
LD	X0	Loading the Form A contact X0
ANI	Y0	Connecting the Form B contact Y0
SET	Y1	Y01 remains ON.

Instruction code	Function								
RST		Resetting a contact or a register							
Operand	X0~X377 Y0~Y377 M0~M4,095 S0~S1,023 T0~T255 C0~C255						D0~D9,999		
Operand	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		

When the instruction RST is driven, the device specified acts in the way described below.

Device	State
S, Y, M	The coil and the contact are set to OFF.
T, C	The present timer value or the present counter value becomes 0. The coil and the contact are set to OFF.
D, V, Z	The value becomes 0.

 If the instruction RST is not executed, the state of the device specified will remain unchanged.

Example

Explanation

RST	Y5

Ladder diagram:

X0

-1┣--

on code:	Description:
X0	Loading the Form A
	contact X0
Y5	Resetting Y5
	X0

Instruction code		Function				
TMR		16-bit timer 10F				
Operand	T-K T-D	T0~T255, K0~K32,767 T0~T255, D0~D9,999				

♦ When the instruction TMR is executed, the coil specified is ON, and the timer specified begins to count. If the timer value matches the setting value (timer value≥setting value), the contact specified will act in the way described below.

					0011100010	-p 0 0 1					
		NO (Normally-open) contact					OFF				
		NC (I	Normally-c	closed) cor	ntact			ON			
	Ladd	er diag	gram:				Instru	uction code:	Des	scription:	
Evomplo	. X0					-	LD	X0	Loa	ading the Form A	
Example	┝┥⊦		TMR	T5	K1000				con	ntact X0	
	I	I			I	1	TMR	T5 K1000	the	e setting value in timer T5 is 000.	
Additional					fications for the first for the first formation of the first formati		e mod	lel used for n	nore	information about	ut

Instruction code		Function	Applicable model	
CNT		16 hit counter	10PM	
CNT		16-bit counter		
Operand	C-K	C0~C199, K0~K32,767		
Operand	C-D	C0~C199, D0~D9,999		

When the counter coil specified by the instruction CNT is turned from OFF to ON, the counter value increases by 1. If the counter value matches the setting value (counter value=setting value), the contact specified will act in the way described below.

NO (Normally-open) contact	OFF
NC (Normally-closed) contact	ON

• If there are pulses sent to the counter specified by the instruction CNT after the counter value matches the setting value, the state of the contact specified and the counter value will remain unchanged. Users can reset a counter by means of the instruction RST.

ction code:	Description:		
X0	Loading the Form A contact X0		
C20 K100	The setting value in the counter C20 is K100.		
	ction code: X0 C20 K100		

Explanation

remark

Instruction code	Function					
DCNT		32-bit counter	10PM			
DCINT			\checkmark			
Operand	C-K C200, C204, C208~C255, K-2,147,483,648~K2,147,483,647					
Operanu	C-D	C200, C204, C208~C255, D0~D9,999				

DCNT is an instruction which is used to enable the 32-bit counters C200~C255.

- C221~C2255 are general up/down counters. When the counter coil specified by the instruction DCNT is turned from OFF to ON, the counter value increases
 - or decreases by one according to the setting of M1200~M1234.

Example _	· · · · · · · · · · · · · · · · · · ·	רם _ו
	Example	

Explanation

ple	Ladder diag	gram:		
pie		DCNT	C254	K1000

Instruct	ion code:	Description:		
LD	MO	Loading the Form A contact M0		
DCNT	C254 K1000	The setting value in the counter C254 is K1000.		

Instruction code	Function				Applicable model		
LDP	Starting rising-edge detection					10PM ✓	
Operand	X0~X377 ✓	Y0~Y377 ✓	M0~M4,095 ✓	S0~S1,023 ✓	T0~T255 ✓	C0~C255 ✓	D0~D9,999 -

Explanation

The usage of LDP is similar to that of LD, but the action of LDP is different from that of LD. LDP reserves the present contents, and stores the state of the rising edge-triggered contact specified to an accumulation register.

Example

Instruct	tion code:	Description:				
LDP	X0	Starting the detection of the state of the rising edge-triggered contact X0				
AND	X1	Connecting the Form A contact X1 in series				
OUT	Y1	Driving the coil Y1				

- Additional remark
- Please refer to the specifications for the model used for more information about the operand ranges which can be used.
- If the state of a rising edge-triggered contact in a DVP-10PM series motion controller is ON before the DVP-10PM series motion controller is powered, it is TRUE after the DVP-10PM series motion controller is powered.

Instruction code	Function				Applicable model		
LDF	Starting falling-edge detection					10PM ✓	
	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
Operand	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The usage of LDF is similar to that of LD, but the action of LDP is different from that of LD. LDF reserves the present contents, and stores the state of the falling edge-triggered contact specified to an accumulation register.

Example

Instruction code:		Description:
LDF	X0	Starting the detection of the state of the falling edge-triggered contact X0
AND	X1	Connecting the Form A contact X1 in series
OUT	Y1	Driving the coil Y1

Instruction code	Function						Applicable model
ANDP		Connecting rising-edge detection in series					
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
Operand	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The instruction ANDP is used to connect a rising edge-triggered contact in series.

Ladder diagram:

Instruction code:		Description:
LD	X0	Loading the Form A contact X0
ANDP	X1	Connecting the rising edge-triggered contact X1 in series
OUT	Y1	Driving the coil Y1

Instruction code	Function				Applicable model		
ANDF	Connecting falling-edge detection in series					10PM ✓	
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999
Operand	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

 The instruction ANDF is used to connect a falling edge-triggered contact in series.

Instruct	ion code:	Description:			
LD	X0	Loading the Form A contact X0			
ANDF	X1	Connecting the falling edge-triggered contact X1 in series			
OUT	Y1	Driving the coil Y1			

Instruction code	Function				Applicable model		
ORP		Connecting rising-edge detection in parallel				10PM ✓	
Operand	X0~X377	Y0~Y377	M0~M4,095		T0~T255	C0~C255	D0~D9,999
	~	v	V	~	v	v	-

Explanation

 The instruction ORP is used to connect a rising edge-triggered contact in parallel.

Example

Instruc LD	tion code: X0	Description: Loading the Form A
ORP	X1	contact X0 Connecting the rising edge-triggered contact X1 in parallel
OUT	Y1	Driving the coil Y1

Instruction code	Function				Applicable model		
ORF	Connecting falling-edge detection in parallel					10PM ✓	
Operand	X0~X377 ✓	Y0~Y377 ✓	M0~M4,095 ✓	S0~S1,023 ✓	T0~T255 ✓	C0~C255 ✓	D0~D9,999 -

Explanation

 The instruction ORF is used to connect a falling edge-triggered contact in parallel.

Ladder diagram:

Instruc	tion code:	Description:
LD	X0	Loading the Form A contact X0
ORF	X1	Connecting the falling edge-triggered contact X1
OUT	Y1	Driving the coil Y1

Instruction code		Function							
PLS		Rising-edge output							
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999		
Operand	-	\checkmark	\checkmark	-	-	-	-		

Explanation

PLS is a rising-edge output instruction. When X0 is turned from OFF to ON, the instruction PLS is executed. M0 sends a pulse for a scan cycle.

Example

X0 PLS M0 M0 SET Y0 Timing diagram: X0 One scan cycle Y0 Y0

Ladder diagram:

Instructio	on code:	Description:
LD X0		Loading the Form A contact X0
PLS	МО	M0 is rising edge-triggered.
LD	MO	Loading the Form A contact M0
SET	Y0	Y0 remains ON.

Instruction code		Function							
PLF		Falling-edge output							
Operand	X0~X377	Y0~Y377	M0~M4,095	S0~S1,023	T0~T255	C0~C255	D0~D9,999		
Operand	-	\checkmark	\checkmark	-	-	-	-		

Explanation

PLF is a falling-edge output instruction. When X0 is turned from ON to OFF, the instruction PLF is executed. MO sends a pulse for a scan cycle.

Example

PLF	MO
SET	Y0

Timing diagram:

Ladder diagram:

X0 _____One scan cycle _____ M0 _____One scan cycle _____

Instructio LD	on code: X0	Description: Loading the Form A contact X0
PLF	MO	M0 is falling edge-triggered.
LD	MO	Loading the Form A contact M0
SET	Y0	Y0 remains ON.

Instruction code	Function	Applicable model
Р	Pointer	10PM
	Fointei	\checkmark
Operand	P0~P255	

Explanation

A pointer can be used by API 00 CJ, API 01 CALL, API 256 CJN, and API 257 JMP. The pointers used do not have to start from P0. A pointer number can not be used repeatedly, otherwise an unexpected error will occur.

Example

Ladder diagram:

Instructi	on code:	Description:
LD	X0	Loading the Form A contact X0
CJ	P10	The jump instruction CJ specifies P10.
P10		Pointer P10
LD	X1	Loading the Form A contact X1
OUT	Y1	Driving the coil Y1

MEMO

5.1 Table of Applied Instructions

Type	API	API Instruction code		Pulse	Function		Step		
Туре		16-bit	32-bit	instruction	T difetion	16-bit	32-bit	No.	
	00	CJ	-	✓	Conditional jump	3	—	5-13	
5	01	CALL	-	✓	Calling a subroutine	3	-	5-16	
Loop control	02	SRET	-	-	Indicating that a subroutine ends	1	-	5-17	
ŏn	07	WDT	-	✓	Watchdog timer	1	-	5-19	
trol	08	RPT	-	—	Start of a nested loop (only one loop)	3	-	5-20	
	09	RPE	_	-	End of a nested loop	1	_	5-21	
	10	CMP	DCMP	 ✓ 	Comparing values	7	9	5-22	
_	11	ZCP	DZCP	✓	Zonal comparison	9	12	5-23	
rar	12	MOV	DMOV	✓	Transferring a value	5	6	5-24	
าsfe	13	SMOV	-	✓	Transferring digits	11	_	5-25	
er a	14	CML	DCML	 ✓ 	Inverting bits	5	9	5-28	
nd	15	BMOV	-	✓	Transferring values	7	-	5-29	
ç	16	FMOV	DFMOV	✓	Transferring a value to several devices	7	13	5-31	
npa	17	XCH	DXCH	\checkmark	Interchanging values	5	9	5-32	
Transfer and comparison	18	BCD	DBCD	~	Converting a binary value into a binary-coded decimal value	5	5	5-33	
	19	BIN	DBIN	~	Converting a binary-coded decimal value into a binary value	5	5	5-34	
	20	ADD	DADD	~	Binary addition	7	9	5-35	
	21	SUB	DSUB	~	Binary subtraction	7	9	5-37	
Arithmetic	22	MUL	DMUL	 ✓ 	Binary multiplication	7	9	5-38	
	23	DIV	DDIV	~	Binary division	7	9	5-39	
	24	INC	DINC	~	Adding one to a binary value	3	3	5-40	
	25	DEC	DDEC	✓	Subtracting one from a binary value	3	3	5-41	
	26	WAND	DWAND	✓	Logical AND operation	7	9	5-42	
	27	WOR	DWOR	 ✓ 	Logical OR operation	7	9	5-43	
	28	WXOR	DWXOR	~	Logical exclusive OR operation	7	9	5-44	
	29	NEG	DNEG	✓	Taking the two's complement of a value	3	3	5-45	
	30	ROR	DROR	✓	Rotating bits rightwards	5	9	5-47	
	31	ROL	DROL	✓	Rotating bits leftwards	5	9	5-48	
	32	RCR	DRCR	✓	Rotating bits rightwards with a carry flag	5	9	5-49	
Rot	33	RCL	DRCL	✓	Rotating bits leftwards with a carry flag	5	9	5-50	
latio	34	SFTR	-	✓	Moving the states of bit devices rightwards	9	-	5-51	
n s	35	SFTL	-	✓	Moving the states of bit devices leftwards	9	-	5-52	
and	36	WSFR	_	✓	Moving the values in word devices rightwards	9	-	5-53	
Rotation and move	37	WSFL	_	✓	Moving the values in word devices leftwards	9	-	5-55	
ove	38	SFWR	_	~	Moving a value and writing it into a word device	7	-	5-56	
	39	SFRD	-	~	Moving a value and reading it from a word device	7	-	5-57	
	40	ZRST	_	✓	Resetting a zone	5	-	5-58	
	41	DECO	-	✓	Decoder	7	-	5-59	
Da	42	ENCO	-	✓	Encoder	7	-	5-61	
tar	43	SUM	DSUM	\checkmark	Number of bits which are ON	5	9	5-63	
oro	44	BON	DBON	 ✓ 	Checking the state of a bit	7	13	5-64	
Data processing	45	MEAN	DMEAN	✓	Mean	7	13	5-65	
sin	46	ANS	-	-	Driving an annunciator	7	-	5-66	
ŋ	47	ANR	-	✓	Resetting an annunicator	1	-	5-67	
	48	SQR	DSQR	✓	Square root of a binary value	5	9	5-69	

${\bf 5}$ Applied Instructions and Basic Usage

Turne		Instruction code		Pulse	Function		ер	Page
Туре	AFI	16-bit	32-bit	instruction	Function	16-bit 32-bit		No.
Data processing	49	_	DFLT	~	Converting a binary integer into a binary floating-point value	_	6	5-70
High-speed processing	50	REF	-	~	Refreshing the states of I/O devices	5	-	5-72
S	61	SER	DSER	~	Searching data	9	17	5-73
Convenience	66	ALT	-	\checkmark	Alternating between ON and OFF	3	-	5-75
nie	67	RAMP	DRAMP	-	Ramp	9	17	5-76
nc	69	SORT	DSORT	-	Sorting data	11	21	5-78
CD	78	FROM	DFROM	~	Reading data from a control register in a special module	9	12	5-80
٥/I	79	то	DTO	~	Writing data into a control register in a special module	9	13	5-81
	87	ABS	DABS	\checkmark	Absolute value	3	5	5-84
	89	PLS	_	-	Rising-edge output	3	-	4-14
	90	LDP	—	-	Starting rising-edge detection	3	-	4-10
Ba	91	LDF	—	-	Starting falling-edge detection	3	-	4-11
Basic instructions	92	ANDP	_	—	Connecting rising-edge detection in series	3	-	4-11
ins	93	ANDF	_	—	Connecting falling-edge detection in series	3	—	4-12
tru	94	ORP	-	-	Connecting rising-edge detection in parallel	3	-	4-12
ctio	95	ORF	-	-	Connecting falling-edge detection in parallel	3	—	4-13
ns	96	TMR	-	-	16-bit timer	5	-	4-9
	97	CNT	DCNT	-	16-bit counter	5	6	4-9
	99	PLF	_	-	Falling-edge output	3	-	4-14
Communication	100	MODRD	-	_	Reading Modbus data	7	-	5-85
nication	101	MODWR	_	_	Writing Modbus data	7	_	5-89
	110	-	DECMP	✓	Comparing binary floating-point values	7	9	5-94
	111	_	DEZCP	✓	Binary floating-point zonal comparison	9	12	5-95
	112	_	DMOVR	✓	Transferring a floating-point value		9	5-96
	116	_	DRAD	 ✓ 	Converting a degree to a radian	_	6	5-97
	117	_	DDEG	 ✓ 	Converting a radian to a degree		6	5-98
<u>ד</u>	120	_	DEADD	 ✓ 	Binary floating-point addition	7	9	5-99
loat	121	_	DESUB	✓ ✓	Binary floating-point subtraction	7	9	5-100
Bui	122	_	DEMUL	 ✓ 	Binary floating-point multiplication	7	9	5-101
þ	123	_	DEDIV	✓ ✓	Binary floating-point division	7	9	5-102
int	124	_	DEXP	✓	Exponent of a binary floating-point value	-	6	5-103
Floating-point value	125	_	DLN	v	Natural logarithm of a binary floating-point value	_	6	5-104
	126	_	DLOG	✓ ✓	Logarithm of a binary floating-point value	-	9	5-105
	127	_	DESQR	✓ ✓	Square root of a binary floating-point value	5	6	5-106
	128 129	-	DPOW DINT	✓ ✓	Power of a floating-point value Converting a binary floating-point value into a	-	9 6	5-107 5-108
	130		DSIN	✓ √	binary integer Sine of a binary floating-point value	5	6	5-109

${\bf 5}$ Applied Instructions and Basic Usage

Topology Te-bit 32-bit Instruction 16-bit 32-bit Topology 49 - DFLT ✓ Converting a binary integer into a binary floating-point value - 66 Topology 50 REF - ✓ Refreshing the states of I/O devices 55 - 61 SER DSER ✓ Searching data 9 11 67 RAMP DRAMP - Ramp 9 11 66 ALT - ✓ Alternating between ON and OFF 3 - 67 RAMP DRAMP - Ramp 9 11 78 FROM DFROM ✓ Reading data from a control register in a special module 9 12 90 DP - - Stating rising-edge detection 3 - 91 LDF - - Stating rising-edge detection in series 3 - 92 ANDF - Connecting rising-edge detection in parallel	Tuno		Instruct	ion code	Pulse	Function		ер	Page
Bot REF · · Refreshing the states of I/O devices 5 - 60 SER DSER · Searching data 9 11 66 ALT · · Alternating between ON and OFF 3 - 67 RAMP DRAMP · Ramp 9 11 69 SORT DSORT - Sorting data 11 22 79 TO DTO · Writing data into a control register in a special module 9 12 90 LDF - - Rising-edge dutput 3 - 91 LDF - - Starting failing-edge detection 3 - 92 ANDP - - Connecting rising-edge detection in parallel 3 - 93 ANDF - - Connecting failing-edge detection in parallel 3 - 94 ORP - - Connecting failing-edge detection in parallel 3 -	Type	AFI	16-bit	32-bit	instruction	Function		32-bit	No.
Open for the second s	Data processing	49	_	DFLT	~		_	6	5-70
To Ta FROM DFROM ✓ Reading data from a control register in a special module 9 12 T9 TO DTO ✓ Reading data into a control register in a special module 9 12 87 ABS DABS ✓ Absolute value 3 5 89 PLS – – Rising-edge output 3 – 90 LDP – – Starting rising-edge detection 3 – 91 LDF – – Connecting rising-edge detection in series 3 – 93 ANDF – – Connecting rising-edge detection in parallel 3 – 94 ORF – – Connecting rising-edge detection in parallel 3 – 95 ORF – – Connecting rising-edge detection in parallel 3 – 96 TMR – – Connecting rising-edge detection in parallel 3 – 97 CNT DCNT	High-speed processing	50	REF	-	~	Refreshing the states of I/O devices	5	-	5-72
To Ta FROM DFROM ✓ Reading data from a control register in a special module 9 12 T9 TO DTO ✓ Reading data into a control register in a special module 9 12 87 ABS DABS ✓ Absolute value 3 5 89 PLS – – Rising-edge output 3 – 90 LDP – – Starting rising-edge detection 3 – 91 LDF – – Connecting rising-edge detection in series 3 – 93 ANDF – – Connecting rising-edge detection in parallel 3 – 94 ORF – – Connecting rising-edge detection in parallel 3 – 95 ORF – – Connecting rising-edge detection in parallel 3 – 96 TMR – – Connecting rising-edge detection in parallel 3 – 97 CNT DCNT	S	61	SER	DSER	√	Searching data	9	17	5-73
T8 FROM DFROM ✓ Reading data from a control register in a special module 9 12 79 TO DTO ✓ Reading data from a control register in a special module 9 12 87 ABS DABS ✓ Absolute value 3 5 89 PLS – – Rising-edge output 3 1 90 LDP – – Starting rising-edge detection 3 1 91 LDF – – Starting rising-edge detection 3 1 92 ANDP – – Connecting rising-edge detection in series 3 1 93 ANDF – – Connecting rising-edge detection in parallel 3 1 94 ORP – – Connecting rising-edge detection in parallel 3 1 93 ANDF – – Connecting rising-edge detection in parallel 3 1 96 TMR – – Connecting r	nve	66	ALT	-	\checkmark	Alternating between ON and OFF	3	-	5-75
T8 FROM DFROM ✓ Reading data from a control register in a special module 9 12 79 TO DTO ✓ Reading data from a control register in a special module 9 12 87 ABS DABS ✓ Absolute value 3 5 89 PLS – – Rising-edge output 3 1 90 LDP – – Starting rising-edge detection 3 1 91 LDF – – Starting rising-edge detection 3 1 92 ANDP – – Connecting rising-edge detection in series 3 1 93 ANDF – – Connecting rising-edge detection in parallel 3 1 94 ORP – – Connecting rising-edge detection in parallel 3 1 93 ANDF – – Connecting rising-edge detection in parallel 3 1 96 TMR – – Connecting r	enie	67	RAMP	DRAMP	-	Ramp	9	17	5-76
To Ta FROM DFROM ✓ Reading data from a control register in a special module 9 12 T9 TO DTO ✓ Reading data into a control register in a special module 9 12 87 ABS DABS ✓ Absolute value 3 5 89 PLS – – Rising-edge output 3 – 90 LDP – – Starting rising-edge detection 3 – 91 LDF – – Connecting rising-edge detection in series 3 – 93 ANDF – – Connecting rising-edge detection in parallel 3 – 94 ORF – – Connecting rising-edge detection in parallel 3 – 95 ORF – – Connecting rising-edge detection in parallel 3 – 96 TMR – – Connecting rising-edge detection in parallel 3 – 97 CNT DCNT	enc				-	•	11	21	5-78
T9 TO DTO ✓ Withing Gata into a control register in a special of the special of					~	Reading data from a control register in a		12	5-80
89 PLS - - Rising-edge output 3 - 90 LDP - - Starting rising-edge detection 3 - 91 LDF - - Starting falling-edge detection in series 3 - 92 ANDP - - Connecting rising-edge detection in series 3 - 93 ANDF - - Connecting rising-edge detection in series 3 - 93 ANDF - - Connecting rising-edge detection in series 3 - 93 ANDF - - Connecting rising-edge detection in parallel 3 - 95 ORF - - Connecting rising-edge detection in parallel 3 - 96 TMR - - Connecting falling-edge detection in parallel 3 - 97 CNT DCNT - 16-bit counter 5 6 99 PLF - - Falling-edge output <t< td=""><td>Õ</td><td>79</td><td>то</td><td>DTO</td><td>~</td><td></td><td>9</td><td>13</td><td>5-81</td></t<>	Õ	79	то	DTO	~		9	13	5-81
90 LDP - Starting rising-edge detection 3 - 91 LDF - - Starting falling-edge detection 3 - 92 ANDP - - Connecting rising-edge detection in series 3 - 93 ANDF - - Connecting falling-edge detection in series 3 - 94 ORP - - Connecting falling-edge detection in parallel 3 - 95 ORF - - Connecting falling-edge detection in parallel 3 - 96 TMR - - 16-bit timer 5 - 97 CNT DCNT - Falling-edge output 3 - 100 MODRD - - Reading Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 111 - DEZCP ✓ Binary floating-point zonal comparison 9 12		87	ABS	DABS	✓	Absolute value	3	5	5-84
91 LDF - Starting falling-edge detection 3 - 92 ANDP - - Connecting rising-edge detection in series 3 - 93 ANDF - - Connecting rising-edge detection in series 3 - 94 ORP - - Connecting rising-edge detection in parallel 3 - 95 ORF - - Connecting falling-edge detection in parallel 3 - 96 TMR - - 16-bit timer 5 6 97 CNT DCNT - 16-bit counter 5 6 99 PLF - - Falling-edge output 3 - 100 MODRD - - Reading Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 111 - DECMP ✓ Comparing binary floating-point values 7 9 112		89	PLS	_	-	Rising-edge output	3	-	4-14
96 IMR - - 16-bit timer 5 - 97 CNT DCNT - 16-bit counter 5 6 99 PLF - - Falling-edge output 3 - 00 MODRD - - Reading Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 111 - DECMP ✓ Comparing binary floating-point values 7 9 111 - DEZCP ✓ Binary floating-point zonal comparison 9 12 112 - DMOVR ✓ Transferring a floating-point value 9 9 116 - DRAD ✓ Converting a radian to a degree - 6 117 - DEG ✓ Converting a radian to a degree - 6 120		90	LDP	_	-		3	-	4-10
96 IMR - - 16-bit timer 5 - 97 CNT DCNT - 16-bit counter 5 6 99 PLF - - Falling-edge output 3 - 00 MODRD - - Reading Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - - - Reading Modbus data 7 - 101 MODWR - - - Writing Modbus data 7 - 111 - DECMP - Comparing binary floating-point values 7 9 111 - DECMP - Converting a floating-point value 9 9 112 - DMOVR - Transferring a floating-point value 9 9 116 - DRAD - Converting a radian to a degree - 6 117 - DEG - Converting a floating-point addition 7 9	Bas	91	LDF	_	-	Starting falling-edge detection	3	-	4-11
96 IMR - - 16-bit timer 5 - 97 CNT DCNT - 16-bit counter 5 6 99 PLF - - Falling-edge output 3 - 00 MODRD - - Reading Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 111 - DECMP ✓ Comparing binary floating-point values 7 9 111 - DEZCP ✓ Binary floating-point zonal comparison 9 12 112 - DMOVR ✓ Transferring a floating-point value 9 9 116 - DRAD ✓ Converting a radian to a degree - 6 117 - DEG ✓ Converting a radian to a degree - 6 120	ic i	92	ANDP	_	-	Connecting rising-edge detection in series	3	-	4-11
96 IMR - - 16-bit timer 5 - 97 CNT DCNT - 16-bit counter 5 6 99 PLF - - Falling-edge output 3 - 00 MODRD - - Reading Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 111 - DECMP ✓ Comparing binary floating-point values 7 9 111 - DEZCP ✓ Binary floating-point zonal comparison 9 12 112 - DMOVR ✓ Transferring a floating-point value 9 9 116 - DRAD ✓ Converting a radian to a degree - 6 117 - DEG ✓ Converting a radian to a degree - 6 120	nstr	93	ANDF	_	-	Connecting falling-edge detection in series	3	-	4-12
96 IMR - - 16-bit timer 5 - 97 CNT DCNT - 16-bit counter 5 6 99 PLF - - Falling-edge output 3 - 00 MODRD - - Reading Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 111 - DECMP ✓ Comparing binary floating-point values 7 9 111 - DEZCP ✓ Binary floating-point zonal comparison 9 12 112 - DMOVR ✓ Transferring a floating-point value 9 9 116 - DRAD ✓ Converting a radian to a degree - 6 117 - DEG ✓ Converting a radian to a degree - 6 120	uct	94	ORP	_	-		3	-	4-12
96 IMR - - 16-bit timer 5 - 97 CNT DCNT - 16-bit counter 5 6 99 PLF - - Falling-edge output 3 - 00 MODRD - - Reading Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 111 - DECMP ✓ Comparing binary floating-point values 7 9 111 - DEZCP ✓ Binary floating-point zonal comparison 9 12 112 - DMOVR ✓ Transferring a floating-point value 9 9 116 - DRAD ✓ Converting a radian to a degree - 6 117 - DEG ✓ Converting a radian to a degree - 6 120	ion	95	ORF	_	-	Connecting falling-edge detection in parallel	3	-	4-13
99 PLF - - Falling-edge output 3 - 100 MODRD - - Reading Modbus data 7 - 101 MODWR - - Reading Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - - Writing Modbus data 7 9 111 - DECMP ✓ Comparing binary floating-point values 7 9 112 - DMOVR ✓ Transferring a floating-point value 9 12 116 - DRAD ✓ Converting a degree to a radian - 66 120 - DEG ✓ Converting a radian to a degree - 66 121 - DEMUL ✓ Binary floating-point subtraction 7 9 122 - DEMUL ✓ Binary floating-point division 7 9 123 <td>s</td> <td>96</td> <td>TMR</td> <td>—</td> <td>-</td> <td>16-bit timer</td> <td>5</td> <td>-</td> <td>4-9</td>	s	96	TMR	—	-	16-bit timer	5	-	4-9
Open Figure 100 MODRD - - Reading Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - - Writing Modbus data 7 - 101 MODWR - DECMP ✓ Comparing binary floating-point values 7 9 111 - DECMP ✓ Comparing binary floating-point values 7 9 111 - DEZCP ✓ Binary floating-point zonal comparison 9 12 112 - DMOVR ✓ Transferring a floating-point value 9 9 116 - DRAD ✓ Converting a radian to a degree - 6 120 - DEADD ✓ Binary floating-point addition 7 9 121 - DEMUL ✓ Binary floating-point multiplication 7 9 122 - DEMUL ✓ <t< td=""><td></td><td>97</td><td>CNT</td><td>DCNT</td><td>_</td><td>16-bit counter</td><td>5</td><td>6</td><td>4-9</td></t<>		97	CNT	DCNT	_	16-bit counter	5	6	4-9
110 - DECMP ✓ Comparing binary floating-point values 7 9 111 - DEZCP ✓ Binary floating-point zonal comparison 9 12 112 - DMOVR ✓ Transferring a floating-point value 9 12 112 - DMOVR ✓ Transferring a floating-point value 9 12 116 - DRAD ✓ Converting a degree to a radian - 6 117 - DDEG ✓ Converting a radian to a degree - 6 117 - DEGUB ✓ Binary floating-point addition 7 9 120 - DESUB ✓ Binary floating-point addition 7 9 121 - DESUB ✓ Binary floating-point subtraction 7 9 122 - DEMUL ✓ Binary floating-point multiplication 7 9 123 - DENV ✓ Binary floating-point division 7 9 124 - DEXP ✓ Ex		99	PLF	_	_	Falling-edge output	3	-	4-14
110 - DECMP ✓ Comparing binary floating-point values 7 9 111 - DEZCP ✓ Binary floating-point zonal comparison 9 12 112 - DMOVR ✓ Transferring a floating-point value 9 12 112 - DMOVR ✓ Transferring a floating-point value 9 12 116 - DRAD ✓ Converting a degree to a radian - 6 117 - DDEG ✓ Converting a radian to a degree - 6 117 - DEGUB ✓ Binary floating-point addition 7 9 120 - DESUB ✓ Binary floating-point addition 7 9 121 - DESUB ✓ Binary floating-point subtraction 7 9 122 - DEMUL ✓ Binary floating-point multiplication 7 9 123 - DENV ✓ Binary floating-point division 7 9 124 - DEXP ✓ Ex	Commu	100	MODRD	_	_	Reading Modbus data	7	_	5-85
111 - DEZCP ✓ Binary floating-point zonal comparison 9 12 112 - DMOVR ✓ Transferring a floating-point value 9 116 - DRAD ✓ Converting a degree to a radian - 6 117 - DDEG ✓ Converting a radian to a degree - 6 117 - DDEG ✓ Converting a radian to a degree - 6 120 - DEADD ✓ Binary floating-point addition 7 9 121 - DESUB ✓ Binary floating-point subtraction 7 9 122 - DEMUL ✓ Binary floating-point multiplication 7 9 123 - DEDIV ✓ Binary floating-point division 7 9 124 - DEXP ✓ Exponent of a binary floating-point value - 6 125 - DLN ✓ Natural logarithm of a binary floating-point value - 6 126 - DLOG ✓ Logar	nication	101	MODWR	_	_	Writing Modbus data	7	-	5-89
112 - DMOVR ✓ Transferring a floating-point value 9 116 - DRAD ✓ Converting a degree to a radian - 6 117 - DDEG ✓ Converting a radian to a degree - 6 120 - DEADD ✓ Binary floating-point addition 7 9 121 - DESUB ✓ Binary floating-point subtraction 7 9 122 - DEMUL ✓ Binary floating-point multiplication 7 9 123 - DEDIV ✓ Binary floating-point division 7 9 124 - DEXP ✓ Exponent of a binary floating-point value - 6 125 - DLN ✓ Natural logarithm of a binary floating-point value - 6 126 - DLOG ✓ Logarithm of a binary floating-point value - 9			_					9	5-94
116 - DRAD ✓ Converting a degree to a radian - 6 117 - DDEG ✓ Converting a radian to a degree - 6 120 - DEADD ✓ Binary floating-point addition 7 9 121 - DESUB ✓ Binary floating-point subtraction 7 9 122 - DEMUL ✓ Binary floating-point multiplication 7 9 123 - DEDIV ✓ Binary floating-point division 7 9 124 - DEXP ✓ Exponent of a binary floating-point value - 6 125 - DLN ✓ Natural logarithm of a binary floating-point value - 6 126 - DLOG ✓ Logarithm of a binary floating-point value - 9			_	DEZCP			9	12	5-95
117 - DDEG ✓ Converting a radian to a degree - 6 120 - DEADD ✓ Binary floating-point addition 7 9 121 - DESUB ✓ Binary floating-point subtraction 7 9 122 - DEMUL ✓ Binary floating-point multiplication 7 9 123 - DEDIV ✓ Binary floating-point division 7 9 124 - DEXP ✓ Exponent of a binary floating-point value - 6 125 - DLN ✓ Natural logarithm of a binary floating-point value - 6 126 - DLOG ✓ Logarithm of a binary floating-point value - 9			_			0 01		9	5-96
120-DEADD✓Binary floating-point addition79121-DESUB✓Binary floating-point subtraction79122-DEMUL✓Binary floating-point subtraction79123-DEDIV✓Binary floating-point division79124-DEXP✓Exponent of a binary floating-point value-6125-DLN✓Natural logarithm of a binary floating-point value-6126-DLOG✓Logarithm of a binary floating-point value-9							-	6	5-97
121 - DESUB ✓ Binary floating-point subtraction 7 9 122 - DEMUL ✓ Binary floating-point subtraction 7 9 123 - DEDIV ✓ Binary floating-point division 7 9 123 - DEDIV ✓ Binary floating-point division 7 9 124 - DEXP ✓ Exponent of a binary floating-point value - 6 125 - DLN ✓ Natural logarithm of a binary floating-point value - 6 126 - DLOG ✓ Logarithm of a binary floating-point value - 9			_					6	5-98
126−DLOG✓Logarithm of a binary floating-point value−9	т		-						5-99
126 − DLOG ✓ Logarithm of a binary floating-point value − 9	loat								5-100
126 − DLOG ✓ Logarithm of a binary floating-point value − 9	ing								5-101
126 − DLOG ✓ Logarithm of a binary floating-point value − 9	-po						7		5-102
126 − DLOG ✓ Logarithm of a binary floating-point value − 9	int	124	_	DEXP	✓		-	6	5-103
	value					value	-	6	5-104
								9	5-105
		127	_	DESQR	 ✓ 	Square root of a binary floating-point value	5	6	5-106
Converting a binary floating-point value into a								9	5-107
binary integer	ľ					binary integer		6 6	5-108 5-109

Туре		Instruct	ion code	Pulse	Function		ер	Page
Type		16-bit	32-bit	instruction	T unction	16-bit	32-bit	No.
	131	—	DCOS	✓	Cosine of a binary floating-point value	5	6	5-111
	132	_	DTAN	✓	Tangent of a binary floating-point value	5	6	5-113
	133	_	DASIN	✓	Arcsine of a binary floating-point value	_	6	5-115
Floa	134	_	DACOS	✓	Arccosine of a binary floating-point value	_	6	5-116
loat	135	_	DATAN	✓	Arctangent of a binary floating-point value	_	6	5-117
ting	136	_	DSINH	✓	Hyperbolic sine of a binary floating-point value	_	6	5-118
Floating-point value	137	_	DCOSH	~	Hyperbolic cosine of a binary floating-point value	_	6	5-119
t valu	138	_	DTANH	~	Hyperbolic tangent of a binary floating-point value	-	6	5-120
Ð	172	-	DADDR	~	Floating-point addition	-	13	5-121
	173	-	DSUBR	\checkmark	Floating-point subtraction	-	13	5-122
	174	-	DMULR	\checkmark	Floating-point multiplication	-	13	5-123
	175	-	DDIVR	\checkmark	Floating-point division	-	13	5-124
	215	LD&	DLD&	_	S1&S2	5	7	5-125
_	216		DLD	_	S1 S2	5	7	5-125
ogi	217	LD^	DLD^	_	S1^S2	5	7	5-125
cal	218	AND&	DAND&	_	S1&S2	5	7	5-126
op	219	•	DAND	_	S1 S2	5	7	5-126
era	220	AND^	DAND^	_	S1^S2	5	7	5-126
ă	221	OR&	DOR&	_	S1&S2	5	7	5-127
_	222	OR	DOR	-	S1 S2	5	7	5-127
	223	OR^	DOR^	-	S1^S2	5	7	5-127
	224	LD=	DLD=	_	S1 = S2	5	7	5-128
	225	LD>	DLD>		S1 > S2	5	7	5-128
	226	LD<	DLD<	_	S1 < S2	5	7	5-128
	228	LD<>	DLD<>	_	S1≠S2	5	7	5-128
	229	LD<=	DLD<=	-	S1≦ S2	5	7	5-128
	230	LD>=	DLD>=	_	S1≧ S2	5	7	5-128
Corr	232	AND=	DAND=	_	S1 = S2	5	7	5-129
Ipari	233	AND>	DAND>	_	S1 > S2	5	7	5-129
son	234	AND<	DAND<	_	S1 < S2	5	7	5-129
ins	236	AND<>	DAND<>	_	S1≠S2	5	7	5-129
Comparison instructions	237	AND<=	DAND<=	_	S1≦ S2	5	7	5-129
ions	238	AND>=	DAND>=	_	S1≧ S2	5	7	5-129
	240	OR=	DOR=	-	S1 = S2	5	7	5-130
	241	OR>	DOR>	-	S1 > S2	5	7	5-130
	242		DOR<	_	S1 < S2	5	7	5-130
	244	OR<>	DOR<>	-	S1≠S2	5	7	5-130
	245	OR<=	DOR<=	-	S1≦ S2	5	7	5-130
	246	OR>=	DOR>=		S1≧ S2	5	7	5-130

5 Applied Instructions and Basic Usage

Туре	API	Instruct	ion code	Pulse	Function	St	ер	Page
Type		16-bit	32-bit	instruction	Tunction	16-bit	32-bit	No.
	147	SWAP	DSWAP	\checkmark	Interchanging the high byte in a device with the low byte in the device	3	5	5-131
Q	154	RAND	DRAND	\checkmark	Random value	7	13	5-132
Other	202	SCAL	-	\checkmark	Scale	9	-	5-133
, ing	203	SCLP	DSCLP	\checkmark	Parameter scale	7	13	5-135
instructions	256	CJN	-	✓	Negated conditional jump	3	-	5-139
ctic	257	JMP	-	_	Unconditional jump	3	-	5-140
suc	258	BRET	-	-	Returning to a busbar	1	-	5-141
	259	MMOV	-	✓	Converting a 16-bit value into a 32-bit value	6	-	5-142
	260	RMOV	_	✓	Converting a 32-bit value into a 16-bit value	6	_	5-143

5.2 Structure of an Applied Instruction

- An applied instruction is composed of an instruction name and operands.
 - Instruction name: An instruction name represents a function.
 - Operand: An operand is the object of an operation.

An instruction name occupie one step. The number of steps an operand occupies can be two or three, depending on the instruction used is a 16-bit instruction or a 32-bit instruction.

Descriptions of the applied instructions

1 API number

The upper cell indicates a 16-bit instruction. If the upper cell is a dotted cell, there will be no 16-bit instruction.

The lower cell indicates a 32-bit instruction. If the lower cell is a dotted cell, there is no 32-bit instruction. If there is a 32-bit instruction, D is displayed in the lower cell, e.g. API 10 DCMP.

- ③ Applied instruction name
- ④ If ③ is displayed in the upper cell, a pulse instruction is generally used.

The lower cell indicates a pulse instruction. If there is a pulse instruction, **P** is displayed in the lower cell, e.g. API 12 MOV**P**.

- 5 Operands
- 6 Function
- Number of steps occupied by a 16-bit instruction, continuity instruction name, and pulse instruction name
- Number of steps occupied by a 32-bit instruction, continuity instruction name, and pulse instruction name
- Is Flags related to an applied instruction

- The devices marked with '*' displayed in grayscale can be modified by V devices and Z
- devices.
- 1 Points for attention
- 12 The devices marked with '*' can be used.
- (13) Device name
- 14 Device type
- 15 Applicable model
- Typing an applied instruction

Some applied instructions are composed of instruction names, e.g. BRET and SRET, but most applied instructions are composed of instruction names and operands.

The applied instructions that a DVP-10PM series motion controller can use are assigned the instruction numbers API 00~API 260. Besides, every applied instruction is assigned a mnemonic. For example, the mnemonic of API 12 is MOV. If users want to type an instruction by means of PMSoft, they can type the mnemonic assigned to the instruction. If users want to type an instruction by means of the handheld programming panel DVPHPP03, they can type the API number assigned to the instruction. Every applied instruction specifies operands. Take the instruction MOV for instance.

The instruction is used to move the value in the operand **S** to the operand **D**.

	Source operand
S	If there is more one source operand, the source operands will be represented by \mathbf{S}_1 , \mathbf{S}_2 , and etc.
	Destination operand
D	If there is more than one destination operand, the destination operands will be represented by D_1 , D_2 , and etc.
16 1	

If operands are constants, they will be represented by m, m₁, m₂, n, n₁, n₂, and etc.

Length of an operand (16-bit instruction or 32-bit instruction)

The values in operands can be grouped into 16-bit values and 32-bit values. In order to process values of difference lengths, some applied instructions are grouped into 16-bit instructions and 32-bit instructions. After "D" is added to the front of a 16-bit instruction, the instruction becomes a 32-bit instruction.

The instruction MOV is a 16-bit instruction.

When X0 is ON, K10 is moved to D10.

The instruction DMOV is a 32-bit instruction.

When X1 is ON, the value in (D11, D10) is moved to (D21, D20).

Continuity instruction/Pulse instruction

The applied instructions can be grouped into continuity instructions and pulse instructions in terms of the ways the applied instructions are executed. If an instruction in a program is not executed, the execution of the program will take less time. As a result, if there are pulse instructions in a program, the scan cycle will be shorter. If "P" is added to the back of an instruction, the instruction becomes a pulse instruction. Some instructions are mostly used as pulse instructions.

When X0 is turned from OFF to ON, the instruction MOVP is executed once. MOVP will not be executed again during the scan cycle, and therefore it is a pulse instruction.

Continuity instruction

Whenever X1 is ON, the instruction MOV is executed once. MOV is a continuity instruction.

When the contacts X0 and X1 are OFF, the instructions are not executed, and the values in the destation operands are not changed.

- Operand
 - 1. A word device can consist of bit devices. Applied instructions can use KnX, KnY, KnM, and KnS. Values can be stored in KnX, KnY, KnM, and KnS.
 - 2. Data registers, timers, counters, and index registers can be used as general operands.
 - 3. A data register is a 16-bit register. If users want to use a 32-bit data register, they have to specify two consecutive data registers.
 - 4. If a 32-bit instruction uses D0 as an operand, the 32-bit data register composed of D1 and D0 will be used. D1 occupies the high 16 bits, and D0 occupy the low 16 bits. Timers and the 16-bit counters C0~C199 can be used in the same way.
 - 5. If the 32-bit counters C200~C255 are used as data registers, they can be operands used by 32-bit instructions.

Operand type

- 1. X devices, Y devices, M devices, and S devices can only be turned ON or OFF. They are bit devices.
- 2. 16-bit (or 32-bit) T devices, C device, D devices, V devices, and Z devices are word devices.

D10

3. If Kn is added to the front of an X/Y/M/S device, a word device will be formed. For example, K2M0 represents a device composed of the eight bit devices M0~M7.

When X0 is ON, the values of M0~M7 are moved to bit 0~bit 7 in D10, and bit 8~bit 15 are set to 0.

Values in word devices composed of bit devices

K2M0

16-	bit instruction		32-bit instruction		
A 16-bit value is K32,767.	in the range of K-32,768 to	A 32-bit value is in the range of K-2,147,483,648 to K2,147,483,647. Value in a word device composed of bit devices			
Value in a word of devices	device composed of bit				
K1 (4 bits)	0~15	K1 (4 bits)	0~15		
K2 (8 bits)	0~255	K2 (8 bits)	0~255		
K3 (12 bits)	0~4,095	K3 (12 bits)	0~4,095		
K4 (16 bits)	-32,768~+32,767	K4 (16 bits)	0~65,535		
		K5 (20 bits)	0~1,048,575		
		K6 (24 bits)	0~167,772,165		
		K7 (28 bits)	0~268,435,455		
		K8 (32 bits)	-2,147,483,648~+2,147,483,647		

General flags

Example: M1968 is a zero flag, M1969 is a borrow flag, and M1970 is a carry flag Every flag in a DVP-10PM series motion controller corresponds to an operation result. The state of a flag varies with an operation result. For example, if the instruction ADD/SUB/MUL/DIV is used in the main program O100~M102, the operation result gotten will affect the states of M1968~M1970. However, if the instruction is not executed, the states of the flags will remain unchanged. The states of flags are related to instructions. Please refer to the explanations of instructions for more information.

5.3 Processing Values

- X devices, Y devices, M devices, and S devices can only be turned ON or OFF. They are bit devices. Values can be stored in T device, C devices, D devices, V devices, and Z devices. They are word devices. If Kn is added to the front of an X/Y/M/S device, a word device will be formed.
- If Kn is added to the front of an X/Y/M/S device, a word device will be formed. For example, K2M0 represents a device composed of the eight bit devices M0~M7.

- The value in K1M0 is moved to a 16-bit register, and bit 4~bit 15 in the register are set to 0. The value in K3M0 is moved to a 16-bit register, and bit 8~bit 15 in the register are set to 0. The value in K3M0 is moved to a 16-bit register, and bit 12~bit 15 in the register are set to 0. The value in K1M0 is moved to a 32-bit register, and bit 4~bit 31 in the register are set to 0. The value in K2M0 is moved to a 32-bit register, and bit 8~bit 31 in the register are set to 0. The value in K2M0 is moved to a 32-bit register, and bit 8~bit 31 in the register are set to 0. The value in K3M0 is moved to a 32-bit register, and bit 12~bit 31 in the register are set to 0. The value in K3M0 is moved to a 32-bit register, and bit 12~bit 31 in the register are set to 0. The value in K4M0 is moved to a 32-bit register, and bit 16~bit 31 in the register are set to 0. The value in K5M0 is moved to a 32-bit register, and bit 16~bit 31 in the register are set to 0. The value in K5M0 is moved to a 32-bit register, and bit 20~bit 31 in the register are set to 0. The value in K5M0 is moved to a 32-bit register, and bit 20~bit 31 in the register are set to 0. The value in K5M0 is moved to a 32-bit register, and bit 20~bit 31 in the register are set to 0. The value in K5M0 is moved to a 32-bit register, and bit 20~bit 31 in the register are set to 0. The value in K6M0 is moved to a 32-bit register, and bit 24~bit 31 in the register are set to 0. The value in K6M0 is moved to a 32-bit register, and bit 28~bit 31 in the register are set to 0. The value in K7M0 is moved to a 32-bit register, and bit 28~bit 31 in the register are set to 0.
- If Kn is in the range of K1~K3 (or K4~K7), the bits which are not assigned values in the 16-bit register (the 32-bit register) to which a value is moved will be set to 0. As a result, operations will be performed on positive values if Kn is in the range of K1~K3 (or K4~K7).

The binary-coded decimal value in X4~X11 is converted into a binary value, and the binary value is stored in D0.

 Users can specify bit device numbers freely. It is suggested X device numbers/Y devuce numbers should end with 0, and that M device numbers/S device numbers should start from a number which is a multiple of 8.

Consecutive devices

Take data registers for instances. D0, D1, D2, D3, and D4 are consecutive data registers. The consecutive word devices composed of bit devices are shown below.

K1X0	K1X4	K1X10	K1X14
K2Y0	K2Y10	K2Y20	Y2X30
K3M0	K3M12	K3M24	K3M36
K4S0	K4S16	K4S32	K4S48

The consecutive word devices composed of bit devices are shown above. To avoid confusion, please do not skip any word device composed of bit devices. Beisdes, if a 32-bit operation is performed on K4Y0, the high 16 bits in the 32-bit register to which the value in K4Y0 is moved will be set to 0. If a 32-bit value is required, please use K8Y0.

After an operation is performed, the binary integer gotten will be given priority. For example, $40 \div 3=13$, and the remainder 1 is dropped. The integer part of the square root of an integer is retained, and the fractional part of the square root is dropped. However, if a decimal instruiction is used, a decimal will be gotten.

The applied intructions listed below are decimal instructions.

• •			
API 110 (D ECMP)	API 111 (D EZCP)	API 116 (D RAD)	API 117 (D DEG)
API 120 (D EADD)	API 121 (D ESUB)	API 122 (D EMUL)	API 123 (D EDIV)
API 124 (D EXP)	API 125 (D LN)	API 126 (D LOG)	API 127 (D ESQR)
API 128 (D POW)	API 129 (D INT)	API 130 (D SIN)	API 131 (D COS)
API 132 (D TAN)	API 133 (D ASIN)	API 134 (D ACOS)	API 135 (D ATAN)
API 136 (D SINH)	API 137 (D COSH)	API 138 (D TANH)	

Representations of binary floating-point values

The floating-point values in a DVP-10PM series motion controller are 32-bit floating-point values, and the representations of the floating-point values conform to the IEEE 754 standard.

Representation of a floating-point value:

 $(-1)^{S} \times 2^{E-B} \times 1.M; B = 127$

A 32-bit floating-point value is in the range of $\pm 2^{-126}$ to $\pm 2^{+128}$, that is, a 32-bit floating-point value is in the range of $\pm 1.1755 \times 10^{-38}$ to $\pm 3.4028 \times 10^{+38}$.

Example 1: 23 is represented by a 32-bit floating-point value.

Step 1: Converting 23 into a binary value: 23.0=10111

Step 2: Normalizing the binary value: 10111=1.0111×24 (0111 is a mantissa, and 4 is an exponent)

Step 3: Getting the exponent which is stored

 $\because \text{E-B=4} \rightarrow \text{E-127=4} \therefore \text{E=131=10000011}_2$

Step 4: Combining the sign bit, the exponent, and the mantissa to form a floating-point value.

Example 2: -23.0 is represented by a 32-bit floating-point value.

-23.0 is converted in the same way as 23.0. Users only need to change the sign bit to 1.

A DVP-10PM series motion controller uses two consecutive registers to form a 32-bit floating-point values. Take (D1, D0) in which a bianry floating-point value is stored for instance.

Decimal floating-point value

- Since binary floating-point values are not widely accepted by people, they can be converted into decimal floating-point values. However, the decimals on which operations are performed in a DVP-10PM series motion controller are still binary floating-point values.
- A decimal floating-point value is stored in two consecutive registers. The constant part is stored in the register whose device number is smaller, and the exponent part is stored in the register whose device number is bigger.

Take (D1, D0) for instance.

[Exponent D1] Decimal floating-point number=[Constant D0]* 10

Base: D0=±1,000~±9,999

Exponent: D1=-41~+35

Besides, the base 100 does not exist in D0 because 100 is represented by $1,000 \times 10^{-1}$. A decimal floating-point value is in the range of $\pm 1,175 \times 10^{-41}$ to $\pm 3,402 \times 10^{+35}$.

- ◆ If the instruction ADD/SUB/MUL/DIV is used in the main program O100~M102, the operation result gotten will affect the states of M1968~M1970. If a floating-point operation instruction is used, the result gotten will also affect the state of the zero flag M1968, the state of the borrow flag M1969, and the state of the carry flag M1970.
 - Zero flag: If the operation result gotten is 0, M1968 will be ON.
 - Carry flag: If the absolute value of the operaiton result gotten is greater than the maximum value allowed, M1969 will be ON.
 - Borrow flag: If the absolute value of the operation result gotten is less than the minimum value allowed, M1970 will be ON.

5.4 Using Index Registers to Modify Operands

V devices are 16-bit index registers, and Z devices are 32-bit index registers. There are 6 V devices (V0~V5), 8 Z devices (Z0~Z7) in a DVP-10PM series motion controller.

V devices are 16-bit registers. Data can be freely written into a V device, and data can be freely read from a V device. If a 32-bit value is required, please use a Z device.

Index registers can be used to modify P/I/X/Y/M/S/KnX/KnY/KnM/KnS/T/C/D devices, but they can not be used to modify index registers, constants, and Kn. For example, K4@Z0 is invalid, K4M0@Z0 is valid,

and K0@Z0M0 is invalid. The devices marked with '*' displayed in grayscale in the table in the explanation of an applied instruction can be modified by V devices and Z devices..

5.5 Instruction Index

• Arranging applied instructions in alphabetical order

Thurs a		Instruct	Instruction code Pulse		Function	Step		
Туре	API	16-bit	32-bit	instruction	Function		32-bit	Page No.
	87	ABS	DABS	 ✓ 	Absolute value	3	5	5-84
	20	ADD	DADD	✓	Binary addition	7	9	5-35
	66	ALT	-	\checkmark	Alternating between ON and OFF	3	-	5-75
	218	AND&	DAND&	-	S1&S2	5	7	5-126
	220	AND^	DAND^	-	S1^S2	5	7	5-126
	219	AND	DAND	-	S1 S2	5	7	5-126
	234	AND<	DAND<	-	S1 < S2	5	7	5-129
	93	ANDF	-	-	Connecting falling-edge detection in series	3	_	4-10
	92	ANDP	_	—	Connecting rising-edge detection in series	3	—	4-10
^	47	ANR	_	\checkmark	Resetting an annunciator	1	—	5-67
A	46	ANS	—	-	Driving an annunciator	7	—	5-66
	237	AND<=	DAND<=	-	S1≦ S2	5	7	5-129
	236	AND<>	DAND<>	-	S1≠S2	5	7	5-129
	232	AND=	DAND=	-	S1 = S2	5	7	5-129
	233	AND>	DAND>	-	S1 > S2	5	7	5-129
	238	AND>=	DAND>=	-	S1≧ S2	5	7	5-129
	134	_	DACOS	✓	Arccosine of a binary floating-point value	_	6	5-116
	133	_	DASIN	✓	Arcsine of a binary floating-point value	-	6	5-115
	135	_	DATAN	✓	Arctangent of a binary floating-point value	_	6	5-117
	18	BCD	DBCD	~	Converting a binary value into a binary-coded decimal value	5	5	5-33
В	19	BIN	DBIN	~	Converting a binary-coded decimal value into a binary value	5	5	5-34
	15	BMOV	-	\checkmark	Transferring values	7	_	5-29
	44	BON	DBON	 ✓ 	Checking the state of a bit	7	13	5-64
	258	BRET	_	-	Returning to a busbar	1	_	5-141
	01	CALL	-	 ✓ 	Calling a subroutine	3	-	5-16
	131	-	DCOS	✓	Cosine of a binary floating-point value	5	6	5-111
	137		DCOSH	✓	Hyperbolic cosine of a binary floating-point value	-	6	5-119
С	00	CJ	_	✓	Conditional jump	3	_	5-13
0		CJN		 ✓ 	Negated conditional jump	3	_	5-139
	14	CML	DCML	✓	Inverting bits	5	9	5-28
	10	CMP	DCMP	✓	Comparing values	7	9	5-22
	97	CNT	DCNT	-	16-bit counter	5	6	4-9
	25	DEC	DDEC	✓ ✓	Subtracting one from a binary value	3	3	5-41
D	41	DECO		 ✓ ✓ 	Decoder	7	-	5-59
	117		DDEG	✓ ✓	Converting a radian to a degree	-	6	5-98
	23		DDIV	✓ ✓	Binary division	7	9	5-39
	42	ENCO		✓ ✓	Encoder	7	-	5-61
Е	172 175	_			Floating-point addition	_	13	5-121 5-124
	175	_	DDIVR DEADD	✓ ✓	Floating-point division Binary floating-point addition	- 7	13 9	5-124
	120	-	DEADD	•		1	9	0-99

-		Instructi	on code	Pulse	F ormation	St	ер	Page
Туре	API	16-bit	32-bit	instruction	Function	16-bit	32-bit	No.
	110	-	DECMP	√	Comparing binary floating-point values	7	9	5-94
	123	-	DEDIV	✓	Binary floating-point division	7	9	5-102
	122	-	DEMUL	✓	Binary floating-point multiplication	7	9	5-101
	127	-	DESQR	 ✓ 	Square root of a binary floating-point value	5	6	5-106
E	121	-	DESUB	 ✓ 	Binary floating-point subtraction	7	9	5-100
	124	-	DEXP	✓	Exponent of a binary floating-point value	-	6	5-103
	111	-	DEZCP	✓	Binary floating-point zonal comparison	9	12	5-95
	112	-	DMOVP	\checkmark	Transferring a floating-point value	-	9	5-96
	174	-	DMULR	\checkmark	Floating-point multiplication	-	13	5-123
	173	-	DSUBR	\checkmark	Floating-point subtraction	-	13	5-122
	49	-	DFLT	~	Converting a binary integer into a binary floating-point value	-	6	5-70
F	16	FMOV	DFMOV	\checkmark	Transferring a value to several devices	7	13	5-31
	78	FROM	DFROM	✓	Reading data from a control register in a special module	9	12	5-80
	24	INC	DINC	✓	Adding one to a binary value	3	3	5-40
I	129	-	DINT	~	Converting a binary floating-point value into a binary integer	-	6	5-108
J	257	JMP	_	_	Unconditional jump	3	_	5-140
	215	LD&	DLD&	_	S1&S2	5	7	5-125
	217	LD^	DLD^	-	S1^S2	5	7	5-125
	216	LD	DLD	_	S1 S2	5	7	5-125
	226	LD<	DLD<	_	S1 < S2	5	7	5-128
	229	LD<=	DLD<=	-	S1≦ S2	5	7	5-128
	228	LD<>	DLD<>	_	S1≠S2	5	7	5-128
L	224	LD=	DLD=	_	S1 = S2	5	7	5-128
	225	LD>	DLD>	-	S1 > S2	5	7	5-128
	230	LD>=	DLD>=	-	S1≧ S2	5	7	5-128
	125	-	DLN	✓	Natural logarithm of a binary floating-point value	-	6	5-104
	126	-	DLOG	✓	Logarithm of a binary floating-point value	-	9	5-105
	90	LDP	_	-	Starting rising-edge detection	3	—	4-9
	91	LDF	—	—	Starting falling-edge detection	3	—	4-10
	45	MEAN	DMEAN	\checkmark	Mean	7	13	5-65
	259	MMOV	-	✓	Converting a 16-bit value into a 32-bit value	6	_	5-142
м	100	MODRD	-	_	Reading Modbus data	7	_	5-85
	101	MODWR	-	-	Writing Modbus data	7	_	5-89
	12	MOV	DMOV	✓	Transferring a value	5	6	5-24
	22	MUL	DMUL	✓	Binary multiplication	7	9	5-38
N	29	NEG	DNEG	✓	Taking the two's complement of a value	3	3	5-45
	221	OR&	DOR&	-	S1&S2	5	7	5-127
	223	OR^	DOR^	-	S1^S2	5	7	5-127
	222	OR	DOR	-	S1 S2	5	7	5-127
ο		OR<	DOR<	_	S1 < S2	5	7	5-130
	245	OR<=	DOR<=	-	S1≦ S2	5	7	5-130
	244	OR<>	DOR<>	_	S1≠S2	5	7	5-130
		OR=	DOR=	_	S1 = S2	5	7	5-130
	241	OR>	DOR>	-	S1 > S2	5	7	5-130

Туре		Instruct	ion code	Pulse	Function	St	ер	Page
туре	~ ' '	16-bit	32-bit	instruction	T diction	16-bit	32-bit	No.
	246	OR>=	DOR>=	_	S1≧ S2	5	7	5-130
0	95	ORF	_	_	Connecting falling-edge detection in parallel	3	_	4-11
	94	ORP	_	_	Connecting rising-edge detection in parallel	3	_	4-11
	99	PLF	_	_	Falling-edge output	3	_	4-12
Р	89	PLS	_	_	Rising-edge output	3	_	4-12
	128	_	DPOW	✓	Power of a floating-point value	_	9	5-107
	116	_	DRAD	✓	Converting a degree to a radian	_	6	5-97
	67	RAMP	DRAMP	_	Ramp		17	5-76
	154	RAND	DRAND	\checkmark	Random value	7	13	5-132
	33	RCL	DRCL	✓	Rotating bits leftwards with a carry flag	5	9	5-50
	32	RCR	DRCR	✓	Rotating bits rightward with a carry flag	5	9	5-49
R	50	REF	-	\checkmark	Refreshing the states of I/O devices	5	-	5-72
	260	RMOV	-	✓	Converting a 32-bit value into a 16-bit value	6	_	5-143
	31	ROL	DROL	✓	Rotating bits leftwards	5	9	5-48
	30	ROR	DROR	✓	Rotating bits rightwards	5	9	5-47
	09	RPE	-	—	End of a nested loop	1	—	5-21
	08	RPT	-	—	Start of a nested loop (only one loop)	3	—	5-20
	202	SCAL	-	\checkmark	Scale	9	-	5-133
	203		DSCLP	\checkmark	Parameter scale	7	13	5-135
	61	SER	DSER	\checkmark	Searching data	9	17	5-73
	39	SFRD	-	✓	Moving a value and reading it from a word device	7	_	5-57
	35	SFTL	-	✓	Moving the states of bit devices leftwards	9	—	5-52
	34	SFTR	-	✓	Moving the states of bit devices rightwards	9	—	5-51
	38	SFWR	-	✓	Moving a value and writing it into a word device	7	_	5-56
_	13	SMOV	-	✓	Transferring digits	11	_	5-25
S	69	SORT	DSORT	_	Sorting data	11	21	5-78
	130	-	DSIN	✓	Sine of a binary floating-point value	5	6	5-109
	136	-	DSINH	✓	Hyperbolic sine of a binary floating-point value	-	6	5-118
	48	SQR	DSQR	✓	Square root of a binary value	5	9	5-69
	02	SRET	-	_	Indicating that a subroutine ends	1	_	5-17
	21	SUB	DSUB	✓	Binary subtraction	7	9	5-37
	43	SUM	DSUM	✓	Number of bits which are ON	5	9	5-63
	147	SWAP	DSWAP	\checkmark	Interchanging the high byte in a device with the low byte in the device	3	5	5-131
	132	-	DTAN	✓	Tangent of a binary floating-point value	5	6	5-113
т	138	-	DTANH	~	Hyperbolic tangent of a binary floating-point value	-	6	5-120
	96	TMR	-	-	16-bit timer	5	_	4-8
	79	то	DTO	~	Writing data into a control register in a special module	9	13	5-81
	26	WAND	DWAND	✓	Logical AND operation	7	9	5-42
	07	WDT	-	✓	Watchdog timer	1	-	5-19
W	27	WOR	DWOR	✓	Logical OR operation	7	9	5-43
vv	37	WSFL	-	✓	Moving the values in word devices leftwards	9	_	5-55
	36	WSFR	-	✓	Moving the values in word devices rightwards	9	_	5-53
	28	WXOR	DWXOR	✓	Logical exclusive OR operation	7	9	5-44
Х	17	XCH	DXCH	\checkmark	Interchanging values	5	9	5-32
Z	11	ZCP	DZCP	✓	Zonal comparison	9	12	5-23
2	40	ZRST	-	✓	Resetting a zone	5	_	5-58

5.6 Descriptions of the Applied Instructions

API CJ	P	Conditiona	al jump	Applicable model 10PM ✓
	Word of K H KnX KnY KnM Kn pointer. pointer in the range of P0 to un not be modified by a V de	S T C D V Z P255.	16-bit instruction (3 s CJ Continuity instruction 32-bit instruction - -	C.IP Pulse

▲▲▲	S : Pointer which points to a jump destination If some part of the main program O100 does not need to be executed, users can use CJ or CJP to shorten the scan time. Besides, if a dual output is used, users can use CJ or CJP.
*	If the program specified by a pointer is prior to the instruction CJ, a watchdog timer error will occur, and the main program will not be executed. Please use the instruction carefully.
•	The instruction CJ can specify the same pointer repeatedly. The pointer specified by CJ can not be the same as the pointer specified by CALL, otherwise an error will occur.
•	When the instruction CJ/CJP in a program is executed, the actions of the devices in the program are as follows.
	 The states of the Y devices, the states of the M devices, and the states of the S devices in the program remain the same as those before the execution of the jump.
	2. The 10 millisecond timers in the program stop counting.
	3. The general counters in the program stop counting, and the general applied instructions in the program are not executed.
	 If the instructions which are used to reset the timers in the program are driven before the jump is executed, the timers will still be reset during the execution of the jump.
←	When X0 is ON, the execution of the program jumps from address 0 to address N (P1).
Example 1	When X0 is OFF, the execution of the program starts from address 0, and the
•	instruction CJ is not executed.
	(Jump instruction)
	$\left(\begin{array}{c} x_1 \end{array} \right)$
	X_2 Y_2

•	States of	devices
---	-----------	---------

Device	States of contacts before the execution of CJ	States of contacts during the execution of CJ	States of output coils during the execution of CJ
Y devices, M devices,	M1, M2, and M3 are OFF.	M1, M2, and M3 are turned from OFF to ON.	Y1 ^{*1} , M20, and S1 are OFF.
S devices	M1, M2, and M3 are ON.	M1, M2, and M3 are turned from ON to OFF.	Y1 ^{*1} , M20, and S1 are ON.
	M4 is OFF.	M4 is turned from OFF to ON.	The timer T0 does not count.
10 milliocoord	M4 is ON.	M4 is turned from ON to OFF.	The timer T0 stops counting immediately. When M0 is turned from ON to OFF, the timer T0 is reset to 0.
millisecond timers	M6 is OFF.	M6 is turned from OFF to ON.	The timer T240 does not count.
	M6 is ON.	M6 is turned from ON to OFF.	The timer T240 stops counting immediately. When M0 is turned from ON to OFF, the timer T240 is reset to 0.
	M7 and M10 are OFF.	M10 is ON/OFF.	The counter C0 does not count.
C0~C234	M7 is OFF. M10 is ON/OFF.	M10 is ON/OFF.	C0 stops counting. After M0 is turned OFF, C0 will resume counting.
	M11 OFF	M11 is turned from OFF to ON.	The applied instructions are not executed.
Applied instructions	M11 ON	M11 is turned from ON to OFF.	The applied instructions which are skipped are not executed, but API 53~API 59 and API 157~API 159 are still executed,

*1: Y1 is a dual output. When M0 is OFF, Y1 is controlled by M1. When M0 is ON, Y1 is controlled by M12.

 Y1 is a dual output. When M0 is OFF, Y1 is controlled by M1. When M0 is ON, Y1 is controlled by M12.

	<i>,</i>		
M0	CJ	P0	
M1	(Y1))	1
M2	\sim		
M3	(M20)		
	S1)	
M4	TMR	Т0	K10
M5	RST	T240]
M6	TMR	T240	K1000
M7	RST	C0]
M10	CNT	C0	K20
M11	MOV	K3	D0
	P0		
	CJ	P63	
M12	<u>Y1</u>)	
	P63		
M13	RST	T240	
	RST	C0	
	RST	D0	
1			

API 01 CALL	P	Calling a sub	proutine	Applicable model 10PM ✓
	Word of K H KnX KnY KnM Kns pointer. pointer in the range of P0 to an not be modified by a V de	S T C D V Z	16-bit instruction (3 s CALL Continuity instruction 32-bit instruction - - • Flag: None	CALLE Pulse

- S: Pointer which points to a subroutine
- The subroutine to which a pointer points should be written after M102, M2 and the instruction SRET.
- The pointer used by the instruction CALL can not be the same as the pointers used by the instructions CJ, CJN, and JMP.
- If only the instruction CALL is used, the same subroutine can be called repeatedly.

API 02	SRET	_	Indicating that a sul	broutine ends	Applicable model 10PM ✓
• 1	Bit device X Y M S Note: There is no op The instruction	K H KnX KnY KnM k		16-bit instruction (1 st SRET Continuity instruction 32-bit instruction - - • Flag: None	<u>ep)</u>

The instruction SRET indicates that a soubroutine ends. After the execution of a subroutine in a program is complete, the instruction following CALL which calls the subroutine in the main program O100 will be executed.

Example 1

Explanation

When X0 is ON, the instruction CALL is executed, and the execution of the program jumps to the subroutine to which P2 points. When the instruction SRET is executed, the execution of the program returns to address 24.

Example 2

- When X20 is turned from OFF to ON, the instruction CALL P10 is executed, and the execution of the program jumps to the subroutine to which P10 points.
- When X11 is ON, the instruction CALL P11 is executed, and the execution of the program jumps to the subroutine to which P11 points.
- When X12 is ON, the instruction CALL P12 is executed, and the execution of the program jumps to the subroutine to which P12 points.
- When X13 is ON, the instruction CALL P13 is executed, and the execution of the program jumps to the subroutine to which P13 points.
- When X14 is ON, the instruction CALL P14 is executed, and the execution of the program jumps to the subroutine to which P14 points. When the instruction SRET is executed, the execution of the program returns to the previous subroutine.
- When the instruction SRET in the subroutine to which P10 points is executed, the execution of the program returns to the main program.

5 Applied Instructions and Basic Usage

API 07		WD	Г								Wa	tchd	og ti	imer		able model 10PM ✓	
•	Х	Bit dev Y There The in	M is i	S no op	d.	KnX	KnY ŀ	KnM	 Т	C	D.	V	Z	<u>16-bit in</u> WDT <u>32-bit in</u> - • Flag: N	 t <u>ep)</u> WDTP	Pulse instruction	l

- The instruction WDT is used to reset the watchdog timer in a DVP-10PM series motion controller. If the scan time in a DVP-10PM series motion controller exceeds 200 milliseconds, the ERROR LED indicator of the motion controller will be ON, and users will have to disconnect the motion controller of the users connect the motion controller again, the motion controller will judge its state according to the setting of the "STOP/RUN switch" switch. If there is no "STOP/RUN switch" switch, the motion controller will stop running automatically.
 - The points when a watchdog timer acts are as follows.
 - The system is abnormal.
 - The execution of a program takes much time, and therefore the scan time is greater than the setting value in D1000. There are two ways users can use to improve the situation.
 - 1. Using the instruction WDT

2. Changing the value in D1000 (The default setting is 200 milliseconds.)

Suppose the scan time is 300 milliseconds. After the program is divided into two parts, and the instruction WDT is inserted between these two parts, the time it takes to scan either the first part of the program or the second part of the program will be less than 200 milliseconds.

The default setting of a watchdog timer is 200 milliseconds. Users can set a watchdog timer by means of D1000.

Example

API 08		RP	Т			3	D					St	art c	far	ed loop	Арр	licable model 10PM ✓	
		Bit d	evice	-			1	1		d de						16-bit instruction (3 s		
	Х	Y	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z	RPT Continuity	-	-
S					*	*	*	*	*	*	*	*	*	*		instruction		
		I														32-bit instruction		
• •	Note	: The	instru	uctio	n doe	s no	t nee	d to l	be dri	iven l	oy a	conta	act.				-	_
		The	instru	uction	n sup	ports	V de	vice	s.							i		
					• •	•				infor	notic	n oh		ovior		 Flag: None 		
				ter to	o spe	cinca	tions	for r	nore	Intorr	natic	on ap	out a	evice	•			
		rang	es.															

٠

S: Number of times a loop is executed

There is only one RPT-RPE loop in a program. If there is more than one RPT-RPE loop in a program, an error will occur.

API 09	RPE			End of a neste	ed loop	Applicable model 10PM ✓
• Nc	Bit devic X Y M ote: There is The instr	S NO O	K H KnX KnY KnM		16-bit instruction (1 s RPE Continuity instruction 32-bit instruction - - • Flag: None	

- RPT in a program specifies that the RPT-RPE loop in the program must be executed N times.
 N is in the range of K1 to K32,767. If N≤K1, N will be regarded as K1.
 - Users can skip the execution of the RPT-RPE loop in a program by means of the instruction CJ.
 - An error will occur if
 - 1. the instruction RPE is before the instruction RPT.
 - 2. there is RPT, but there is no RPE.
 - 3. the number of times RPT is used is not the same as the number of times RPE is used.
 - There is only one RPT-RPE loop in a program. If there is more than one RPT-RPE loop in a program, an error will occur.
 - Part A can be executed three times by means of a RPT-RPE loop.

- Example 2
- When X0.7 is OFF, the program between RPT and RPE is executed. When X0.7 is ON, the instruction CJ is executed, the subroutine to which P6 points is executed, and the program between RPT and RPE is skipped.

X7			
├─┨┝────	CJ	P6	
мо И	MOV	K0	D0
MO	RPT	K3	
	MOV	D0	D1
	INC	D0	
	RPE		
X10	P6	,	

API 10	D	СМ	Ρ	Ρ	3		<u>S2</u>		D			(Com	pari	Applicable model 10PM ✓			
	E	Bit de	evice	;					Wor	d dev	/ice				16-bit instruction	(7 steps)		
	Х	Y	М	S	К	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z	CMP Continu	' CMPP	Pulse instruction
S ₁					*	*	*	*	*	*	*	*	*	*	*			Instruction
S ₂					*	*	*	*	*	*	*	*	*	*	*	DCMP Continu		Pulse
D		*	*	*												Instruct	instruction	
•	S2 * </td																	

- S₁: Comparison value 1; S₂: Comparison value 2; D: Comparison result
 The instruction is used to compare the value in S₁ with that in S₂. The comparison result is stored in D.
- The operand **D** occupies three consecutive devices.
- If the operand **D** is Y0, Y0, Y1, and Y2 will be occupied automatically.
- When X10 is ON, the instruction CMP is executed, and Y0, Y1, or Y2 is ON. When X10 is OFF, the execution of the instruction CMP stops, and the states of Y0, Y1, and Y2 remain unchanged.
- If users want to get the result that K10≥ the value in D10, they have to connect

Y0 and Y1 in series. If users want to get the result that $K10 \le$ the value in D10, they have to connect Y1 and Y2 in series. If users want to get the result that $K10 \ne$ the value in D10, they have to connect Y0, Y1, and Y2 in series.

API 11	D	ZC	Ρ	Ρ	C	<u>S1</u>)	S	0 (S		C		-	Zona	al co	omparison Applicable model 10PM ✓
	E	Bit de	evice)					Wor	d dev	/ice		16-bit instruction (9 steps)			
	X	Y	М	S	К	Н	KnX	KnY	KnM	KnS	Т	С	D	ZCP Continuity ZCPP Pulse		
S ₁					*	*	*	*	*	*	*	*	*	*	*	instruction instruction
S ₂					*	*	*	*	*	*	*	*	*	*	*	<u>32-bit instruction (12 steps)</u> DZCP Continuity DZCPP Pulse instruction
S					*	*	*	*	*	*	*	*	*	*	*	Instruction Instruction Instruction
D		*	*	*												
•	Note:															

- S₁: Minimum value; S₂: Maximum value; S: Comparison value; D: Comparison result
 - The instruction is used to compare the value in **S** with that in S_1 , and compare the value in **S** with that in S_2 . The comparison result is stored in **D**.
 - The value in S_2 must be greater than that in S_1 .
 - The operand **D** occupies three consecutive devices.
 - If the operand **D** is M0, M0, M1, and M2 will be occupied automatically.

API 12	D	MO	v	Ρ		্র	D		\mathbf{D}				Trai	nsfe	rring	g a value Applicable mo					
		Bit d	evice	•					Wor	d de	vice					16-bit instruction (5	steps)				
	Х	Y	М	S	К	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	MOV Continuity	MOVP	Pulse instruction			
S					*	*	*	*	*	*	*	*	*	*	*		- ()	Instruction			
D								*	*	*	*	*	*	*	*	32-bit instruction (6 DMOV Continuity	<u>steps)</u> DMOVP	Pulse			
1 •	Note:	instr	uctior uctior se re	n is us n is us	sed, Z sed, V	Z dev √ dev	/ices /ices	can r can i	not be	Z dev e use e use nform	d. lf 1 d.)	he 32	2-bit			Flag: None		instruction			

- S: Source; D: Destination
- When the instruction is executed, the value in **S** is transferred to **D**. When the instruction is not executed, the value in **D** is unchanged.
- If an operation result gotten is a 32-bit value, users can only move the operation result by means of the instruction DMOV.
- If users want to move a 16-bit value, they have to use the instruction MOV.
 - 1. When X0 is OFF, the value in D0 is unchanged. When X0 is ON, the value K10 is transferred to the data register D0.
 - 2. When X1 is OFF, the value in D10 is unchanged. When X1 is ON, the value in K2M4 is transferred to the data register D10.
- If users want to move a 32-bit value, they have to use the instruction DMOV. When X2 is OFF, the values in (D31, D30) and (D41, D40) are unchanged. When X2 is ON, the value in (D21, D20) is transferred to (D31, D30), and the value in (D51, D50) is transferred to (D41, D40).

MOV	K10	D0
MOV	K2M4	D10
DMOV	D20	D30
DMOV	D50	D40

API 13	-5	SMC	v	Ρ	S	Ē		(m2)		Ð		Transferring digits				g digits		able model 0PM ✓
		Bit d	evice	•					Wor	d de	vice	e <u>16-bit instruction (11 steps)</u>						
	Х	Y	М	S	К	Н			KnM		Т	С	D	V	Z	SMOV Continuity	SMOVP	Pulse
S							*	*	*	*	*	*	*	*	*	32-bit instruction		
m1					*	*										<u> </u>	_	_
m2					*	*										 Flag: M1168 		
D								*	*	*	*	*	*	*	*			
n					*	*												
•	 Note: The instruction supports V devices and Z devices. (If the 16-bit instruction is used, Z devices can not be used. If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If KnX/KnY/KnM/KnS is used, it is suggested that X/devices/Y devices/M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system). 																	

- S: Data source; m₁: Start digit which will be transferred from the source device;
 m₂: Number of digits which will be transferred; D: Data destination; n: Start digit where the source data is stored in the destination device
- The value used by the instruction is a binary-coded decimal value (M1168 is OFF).

The value used by SMOV is a binary-coded decimal value. When the instruction is executed, the m_2 digits of the four-digit binary-code decimal value in **S** which start from the m_1 th digit of the four-digit binary-code decimal value in **S** are transferred to the m_2 digits of the four-digit binary-code decimal value in **D** which starts from the n^{th} digit of the four-digit binary-code decimal value in **D**.

- The value used by the instruction is a binary value (M1168 is ON).
 When the instruction is executed, the m₂ digits of the four-digit decimal value in S which start from the m₁th digit of the four-digit decimal value in S are transferred to the m₂ digits of the four-digit decimal value in D which starts from the nth digit of the four-digit decimal value in D.
- m_1 is in the range of 1 to 4.
- \mathbf{m}_2 is in the range of 1 to \mathbf{m}_1 .(It can not be greater than \mathbf{m}_1 .)
- **n** is in the range of m_2 to 4. (It can not be less than m_2 .)

- When M1168 is OFF, the value used by SMOV is a binary-coded decimal value. When X0 is ON, the two digits of the decimal value in D10 which start from the fourth digit of the decimal value (the digit in the thousands place of the decimal value) in D10 are transferred to the two digits of the decimal value in D20 which start from the third digit of the decimal value (the digit in the hundreds place of the decimal value) in D20. After the instruction is executed, the digits in the thousands place of the decimal value (10³) and the ones place of the decimal value (10⁰) in D20 will be unchanged.
- ♦ If the binary-coded decimal value used is not in the range of 0 to 9,999, an operation error will occur, the instruction will not executed, M1067 will be ON, and the error code in D1067 will be 0E18 (hexadecimal value).

Unchanged Unchanged
 Suppose the value in D10 is H1234, and the value in D20 is H5678. After the instruction is executed, the value in D10 will be unchanged, and the value in D20 is H5128.

The two digits of the value of the DIP switch on the right are transferred to the the two digits of the value in D2 which start from the second digit of the value in D2, and the one digit of the value of the DIP switch on the left is transferred to the the first digit of the value in D1. The instruction SMOV can be used to transfer the first digit of the value in D1 to the third digit of the value in D2. In other words, the two DIP switches can be combined into one DIP switch by means of the instruction SMOV.

M1001	M1168)					
M1000	BIN	K2X20	D2		X27)Bina 3 → D2 (ecimal value Ilue)
	BIN	K1X10	D1		X13)Bina → D1(•	ecimal value lue)
	SMOV	D1	K1	K1	D2	К3	

DVP-10PM Application Manual

${f 5}$ Applied Instructions and Basic Usage

API														Applica	able model
14 D CM	L	Ρ	G	S		\mathbb{D}				Inve	erting	g bit	S	1	0PM
															✓
	evice	-			T			device	Ŧ		1		16-bit instruction		
S X Y	М	S	K *	H *	KnX *	KnY *	KnM Ki	nS T ∗ ∗	C *	D *	V *	Z *	CML Continuity		Pulse instruction
D i									Pulse instruction						
Example	2	•		e ci 0000 1 001 1 002 1 003 1 002 1 002 1 002 1 002 1 002 1 002 1 0 001 1 0 0 0 0 0 0 0 0 0 0 0 0 0			low c M0 M1 M2 M3 M0 M1 M2 M3		No d repr	eser	000				ed.

API 15	B	MC	v	Ρ	S		D	n)			Tra	nsfe	errin	g va	lues		able model 0PM ✓
	Bit device							Wo	'd de	vice					16-bit instruction (7 steps)			
	Х	Y	М	S	Κ	Н		KnY	KnM	KnS	Т	С	D	V	Z	BMOV Continuity	BIVILIVE	Pulse instruction
S							*	*	*	*	*	*	*			32-bit instruction		
D								*	*	*	*	*	*				-	-
n					*	*					*	*	*			 Flag: None 		
1 •	Note:	Pleas range If Kn) devic numb decim (octal (decin	es. K/KnY es/M er wh nal nu num	//KnM devid hich is umera eral s	//KnS ce nu s a m al sys syste	S is u mbe nultipl stem, m), k	ised, rs/S c le of 1 e.g. l (1M0	it is s levice 16 in K1X0	ugge e nur the c) (oct	ested nbers octal r al nu	that s sho nume mera	X/de uld s ral s I sys	vices tart fr ysten tem),	/Y om a n or ii K4S	n the Y20			

- The instruction is used to transfer the values in registers to new registers. The values in the n registers starting from S are transferred to the n registers starting from D. If n is not in the range available, only the values in registers available will be transferred.
- **n** is in the range of 1 to 512.
- When X2.0 is ON, the values in D0~D3 are transferred to D20~D23.

BMOV	D0	D20	K4	D0
				D1
				D2
				D3

D0 -	→	D20				
D1 -	→	D21			n=4	
D2 -		D22		(
D3 -	-	D23	,			

п.

If users specify KnM and KnY, n in KnM must be the same as n in KnY.

M1000					
┝─┥┝───	BMOV	K1M0	K1Y0	K3	
I					

M0	\rightarrow	Y0
M1	\rightarrow	Y1
M2	\rightarrow	Y2
М3	\rightarrow	Y3
	•	

n=3

M8]→	Y10
M9	 →	Y11
M10	\rightarrow	Y12
M11	→	Y13

Example 3	

In order to prevent the error which results from the overlap between source devices and destination devices, the values in the source devices are transferred in the following way.

 The device number of S is greater than the device number of D. The values in D20~D22 are transferred in the order ①→②→③.

X20				
	BMOV	D20	D19	К3

	. A	
D20		D19
D21		D20
D22	<u> </u>	D21

The device number of S is less than the device number of D. The values in D10~D12 are transferred in the order ③→②→①. The values in D11~D13 are the same as the value in D10.

	. O	
D10		D11
D11		D12
D12	$\vdash \cup \rightarrow$	D13

API 16	F	MO	v	Ρ	S		D	n) -	Trans	sfer	ring	a va	lue	to se	everal devices	Applicable n 10PM ✓	nodel
		Bit de	evice	1						d de	vice					16-bit instruction (
	X	Y	Μ	S	К	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	FMOV Continuit		se ruction
S							*	*	*	*	*	*	*	*		32-bit instruction		
D								*	*	*	*	*	*			DEMOV Continui		
n					*	*										 Flag: None 	n instr	uction
		is use Pleas range If KnX device numb decim (octal (decir	e refe s. (/KnY es/M er wh nal nu num	er to s //KnM devic nich is imera eral s	specif I/KnS ce nur s a m il syst syster	ficatio is us mber ultiplo tem, n), K	ons fo sed, i s/S d e of 1 e.g. ł 1M0	or mo it is s levice 6 in 1 <1X0	ore in ugge e nun the o (octa	ested nbers ctal n al nur	that 2 shou ume neral	K/dev uld st ral sy syst	vices/ art fro vstem em),	Y om a or ir K4S`	Y20			
Expl	lan	atio	n	* * *	Th rai n i	ne va nge is in	alue avai the	in S ilable ranç	ist e, a ge o	valu f 1 to	ferre le w 5 51	ed to ill or 2.	the by b	n re e tra	insfe	ers starting from erred to register 5 registers stat	s available.	

Example (D10~D14).

${f 5}$ Applied Instructions and Basic Usage

API D XCH P	D1 D2	Interchanging v	alues	Applicable model 10PM ✓
instruction is use is used, V devic Please refer to s ranges. If KnX/KnY/KnM devices/M devic number which is decimal numera	K H KnX KnY Kr k k k k k supports V devices an k k ed, Z devices can not be used.) specifications for more //KnS is used, it is sug e numbers/S device n a multiple of 16 in the is ystem, e.g. K1X0 (o ystem), K1M0 (decimar		16-bit instruction (XCH Continuit instruction 32-bit instruction DXCH Continuit instruction • Flag: None	ty XCHP Pulse instruction (9 steps) ty DFXCHP Pulse
Explanation Example Additional remark *	D ₁ : Value which The instruction is It is suggested th When X0 is turne value in D40. $\begin{array}{c} X0 \\ \hline \end{array}$ (XCHP) 16-bit instruction interchanged wit 32-bit instruction are interchanged When X0 is ON,	b D20 D40 is executive D20 D40	value in D_1 with ulse instruction alue in D20 is in ted 20 0 and M1303 is O and M1303 is O and M1303 is O bits in D100 are e instruction ed pw 9 gh 20 w 8 w 9 w 9	the value in D_2 . XCHP. Atterchanged with the After the instruction is executed 40 D20 120 D40 N, the high 8 bits are N, the high 16 bits 0 are interchanged

API 18	D	BCI	D	Ρ	(S		D		С						alue into a nal value	••	able model I0PM ✓
		Bit d	evice	•					Wor	d de	vice					16-bit instruction (5 steps)	
	Х	Y	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z	BCD Continuity		Pulse
S							*	*	*	*	*	*	*	*	*	instruction	n	instruction
																32-bit instruction (<u>6 steps)</u>	
D								*	*	*	*	*	*	*	*	DBCD Continuity	DRCDP	Pulse
• •	Vote:	The i	nstru	ction	supp	orts \	/ dev	ices	and Z	Z dev	ices.	(If th	e 16	-bit		instruction		Instruction
		instr	uctior	n is u	sed, Z	Z dev	vices	can r	not be	e use	d. If t	the 3	2-bit			 Flags 		
		instr	uctior	n is u	sed, \	V dev	vices	can r	not be	e use	d.)					Ox 0100		
		Plea	se re	fer to	spec	cificat	ions	for m	ore ii	nform	atior	n abo	ut de	vice		M1793 M1953	Operatio	n error flag
		rang			-1													

- The binary value in S is converted into a binary-coded decimal value, and the conversion result is transferred to D.
 If a binary value is converted to a binary-coded decimal value which is not in
 - If a binary value is converted to a binary-coded decimal value which is not in the range of 0 to 9,999, the instruction BCD will not be executed. If a binary value is converted to a binary-coded decimal value which is not in the range of 0 to 99,999,999, the instruction DBCD will not be executed.
 - BCD can be used to convert the binary value in a positioning unit to a binary-coded decimal value, and transfer the conversion result to an external device, e.g. a seven-segment display.
 - When X0 is ON, the binary value in D10 is converted into a binary-coded decimal value, and the digit in the ones place of the conversion result is stored in K1Y0 (Y0~Y3).

If D10=001E (hexadecimal value)=0030 (decimal value), Y0~Y3=0000 (binary value).

Explanation

${\bf 5}$ Applied Instructions and Basic Usage

API 19	W D	BIN	Ρ		S		D	(Conv	vertir	•				ed decimal value value		able model
																	•
	X	Bit device	s S	К	Н	KnX	KnY	Wor KnM	d de KnS	vice T	С	D	V	Z	16-bit instruction (5 s BIN Continuity	<u>steps)</u> BINP	Pulse
S						*	*	*	*	*	*	*	*	*	instruction	()	instruction
D							*	*	*	*	*	*	*	*	32-bit instruction (6 s DBIN Continuity instruction	<u>DBINP</u>	Pulse instruction
• N	iı is F	The instruction Instruction Is used, V Please refe anges.	is us devic	ed, Z es ca	í devi an no	ces o t be i	an n used	ot be .)	usec	l. If th	ne 32	2-bit i	nstru	ction	 Flags Ox O100 M1793 M1953 	Operation	error flag
Expla	ana	ition	* * *	cor The and 99, Dec aut	e 16 the 999 cima	sion -bit I 932- 999 al co atica	res oina bit l nsta lly. l	ult is iry-co pinar ants User	tran odec y-cc and s do	hsfer d deo ded hexa	red cima dec ade nee	to D al va cima cima ed to	lue i l val l co use	n S ue ii nsta e the	verted into a bina should be in the n S should be in nts are converted instruction. value in K1M0 is	range of the rang d into bir	f 0 to 9,999 le of 0 to nary values
Exa	am	ple		bin			e, a			-	ersio	n re			ored in D10.		
Add re	litic ma		 	1.	If a dec to c the	DVI ima onv DVI	P-10 I val ert t P-10	ue c he v)PM	serie reate alue serie	es m ed b into es m	notic by a b a b notic	on co DIP oinar on co	ontro swit y va ontro	oller ch, lue, oller.	wants to read a b users have to use and store the co	e the ins nversion	truction BI result in
					con valu valu to ti Wh bina bina the	troll ues o he s en X ary v ary v con	er o can ito a eve (0 is /alu/	n a s be c bina n-se s ON e, ar	seve lispla ary-c gme , the nd th D100	n-se ayed code nt di bina e co 0 is (egm d, the ad de ispla ary- onve conve	ent c ey h ecim ay. code rsion verte	displ ave al v ed d n res ed in	ay c to u alue ecim sult i to a	n a DVP-10PM se on which binary-c se the instruction , and transfer the nal value in K4M0 is stored in D100 binary-coded de	oded de BCD to convers) is conv . Subsec	cimal convert th sion result verted into quently, the
						xo ┨┠──		[BI	N	K	4X0	1	D10	0		

BCD

D100

K4Y20

API 20	D	AD	D	Ρ	<u>(</u>		S ₂		Ð				В	inar	y ac	ddition Applicable model 10PM ✓
	E	Bit de	evice						Wor	d dev	vice					16-bit instruction (7 steps)
	X	Y	М	S	К	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z	ADD Continuity ADDP Pulse
S ₁					*	*	*	*	*	*	*	*	*	*	*	
S ₂					*	*	*	*	*	*	*	*	*	*	*	- <u>32-bit instruction (9 steps)</u> DADD Continuity DADDP Pulse instruction DADDP instruction
D								*	*	*	*	*	*	*	*	Flags
•	Note:	instr instr	uction uction se re	n is n is	on sup used, used, to spe	Z de V de	evices evices	s can s can	not b not b	be us be us	ed. If ed.)	the	32-bi	t		Ox O100 M1808 M1968 Zero flag M1809 M1969 Borrow flag M1810 M1970 Carry flag • Please refer to the additional remark below.

- **S**₁: Augend; **S**₂: Addend; **D**: Sum
- The binary value in S₂ is added to the binary value in S₁, and the sum is stored in D.
- The highest bit in S₁ and the highest bit in S₂ are sign bits. If the sign bit in a register is 0, the value in the register is a positive value. If the sign bit in a register is 1, the value in the register is a negative value.
- The flags related to 16-bit binary addition and 32-bit binary addition are listed below.

16-bit binary addition:

- 1. If the operation result gotten is 0, a zero flag will be ON.
- 2. If the operation result gotten is less than -32,768, a borrow flag will be ON.
- 3. If the operation result gotten is greater than 32,767, a carry flag will be ON. 32-bit binary addition:
- 1. If the operation result gotten is 0, a zero flag will be ON.
- 2. If the operation result gotten is less than -2,147,483,648, a borrow flag will be ON.
- 3. If the operation result gotten is greater than 2,147,483,647, a carry flag will be ON.
- 16-bit binary addition: When X0 is ON, the addend in D10 is added to the augend in D0, and the sum is stored in D20.

	ADD	D0	D10	D20
1				

32-bit binary addition: When X1 is ON, the value in (D41, D40) is added to the augend in (D31, D30), and the sum is stored in (D51, D50).

	DADD	D30	D40	D50
--	------	-----	-----	-----

Example 2

Example 1

Explanation

${f 5}$ Applied Instructions and Basic Usage

Additional remark

• The relations between flags and values are shown below.

16-bit addition: Zero flag	g Zero	flag	Zero flag
$\langle \mathcal{D} \rangle$	R	A	\bigcirc
-2 \ -1 \ 0 \ -32,70	68 ← - 1、0	·1 → 32,	767、0、1、2
		S >	UP -
Borrow flag	Negative number: The value of the highest bit is 1.	Positive number: The value of the highest bit is 0.	Carry flag
32-bit addition: Zero flag	Zero	flag	Zero flag
32-bit addition: Zero flag	Zero	flag	Zero flag
32-bit addition: Zero flag √∩ -2 \ -1 \ 0 \ -2,147,		flag ∽1 → 2,147,483	
		A	
	483,648 ← -1 • 0	A	

API																Applicable model
AFT		SU	B	_	S	<u>ה</u>	<u>s</u> 2) (F	Binar	v su	btra	ction	10PM
21	D	00		Ρ							-	, in real	,			I OFIM ✓
		ماہ ۲۰	!		_				يما مامي							· · · · · · · · · · · · · · · · · · ·
	X	Bit de	M	e S	K	Н	KnX KnY	KnM	d de v KnS	Т	С	D	V	Z	16-bit instruction (7 SUB instruction	y SUBP Pulse
S ₁					*	*	* *	*	*	*	*	*	*	*	32-bit instruction (9	
S ₂					*	*	* *	*	*	*	*	*	*	*	DSUB Continuity	y DSUBP Pulse
D							*	*	*	*	*	*	*	*	Flags	
		instr instr	uctic uctic ise re	on is on is	used, used,	Z de V de	V device vices car vices car tions for	n not l n not	be us be us	ed. If ed.)	the	32-bit			Ox O100 M1808 M1968 M1809 M1969 M1810 M1970 Please refer to the 	Zero flag Borrow flag Carry flag e additional remark below.
Exp	lar	atio	on	* * *	ר ר ר ד 1 1 2 3 3 1 2 3 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Fhe I liffer Fhe I egis egis fhe I stec 6-bi 1. If 32-bi 1. If 32-bi 1. If 32-bi 1. If b 3. If b	ence is nighest ter is 0, ter is 1, lags rel below. t binary the ope the ope the ope the ope e ON. the ope e ON. se refer	value stor bit in the the latec v sub erati erati erati erati erati to th	e in S red in valu valu valu to 1 otract on re on re on re on re on re	2 is and e in e in e in e in e in e in e in e sult e sult e sult e sult e sult d d iti	sub the the it bin t got t got t got t got	tract high regis regis nary tten i tten i tten i tten i tten i	ed f est ster sub s 0, s les s gr s 0, s les s gr s 0, ark	from bit ir is a is a tract a ze ss th reate a ze ss th reate on th	the binary value of S_2 are sign bits positive value. If negative value. If negative value. ion and 32-bit bit ero flag will be O an -32,768, a bit of than 32,767, a ero flag will be O an -2,147,483,6	s. If the sign bit in a f the sign bit in a inary subtraction are N. orrow flag will be ON. carry flag will be ON. N. 648, a borrow flag will 3,647, a carry flag will DD for more
Exa	am	ple	1	•			the mir			D0,	and				ce is stored in D2	I in D10 is subtracted 20.
Exa	am	ple	2	•			31, D30			e di	ffere		•		d in (D51, D50).	ed from the minuend

api 22	D	IUL	Р	G	51)	S 2		Ð		E	Binaı	y m	ultip	licat	ion Applicable m	odel
		Bit de	vice	1					Word dev	vice					16-bit instruction (7 steps)	
	X	Y	M	S	К	Н	KnX	KnY	KnM KnS	Т	С	D	V	Ζ	MUL Continuity MULP Puls	e uction
S ₁					*	*	*	*	* *	*	*	*	*	*	32-bit instruction (9 steps)	
S ₂					*	*	*	*	* *	*	*	*	*	*	DMLII Continuity DMLII P Puls	e uction
D										*	*	*			Flag: None	
		inst	ructio ase re	n is	used, o spe	V de cifica	vices tions	can r for m	iot be use not be use pre inform	ed.) nation	abou	ut dev				
Exp	olar	nati	on	* *	T t v 1	The s he p vher 6-bi	signe rodu 16- t bin	ed bii ict is bit bi ary r	stored i nary mu nultiplica	ue ir n D . ultipli ation	n S ₁ Use icatio	is m ers h on o	ultip ave r 32-	lied to n bit t	by the singed binary value in solution of the sign bits in S_1 , S_2 , and binary multiplication is done.	
					[sign b	X	5 is a		=		3it 31	b16 b15b0 I is a sign bit. 5 in D+1 is a sign bit.)	
				•	3	32-bi	t bin +1 016 b	ary r S1 15b		ation 2+1 .b16	<u>S2</u> b15) b0		D+3	ative sign) $\begin{array}{c} \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \hline \\ \\ \\ \\ \hline \\$	
											0					
E	xar	npl	e	•	ר ק ק	The forodu produ () () () () () () () () () () () () ()	16-bi uct is , who uct is , D20	it val s stor ereas s a po	ositive si ue in D(red in (D s the bit	gn);) is n)21, s in alue	Sigr nultij D20 D20	plied). Th is th	by le bi le lo	(Bit Nega the ⁻ ts in w 16 re va	t 15 in D+3 is a sign bit.) ative sign) 16-bit value in D10, and the 32 n D21 is the high 16 bits in (D2 6 bits in (D21, D20). Whether t alue depends on the leftmost b	1, he

API																		Applica	able model
00		DIV	P	G	<u>S1</u>)	<u>S2</u>	$) \subset$	D				E	Binaı	y di	visic	n		1	0PM
23	D		Ρ																\checkmark
		Bit d	evice)					Wor	d de	vice					16-bit instru	uction (7 ste	eps)	
S 1	Х	Y	М	S	K *	H *	KnX *	KnY *	KnM *	KnS *	T *	C *	D *	V *	Z *	·I // V	Continuity	DIVP	Pulse instruction
S ₂					*	*	*	*	*	*	*	*	*	*	*	32-bit instru	iction (9 ste Continuity		Pulse
D											*	*	*				nstruction	DDIVP	instruction
•	Note	inst inst Ple	tructio	on is on is	used used	, Z de , V de	evice: evice:	s can s can	not not	be us be us	ed. I sed.)	the	the 1 32-bit out d			-			
Exp	lar	nati	ion	* *	i	quot in S ₁ If the	ient ₁, S ₂	and , and isor	the d D in S	rem whe 52 is	iainc n 16 0, th	ler a -bit	are s bina struc	tore ry di	d in ivisio will	by the sign D. Users h on or 32-bi not be exe Remaind	nave to i it binary ecuted.	notice th	e sign bits
							S 1		_		52))	D +	1		
						b15		b0	/ [15		.b0			b0	b15	b0		
				•		32-b	it bi	nary	divi	sion									
														C	Quotie	ent F	Remainde	r	
E	xar	npl	le) ◆	i	Whe is sto bit ir	ored ema) is (in E) 	the and	divid divid	denc rem ve va	.b0 == d in [nainc	D0 is ler is s or i	b0 t s div s sto nega	ided by the	1. Wheth	in D10, ner the q	the quotient uotient and le leftmost
							H		-	DI\	/	D	0		D10	D20			
									-	DI\	/	D	0		D10	K4Y0	7		

API 24	D	INC		Ρ			D				Add	ing	one	to a	bina	iry value	e		ble model)PM ✓
		Bit d	evice	e					Wo	rd de	vice				16-bit ir	struction (3	steps)		
	Х	Y	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z	INC	Continuity		Pulse
D								*	*	*	*	*	*	*	*		instructior		instruction
	1	T I					\			7 - 1		/16.41	10	1. 14		<u>32-bit ir</u>	struction (3	steps)	
• r		instru	uctior	uction h is us	ed, i	Z dev	vices (can n	ot be	e useo	d. If t			-DIT		DINC	Continuity instructior		Pulse instruction
		instru	uctior	n is us	ed, '	V dev	vices	can n	ot be	e useo	d.)					 Flag: 	None		
		Plea	se re	fer to	spec	cificat	ions f	or m	ore ir	nform	ation	abo	ut dev	vice		- 5			
		rang	es.		•														

Explanation +	 D: Destination device If the instruction used is not a pulse instruction, the value in D used by the instruction increases by one whenever the instruction is executed. Generally, the pulse instructions INCP and DINCP are used.
*	If a 16-bit operation is performed, 32,767 plus 1 equals -32,768. If a 32-bit operation is performed, 2,147,483,647 plus 1 equals -2,147,483,648.
\checkmark	When X0 is turned from OFF to ON, the value in D0 increases by one.
Example	

API 25	D	DE	C	Ρ		Ū	D			Sub	otrac	ting	one	fror	mat	pinary value		ole model IPM ✓	
		Bit d	levice	е					Wo	rd de	vice					16-bit instruction (3 steps)		-
D	Х	Y	М	S	К	Н	KnX	KnY *	KnM	KnS *	T *	C *	D *	V *	Z *	DEC Continu instruct	uity DECP	Pulse instruction	
_	Note:	instr is us	uctior ed, V se re	uction n is us / devic fer to :	ed, Z es ca	Z dev an no	vices ot be	can n used	ot be .)	e useo	d. If t	he 32	-bit i	nstru	ction	32-bit instruction (DDEC Continu instruct • Flag: None		Pulse	
Exp	lan	atio	on	♦		-		ation uctio			is no	ot a	puls	e in:	struc	tion, the value	in D used	by the	

- If the instruction used is not a pulse instruction, the value in **D** used by the instruction decreases by one whenever the instruction is executed.
- Generally, the pulse instructions DECP and DDECP are used.
- If a 16-bit operation is performed, -32,768 minus 1 leaves 32,767. If a 32-bit operation is performed, -2,147,483,648 minus 1 leaves 2,147,483,647. When X0 is turned from OFF to ON, the value in D0 decreases by one.

X0		
	DECP	
	DECF	

API					ſ												Applicable model
	-	w	AN	D		S 1) ত্র	2)				Lo	oaica	al AN	ND o	peration	10PM
26	D			_	Ρ	-		-					3		-		✓ 1 01 M
	E	Bit de	evice	•					Wor	d dev	vice					16-bit instruction (7 st	tens)
S1	X	Y	M	S	K *	H *	KnX *	KnY *		KnS *	T *	C *	D *	V *	Z *	WAND Continuity instruction	WANDP Pulse instruction
S1 S2					*	*	*	*	*	*	*	*	*	*	*	32-bit instruction (9 st	
 D								*	*	*	*	*	*	*	*	DWAND Continuity instruction	DWANDP Pulse instruction
	Note	The	instri	uctio	n si	ipport	s V de		s and	d Z d	evice	l s (lf	the 1	6-hit		 Flag: None 	
		insti	ructio ase re	on is	use	d, Z de d, V de pecific	evices	s car	n not	be us	sed.)				e		
Exp				•	•	A log perfo oper The Othe Whe D0 a	gical orms ation resul rwise n X0 n X0	AN the res It in e, th is (ne 1	D op logi sult i eac he re ON, l6-bi	berat ical is sto h po esult a log it de	tor ta ANE ored ositic is 0 gica vice	akes) op in [on is). I AN D2,	s the erati D . 1 if ID o , and	bin on c the pera	ary i on ea first itor t		S₁ and S₂, and ponding bits. The econd bit is 1. n the 16-bit device D operation on each
						Befor is exe	e the			on	ID <u>S</u> 1) [<u>S</u> 2) [b' D0 1		111	D2		ьо 1 0
				•	•	^{is} Whe	execu n X1	ited is (ON,	a lo	gica	I AN	ID o	pera	tor t		n the 32-bit device
Exa	amp	ble	2			oper in (D	ation 41, [n on	eac					•		20), and performs bits, and the oper	s the logical AND ation result is stored
						μ×	' 		D	WAI	ND	D	10	[D20	D40	
		ore th xecut	e ins ed	truci	tion	S₁ D11 S₂ D21	D10 D20	b31 11	1.1.	11	1 1	00	00	1 1		b15 1 1 1 1 1 1 1 1 1 0 AND 0 0 0 1 0 0 1 0 0	
		ftertl s exec	he ins cuted		tion	D D41	D40	00	0 1	00	1 0	00	0 0	0 1	J 00] 0 0 0 1 0 0 1 0 0	0000100

API																		Applical	ble model
		W	/OF	२	Ρ	$(S_1$		S 2)		L	ogic	al O	R oj	peration)PM
27	D				Ρ														\checkmark
	E	Bit de	evice)					Wor	d dev	vice					16-bit instruc	ction (7 ste	eps)	
	Х	Y	Μ	S	K *	H *	KnX	KnY	KnM	KnS *	T *	C *	D *	V *	Z *		ontinuity struction	WORP	Pulse instruction
S1																32-bit instruc		eps)	
S2					*	*	*	*	*	*	*	*	*	*	*		ontinuity struction	DWORP	Pulse instruction
D • N	lata	The	inotr			pport		*	*	*	*	*	*	*	*	 Flag: None 	9		
		instr instr	uctio uctio se re	n is n is	used used	, Z de , V de ecifica	vices	s can s can	not k not k	be us be us	ed. If ed.)	the	32-bi	t					
Expla				* * *	· · ·	A log perfo The The bits a Whe and	gical orms oper resu are n X(the	OR s the ratio Ilt in 1. O 1. O 16-b	ope logi n re eac therv ON, it de	erato ical i sult h pc wise a log evice	r tal nclu is st ositic , the gica	kes t isive orec on is e res I OF , and	the te e OF d in t 1 if sult i R op d pe	oinai ope D. the s 0. erato rforr	ry re erati first or ta ms ti	; D : Operation on on each bit is 1, the kes the val he logical in operation re	ons in S pair of second ues in t nclusive	₁ and S₂ , correspo d bit is 1, he 16-bit c OR ope	onding bits. or both device D0 ration on
						Befor	e the			on j	<u>s</u> 1 [b' D00				WOR		50 1 1	
Exa	mp	ole	2	•		_{is e} Whe (D11	^{xecu} n X´ , D1 oper ed in	^{ted} 1 is (10) a atior	ON, and t n on 1, C	he 3 eac	gica 32-bi h pa	I OF it de air o	R op	erato (D2 resp	1, C	1 1 1 1 1 1 1 kes the val 020), and po ling bits, ar	erforms	the logic	al inclusive
	is e>	ore th cecut	ed		ĺ	(S1) D11 (S2) D21 (D)	D10		1 1 7	1 1 1 1 0 0	1 1 0 1 0	00	1010	1 1	00	b15 1 1 1 1 1 1 wor 0 0 0 1 0 0		000011	b0 111

																			۸	nline		adal
API	_	w	хо	R	-	S 1) (<u>S</u> 2			١o	aica	alex	clusi	ive ()R	opera	ation	_	Ар	-	ole mo PM	baei
28	D			••	Ρ					20	gioc		0100		511	opore						
		Bit de	ovice	<u>ا</u>				Wor	d do	vice					-16	3-bit ins	tructio	on (7 of	000)			
<u> </u>	X	Y	M	S	K *	H *	KnX Kn	Y KnM			C *	D *	V *	Z *	:	XOR	Con	tinuity uction		ORP	Pulse instru	
S1					*	*	* *	*	*	*	*	*	*	*	32	2-bit ins			eps)			
S2					Â	^	*		*	*	*	*	*	*	D	WXOR		tinuity uction	DW	XORP	Pulse instru	
D •	Noto	The	inetr				V devi								٠	Flag: N	lone					
		instr	uctio ase re	on is	used	V dev	vices ca vices ca tions fo	an not l	be us	sed.)				9								
	amı			* * *		A log perfo The c The r same Wher D0 ar pair c X(operati esult i e. n X0 is nd the of corre	DR op e logi on re n eac ON, 16-bi espor	bera cal sult h po a lo t de idin WXC	ator ta exclu is st ositic ogica evice g bits	akes ore on is I XC D2, s, ar <u> </u>	s the e OF d in I s 1 if DR o , and , and th DO	bin R op D. the pera l per e op	ary i erat two itor t form perat D2	bits take ns t tion	resen on ea s are o es the he ex resu D4	diffe diffe valu cclus llt is	ns in pair o rent, ues ir ive O store	S₁ a of cor and n the DR op d in l	respo 0 if th 16-b perati	ondin ney ai vit dev	g bits. re the
					i		cuted rthe in kecuted) on d	(S2) D					W> 1 1 1 1 0]		0 1 0	1			
Exa	amı	ole	2	•	((D11, exclu	n X1 is , D10) sive C t is sto 1	and t R op	he : erat	32-bi tion c	it de on e	evice ach	(D2	1, D	20)), and	l per	forms	s the	logic	al	
						Ĥ	1	DW	/XC	DR	D	10	[D20		D4(0					
		ore th xecut		struct	tion	S ₂)		31 1 1 1 0 0 1	1 1	1 1 1) 1 0		00			b15 11 /XOR	1 1		1 1 0 1 0 0			b0 1 1 0 0	
		ftert sexec				D D41	D40 1	1 1 0) 1 1	1 0 1	00	1 1	1 0	11	·	I 1 0	1 1 (0 1 0	0 1 1	1 0	1 1	

API W NEG P	D	Taking the two	's complerr	nent of a value	Applicable model
instruction is use instruction is use	Wo K H KnX KnY KnM wpports V devices and ed, Z devices can not be ed, V devices can not be pecifications for more in	* * * Z devices. (If the 2 devices.) e used. If the 32-bit e used.)	6-bit	16-bit instruction (7 NEG Continuity instruction 32-bit instruction (9 DNEG Continuity instruction • Flag: None	NEGP Pulse instruction steps) DNEGP Pulse
Explanation Example 1 Example 2	1, and 1 becomes the original register X0 N Getting the abolus 1. When bit 15 in	an be used to o se instructions d from OFF to 0 s 0), 1 is added er D10. IEGP D10 ste value of a n n D0 is 1, M0 is DN, the instructi	NEGP and N, all the to the resu	egative binary v DNEGP are us bits in D0 are in lt, and the final ue value in D0 is a	value into an sed. averted (0 becomes value is stored in
►xample 3	Getting the absolu Suppose X0 is ON 1. When the valu 2. When the valu	N. ue in D0 is grea ue in D0 is equa ue in D0 is less	ter than tha Il to that in than that ir value.	at in D2, M0 is C	DN.
		- SUB D		D4	

Additional remark

- The representation of a negative value and its absolute value are described below.
 - Whether the value in a register is a positive value or a negative value depends on the leftmost bit in the register. If the leftmost bit in a register is 0, the value in the register is a positive value. If the leftmost bit in a register is 1, the value in the register is a negative value.
 - 2. The negative value in a register can be converted into its absolute value by means of the instruction NEG.

means of the instruction NEG.	
(D0)=2 00000000000000	000010
(D0)=1 0000000000000	000001
(D0)=0	
(D0)=-1	(D0)+1=1 0000000000000000000001
(D0)=-2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 →	(D0)+1=2 000000000000000000010
(D0)=-3	(D0)+1=3
(D0)=-4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 →	(D0)+1=4 00000000000000000100
(D0)=-5	(D 0)+1=5
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1	000000000000000101
(D0)=-32,765	(D0)+1=32,765 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(D0)=-32,766	(D0)+1=32,766
(D0)=-32,767 1000000000000000001 →	(D0)+1=32,767 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(D0)=-32,768 100000000000000000000 →	(D0)+1=-32,768 100000000000000000000
	▶

The maximum absolute value is 32,767.

API 30	D		* * * * * * * * *														ntwards		able model 0PM ✓
		E	Bit de	evice	÷					Wor	d dev	vice					16-bit instruction (5	steps)	
	\leq	X Y M S K H KnX KnY KnM KnS T C D V *															ROR Continuity	RORP	Pulse instruction
D																	32-bit instruction (9	steps)	
n																	DROR Continuity		Pulse instruction
•	NO	in In Pl ra If de nu de (o	struc struc lease inges KnX/ evice umbe ecima octal i	tion tion refes. /KnY s/M s/M sr wh al nu nume	is us is us er to /KnN devic ich is mera eral s	ed, Z ed, V	devi devi icatio is us nber ultiple em, n), K	ces c ces c ons fo sed, i s/S d e of 1 e.g. ł 1M0	an no can no or mo t is si evice 6 in t (1X0	ot be ot be ore in ugge e nun the o (octa	usec usec forma sted nbers ctal n al nur	I. If the fill of	ne 32 abou X/dev uld si ral sysi	2-bit ut dev vices tart fr ysten tem),	/ice /Y rom a n or in K4S	n the Y20	 Flags Ox O100 M1810 M1970 Please refer to th 	Carry flag e additional i	

- **D**: Device which is rotated; **n**: Number of bits forming a group
- The bits in D are divided into groups (n bits as a group), and these groups are rotated rightwards.
- The nth bit from the right is transmitted to a carry flag.
- Generally, the pulse instructions RORP and DRORP are used.
- If the operand D is KnY/KnM/KnS, Kn in KnY/KnM/KnS must be K4 (16 bits) or K8 (32 bits).
- 16-bit instruction: $1 \le n \le 16$; 32-bit instruction: $1 \le n \le 32$
- When X0 is turned from OFF to ON, the bits in D10 are divided into groups (four bits as a group), and these groups are rotated rightwards. (The bit marked with × is transmitted to a carry flag.)

5 Applied Instructions and Basic Usage

API			RC										Pot	otin	a hit		twards		able model
31			κι		Ρ		U						RUI	aun	y bit	s iei	เพลเนร	1	0PM
																			\checkmark
\smallsetminus		E	Bit d	evice	;					Wor	d dev	/ice					16-bit instruction (5 s	steps)	
		Х	Y	М	S	К	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z	ROL Continuity	ROLP	Pulse
D									*	*	*	*	*	*	*	*	instruction		instruction
n						*	*										32-bit instruction (9 s	<u>steps)</u>	Pulse
n								<u> </u>									DROL Continuity	DROLP	instruction
•	NO					suppo ed, Z									DI		 Flags 		
						ed, Z ed, V							16 32	-011			Ox 0100		
						specif						,	ahoi	ıt dev	vice		M1810 M1970	Carry flag	
			inge		1 10 1	opeen	loan		,				abot		100		 Please refer to the 	additional r	emark below.
		lf	KnX	/KnY/	/KnN	//KnS	is u	sed, i	t is s	ugge	sted	that 2	X/dev	vices	/Y				
		de	evice	es/M o	devid	e nur	mber	s/S d	evice	e nun	nbers	shou	uld st	tart fr	om a	l			
		nı	umbe	er wh	ich is	s a m	ultipl	e of 1	6 in t	the o	ctal n	ume	ral sy	/sten	n or ir	n the			
						al syst													
						syster			(deci	mal r	nume	ral sy	/sten	n), ar	nd K4	S16			
		(d	lecim	nal nu	Imer	al sys	stem).											

- **D**: Device which is rotated; **n**: Number of bits forming a group
- The bits in **D** are divided into groups (**n** bits as a group), and these groups are rotated leftwards.
- The **n**th bit from the left is transmitted to a carry flag.
- Generally, the pulse instructions ROLP and DROLP are used.
- If the operand D is KY/KnM/KnS, Kn in KY/KnM/KnS must be K4 (16 bits) or K8 (32 bits).
- 16-bit instruction: 1≤n≤16; 32-bit instruction: 1≤n≤32

Explanation

API 32	D RCR			Ρ	P D n					Rotating bits rightwards						with a carry flag	Applicable model 10PM ✓			
		E	Bit de	evice	e					Wor	ord device						16-bit instruction (5 steps)			
	\geq	Х	Y	Μ	S	K	Н	KnX	KnY	KnM	KnS	Т	C	D	V	Z	RCR Continuity		Pulse instruction	
D									*	*	*	*	*	*	*	*	32-bit instruction (9 steps)			
n						*	*										DRCR Continuity	DRCRP	Pulse	
	 Note: The instruction supports V devices and Z devices. (If the 16-bit instruction is used, Z devices can not be used.) If the 32-bit instruction is used, V devices can not be used.) Please refer to specifications for more information about device ranges. If KnX/KnY/KnM/KnS is used, it is suggested that X/devices/Y devices/M device numbers/S device numbers should start from a number which is a multiple of 16 in the octal numeral system or in the decimal numeral system, e.g. K1X0 (octal numeral system), K4SY20 (octal numeral system), K1M0 (decimal numeral system), and K4S16 (decimal numeral system). 														 Flags Ox O100 M1810 M1970 Please refer to the 	Carry flag e additional i				

- **D**: Device which is rotated; **n**: Number of bits forming a group
- The bits in **D** are divided into groups (**n** bits as a group), and these groups are rotated rightwards with a carry flag.
- The nth bit from the right is transmitted to a carry flag.
- Generally, the pulse instructions RCRP and DRCRP are used.
- If the operand D is KnY/KnM/KnS, Kn in KnY/KnM/KnS must be K4 (16 bits) or K8 (32 bits).
- 16-bit instruction: $1 \le n \le 16$; 32-bit instruction: $1 \le n \le 32$
- When X0 is turned from OFF to ON, the bits in D10 are divided into groups (four bits as a group), and these groups are rotated rightwards with a carry flag. (The bit marked with × is transmitted to the carry flag.)

API									_									Applica	able model
22			RC	٦L	Ρ				<u>n</u>)		Rota	ating	g bit	s let	twar	ds v	vith a carry flag	1	0PM
33					F														✓
\searrow		E	Bit d	evice	•					Wor	d dev	/ice					16-bit instruction (5	steps)	
		Х	Y	М	S	K	Н	KnX	KnY	KnM	KnS	T *	C *	D *	V *	Z	RCL Continuity instruction	RCLP	Pulse instruction
D n						*	*									×	32-bit instruction (9 DRCL Continuity	<u>steps)</u> DRCLP	Pulse
•	No	in P ra If de nu de (c	struc struc lease anges KnX evice umbe ecim	etion i etion i e refe s. /KnY/ es/M (er wh al nui nume	s us s us r to /KnN devic ich is mera eral s	suppo ed, Z ed, V specif //KnS ce nur s a mu al syst system ral syst	devid devid icatio is us nber ultiple em, n), K	ces ca ces cons fo sed, i s/S d e of 1 e.g. k 1M0 (an no an no or mo t is si evice 6 in t (1X0	ot be ot be ore in ugge num the o (octa	used used forma sted bers ctal n	. If th .) ation that 2 shou ume nera	abou X/dev uld st ral sy I syst	-bit it dev vices, art fr vsten em),	vice /Y rom a n or ir K4S	n the Y20	 Flags Ox O100 M1810 M1970 Please refer to the 	Carry flag additional i	

- **D**: Device which is rotated; **n**: Number of bits forming a group
- The bits in **D** are divided into groups (**n** bits as a group), and these groups are rotated leftwards with a carry flag.
- The **n**th bit from the left is transmitted to a carry flag.
- Generally, the pulse instructions RCLP and DRCLP are used.
- If the operand D is KnY/KnM/KnS, Kn in KnY/KnM/KnS must be K4 (16 bits) or K8 (32 bits).
- ▶ 16-bit instruction: 1≤n≤16; 32-bit instruction: 1≤n≤32

Explanation

When X0 is turned from OFF to ON, the bits in D10 are divided into groups (four bits as a group), and these groups are rotated leftwards with a carry flag. (The bit marked with \times is transmitted to the carry flag.)

API	_										lovi	na t	ho s	tata	s of bit devices	Applic	able model
34	SF	TR	Ρ	S	D	D	n	1	<u>n</u> 2		1011	ng t			ards	1	I0PM
J			•											, 			\checkmark
	Bit d	evice						-	d dev	/ice					16-bit instruction (9 s	teps)	<u> </u>
	X Y * *	M *	S *	K	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z	SFTR Continuity instruction	SFTRP	Pulse instruction
D	*	*	*												32-bit instruction	_	_
n1				*	*										• Flag: None		
n2				*	*												
	instruc instruc Please ranges	tion i refe	s us	ed, V specif	devid icatic	ces c ons fo	an no or moi	ot be re inf	used orma	.) Ition	abou	t dev		ial d	evice which is mo	oved; n ₁	: Number of
Explan			* * *	The as dev froi Ge 1≤i Wh sta gro The sca 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	e sta a gr m D men aner $n_2 \le r$ men urting bups e sta an c M3~ M11 M15 X3~ X0 II	ates roup s sta ally, ally, ally, ally, ally, fro are ates work M^4 $\sim M^6$ $\sim M^2$ $\sim M^2$	of th), an arting the p 024 s turn m M mov of th 12	ne n d th g fro puls ned 0 ar ved ne b \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow	a bit bese om S e ins from re div right it de M3~ M11 M15 √0	dev gro are strue vide twan vice sta -M0 -M4 -~M 5~M X0	vices ups mo ctior FF to ed in rds. es ar tes o 8 12	s sta are ved o SF o ON to gi re m of M:	rting mov to tl TRF J, th ove 3~N	y fro ved i ne v is i e sta s (fo d rig 10 ai	Frequencies Mathematical and the second devices in the second de	tates of the device n bit device p), and t der ①~	the n ₂ bit ces starting vices these

API		SF ⁻	ГІ		G			(n		$\overline{n_2}$	Μ	lovir	ng th			of bit devices	Applicable model 10PM
35			•	Ρ										le	twa	rds	✓
	E	Bit de	evice	•					Wor	d dev	ice					16-bit instruction (9 s	stens)
s	X *	Y *	M *	S *	K	Н	KnX	KnY	KnM		T	С	D	V	Z	SFTL Continuity	SFTLP Pulse instruction
		*	*	*												32-bit instruction	
D		~	~	^	*	*											
n1		-														 Flag: None 	
n2					*	*				device							
	is	usec	1, V 0	devic	es ca specifi	n no icatio	t be u ons fo	ised. or mo) re info	used.	on ab	oout o	devic	e ran	ges.	bit device which	
Expla				* * *	Nu The a g sta Ge 1≤i Wh froi mo The sca 0 0 0 0 1 1	mbe e sta proup rting nera $n_2 \le r$ nen M vved e sta an c M15 M11 M7~	er of ates p), a g fro ally, n₁≤1 X0 is 10 ar	bits of the and t m S the 024 s tur e di warc of th 12 - 3 -	which he n_1 hese are pulse rned video ds. he bi \rightarrow	ch are bit c grou move inst from d into t dev The s V15~ V11~	e mo levic ups a ed to rructi OFF gro ices state -M12 -M8	oved ces s are i o the ion s = to ups are s of	i; n₂ start nov vac SFT ON, (fou mov	: Nu ing f ed le cant RP i the the ved	mbe from eftwa devi s us stat s as leftw	er of bits forming a D are divided inf ards. The states of ices in the device and.	a group to groups (n_2 bits as of the n_2 bit devices as starting from D . bit devices starting ese groups are
					Ø	X3~ X3~ X0	-			M7~N M3~N ─ा							
					\vdash	↑			SFTL	-	X0		M0		K16	6 K4	
														Λ			
				Γhey	are c	arrie A	ed. M	115 M	114 M	For 13 M1			-		•	`	3 X2 X1 X0 4 4 4 6 13 M2 M1 M0

API												Mc	win	n tha			in word	devices	Applica	able model
36			WS	FR	Ρ	G	\mathbb{D}	D			<u>n</u> 2)	IVIC	, un t	y unc		htwa			1	0PM
50																				✓
			Bit d		ı —		1			Word					1	1 -	<u>16-bit in</u>	struction (9 s		Dulas
S		Х	Y	M	S	K	Н	KnX	KnY *	KnM *	KnS *	T *	C *	D *	V	Z	WSFR	Continuity instruction	WSFRP	Pulse instruction
D									*	*	*	*	*	*			32-bit in	struction		
n1						*	*										• Flag: N	 None		
n2						*	*													
•	Not									and Z ot be u						tion				
		i	s use	d, V	devid	ces ca	in no	t be ι	used.)										
			ranges		er to :	specit	icatio	ons fo	or mo	re info	ormat	ion a	bout	devi	ce					
		I	f KnX	/KnY						ugges										
										numk he oct						the				
										(octal mal กเ										
			decim						lacci	Παιτι		ai Sya	sterri	, and	11140	510				
						_														
					◆													d device v values fo		moved; n ₁:
Exp	la	na	atio	n	•													re divideo	•	•
					•															ues in the
														are	mo	ved	to the va	acant wor	d device	s in the
										startir	•			\//C	EDE) ic ı	used.			
					•					•								D can be	e a coun	ter, timer,
					•			•									•	S, the ope		
										or a			•							
					◆			•									•	erand D is M/KnS m		M/KnS, Kn
					•			ייאי 1₁≤5		IIVI/ r\I	10 1	me	115	S ai	iu K				นระ มียาเ	le same.
					•		_	-		ned	from	OF	F to	ON	, the	e val	ues in th	ne sixteer	n word de	evices
Exa	am	np	le 1					-						to g	roup	os (fo	our value	es as a gi	roup), ar	nd these
		<u> </u>				•	•			ved r	•			oro	mov	(od)	rightwor	de in the	ordor A	- ⊌ during
					•			CYC			oru	uevi	663	are	mov	/eu i	nyntwar			u unny
								-	20 -	→ 7	The	valu	es i	n D2	23~E	020	are carri	ied.		
						0	D27	~D2	24 -	→ [023-	-D2	0							
						€	D31	~D2	28 -	→ [)27-	~D2	4							
									32 -		031-	-D2	8							
						Ø		~D1	0 -	→ [035-	-D3	2							
							×0 ┨┣	v	VSFF	RP	D10		D20)	K1	6	K4			
									1	I	F	ourv	/alue	sas	a gro	up ar	e moved r	ightwards.		
						D1	3 D1	12 D'	11 D'	10								C		
					5		35 D3	, 34 D3	33 D3	32 D31	D30	D29	9 D2	8 D2	7 D2	6 D2	5 D24 D2	3 D22 D21	D20 They	/ are carried.
									7	\bigcirc			T	\bigcirc	•		$\overline{\bigcirc}$	*	\checkmark	
										4				3			2		1	

- When X0 is turned from OFF to ON, the values in the sixteen bit devices starting from Y20 are divided into groups (eight values as a group), and these groups are moved rightwards.
 - The values in the word devices are moved rightwards in the order $\mathbf{0} \sim \mathbf{0}$ during a scan cycle.
 - Y27~Y20 \rightarrow The values in Y27~Y20 are carried.
 - $\textcircled{2} Y37 \text{-} Y30 \rightarrow Y27 \text{-} Y20$
 - $\textcircled{\textbf{S}} X27 \text{-} X20 \rightarrow Y37 \text{-} Y30$

API									r	Movi	na a	i val	ווף ג	and y	writi	ng it into	a word	Applica	ble model
38		SFV	٧R	Ρ	S) (D	(n)	⊃∣'	1011	ng c	vu		dev		ng it into	a word	1	0PM
30				Г										401	.00				\checkmark
	E	Bit de	evice	•					Wor	d dev	/ice					16-bit ins	struction (9 st	teps)	
	Х	Y	М	S	К	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	SFWR	Continuity instruction	SFWRP	Pulse instruction
S					*	*	*	*	*	*	*	*	*	*	*	32-bit ins			
D								*	*	*	*	*	*			-	-	-	-
n					*	*										 Flags 			·
• No	in Pl ra If de nu de (o	struc struc ease nges KnX/ evice umbe ecima ctal i	tion i tion i refe s. /KnY/ s/M c s/M c al nur nume	s use s use r to s /KnM devic ich is mera eral s	suppo ed, Z ed, V specif I/KnS e nun a mu I syst ysten al sys	devid devid icatio is us nbers ultiple em, o n), K	ces c ces c ons fo sed, i s/S d e of 1 e.g. k 1M0	an no an no or mo t is si evice 6 in t (1X0	ot be ot be ire inf ugge num he of (octa	used used forma sted t bers ctal n al nun	. If th .) ttion that) shou ume neral	abou (/dev Ild st syst	-bit t dev ices/ art fro stem em),	ice Y om a or ir K4S`	Y20	Ox M1808	O100 M1968	Zero flag	

Explanation	The values in the n word devices starting from D are defined as first in, first out values, and D is taken as a pointer. When the instruction is executed, the value of the pointer D increases by one, and the value in S is written into the device to which the pointer D points. When the value of the pointer is greater than or equal to $n-1$, the instruction does not process the writing of the value, and a carry flag is ON.
* *	When the value of the pointer D is greater than n -1, the instruction does not process the writing of a value, and the carry flag M1022 is ON. Generally, the pulse instruction SFWRP is used. $2 \le n \le 512$
Example +	The value of the pointer D0 is cleared to 0 first. When X0 is turned from OFF to ON, the value in D20 is written into D1, and the value of D0 becomes 1. When X0 is turned from OFF to ON again, the value in D20 is written to D2, and the value in D0 becomes 2. The value in D20 is moved and written into D1 in the way described below.
	• The value in D20 is written into D1.
	The value of D0 becomes 1.
	RST D0 The value of D0 is cleared to 0 first.
	SFWRP D20 D0 K10
	Source $n=10$ D20 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Pointer D 0 = 3 2 1
Additional remark	The instruction SFWR can be used with the instruction SFRD to write a value and read values.

API											Mo	vin	nav	alue	anı	d ros	ading it from a	Applica	ble model
39			SFF	RD	Ρ	S) (D	(n	\supset	IVIO	viiių	jav			levic	0	1	0PM
29					Γ										10.0				✓
		E	Bit de	evice						Wor	d dev	/ice					16-bit instruction (9 s	steps)	
	\leq	Х	Y	М	S	К	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	SFRD Continuity	SFRD P	Pulse
S						*	*		*	*	*	*	*	*			32-bit instruction		
D									*	*	*	*	*	*	*	*		-	_
n						*	*										• Flags		
•	Note	ins ins PI ra If de nu de (o	struc struc ease nges KnX/ evices umbe ecima ctal r	tion i tion i refe KnY/ s/M c r whi al nur	s use s use r to s KnM levice ch is neral ral s	ed, Z ed, V pecifi /KnS e nun a mu l syst	devid devid icatio is us nbers ultiple em, d	ces c ces c ons fo sed, i s/S d s/S d e of 1 e.g. k 1M0 (an no an no or mo t is su evice 6 in t (1X0	ot be ot be re in ugge num he o (octa	devi used forma sted f bers ctal n al nume	. If th .) ation that 2 shou ume nera	abou X/dev uld st ral sy I syst	-bit it dev /ices/ art fro /stem em),	ice Y om a or ir K4S`	n the Y20	Ox O100 M1808 M1968	Zero flag	

- S: Initial device; D: Device into which a value is written; n: Number of devices
 The values in the n word devices starting from S are defined as first in, first out values, and S is taken as a pointer. When the instruction is executed, the value
- in **S** decreases by one, the value in **S**+1 is written into **D**, the values in **S**+n-1~**S**+2 are moved rightwards, and the value in **S**+n-1 is unchanged. When the value in **S** is equal to 0, the instruction does not process the reading of the values, and a zero flag is ON.
- When the value in S is equal to 0, the instruction does not process the reading of the values, and the zero flag M1020 is ON.
- Generally, the pulse instruction SFRDP is used.
- 2≤**n**≤512

Explanation

- When X0 is turned from OFF to ON, the value in D1 is written into D21, the values in D9~D2 are moved rightwards, the value in D9 is unchanged, and the value in D0 decreases by one.
 - The value in D1 is moved and written into D21 in the way described below.
 - The value in D1 is written into D21.
 - ❷ The values in D9~D2 are moved rightwards.
 - The value in D0 decreases by one.

${\bf 5}$ Applied Instructions and Basic Usage

VPI	ZF	RST	© P					Rese	tting	a zo	one	Applicable model 10PM
÷U												\checkmark
	Bit of X	device M	e S	КН	KnX KnY	Word de		C D	V	Z	16-bit instruction (5 s ZRST Continuity	ZRSTP Pulse
D ₁	*	*	*				*	* *			Instruction	instruction
D ₂	*	*	*				*	* *			32-bit instruction	
• N	The spe All Ple	e devic ecifies device	ce typ must es car	be that D ₁ be the s n not be r	Device nu specifies ame. modified b ations for	and the c by V devic	levice es and	Z devic	es.	e	Flag: None	
	amp		* * * * * * *	The If the be re Whe CO~ Whe clea Whe Whe C23	instructi e device eset. en X0 is c127 ar cn X1 is red to 0. en X2 is en X3 is en X4 is 5~C254	on ZRS number ON, the ON, the e cleare s ON, the oN, the ON, the ON, the	T can of D auxili 16-bi d to 0 e time cont stepp data 32-bi	be us is gre t coun ary re t coun ars T0- acts a bing re registe t coun	ed to ater ays ters the c -T12 nd th lays ers D ters	M30 CO~(conta 27 ard SO~2 SO~2 00~D C23	0~M399 are rese C127 are reset. (acts and the coils e reset. (The valu- ils are reset to O S127 are reset to 100 are reset to 5~C254 are reset	and 32-bit counters ber of D_2 , only D_2 we at to OFF. The values of are reset to OFF.) ues of T0~T127 are FF.) OOFF.
					 		ZRST	M3	00	M	399	
					1 10		ZRST	С	0	C1	127	
							ZRST	Т	0	T1	27	
							ZRST	S	0	S1	27	
				H x			ZRST	D	0	D1	100	
				ĥ			ZRST	C2	35	C2	254	
	litior marl		•								t a single device, ice, or a D device	e.g. a Y device, an a.

	S D n	Decoder		Applicable model 10PM
41 DECO P				✓
Bit device	W	ord device	16-bit instruction (7 s	steps)
X Y M S S * * * *	K H KnX KnY Kr * *	M KnS T C D V Z	DECO Continuity instruction	DECO P Pulse instruction
D * * *			32-bit instruction -	
n	* *		 Flag: None 	
instruction is use instruction is use	ed, Z devices can not b ed, V devices can not b			
Explanation +	bits which are de	e; D : Device in which a dec coded S are decoded as the low	-	tored n : Number of
•	Generally, the pu	Ise instruction DECOP is	used.	
•	D is in the range			
Example 1	error will occur. If n is 8, the max	device, n is in the range of imum number of bits whic ned from OFF to ON, the in	h can be decode	d is 2 ⁸ =256.
•	If the value in S i	s 3, M103 will be ON.		
•		ton is executed, X20 will b remain unchanged.	e OFF, and the s	states of
		OP X0 M100 K3		
	I	X2 X1 X0 0 1 1		
	, Г	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
•		M107 M106 M105 M104 M103 d device, n is in the range	M102 M101 M100), or greater than 8,
Example 2	an error will occu			
▲		imum number of bits which ned from OFF to ON, the in		
		D20, and b15~b8 in D20		
♦	The low 3 bits in D20 are 0.	D10 are decoded as the lo	ow 8 bits in D20.	The high 8 bits in
♦	After the instrucit remain unchange	ton is executed, X20 will b ed.	e OFF, and the v	alue in D20 will

API																Applicable model
	E	ENC	0	Р	S) (D	n	\mathbf{D}			E	Enco	oder		10PM
42				Ρ												\checkmark
	B	lit dev	vice					1	Wor	d device					16-bit instruction (7 s	steps)
s	X *		M *	S *	K	Н	KnX	KnY	KnM	KnS T	C *	D *	V *	Z *	ENCO Continuity instruction	ENCO P Pulse instruction
D										*	*	*	*	*	32-bit instruction	
n					*	*									• Flag: None	i
• Note	ins ins Ple	structio structio	on is on is	s use s use	ed, Z ed, V	devio devio	ces c ces c	an no an no	t be t be	devices used. If t used.) formation	he 32	-bit				
Explan	nat	ion			bits The If the Ge If S ran Wh	s wh e lov here pro- nera is a nge o nen	nich w 2 ⁿ e are cess ally, a bit of 1 S is	are e bits mar sed. the p devi to 4.	enco in S ny b ouls ce, dev	oded 3 are er bits which the instru n is in t	icod ch ar ictior ihe r	ed a e 1 i n EN ange	s the n S ICO e of	e lov , the P is 1 to	v n bits in D . first bit which is executed. 8. If S is a word o	stored n : Number of 1 from the left will device, n is in the or greater than 8, an
Exam	p le	ə 1		•	If n Wh in I Aft ren	n is 8 nen M0~ er th	8, th X0 i M7 ne ir	e ma s turi as th struc chan	ned ne lo ctior ged COF	from O ow 3 bit n ENCC	FF t s in I	o Ol D0, a	N, th and cute	ie in: b15 [,]	~b3 in D0 becom (0 will be OFF, ai	encodes the 8 bits
Exam	ple	e 2		•	an If n Wh in I D1 Aft ren	erro n is 4 nen D10 0 ar er th	or wi 4, th X0 i as t re in ne in	0 B a wo II occ e ma s turn the lo valid ostruc chan	ord o cur. ixim ned ow 3 dat ctior	num nur from O bits in a.) n ENCC	n D0 n is nber FF t D20	bec in th of t o Of , an	ome e ra oits v N, th d b1	whic whic ie in: 5~b	0 0 0 0 0 of 1 to 4. If n is (h can be decode struction ENCOP 3 in D20 become	2 1 1 1 1 0 1 0 $2^4 = 16$. 2 0 $2^4 = 16$. 2 0 2

Bit 15~bit 3 in D20 become 0.

API 43	D	รเ	JM	Ρ	(S		D			Nun	nber	of t	oits v	whic	h are ON		1(ble model)PM ✓
		Bit d	evice	•					Wor	d de	vice					16-bit ins	truction (5 s	teps)	
	Х	Y	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z	SUM	Continuity instruction	SUMP	Pulse instruction
S							*	*	*	*	*	*	*	*	*	32-hit ins	truction (9 s		
D											*	*	*	*	*	DSUM	Continuity instruction	DSUMP	Pulse instruction
•		instru instru Plea rang If Kn num shou	uction se re es. X/Kn bers/ Ild sta	uctior n is u efer to Y/Kn Y dev art frc), K4	sed, sed, spe M/Kr vice	Z de V de cifica nS is numt num	vices vices itions used bers/N	s can s can for r l, it is M dev /hich	not b not b nore s sugg vice r	be us be us infor geste numb	ed. If ed.) matic d that ers/S	f the on ab at X c 3 dev	32-bi out c levice rice n	t levice e umbe	ers	 Flags Ox M1808 	O100 M1968	Zero flag	

- S: Source device; D: Destination device
- The number of bits which are 1 in **S** is stored in **D**.
- If the bits in **S** are 0, a zero flag will be ON.
- If the 32-bit instruction is used, **D** will occupy two registers.

Explanation

API		BC	ואר			S		D			Ch	ock	ing t	ho s	stato	e of a bit		ble model
44	D	ЪС		Ρ		C	n				Ci	ICCK	ing t		siale		10	0PM ✓
		Bit d	evice	•					Wor	d de	vice					16-bit instruction (7	steps)	
	Х	Y	М	S	K	Н			KnM		Т	С	D	V	Z	BON Continuity	BUNE	Pulse
S					*	*	*	*	*	*	*	*	*	*	*	32-bit instruction (13	steps)	
D		*	*	*												DBON Continuity		Pulse
n					*	* * * * *										Flag: None		
•	Note:	instr instr Plea rang If Kn devic num the c K4S	uctio uctio se re es. X/Kn ces/N ber v decim Y20 (uctior n is u efer to Y/Kn A dev vhich nal nu (octal 16 (de	M/Kr M/Kr ice n is a mera	Z de V de cifica nS is umb multi al sys	vices vices used ers/S ple of stem, syste	s can s can for r l, it is devi f 16 i e.g. em), l	not t not t nore sugg ce nu ce nu n the K1X0 <1M0	pe us pe us inforr geste umbe octa 0 (oct	ed. li ed.) matic d that rs sh l nun tal nu	f the on ab at X/c nould neral umera	32-bi out d levice start syste al sys	t evice es/Y from em or stem)	e ra rin			

- **S**: Source device; **D**: Device in which a check result is stored; **n**: Bit whose state is judged
- The state of the \mathbf{n}^{th} bit in **S** is checked, and the result is stored in **D**.
- 16-bit instruction: **n**=0~15; 32-bit instruction: **n**=0~31
- If the 15th bit in D0 is 1 when X0 is ON, M0 will be ON. If the 15th bit in D0 is 0 when X0 is ON, M0 will be OFF.
- When X0 is turned OFF, the state of M0 remains unchanged.

Explanation

API 45	D	ME	AN	Ρ		S		D					ļ	Mea	n			ole model 0PM ✔
		Bit d	evice	•					Wor	d de	vice			16-bit instruction (7 s	steps)			
	Х	Y	М	S	Κ	Η	KnX	KnY	KnM	KnS	Т	С	D	Z	MEAN Continuity		Pulse instruction	
S					*	* * * * * * * *										32-bit instruction (13		
D																DMEAN Continuity		Pulse instruction
n					*	* * * * * * * * * *										Flag: None	1	
•	Note:	instr instr Plea rang If Kn devia num the c K4S	ructio ructio les re les. X/Kn ces/N ber v decim Y20 (uctior n is u efer to nY/Kn A dev vhich nal nu (octal 16 (de	sed, sed, spe M/Kr ice n is a imera num	Z de V de cifica nS is umbe multij al sys	vices vices tions usec ers/S ple o stem, syste	s can s can for r f, it is devi f 16 i e.g. em), ł	not t not t nore sugg ce nu ce nu n the K1X0 <1M0	pe us pe us infori geste umbe octa 0 (oct	ed. li ed.) matic d tha rs sh l nun tal nu	the on ab at X/d nould neral umera	32-bi out d levice start syste al sys	t evice es/Y from em or stem)	e na rin			

- S: Initial device; D: Device in which a mean is stored; n: Number of devices
- After the values in the n devices starting from S are added up, the mean of the sum is stored in D.
- If a remainder appears in a calculation, it will be left out.
- If S is not in a valid range, only the devices in the valid range will be processed.
- If **n** is not in the range of 1 to 64, an operation error will occur.
- **♦ n**=1~64

When X10 is ON, the values in the three registers starting from D0 are added up. After the values are added up, the sum will be divided by 3. The quotient is stored in D10, and the remainder is left out.

Explanation

API 46		A	١S	Ρ		S		Ð			[Drivi	ng a	n ar	nur	nciator Applicable model 10PM ✓
$\overline{\ }$		Bit d	evice	;					Wor	d de	vice					16-bit instruction (7 steps)
	Х	Y	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z	ANS Continuity ANS P Pulse
S											*					- 32-bit instruction
m					*											
D				*												• Flag: None
•	Note:	Plea	devices can not be modified by V devices and Z devices. ase refer to specifications for more information about device													
Exp	 S: Timer; m: Time; D: Annunciator The instruction ANS is used to drive an annunciator. S: To~T183 															

m: K1~K32,767 (Unit: 100 ms) D: S912~S1023

See the explanation of ANR for more information

					unciator S999 will be ON. Even if
X3 is turned and the val	d OFF, S	999 will	still be Ó		ever, T10 will be reset to OFF,
	ANS	T10	K50	S999	

X3				
	ANS	T10	K50	S999

API 47		ANR	Ρ	-	Resetting an annunciator								
	B X	it device Y M	S	K H KnX KnY	Word device KnM KnS T C D V Z	16-bit instruction (1 s ANR Continuity instructior		Pulse instruction					
•		There is no The instruc	•		be driven by a contact.	32-bit instruction • Flag: None	-						

I X20 X21		annano			
	ANS	T10	K20	S912	
X3	ANRP		-		-
		1			

Additional

remark

- 1. If Y0 is ON for more than 10 seconds, and X2 is OFF, S912 will be ON.
- 2. If Y1 is ON for more than 20 seconds, and X3 is OFF, S920 will be ON.
- 3. If X1 and Y1 are ON, Y1 will not be OFF until X3 is ON.
- 4. If an annuciator is driven, Y2 will be ON.
- 5. When X4 is turned from OFF to ON, the annunciator whose number is smallest in the annunciators which are driven is reset. When X4 is turned from OFF to ON again, the next annunciator whose number is smallest in the annunciators which are driven is reset.

API 48	D	SC	QR	Ρ	C	SD					Squ	are	root	of a	bin	ary value			ble model)PM ✓	
		Bit d	evice	•					Wor	d de	vice					16-bit ins	truction (7 st	eps)		
	Х	Y	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z	SQR	Continuity instruction	SQR P	Pulse instruction	
S											*					32-bit ins	truction			
m					*											DSQR	Continuity instruction	DSQRP	Pulse instruction	
D				*												 Flags 	Instruction		Instruction	:
• 1	Ox 0100																			

- **S**: Source device; **D**: Device in which a result is stored
- The square root of the value in **S** is calculated, and the result is stored in **D**.
- The value in **S** can only be a positive value. If the value in **S** is a negative value, an error will occur, and the instruction will not be executed.
- The value stored in D is an integer. The fractional part of a square root calculated is dropped. If the fractional part of a square root calculated is dropped, a borrow flag will be ON.
- If the value in **D** is 0, a zero flag will be ON.

Explanation

АРІ 49	D	FLT	F		3	Ð	D)	С	Conv	ertir	-		•	-	er into a alue	binary		ble model DPM ✓
	E	Bit device Word device													16-bit ins	struction			
	Х	Y	Μ	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	-	-	-	-
S					*	* * * · · · · · · · · · · · · · · · · ·										32-bit ins	struction (6 ste	eps)	
D																DFLT	Continuity instruction	DFLTP	Pulse instruction
•	Note	: Plea	ase r	efer 1	to spe	cifica	ations	s for 1	more	infor	matio	on ab	out d	evice	Э	 Flags 			
	ranges. Only the 32-bit instructions DFLT and DFLTP are valid.													Ox	O100				
		Only	/ the	32-b	oit inst	ructio	ons D	FLT	and I	DFLT	P are	e vali	d.			M1808		Zero flag	
																M1809		Borrow fla	0
																M1810		Carry flag	
																 Please 	e refer to the e	explanation	below.

S: Source device; D: Conversion result The instruction is used to convert a binary integer into a binary floating-point Explanation value. 1. If the absolute value of the converesion result is greater than the maximum floating-point value available, a carry flag will be ON. 2. If absolute value of the conversion result is less than the mimum floating-point vlaue available, a borrow flag will be ON. If the conversion result is 0, a zero flag will be ON. 3. When X11 is ON, the binary integer in (D1, D0) is converted into a binary floating-point value, and the conversion result is stored in (D21, D20). Example 1 Suppose the value in the 32-bit register (D1, D0) is K100,000. When X11 is ON, K100,000 is converted into the 32-bit floating-point value H4735000, and H4735000 is stored in the 32-bit register (D21, D20). X11 DFLT D0 ┥┝ D20 Users can use applied instructions to perform the following calculation. Example 2 (D11,D10) ÷ (X7~X0) × K61.5 (D21,D20) Binary floating-point value 32-bit bin ary Two-digit 6 value binary-coded decimal value 1 2 6 4 \bigcirc (D31,D30) Decimal floating-point value 8 (D301,D300) (D101,D100) (D41,D40) Binary Binary floating-point (D201,D200) 32-bit integer floating-point value 3 value (D203,D202) Binary floating-point value (D401,D400) Binary floating-point value

M100	0				
		DFLT	D10	D100	
	1				
	2	DBIN	K2X0	D200	
	3	DFLT	D200	D202	
	U U				
		DEDIV	K615	K10	D300
	4				
		DEDIV	D100	D202	D400
	5		DTUU	D202	D400
	6	DEMUL	D400	D300	D20
	\bigcirc				
		DEBCD	D20	D30	
	\bigcirc				
	8	DINT	D20	D40	
•					

- 1. The binary integer in (D11, D10) is converted into a binary floating-point value, and the conversion result is stored in (D101, D100).
- 2. The binary-coded decimal value in X7~X0 is converted into a binary value, and the conversion result is stored in (D201, D200).
- 3. The binary integer in (D201, D200) is converted into a binary floating-point value, and the conversion result is stored in (D203, D202).
- 4. The constant K615 is divided by the constant K10, and the quotient which is a binary floating-point value is stored in (D301, D300).
- 5. The binary floating-point value in (D101, D100) is divided by the binary floating-point value in (D203, D202), and the quotient which is a binary floating-point value is stored in (D401, D400).
- 6. The binary floating-point value in (D401, D400) is multiplied by the binary floating-point value in (D301, D300), and the product which is a binary floating-point value is stored in (D21, D20).
- 7. The binary floating-point value in (D21, D20) is converted into a decimal floating-point value, and the conversion result is stored in (D31, D30).
- 8. The binary floating-point value in (D21, D20) is converted into a binary integer, and the conversion result is stored in (D41, D40).

API 50		RI	ΞF	Ρ	(D		D		Ref	resł	ning	the	state	es of	f I/O devices		able model 0PM ✓	
\square		Bit d	t device						Wor	d de	vice					16-bit instruction (7			
	X	Y	Μ	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	REF Continuity		Pulse instruction	
D	*	*														32-bit instruction			
n					*	*											-	-	
•	Note	Interview Interview											 Flag: None 						

▲Explanation▲	 D: Initial I/O device whose state is refreshed; n: Number of I/O devices whose states are refreshed The states of I/O devices are not refreshed until the instruction END is executed. When the scan of a program starts, the states of external inputs are read, and stored in the input memory. After the instruction END is executed, the contents of the output memory will be sent to output terminals. Therefore, users can use this instruction when they need the latest I/O data in an operation process.
•	 D must be an I/O device whose number ends with 0, e.g. X0, X10, Y0 or Y10. The instruction can not be used to refresh the I/O devices in a digital extension module.
•	D must be an I/O device in a PLC.
·	 If D is X0 and n is less than or equal to 8, the states of X0~X0 will be refreshed. If n is greater than 8, the states of the input devices and the states of the output devices in the motion controller used will be refreshed. If D is Y0, and n is equal to 8, the states of Y0~Y7 will be refreshed. If n is greater than 8, the states of the input devices and the states of the output devices in the motion controller.
	 If D is X10 or Y10, and n is any number, the states of all the input devices except X0~X7, and the states of all the output devices except Y0~Y3 in the motion controller used will be refreshed.
•	n is in the range of 4 to the number of I/O devices in the motion control module used, and is a multiple of 4.
\checkmark	When X0 is ON, the DVP-10PM series motion controller reads the states of
Example 1	X0~X7 immediately. The input signals are refreshed without any delay.
	X0 HEF X0 K8
Example 2	When X0 is ON, the states of Y0~Y3 are sent to output terminals. The output signals are refreshed immediately without the need to wait for the execution of the instruction END.
	REF YO K4
Example 3	When X0 is ON, the states of the input terminals starting from X10, or the states of the output terminals starting from Y10 are refreshed. X_0 REF X10 K8
	Or
	REF Y10 K8

API		_				S 1)) (5	5									Applica	ble model
61		SE	ER	Ρ	7	Ē		-				S	Sear	chin	g da	ata	1	OPM
01	U			Г												\checkmark		
		Bit d	evice	•					Wor	d de	vice					16-bit instruction (9	steps)	
	Х	Y	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z	SER Continuit		Pulse instruction
S1							*	*	*	*	*	*	*			32-bit instruction (1		
S2					*	*	*	*	*	*	*	*	*	*	*	DSER Continuit		Pulse
D								*	*	*	*	*	*			Flag: None		
Ν					*	*							*			ridg. Hone		
•	Note	instr instr Plea rang If Kn devia num the c K4S	ruction ruction les re les. NX/Kn ces/M ber w decim Y20 (uction n is us fer to Y/Knl I devi /hich ial nu joctal	sed, sed, spe M/Kr ice n is a mera num	Z de V de cifica nS is numb multi al sys	evices ations usec ers/S ple o stem, syste	s can s can for r l, it is devi f 16 i e.g. em), ł	not t not t nore sugg ce nu ce nu k1X0 (1M0	be us be us inforn geste umbe octa 0 (oct	ed. I ed.) matic d tha rs sh I nur tal nu	f the on ab at X/c nould neral umer	32-bi bout c device I start syste al syste	t levice s/Y from em of stem)	e na rin),			

- S₁: Initial device involved in a comparison; S₂: Value which is compared; D: Initial device in which a comparison result is stored (5 consecutive devices are occupied.); n: Number of values
 - S₁ is the initial register involved in a comparison, and n is the number of values which are compared. The values in the n registers starting from S₁ are compared with the value in S₂, and the comparison results are stored in the five registers starting from D.
 - If the 32-bit instruction is used, S_1 , S_2 , D, and n will be 32-bit registers.
 - 16-bit instruction: $n=1\sim256$; $n=1\sim128$ (32-bit instruction)

Explanation

- When X0 is ON, the values in D10~D19 are compared with the value in D0, and the comparison results are stored in D50~D54. If none of the values in D10~D19 are equal to the value in D0, the values in D50~D52 will be 0.
- A comparison is based on algebra (-10 < 2).
- The number of the minimum value is stored in D53, and the number of the maximum value is stored in D54. If there is more than one minimum value/maximum value, the number which is the biggest will be stored.

|--|

	S ₁	Value	Value which is compared	Number	Result	D	Value	Description
	D10	88		0		D50	4	Number of values which are equal to the value in D0
	D11	100		1	Equal	D51	1	Number of the first value which is equal to the value in D0
 n	D12	110	S ₂ D0=K100	2		D52	8	Number of the last value which is equal to the value in D0
	D13	150		3		D53	7	Number of the minimum value
	D14	100		4	Equal	D54	9	Number of the maximum value
	D15	300		5				
	D16	100		6	Equal			
	D17	5		7	Minimum			
	D18	100		8	Equal			
└→	D19	500		9	Maximum			

						Applicable model
API	ALT		D	Alternating between O	N and OFF	Applicable model
66		Ρ				10PM ✓
	Dit device					
D • Not	* *	*		Word device KnM KnS T C D V Z y V devices and Z devices.	16-bit instruction (9 s ALT Continuity instruction 32-bit instruction (17)	ALT P Pulse instruction
				more information about device		
	ranges.				 Flag: None 	
	nation	* * *	and OFF. Generally, th When X0 is t	on device struction ALT is executed, th e pulse instruction ALTP is a surned from OFF to ON for th OFF to ON for the second tin ALTP Y0	used. ne first time, Y0 is	
Exam	nple 2	•	X10 is turned and Y0 is OF	hing, M0 is OFF, and therefo d from OFF to ON for the firs F. When X10 is switched fro efore, Y0 is ON, and Y1 is C ALT M0 Y0 Y1	t time, M0 is ON. om OFF to ON fo	Therefore, Y1 is ON,
Exam	nple 3	•		ON, T0 generates a pulse e etween ON and OFF accordi TMR T0 K20 ALTP Y0	•	•

${\bf 5}$ Applied Instructions and Basic Usage

API							0								Applicable model
67 I	R/	۱MP) (S) (n						Ram	р		10PM
															\checkmark
	Bit	devic	e					lord de						16-bit instruction (9	steps)
	X Y	М	S	K	Н	KnX	KnY K	nM KnS	Т	С	D	V	Z	RAMP Continuit	-
S1											*			32-bit instruction (1	7 steps)
S2											*			D RAMP Continuit	y _
D											*				ease refer to the additional
Ν											*			remark be	low.)
• N	lote: All						•							M1029	
		ease re iges.	efer to	o spe	cifica	ations	for mo	ore infor	matic	on ab	out c	levice	Э		
	. ear	.gee.													
Exa	amp	le	* * *	V vv l l c c c c f f c c t t	Whe value scan f the exec f the Cush The D11. D10 After ixed of th he t	n the e in I a cyc e ope cution e inst ionir start to th M10 I. Us e ins ime i	e cont D will les is and of th truction g a s of a r en X2 ie valu 039 in ers ca struction it take	increa stored n is a e inst an is u tart/st amp i c0 is tu ue in E a pro an writ con MC es for t	iving se fi I in I D do ruction sed 1 op co op	the rom D +1. evice on s with an b itten an b an ti and f the ralue	e insi the e, th tops an be e intc N, th the turn ime sca e in I	valu e va s. outp ecu o D1 e va nun ed C into n tir D12	ie in alue ut of ited. 0, an lue i nber DN, 1 the me s to ir	S ₁ to the value S in n can not be of f analog signals, and the end of the in D12 increases of scan cycles i the scan time for special data regiset is 30 millisecton crease from the	e ramp is written into from the value in
											•			econds×100).	
			•											e instruction will 0, and increase a	stop. If X20 is turned
						-									becomes the value
			•		D10.		15 01	r, an		1020	/ 10 (<i>.</i> ,			
					X20										
				-			RAI	MP	D10		D11		D1:	2 K100	
								10	D12				D10		
							The r				ycles	is n.	The	e number of scan cy	cles is n.
									D10<	:D11				D10>D11	

The number of scan cycle is stored in D13.

Additional remark

If M1026 is turned ON/OFF, the value in D12 will change in the way described below.

${\bf 5}$ Applied Instructions and Basic Usage

API										_						Ар	plicable model	
69	D	SO	RT		G	S		n2)	▣	D (ק		S	Sort	ing data		10PM	
																	✓	
			evice			1			d de	vice	0			7	16-bit instructi			
	X	Y	М	S	K	Н	KnX KnY	KnM	KnS	I	С	D *	V	Z		ruction		
S												Ŷ			32-bit instructi			
m1					*	*									IDSORT	ntinuity ruction	-	
m2					*	*									Flag: None			;
D												*						
Ν					*	*						*						
•	Note						nodified by	-										
	Please refer to specifications for more information about device ranges.																	
	 S: Initial device in which original data is stored; m₁: Number of rows of data (m₁ =1~32); m₂: Number of columns of data (m₂=1~6); D: Initial device in which a sorting result is stored; n: Reference value (n=1~m2) (Data is sorted in algebraic order.) The data which is sorted is stored in the m₁×m₂ registers starting from the register specified by D. If S and D specify the same register, the sorting result gotten will be the same as the original data in the register specified by S. It is better that the rightmost number of the device number of the register specified by S is 0. After the instruction is scanned m₁ times, the sorting of data will be complete. After the sorting of data is complete, M1029 will be ON. The instruction can be used several times in a program, but one instruction is executed at a time. When X0 is turned ON, the data specified is sorted in ascending order. When the sorting of the data specified is complete, M1029 is ON. When the instruction is executed, the data specified can not be changed. If users want to 														a t			
					L	X0		ORT		D0		K5		K5	5 D50	D100		
						-										2100		
					1	I. T	he data	whi	ch w	/ill b	e sc	orted			n below.	4-		
									ł				— r	m_2 c	columns of da	ita –		
															Column			
							Colu	mn	-	1	_		2	_	3	4	5	
							Row			ude umb		Cł	nines	e	English	Math	Physics	
					-		1.010											
						1	1		(D0) [,]	1	(D	05) 90)	(D10) 75	(D15) 66	(D20) 79	
						m ₁ r	2		(D1) 2	2	(C	06) 55	5	(D11) 65	(D16) 54	(D21) 63	
						m ₁ rows of data	3		(D2) (3	(C	07) 80)	(D12) 98	(D17) 89	(D22) 90	
						data	4		(D3) 4	4	(C	08) 70)	(D13) 60	(D18) 99	(D23) 50	

(D4) 5

5

(D9) 95

(D24) 69

(D19) 75

(D14) 79

		<	m ₂ (columns of da	ata —	>							
		Column											
	Column	1	2	3	4	5							
	Row	Student number	Chinese	English	Math	Physics							
♠	1	(D50) 4	(D55) 70	(D60) 60	(D65) 99	(D70) 50							
m₁ r	2	(D51) 2	(D56) 55	(D61) 65	(D66) 54	(D71) 63							
m ₁ rows of data	3	(D52) 1	(D57) 90	(D62) 75	(D67) 66	(D72) 79							
data	4	(D53) 5	(D58) 95	(D63) 79	(D68) 75	(D73) 69							
¥	5	(D54) 3	(D59) 80	(D64) 98	(D69) 89	(D74) 90							

2.	If the value in D100 is K3,	users can	get the	sorting	result shown	below.

If the value in D100 is K5, users can get the sorting result shown below.
 m₂ columns of data

			111 ₂	columns of da	ala	
				Column		
	Column	1	2	3	4	5
	Row	Student number	Chinese	English	Math	Physics
	1	(D50) 4	(D55) 70	(D60) 60	(D65) 99	(D70) 50
т	2	(D51) 2	(D56) 55	(D61) 65	(D66) 54	(D71) 63
m₁ row	3	(D52) 5	(D57) 95	(D62) 79	(D67) 75	(D72) 69
m₁ rows of data ➡	4	(D53) 1	(D58) 90	(D63) 75	(D68) 66	(D73) 79
6	5	(D54) 3	(D59) 80	(D64) 98	(D69) 89	(D74) 90

API 78	D	FROM P m1 m2 D n												•		rom a control	Applicable model 10PM ✓		
Bit device Word device 16-bit instruction (9 steps) X Y M S K H KnX KnM KnS T C D V Z EROM Continuity EROMP Pulse																			
	X	Y	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z	FROM Continuity	FRUMP	Pulse instruction	
m ₁					*	*					*	*	*	*	*	- 32-bit instruction (17		Instruction	
m ₂					*	*					*	*	*	*	*	DEROM Continuity		Pulse	
D											*	*	*	*	*	instruction		instruction	
n					*	*					*	*	*	*	*	 Please refer to the 	additional rer	nark below.	
•	Note	m ₂ is n is n is The instr	s in th s in the in the in the instru uctior uctior	ne ran rang rang uction n is us	ge of e of e of sup sed,	of 0 to 1 to 1~(5 ports Z de	o 499 (500- 500-m s V de evices	(16-l m ₂) (₂)/2 (evices can	bit ins 16-bi 32-bi s and not b	struct it inst it inst I Z de be use	tion/3 ructi ructi evice ed. li	32-bi on). on). s. (If	t insti the 1	ructic	on).				

- **m**₁: Special module number (**m**₁ is in the range of 0 to 255.); **m**₂: Control register number (**m**₂ is in the range of 0 to 499.); **D**: Device in which the data read will be stored; **n**: Quantity of data which will be read (16-bit instruction: 1~(500-**m**₂); 32-bit instruction: 1~(500-**m**₂)/2
 - A DVP-10PM series motion controller can read the data in a control register in a special module by means of the instruction.
 - Please refer to the additional remark on the instruction TO for more information about the numbering of special modules.
- The value in CR#29 in special module 0 is read, and then stored in D0 in the motion controller used. The value in CR#30 in special module 0 is read, and then stored in D1 in the motion controller used. The two values are read at the same time.
- When X0 is ON, the instruction is executed. When X0 is turned OFF, the instruction is not executed, and the values which are read remain unchanged.

FROM K0 K29 D0 K

Explanation

API	_	Т	0		G	n1)	(m2		S		W	/ritin	•			a control register	able model
79	D	•	Ŭ	Ρ							,		in	a sp	ecia	al module	√
		Bit d	evice														
	X	Y	М	S	K *	H *	KnX	KnY	KnM	TO Continuity TOP	Pulse instruction						
m ₁					*	* *											Pulse
S					*											instruction DTOP	instruction
n					*	*					*	 Please refer to the additional r 	emark below.				
•																	

- m_1 : Special module number (m_1 is in the range of 0 to 255.); m_2 : Control register number (m_2 is in the range of 0 to 499.); **D**: Data which will be written into a control register; **n**: Quantity of data which will be written (16-bit instruction: $1\sim(500-m_2)$; 32-bit instruction: $1\sim(500-m_2)/2$
 - A DVP-10PM series motion controller can write data into a control register in a special module by means of the instruction.
 - The 32-bit instruction DTO is used. The value in (D11, D10) is written into (CR#13, CR#12) in special module 0. One value is written at a time.
 - When X0 is ON, the instruction is executed. When X0 is turned OFF, the instruction is not executed, and the value which is written remains unchanged.

 ~~~					
	DTO	K0	K12	D10	K1



Example

Explanation

- Regulation of operands
- 1.  $m_1$ :  $m_1$  is a special module number. It is the number of a special module connected to the DVP-10PM series motion controller used.
  - The number of the first special module which is connected to the DVP-10PM series motion cotroller used is 0. Eight special modules at most can be connected to the DVP-10PM series motion controller used, and they do not occupy I/O devices.
- 2.  $m_2$ :  $m_2$  is a control register number. the 16-bit memories in a special modules are called control registers. Control register numbers are decimal numbers. The operation of a special module and setting values are stored in the control registers in the special module.
- If the instruction FROM/TO is used, one control register is taken as a unit for the reading/writing of data. If the instruction DFROM/DTO is used, two control registers are taken as a unit for the reading/writing of data.
   <u>High 16 bits</u> Low 16 bits

```
CR #10 CR #9 Control register number specified
```

4. **n** which is 2 in a 16-bit instruction has the same meaning as **n** which is 1 in a 32-bit instruction.



The characteristic curve of DVP02DA-H2 is adjusted. The offset for channel 2 is 0 mA ( $K0_{LSB}$ ), and the gain for channel 2 is 10 mA ( $K1,000_{LSB}$ ).



- 1. H18 is written into CR#1 in the analog output module whose number is 1, and channel 2 is set to mode 3 (current output: 0 mA~+20 mA).
- 2. H0 is written into CR#33. Channel 1~channel 2 can be tuned.
- 3. When X0 is turned from OFF to ON, the offset  $KO_{LSB}$  is writtedn into CR#22, and the gain  $K1,000_{LSB}$  is written into CR#28.
- The characteristic curve of DVP02DA-H2 is adjusted. The offset for channel 2 is 2 mA (K400_{LSB}), and the gain for channel 2 is 18 mA (K3,600_{LSB}).

M 1

	то	K1	K1	H10	K1					
	то	K1	K33	H0	K1					
XO										
	ТО	K1	K23	K400	K1					
	то	K1	K29	K3600	K1					

- 1. H10 is written into CR#1 in the analog output module whose number is 1, and channel 2 is set to mode 2 (current output: +4 mA~+20 mA).
- 2. H0 is written into CR#33. Channel 1~channel 2 can be tuned.
- When X0 is turned from OFF to ON, the offset K400_{LSB} is writtedn into CR#23, and the gain K K3,600_{LSB} is written into CR#29.

Example 4

API <b>ABS</b>		Absolute val	ue		ble model 0PM ✓
instruction is instruction is Please refer ranges. If KnX/KnY/Ł devices/M de number whic the decimal K4SY20 (oct	on supports V device used, Z devices car used, V devices car to specifications for CnM/KnS is used, it is evice numbers/S dev h is a multiple of 16 numeral system, e.g.	more information about device s suggested that X/devices/Y vice numbers should start from a in the octal numeral system or in . K1X0 (octal numeral system), K1M0 (decimal numeral system),	16-bit instruction (9         ABS       Continuity instruction         32-bit instruction (17         DABS       Continuity instruction         • Flag: None	ABS P	Pulse Pulse instruction

Explanation +	<b>D</b> : Device whose absolute value will be gotten When the instruction ABS is executed, the absolute value of the value in <b>D</b> is gotten.
◆ Example	Generally, the pulse instructions ABSP and DABSP are used. When X0 is turned from OFF to ON, the absolute value of the value in D0 is gotten.

API 100		MO	DR	D	D S1 S2 n Reading Modbus data					<u>S1</u> S2 n					dbus data	Applicable model 10PM ✓			
	I	Bit d	evice	<del>)</del>					Wor	d dev	vice					16-bit instruction (7 s	teps)		
	Х	Y	М	S	К	H KnX KnY KnM KnS T					С	D	V	Ζ	MODRD Continuity				
S ₁					*	*							*			32-bit instruction			
S ₂					*	*							*						
n					*	*							*			• Flags			
Note: S ₁ is in the range of K0 to K254.     M1120~M1129 and M1140										d M1140~M1143									
	n is in the range of K1 to K6. Please refer to the additional remark below									additional remark below.									
	Please refer to specifications for more information about device																		
	ranges.																		

- S₁: Device address; S₂: Data address; n: Data length
   Explanation
   The instruction MODRD is used to drive peripheral ed
  - The instruction MODRD is used to drive peripheral equipment in a Modbus ACII/RUT mode. The RS-485 ports on Delta VFD series AC motor drives (except VFD-A series AC motor drives) conform to a Modbus communication format. Users can read data from a Delta AC motor drive by means of the instruction MODRD.
  - S₂ is a data address. If the data address specified is illegal, the device which is connected will respond with an error message, an error code will be stored in D1130 in the DVP-10PM series motion controller used, and M1141 will be ON.
  - The data which is sent by a peripheral is stored in D1070~D1085. After a DVP-10PM series motion controller receives the data sent by a peripheral, it will automatically check whether the data received is correct. If an error occurs, M1140 will be ON.
  - If an ASCII mode is used, the data sent by a peripheral will be ASCII characters, and the DVP-10PM series motion controller used will convert the data received into values, and store the values in D1050~D1055. If an RTU mode is used, D1050~D1055 will be invalid.
  - If a DVP-10PM series motion controller sends correct data to a peripheral after M1140 or M1141 is turned ON, and the data with which the peripheral responds is correct, M1140 or M1141 will be reset.
  - A DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF)

M1002									
	MOV	H87	D1120	Communication protocol: 9600,8,E,1					
	SET	M1120	The c	ommunication protocol set is retained.					
	MOV	K100	D1129	Communication timeout: 100 ms					
×0   <b>↑</b>	SET	M1122	t for sending data Communication command: Davies address: 04						
X0	MODRD	K1	H2101	K6 Data address: H2101 Data length: 6 words					
M1127	Processing the data received Processing the data received automatically convert the ASCII characters into value								
The sending/	RST	M1127	M1127 is	stored the values in D1050~D1055.					



DVP-10PM series motion controller ⇒ VFD-B series AC motor drive: The DVP-10PM series motion controller sends "**01 03 2101 0006 D4**".

VFD-B series AC motor drive ⇒ DVP-10PM series motion controller: The DVP-10PM series motion controller receives "01 03 0C 0100 1766 0000 0000 0136 0000 3B".



Data transmission registers in the DVP-10PM series motion controller (message sent by the DVP-10PM series motion controller):

Register	Dat	ta		Description			
D1089 low	'0'	30 H	ADR 1	ADR (1,0): Address of the VFD-B series AC motor			
D1089 high	'1'	31 H	ADR 0	drive			
D1090 low	'0'	30 H	CMD 1	CMD (1,0): Command			
D1090 high	'3'	33 H	CMD 0	code			
D1091 low	'2'	32 H					
D1091 high	'1'	31 H	Starting data a	addross			
D1092 low	'0'	30 H	Starting data address				
D1092 high	'1'	31 H					
D1093 low	ʻ0'	30 H					
D1093 high	'0'	30 H	Quantity of da	ta (count by the word)			
D1094 low	'0'	30 H	Quantity of data (count by the word)				
D1094 high	'6'	36 H					
D1095 low	'D'	44 H	LRC CHK 1	LRC CHK (0,1):			
D1095 high	'4'	34 H	LRC CHK 0	Checksum			

Data reception reigsters in the DVP-10PM series motion controller (message with which the VFD-B series AC motor drive responds):

Register		Data	Description				
D1070 low	'0'	30 H	ADR 1				
D1070 high	'1'	31 H	ADR 0				
D1071 low	'0'	30 H	CMD 1				
D1071 high	'3'	33 H	CMD 0				
D1072 low	'0'	30 H	Quantity of data (cou	nt by the byte)			
D1072 high	ʻC'	43 H	,				
D1073 low	'0'	30 H	_	The DVP-10PM series motion controller			
D1073 high	'1'	31 H	Contents of the	automatically converts the ASCII characters			
D1074 low	'0'	30 H	address 2101 H	into values, and store the values in D1050.			
D1074 high	'0'	30 H		(D1050=0100 H)			
D1075 low	'1'	31 H		The DVP-10PM series motion controller automatically converts the ASCII characters into values, and store the values in D1051. (D1051=1766 H)			
D1075 high	'7'	37 H	Contents of the				
D1076 low	'6'	36 H	address 2102 H				
D1076 high	'6'	36 H					
D1077 low	'0'	30 H		The DVP-10PM series motion controller			
D1077 high	'0'	30 H	Contents of the	automatically converts the ASCII characters			
D1078 low	'0'	30 H	address 2103 H	into values, and store the values in D1052.			
D1078 high	'0'	30 H		(D1052=0000 H)			
D1079 low	'0'	30 H		The DVP-10PM series motion controller			
D1079 high	'0'	30 H	Contents of the	automatically converts the ASCII characters			
D1080 low	'0'	30 H	address 2104 H	into values, and store the values in D1053.			
D1080 high	'0'	30 H	]	(D1053=0000 H)			

Register		Data	Description				
D1081 low	'0'	30 H		The DVP-10PM series motion controller			
D1081 high	'1'	31 H	Contents of the	automatically converts the ASCII characters			
D1082 low	'3'	33 H	address 2105 H	into values, and store the values in D1054.			
D1082 high	'6'	36 H		(D1054=0136 H)			
D1083 low	'0'	30 H		The DVP-10PM series motion controller automatically converts the ASCII characters			
D1083 high	'0'	30 H	Contents of the				
D1084 low	'0'	30 H	address 2106 H	into values, and store the values in D1055.			
D1084 high	'0'	30 H		(D1055=0000 H)			
D1085 low	'3'	33 H	LRC CHK 1				
D1085 high	'B'	42 H	LRC CHK 0				

Example 2

A DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (RTU mode: M1143=ON)

M1002						
		MOV	H87	D1120	Commur	nication protocol: 9600,8,E,1
	1			I		
		SET	M1120	The con	nmunicatio	on protocol set is retained.
					1	
		MOV	K100	D1129	Commun	ication timeout: 100 ms
l		SET	M1143	RTU mo	de	
X0						
		SET	M1122	Reques	tforsendi	ng data
X0						Communication command:
–Ĩ–		MODRD	K1	H2102	K2	Device address: 01 Data address: H2102
	l	-				Data length: 2 words
M1127	, 					ata received is stored in D1070~D1085 in the form
-11		Processi	ing the da	ta receive	ad I	adecimal values.
				1		
l The rec	ception	RST	M1127	M1127 i	sreset.	
	1000					

of data is complete.

DVP-10PM series motion controller ⇒ VFD-B series AC motor drive: The DVP-10PM series motion controller sends "**01 03 2102 0002 6F F7**".

VFD-B series AC motor drive  $\Rightarrow$  DVP-10PM series motion controller: The DVP-10PM series motion controller receives "**01 03 04 1770 0000 FE 5C**". Data transmission registers in the DVP-10PM series motion controller (message sent by the DVP-10PM series motion controller):

Register	Data	Description			
D1089 low	01 H	Address			
D1090 low	03 H	Function			
D1091 low	21 H	Starting data address			
D1092 low	02 H	Starting data address			
D1093 low	00 H	Quantity of Data (count by the word)			
D1094 low	02 H	Quantity of Data (count by the word)			
D1095 low	6F H	CRC CHK Low			
D1096 low	F7 H	CRC CHK High			

Data reception registers in the DVP-10PM series motion controller (message with which the VFD-B series AC motor drive responds):

Register	Data	Description			
D1070 low	01 H	Address			
D1071 low	03 H	Function			
D1072 low	04 H	Quantity of Data (count by the byte)			
D1073 low	17 H	Contents of the address 2102 H			
D1074 low	70 H				
D1075 low	00 H	Contents of the address 2103 H			
D1076 low	00 H	Contents of the address 2103 11			
D1077 low	FE H	CRC CHK Low			
D1078 low	5C H	CRC CHK High			

#### Example 3

- If a communication timeout occurs, the data received is incorrect, or the values of parameters of the instruction MODRD are incorrect when a DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF), the sending of data will be retried.
- When X0 is ON, the DVP-10PM series motion controller used reads the data in the data address H2100 in the VFD-B series AC motor drive whose device address is 01, and store the data in D1070~D1085 in the form of ASCII characters. The DVP-10PM series motion controller will automatically convert the ASCII characters in D1070~D1085 into values, and store the values in D1050~D1055.
- If a communication timeout occurs, M1129 will be ON. If M1129 is ON, M1122 will be set to ON.
- If the data received is incorrect, M1140 will be ON. If M1140 is ON, M1122 will be set to ON.
- If the values of parameters of the instruction MODWR is incorrect, M1141 will be ON. If M1141 is ON, M1122 will be set to ON.

	M1002				
		MOV	H87	D1120	Communication protocol: 9600,8,E,1
		SET	M1120	The cor	nmunication protocol set is retained.
		MOV	K100	D1129	Communication timeout: 100 ms
	X0  ↑	SET	M1122	Reques	st for sending data
	M1129   ↑   When M1140	a commu	unication	timeout oc	ccurs, the sending of data is retried.
	♠  When M1141	the data	received	is incorre	ct, the sending of data is retried.
	_  <b>≜</b>  _ When X0	the value	es of para	metersof	MODRD are incorrect, the sending of data is retried. Communication command: Device address: 01
	M1127	MODRD	K1	H2100	K 6 Data address: H2101 Data length: 6 words
		Process	ing the da	ta receive	The data received is stored in D1070~D1085 in the form of ASCII characters. The DVP-10PM series motion controller automatically convert the ASCII characters into values, and
	The reception of data is comp	RST	M1127	M1127	stored the values in D1050~D1055. 'is reset.
	M1129	RST	M1129	M1129 is	reset.
Additional remark		ode: H0			F/ORF can not precede the instruction MODRD the data stored in data reception registers will
<b></b>	The instruc	tion ca	n ha us	vas ha	eral times in a program, but one instruction is

The instruction can be used several times in a program, but one instruction is executed at a time.

API 101	ſ	MO	DW	/R		S1 S2 n						Writing Modbus data			Мос	dbus data	Applicable model 10PM ✓
	I	Bit d	evice	e					Wor	d dev	vice					16-bit instruction (7 s	teps)
	Х	Y	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	MODWR Continuity	
S ₁					*	*							*			instruction	
S ₂					*	*							*			32-bit instruction	
n					*	*							*			• Flags	
• Note: S ₁ is in the range of K0 to K254. M1120~M1129 and M1140~M1143								d M1140~M1143									
					•	pecifications for more information about device							out de		Please refer to the	e additional remark below.	
		range			- 1												



Example 1

- **S**₁: Device address; **S**₂: Data address; **n**: Data which is written
- The instruction MODWR is used to drive peripheral equipment in a Modbus ACII/RUT mode. The RS-485 ports on Delta VFD series AC motor drives (except VFD-A series AC motor drives) conform to a Modbus communication format. Users can write data into a Delta AC motor drive by means of the instruction MODWR.
- ◆ S₂ is a data address. If the data address specified is illegal, the device which is connected will respond with an error message, an error code will be stored in D1130 in the DVP-10PM series motion controller used, and M1141 will be ON. For example, the data address 8000H in a VFD-B series AC motor drive is illegal, and therefore M1141 is ON, and the value in D1130 is 2. Please refer to VFD-B User Manual for more information about error codes.
- The data which is sent by a peripheral is stored in D1070~D1076. After a DVP-10PM series motion controller receives the data sent by a peripheral, it will automatically check whether the data received is correct. If an error occurs, M1140 will be ON.
- If a DVP-10PM series motion controller sends correct data to a peripheral after M1140 or M1141 is turned ON, and the data with which the peripheral responds is correct, M1140 or M1141 will be reset.
- A DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF)

M1002					
	MOV	H87	D1120	Commu	nication protocol: 9600,8,E,1
	SET	M1120	The com	nmunicati	on protocol set is retained.
	MOV	K100	D1129	Commun	ication timeout: 100 ms
XO			-		
	SET	M1122	Request	tforsendi	ng data
XO			1		Communication command:
	MODWR	K1	H0100	H1770	Device address: 01 Data address: H0100
M1127	·				Data:H1770
	Processi	ng the da	ta receive	ad	ata received is stored in D1070~ D1085 form of ASCII characters.
The reception	RST	M1127	M1127	is reset.	
of data is com	olete.				

**DVP-10PM** Application Manual

DVP-10PM series motion controller  $\Rightarrow$  VFD-B series AC motor drive: The DVP-10PM series motion controller sends "**01 06 0100 1770 71**". VFD-B series AC motor drive  $\Rightarrow$  DVP-10PM series motion controller: The DVP-10PM series motion controller receives "**01 06 0100 1770 71**". Data transmission registers in the DVP-10PM series motion controller (message sent by the DVP-10PM series motion controller):

Register	Da	nta		Description		
D1089 low	'0'	30 H	ADR 1	ADR (1,0): Address of the		
D1089 high	'1'	31 H	ADR 0	VFD-B series AC motor drive		
D1090 low	'0'	30 H	CMD 1	CMD (1,0): Command code		
D1090 high	'6'	36 H	CMD 0	CMD (1,0). Command code		
D1091 low	'0'	30 H				
D1091 high	'1'	31 H	Data addross			
D1092 low	'0'	30 H	- Data address			
D1092 high	'0'	30 H				
D1093 low	'1'	31 H				
D1093 high	'7'	37 H	Data			
D1094 low	'7'	37 H	Dala			
D1094 high	'0'	30 H	1			
D1095 low	'7'	37 H	LRC CHK 1	LRC CHK (0,1): Checksum		
D1095 high	'1'	31 H	LRC CHK 0			

Data reception reigsters in the DVP-10PM series motion controller (message with which the VFD-B series AC motor drive responds):

Register	Data		Description
D1070 low	'0'	30 H	ADR 1
D1070 high	'1'	31 H	ADR 0
D1071 low	'0'	30 H	CMD 1
D1071 high	'6'	36 H	CMD 0
D1072 low	'0'	30 H	
D1072 high	'1'	31 H	Data address
D1073 low	'0'	30 H	
D1073 high	'0'	30 H	
D1074 low	'1'	31 H	
D1074 high	'7'	37 H	Data
D1075 low	'7'	37 H	Data
D1075 high	'0'	30 H	
D1076 low	'7'	37 H	LRC CHK 1
D1076 high	'1'	31 H	LRC CHK 0

A DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (RTU mode: M1143=ON)

M1002									
	MOV	H87	D1120 Communication protocol: 9600,8,E,1						
	SET	M1120	The communication protocol set is retained.						
	MOV	K100	D1129 Communication timeout: 100 ms						
	SET	M1143	RTU mode						
X1   ♠	SET	M1122	Request for sending data Communication command:						
	MODWR	K1	H2000 H12 Device address: 01 Data address: H2000						
M1127	Processi	ng the da	Data:H12 The data received is stored in D1070~D1085 in the form of hexadecimal values.						
The reception	RST	M1127	M1127 is reset.						

of data is complete.

DVP-10PM series motion controller  $\Rightarrow$  VFD-B series AC motor drive: The DVP-10PM series motion controller sends "**01 06 2000 0012 02 07**".

VFD-B series AC motor drive  $\Rightarrow$  DVP-10PM series motion controller: The DVP-10PM series motion controller receives "**01 06 2000 0012 02 07**". Data transmission registers in the DVP-10PM series motion controller (message sent by the DVP-10PM series motion controller):

Register	Data	Description
D1089 low	01 H	Address
D1090 low	06 H	Function
D1091 low	20 H	Data address
D1092 low	00 H	
D1093 low	00 H	Data
D1094 low	12 H	Data
D1095 low	02 H	CRC CHK Low
D1096 low	07 H	CRC CHK High

Data reception reigsters in the DVP-10PM series motion controller (message with which the VFD-B series AC motor drive responds):

Register	Data	Description						
D1070 low	01 H	Address						
D1071 low	06 H	Function						
D1072 low	20 H	Data address						
D1073 low	00 H							
D1074 low	00 H	Data content						
D1075 low	12 H	Data content						
D1076 low	02 H	CRC CHK Low						
D1077 low	07 H	CRC CHK High						

Example 3	If a communication timeout occurs, the data received is incorrect, or the values of parameters of the instruction MODRD are incorrect when a DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF), the sending of data will be retried. When X0 is ON, the DVP-10PM series motion controller used write H1770 (K6000) into the data address H0100 in the VFD-B series AC motor drive whose device address is 01. If a communication timeout occurs, M1129 will be ON. If M1129 is ON, M1122 will be set to ON. If the data received is incorrect, M1140 will be ON. If M1140 is ON, M1122 will be set to ON. If the values of parameters of the instruction MODWR is incorrect, M1141 will be ON. If M1141 is ON, M1122 will be set to ON.
	M1002 MOV H87 D1120 Communication protocol: 9600,8,E,1
	SET M1120 The communication protocol set is retained.
	MOV K100 D1129 Communication timeout: 100 ms
	X0 I↑I SET M1122 Request for sending data
	M1129 M140 M140 M140 M140 Mhen the data received is incorrect, the sending of data is retried.         M1141 M141 Mhen the values of parameters of MODRD are incorrect, the sending of data is retried.         Communication command: Device address: 01 Data address: 01 Data address: H0100 Data: H1770 M1127 Processing the data received The data received is stored in D1070~D1085 in the form of ASCII characters.         M1129 The reception       RST         M129 RST       M1129 M1129         M1129 M1129       M1129 M1129 M1129 is reset.
Example 4	If a communication timeout occurs, the data received is incorrect, or the values of parameters of the instruction MODRD are incorrect when a DVP-10PM series motion controller is connected to a VFD-B series AC motor drive (ASCII mode: M1143=OFF), the sending of data will be retried. The number of times the sending of data is retired is stored in D0. The default value in D0 is 3. If

means of triggering a condition.

whose device address is 01.

communication is retried successfully, users can control the communication by

When X0 is ON, the DVP-10PM series motion controller used write H1770 (K6000) into the data address H0100 in the VFD-B series AC motor drive

- If a communication timeout occurs, M1129 will be ON. If M1129 is ON, M1122 will be set to ON. The number of times the sending of data is retired is stored in D0. The default value in D0 is 3.
- If the data received is incorrect, M1140 will be ON. If M1140 is ON, M1122 will be set to ON. The number of times the sending of data is retired is stored in D0. The default value in D0 is 3.
- If the values of parameters of the instruction MODWR is incorrect, M1141 will be ON. If M1141 is ON, M1122 will be set to ON. The number of times the sending of data is retired is stored in D0. The default value in D0 is 3.

M1002				
	MOV	H87	D1120 Communication	protocol: 9600,8,E,1
	SET	M1120	The communication prot	ocol set is retained.
	MOV	K100	D1129 Communication	n timeout: 100 ms
	MOV	К3	DO	
X0  ↑	SET	M1122	Request for sending dat	a
M1129 ⊣↑ LD>= D0 D100 - M1140	When a	communi	tion timeout occurs, the	sending of data is retried.
MI140 ⊣↑ I When the data received is inc M1141	correct, the	esending	data is retried.	
H. → When the values of paramete	rs of MODF	RD areinc	rect, the sending of data	is retried.
x0 ⊣∣	MODWR	K1	0100 H1770 Device	nication command: address: 01
/1122 ⊣∮∣	INC	D100	Data ac Data: H	dress: H0100 1770
M1127	Processi	ng the dat		ved is stored in 5 in the form of ASCII characters
	RST	M1127	1127 is reset.	
The reception	RST	D100		
of data is complete.				
M1129 	RST	M1129	1129 is reset.	
M1140	RST	M1140		
M1141 	RST	M1141		
			raaadaa tha inati	

Additional remark If LDP/ANDP/ORP or LDF/ANDF/ORF precedes the instruction MODRD (function code: H06 or H10), M1122 must be set to ON before MODRD is executed.

The instruction can be used several times in a program, but one instruction is executed at a time.

# ${\bf 5}$ Applied Instructions and Basic Usage

API																	Applicable model
44.0	n I	ECI	MP	Р	(	<u>S1</u>	<u>S2</u>	)	D	(	Corr	npari	ing b	oinai	ry flo	pating-point values	10PM
110	D			۲													$\checkmark$
		Bit d	evice	9					Wor	d de	vice					16-bit instruction	
	X	Y	М	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z		
S1					*								*			32-bit instruction (9 step	 DS)
S2					*								*			DECMP Continuity	DECMPP Pulse
D		*	*	*												Flag: None	instruction
	Note	: Plea	ase r	l efer t	to spe	ecifica	ations	for r	nore	infor	matio	on ab	out c	levice	 	i lag. None	
		rang															
							ons D						e val	id.			
			-			-	s thre										
					a fioa value		ooint	alue	e. In	ere is	s a de	ecima	ai poi	nt in i	а		
		nou		Joint	Value												
			_			<b>.</b>	:	. 41 -	- 1:					<b>•</b> • •	<b></b> :		
				•		-	-			•••				_		ry floating-point val secutive devices.)	lue 2; <b>D</b> :
Exp	lan	ati	on				•			•		•				,	value in <b>S</b> 1 with that
													•			,	
									•				•			<)is stored in <b>D</b> .	
				4		-			•	•							compare the $S_1$ with
										• •						is a floating-point v	
													•			inary floating-point	
			``													M12 will be occupie is executed, and M	
E>	kan	npl	е													ne instruction DECN	
				)												changed.	
																lue in (D1, D0)≧ the	e value in (D101.
				•						-						11 in series. If user	•
								•									0
											•					ue in (D101, D100)	•
																•	ult that the value in 110, M11, and M12
						•	ries.	-1110	, vai	ue ii	U) I	101	יס,	00),	uiey	y have to connect in	110, WITT, and WITZ
								/ant	t to r	ese	t M1	0. N	111.	or N	<i>I</i> 12.	, they can use the i	nstruction RST or
				·		ZRS						-,	,		,	, <b>,</b>	
						X0										4.0	
								4.0	DEG	СМР		0	D	00	IVI	10	
							M	10 		lft	the va	alue	in (D	1. D0	))>the	e value in (D101, D100)	), M10 will be ON.
							M	11					(	, -			
							$\vdash$	<u> </u>		lft	theva	alue	in (D	1, D0	)=the	e value in (D101, D100)	), M11 will be ON.
							M	12									
							Щ			lft	the va	alue	in (D	1, D(	0) <th< td=""><td>e value in (D101, D100</td><td>), M12 will be ON.</td></th<>	e value in (D101, D100	), M12 will be ON.
						Plea	se re	efer	to s	ectio	on 5	3 fc	or m	ore i	nfor	mation about perfo	rming operations
Ad	diti	on	al				oatin										Sector of the se
		ark						5 19									

API															Applicable model
	EZC	CP	Ρ	S		S2 (	$\mathbb{D}$	D		BI	inary		-	g-point zonal rison	10PM
111 D			Ρ									CO	mpa	113011	$\checkmark$
	Bit de	evice	9				Wo	rd de	vice					16-bit instruction	
	Y	М	S	F	Н	KnX Kn	′ KnM	KnS	Т	С	D	V	Z		
S ₁				*							*			32-bit instruction (12	Dulas -
S ₂				*							*			DEZCP Continuity instruction	DEZCPP Pulse instruction
S				*							*			<ul> <li>Flag: None</li> </ul>	
D	*	*	*												
Note						s three c			devi	ces.					
						han the v					<b>4</b>		_		
	rang		eter to	o spe	CITICE	ations for	more	Infor	matic	on ad	out d	evice	9		
	F rep	orese				point valu	e. Th	ere is	a de	cima	al poi	nt in a	а		
				/alue					700						
	Uniy	the	32-DI	tinst	ructio	ons DEZ	JP an		ZUPI	P are	valic	1.			
Explar			* * * *	C T I I I I I I I I V V V V V V V V V V V	cons The f $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf{S}_1$ $\mathbf$	ecutive instruct , and co parison is a floa ry floatin be used binary ing-poir executic e operar n X0 is n X0 is 0, M1, a ers wan	dev ion is pompa resu ating pg-pu to co float t val n of D ON, OFF and N	ices. s use are tl ilt is -poir oint v ompa ting- ue ir the i is M the the the the the the the the	) ed to he b stor value are f poin $\mathbf{S}_1$ instr $0, \mathbf{N}$ instr $0 \in \mathbf{X}_2$ exce ema	o cor inar ed ir lue, e in the l t val will uction function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function function functi	mpa y flo n <b>D</b> . the <b>S</b> ₂ . bina lue i be t be t y n E son E ion c ncha	re thating inst inst of $S_2$ ry flo n $S_1$ aker ZCF and DEZ( of that ange	ne bi g-po ructi is a patin is g n as p. M2 CP is e ins ed.	nary floating-poir int value in <b>S</b> wit on will be used to floating-point va g-point value in <b>S</b> greater than that i the maximum/mi will be occupied a s executed, and I	b compare $S_1$ with the lue, the instruction $S_1$ with $S_2$ . In $S_2$ , the binary inimum value during automatically. M0, M1, or M2 is ON. stops, and the states
Addit			•		⊢ Plea:	M0 M1 M2 Se refei		If th If th M1 v If th <b>ectic</b>	e valı will b e valı on 5.	ue in ue in e ON ue in	(D1, (D21	D0) : D0) < , D20	≲the v )) >th	e value in (D11, D10)	he value in (D11, D10),

API <b>112</b>	D	MC	DVF	२	Ρ	S		D		Tra	ansf	errir	ng a	floa	ting·	-point value	Applicable model 10PM ✓	
		Bit d	evice	<b>;</b>					Wor	d de	vice					16-bit instruction (7	steps)	
	X	Y	М	S	К	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z		-	-
S																32-bit instruction		
D								*	*	*	*	*	*			DMOVR Continui		Pulse instruction
-	note	rang If Kn devie num the c K4S	se re es. X/Kn ces/N ber w lecim Y20 (	fer to Y/Kr I dev hich al nu (octa	o sper M/Kr rice n is a i umera I num	cifica nS is umb multi al sys ieral	used used ers/S ple of stem,	for n , it is devi f 16 ii e.g. em), ł	nore sugg ce nu n the K1X0 K1M0	inforr geste umbe octal 0 (oct	natic d tha rs sh I nun al nu	n ab t X/c ould neral imera	levice start syste al syste	evice es/Y from em or stem)	⊧a ⁺in	Flag: None		

Explanation +

Example

- **S**: Source; **D**: Destination
- The operand **S** can be a floating-point value.
- When the instruction is executed, the value in S is transferred to D. When the instruction is not executed, the value in D is unchanged.
  - When X0 is OFF, the value in (D11, D10) is unchanged. When X0 is ON, the value F1.2 is transferred to the data register (D11, D10).

I X0			
<u>}</u> 1}	DMOVR	F1.2	D10

API 116 D	RAD	) P		SD	)	C	Conve	ertin	g a de	gree to a ra	adian	Applicable model 10PM ✓
S D • Not		M S	F H *			S T	C Dn abo	D * *	V Z	DRAD	uction - uction (6 ste Continuity instruction O100	 eps) DRADP Pulse instruction
	floatir	ig-poin	value.	g-point value tions DRAD					t in a	M1808 M1809 M1810	M1968 M1969 M1970	Zero flag Borrow flag Carry flag idditional remark below.
Expla	mple		<ul> <li>The Rac</li> <li>If the float</li> <li>If the float</li> <li>If a</li> <li>Wh con float</li> </ul>	e equation dian = Deg ne absolut ating-point converse nen X0 is ( nversion re ating-point (0	n below gree×(π c value c val	is us ( /180 (availa (availa (availa) (availa) (at a (availa) (at a (availa) (at a (at a) (at a) ((at a)) ((at a)) ((at a)) ((at a)) ((at a)) ((at a)) ((at a))((at	sed to 0) a conv able, conv able, 0, a ree ii	vers a ca vers a be zerc n (D (D1	ion res arry fla ion reu orrow f o flag v 1, D0) 1, D10	g will be O uslt is less flag will be vill be ON. is converte	ter than t N. than the ON. ed into a an in (D ²	the maximum minimum radian, and the 11, D10) is a binary
Addi	tiona nark	I					.3 foi	D 10	Bina	lian (Degree ary floating-p rmation ab	pointnum	oer orming operations

API <b>117</b>	D	DE	G	Ρ		S D							verti	ng a	rad	ian to a d	degree		ble model 0PM ✓
$\searrow$		Bit d	evice	е					Wor	d de	vice					16-bit ins	truction		
	X	Y	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	-	-	-	-
S					*								*			32-bit ins	truction (6 st	teps)	
D													*			DDEG	Continuity instruction	DDEGP	Pulse instruction
•	Note	float	jes. prese ing-p	ents a point v	, a floa value	ting-	point	value	more e. The 6 and	ere is	a de	ecima	al poi			<ul> <li>Flags Ox M1808 M1809 M1810</li> </ul>	O100 M1968 M1969 M1970	Zero flag Borrow flag Carry flag	
				•	. 5	<b>S</b> : S	ourc	e (ra	adiar	ר); D	): Co	onve	ersio	n re	sult	(degree)	refer to the a	additional rem	Ark Delow.

The equation below is used to convert a radian into a degree.

Degree = Radian×(180/ $\pi$ )

- If the absolute value of a conversion result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of a conversion reusit is less than the minimum floating-point value available, a borrow flag will be ON.
- If a converseion result is 0, a zero flag will be ON.
- When X0 is ON, the radian in (D1, D0) is converted into a degree, and the conversion result is stored in (D11, D10). The degree in (D11, D10) is a binary floating-point value.



Additional remark

Explanation

Example

Please refer to section 5.3 for more information about performing operations on floating-point values.

API <b>120</b>	DE	A	DD	Ρ	3		<b>S</b> 2	C	D		B	Binar	y flo	atin	g-po	int addition	Applicable model 10PM ✓		
	I	Bit d	evice	9					Wor	d de	vice					16-bit instruction			
	Х	Y	М	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ		-	-	
S ₁					*								*			32-bit instruction (9 s	steps)		
S ₂					*								*			DEADD Continuity instruction	DEADDP	Pulse instruction	
D													*			<ul> <li>Flags</li> </ul>			
•	Note	rang F re floa	ges. epres ting-	ents point	a floa value	ating- e.	ation: point	valu	e. Th	ere is	s a d	ecima	al poi	nt in		Ox O100 M1808 M1968 M1809 M1969 M1810 M1970 • Please refer to the	Zero flag Borrow flag Carry flag additional rem	ark below.	
Exp	lan	ati	on		•	The valu	e in	ary fl S₁, a	loati and	ng-p the :	oint sum	valı is s	ue ir store	i <b>S₂</b> d in	D.	dded to the binary	•		

- If S₁ is a floating-point value, the instruction will be used to add the binary floating-point value in S₂ to S₁. If S₂ is a floating-point value, the instruction will be used to add S₂ to the binary floating-point value in S₁.
- S₁ and S₂ can be the same register. If the instruction DEADD is used under the circumstances, the value in the register is added to itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DEADDP is used.
- If the absolute value of an operation result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an operation reusit is less than the minimum floating-point value available, a borrow flag will be ON.
- If an operation result is 0, a zero flag will be ON.
- When X0 is ON, the binary floating-point value in (D3, D2) is added to the binary floating-point value in (D1, D0), and the sum is stored in (D11, D10).

	D0	D2	D10
--	----	----	-----

When X0 is ON, F1234.0 is added to the binary floating-point value in (D11, D10), and the sum is stored in (D21, D20).

	DEADD D10 F12	234.0 D20
--	---------------	-----------

Please refer to section 5.3 for more information about performing operations on floating-point values.



Example 1

Additional remark

# ${f 5}$ Applied Instructions and Basic Usage

API						_	_									pplicable model
121	D	ESI	JB	Ρ	(	<u>S1</u> )	(S ₂		)	E	Bina	ry flo	oatir	ng-po	pint subtraction	10PM
				•	•											✓
		Bit d		1			<b>.</b> .		ord de				1	1	16-bit instruction	
	X	Y	М	S	F *	Н	KnX ł	(nY Kn	M KnS	Т	С	D *	V	Z		
S ₁															32-bit instruction (9 steps)	Pulse
S ₂					*							*			DESUB instruction DES	SUBP instruction
D												*			• Flags	
•	Note			efer t	o spe	ecifica	ations	for mo	e info	rmatio	on ab	out c	levice	e	Ox O100 M1808 M1968 Zero fl	lag
		rang F re		ents a	a floa	tina-	point v	alue. T	here i	s a de	ecima	ioa le	nt in a	а	M1809 M1969 Borrov M1810 M1970 Carry f	
		float	ing-p	point	value	<b>.</b>									<ul> <li>Please refer to the addition</li> </ul>	•
		Only	/ the	32-b	it inst	ructio	ons DE	ADD a	and DI	EADD	P are	e vali	d.			
Exp				* * * *	T V fi fi v v S S C C C C C C C C C C C C C C C C	The value $f S_1$ loatii vill b $S_1$ are sircu condo $DES$ if the loatii f the loati f an Whe	e in <b>S</b> is a fl ng-po be use msta litiona UB <b>P</b> abso ng-po abso ng-po opera n X0	y float 1, and oatin oatin oint va d to can t nces, l con is use olute oint va olute oint va oint va	ing-p ing-poin alue in subtra- be the v cact is calue a value a value a result , the ng-po	point different va n $S_2$ act $S$ act $S$ availat of a availat t is 0 bina	valu renc llue, fron $5_2$ frc n re in t l in a able n oce able , a z value	the in the is the is the is $\mathbf{S}_1$ form the egis the r a scale prate , a c eprate , a c e e e e e e e e e e e e e e e e e e e	S₂ i stor insti . If S he b ter. I egis an c tion borro flag ng-p	s su ed ir ructi ir inar if the ter is ycle. resu flag reus w fla will oint D0)	btracted from the binar	tract the binary the instruction of $S_1$ . Is used under the whenever the instruction maximum mum
Exa	amı	ple	2	•			84.0, a	and th		ferer	nce i	is ste		in (	value in (D1, D0) is su D11, D10).	btracted from
Ad		on ark		•			se ref ng-po	er to	sectio	on 5.					mation about performin	ng operations on

API <b>122</b>	D	EM	UL	Ρ	1	<b>S</b> 1	) (3	2	Þ		Bi	inary	/ floa	ating	I-poi	int multiplication	Applicable model 10PM ✓
		Sit d	evice	<b>`</b>					Wor	d de	vice						
	X	SIL U	M	s S	F		KnV	KnV	KnM			С	D	V	Z	16-bit instruction	
S ₁		1	IVI	3	*	н		NIT I	INI IIVI	KII3	1	C	*	v	2		
S ₂					*								*			32-bit instruction (9 ste	ps)
D													*			DEMUL Continuity instruction	DEMULP Pulse instruction
•	Note:	ranç F re floa	ges. pres ting-p	ents point	a floa value	ating- ə.		valu	e. Th	ere is	s a de	ecima	al poi	nt in a		<ul> <li>Flags</li> <li>Ox</li> <li>O100</li> </ul>	Carry flag dditional remark below.
Exp Exa Exa	amı	ole	1			The value $If S_1$ and $S_1$ and $S_2$ and $S$	bina le in is a rry flu be u und <b>S</b> dition //UL e ab ting- n ope en X rry flu ).	ary f $S_2$ , $a_1$ float coating $S_2$ cat cance $S_2$ cat $S_2$ cat	loatii and ating ng-pr to m an be es, t conta used t val t val t val t val t val t val on re ON, ng-pr OEMI	ng-p the -poin oint inultip e the he v act is d. alue a alue a alue a lue a sult the oint UL	ooint proc nt value oly the sarvalue s ON of a avail t is 0 bina value cavail t is 0 bina value t is 0	value luct luct alue in ne b me r e in an of able able aary fi ne in able o ary fi ne in able o a o a o a o a o a o a o a o a o a o a	Le ir $\mathbf{J}_{2}$ is st $\mathbf{J}_{2}$ , the $\mathbf{J}_{2}$ , the $\mathbf{J}_{2}$ , inar egis the r $\mathbf{J}_{2}$ , and $\mathbf{J}_{2}$ , and	ored inst inst if $S_2$ y floa ter. I egis an c tion carry tion carry flag ng-p 1, D 210	is m l in <b>I</b> ruct is a ating ff the ter i ycle resu flag will oint 10), d by	pultiplied by the bina <b>D</b> . ion will be used to a floating-point value g-point value in $S_1$ e instruction DEML is multiplied by itse e. Generally, the pu- ult is greater than the g will be ON. slt is less than the r lag will be ON. value in (D1, D0) in , and the product is D20	multiply $S_1$ by the le, the instruction by $S_2$ . JL is used under the lf whenever the lse instruction the maximum minimum
Ad re	diti e ma						ase r Ioatii					.3 fc	or m	ore i	nfor	mation about perfo	orming operations

API <b>123</b>	D	ED	IV	Ρ	(	<u>S1</u> )	<u>(5</u>		)		Bir	nary	floati	ing-	point c	divisior	ı	Applicable model 10PM ✓
		Bit d	ovic	•				W/	ord d	ovico					10 hit			
	X		M	e S	F	Н	KnX	KnY Knl			С	D	V	Z	- <u>16-Dit</u>	instructio	<u>on</u>	
S ₁		1	101	3	*		NIX		VI INIC	, ,	U	*	v	~			-	
S ₁					*							*			<u>32-bit</u> DEDI\		<u>on (9 st</u> tinuity ruction	DEDIVP Pulse
D												*			• Flag		uction	
•	Note	rang F re float	jes. prese ing-p	ents a point	a floa value	iting-p	point	for mor value. T EDIV ar	here i	is a de	ecima	al poir			Ox M180 M180 M18 ⁷ M179	c O ² 08 M1 09 M1 10 M1 93 M1	969 970 953	Zero flag Borrow flag Carry flag Operation error flag additional remark below.
Exp				•	<ul> <li>I</li> <li>I</li></ul>	f <b>S</b> ₁ binar will b f the exect f the loati f the loati f an Whe	is a ry flc be us cutec ear. abs ing-p ope ope n X1 ry flc	bating-p sed to b ue in <b>S</b> l, an op solute boint va solute boint va ration	g-poi point divid perat value alue resul , the point	int va valu e the D, an ion e of a availa of a availa t is 0 bina	alue, e in bin ope error n oe able n oe able o, a 2 ary fl e in	the $S_2$ . I ary f eratic flag eprate, a c eprate, a b zero oatir (D1	instr f <b>S</b> ₂ loatin on er will ion r arry ion r flag ng-po	is a ng-r ror v be ( resu flag reus w fla will oint 10),	floatin point v will occ ON, ar ult is gr will be sit is lea ag will be ON value	ng-poir alue in cur, the id the eater t e ON. ss that be ON J. in (D1	nt value <b>S</b> ₁ b e inst error than the N. , D0)	divide $S_1$ by the ue, the instruction y $S_2$ . ruciton will not be code H0E19 will the maximum minimum is divided by the is stored in (D21,
Exa	amı	ole	2	•			34.0, 2	and th	ne qu	uotier	nt is	stor	ed in	ı (D′	11, D1		, D0)	is divided by
								DE	יוע	D	0		234.0		D10			
Ad		on ark		•				efer to Ig-poin			.3 fc	or mo	ore ir	nforr	mation	about	t perf	orming operations

API <b>124</b>	D	EX	P	Ρ		C	S	▣	)		E>	kpor	nent		bina valu	ary floating-point Applicable model ue 10PM
	I	Bit d	evice	e					Wor	d de	vice					16-bit instruction
	Х	Y	М	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	]
S					*								*			32-bit instruction (6 steps)
D													*			DEXP Continuity DEXPP Pulse instruction
• 1	Note	ranç F re float	ges. pres ting-p	ents point	a floa value	ating· ə.	ation -point ions [	valu	e. Th	ere is	s a de	ecima	al poi			<ul> <li>Flags         <ul> <li>Ox</li> <li>O100</li> <li>M1808</li> <li>M1968</li> <li>Zero flag</li> <li>M1809</li> <li>M1969</li> <li>Borrow flag</li> <li>M1810</li> <li>M1970</li> <li>Carry flag</li> </ul> </li> <li>Please refer to the additional remark below.</li> </ul>

$\checkmark$	S: Source device; D: Devi	ce in which	n an oper	ation result is stored
Explanation 🔶	EXP ^[D+1, D] =[ <b>S</b> +1 · <b>S</b> ]. e is a	a base (e=	2.71828)	, and <b>S</b> is an exponent.
Example	The value in <b>S</b> can be a poregister, and the value in <b>S</b> . The value in <b>D</b> is $e^{S}$ . (e is a lift the absolute value of an floating-point value available of the absolute value of an floating-point value available of an electron result is 0, when M0 is ON, the value value, and the conversion when M1 is ON, the exponent is performed. The stored in (D21, D20). When M2 is ON, the binary of the electron of the	positive values must be 2.71828, a oepration ole, a carry oepration ole, a borro a zero flag in (D1, Di result is simentiation result is simentiation result is y floating-plue, and th	ue or a ne a floating and <b>S</b> repu- result is ( / flag will reuslt is I ow flag will bw flag wi g will be C 0) is conve- tored in (I with the v a binary point valu- ne conver	egative value. <b>D</b> must be a 32-bit -point value. resents a source value.) greater than the maximum be ON. less than the minimum ill be ON. N. verted into a binary floating-point D11, D10). value in (D11, D10) as an floating-point number, and is the in (D21, D20) is converted into rsion result is stored in (D31,
	DFLT	D0	D10	
	M1		I	1
	DEXP	D10	D20	
	M2			
		D D20	D30	
Additional remark	Please refer to section 5.3 on floating-point values.	for more i	informatic	on about performing operations

API <b>125</b>	D	LN	١	Ρ		C	S	▣	)			Na		-		m of a binary	plicable model 10PM ✓
	I	Bit d	evice	e					Wor	d de	vice					16-bit instruction	
	Х	Y	М	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ		
S					*								*			32-bit instruction (6 steps)	
D													*			DLN Continuity DLN	Pulse instruction
•	Note:	rang F re float	ges. pres ting-p	ents point	a floa value	ating- e.	ations point ons [	valu	e. Th	ere is	s a de	ecima	al poi			<ul> <li>Flags         <ul> <li>Ox</li> <li>O100</li> <li>M1808</li> <li>M1968</li> <li>Zero fla</li> <li>M1809</li> <li>M1969</li> <li>Borrow</li> <li>M1810</li> <li>M1970</li> <li>Carry fla</li> <li>M1793</li> <li>M1953</li> <li>Operati</li> </ul> </li> <li>Please refer to the additional</li> </ul>	flag ag on error flag

#### Explanation

- S: Source device; D: Device in which an operation result is stored
- The natural logarithm of the value in **S** is calculated.

Ln[S+1, S]=[D+1, D]

- The value in **S** can only be a positive value. **D** must be a 32-bit register, and the value in **S** must be a floating-point value.
- ♦ f the value in S is not a positive value, an operation error will occur, the instruction will not be executed, an operation error flag will be ON, and the error code H0E19 will appear.
- $e^{D} = S$ .  $\rightarrow$  The value in **D**=ln**S** (**S**: Source device)
- If the absolute value of an operation result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of an operation reusit is less than the minimum floating-point value available, a borrow flag will be ON.
  - If an operation result is 0, a zero flag will be ON.
- When M0 is ON, the value in (D1, D0) is converted into a binary floating-point value, and the conversion result is stored in (D11, D10).
- When M1 is ON, the natural logarithm of the floating-point value in (D11, D10) is calculated, and the operation result is stored in (D21, D20).
- When M2 is ON, the binary floating-point value in (D21, D20) is converted into a decimal floating-point value, and the conversion result is stored in (D31, D30). (The value in D31 is the value in D30 to the power of 10.)

I MO			
	DFLT	D0	D10
M1			
	DLN	D10	D20
M2			
	DEBCD	D20	D30

Additional remark

Example

Please refer to section 5.3 for more information about performing operations on floating-point values.

API <b>126</b>	D	LO	G	Ρ	(	<b>S</b> 1	় ত্র	20	D		Lo	gari	thm		bina valu	ary floating-point ie	Applicable model 10PM ✓
		Bit de	evice	÷					Wor	d de	vice					16-bit instruction	
	X	Y	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ		
<b>S</b> ₁					*								*			32-bit instruction (9 ste	 ps)
S ₂					*								*			DLOG Continuity instruction	DLOGP Pulse instruction
D													*			<ul> <li>Flags</li> </ul>	
•																M1809 M1969 E M1810 M1970 C	Zero flag Borrow flag Carry flag dditional remark below.

<ul> <li>Explanation</li> <li></li> <li></li></ul>	an operation result The logarithm of and the operation The values in $S_1$ register, and the $S_1^{D}=S_2 \rightarrow D=Log_s$ If the absolute var floating-point value If the absolute var floating-point value If an operation result When M0 is ON, floating-point value (D13, D12) respect When M1 is ON, with respect to the the operation result When M2 is ON,	ult is stored the value n result is s and $S_2$ can values in $S_2$ alue of an of ue availab alue of an of ue availab alue of an of ue availab esult is 0, a the values ues, and the ectively. the logarithe binary fl sult is stored the binary g-point val	d in $S_2$ wit stored ir n only b $S_1$ and $S_2$ bepratio le, a car bepratio le, a bor a zero fla s in (D1, ne conver- thm of th oating-p ed in (D2 floating ue, and	th respect of <b>D</b> . e positive <b>b</b> must b ry flag w n result is row flag ag will be D0) and ersion res be binary point valu 21, D20). p-point va the conv	t to the values. e floating s greater ill be ON s less the will be C ON. (D3, D2 sults are floating- e in (D1)	r than the maximum an the minimum N. e) are converted into binary stored in (D11, D10) and epoint value in (D13, D12) 1, D10) is calculated, and 021, D20) is converted into esult is stored in (D31,
		DFLT	D0	D10	]	
		DFLT	D2	D12		
		DLOG	D10	D12	D20	]
	M2	DEBCD	D20	D30		
Additional remark	l Please refer to so floating-point valu		for more	e informa	tion abo	ut performing operations on

API <b>ESQR P</b>	SD	Square root of a bir valu		Applicable model 10PM ✓
			F	
Bit device	Word de		16-bit instruction	
	F H KnX KnY KnM KnS			
S	*	*	32-bit instruction (6 ste	<u>ps)</u>
D		*	DESQR Continuity instruction	DESQRP Pulse instruction
	specifications for more info	rmation about device	<ul> <li>Flags</li> </ul>	
ranges.			Ox 0100	
S is greater tha	-			Zero flag
	floating-point value. There	is a decimal point in a	Please refer to the action	Dperation error flag
floating-point va		ESOPD are valid		unional remark below.
Only the 32-bit	instructions DESQR and D	ESQRP are valid.		
Explanation	The square root of the result is stored in <b>D</b> . If <b>S</b> is a floating-point floating-point value. If an operation result of the value in <b>S</b> is not instruction will not be error code H0E19 when X0 is ON, the calculated, and the the calculated of the	t value, the instruction t is 0, a zero flag will ot a positive value, ar e executed, an opera vill appear. square root of the bi result is stored in (D1 QR D0 D10	nt value in <b>S</b> is cal on will be used to c be ON. n operation error w tion error flag will k nary floating-point 1, D10).	alculate the ill occur, the be ON, and the
	$\sqrt{(D)}$	1, D0) →	(D11, D10)	
Example 2	number When X2 is ON, the stored in (D11, D10)	square root of F1234	Binary floating- number 4.0 is calculated, a	
Additional remark	Please refer to secti floating-point values	on 5.3 for more inform	mation about perfo	rming operations on

API <b>128</b>	D	PO	W	Ρ	(	<b>S</b> 1	) ( <u>s</u>	20	D		F	owe	er of	a flo	oatir	ng-point value
		Bit de	evice	;					Wor	d de	vice					16-bit instruction
	X	Y	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	
S ₁					*								*			32-bit instruction (9 steps)
S ₂					*								*			DPOW Continuity DPOWP Pulse instruction
D													*			• Flags
•	D Flags															

Explanation +	$S_1$ : Device in which a base is stored; $S_2$ : Device in which a power is stored; D: Device in which the operation result is stored The binary floating-point value in $S_1$ is raised to the power of the value in $S_2$ , and the operation result is stored in D. D=POW[ $S_1$ +1, $S_1$ ] ^[S2+1, S2]
* *	The value in $S_1$ can only be a positive value, whereas the value in $S_2$ can be a positive value or a negative value. <b>D</b> must be a 32-bit register, and the values in $S_1$ and $S_2$ must be floating-point values. If the values in $S_1$ and $S_2$ are invalid, an operation error will occur, the instruction will not be executed, an operation error flag will be ON, and the error code H0E19 will appear.
* *	If the absolute value of an operation result is greater than the maximum floating-point value available, a carry flag will be ON. If the absolute value of an operation reusit is less than the minimum
	floating-point value available, a borrow flag will be ON. If an operation result is 0, a zero flag will be ON.
Example +	When M0 is ON, the values in (D1, D0) and (D3, D2) are converted into binary floating-point values, and the conversion results are stored in (D11, D10) and (D13, D12) respectively. When M1 is ON, the binary floating-point value in (D11, D10) is raised to the
	power of the binary floating-point value in (D13, D12), and the operation result is stored in (D21, D20).
•	When M2 is ON, the binary floating-point value in (D21, D20) is converted into a decimal floating-point value, and the conversion result is stored in (D31, D30). (The value in D31 is the value in D30 to the power of 10.)
	MO DFLT D0 D10
	DFLT D2 D12
	M1 DPOW D10 D12 D20
	M2 DEBCD D20 D30
Additional •	Please refer to section 5.3 for more information about performing operations on floating-point values.

remark

## **5** Applied Instructions and Basic Usage

API 129	D	IN	Т	Ρ		G	D	D								floating ary integ			ole model 0PM ✓	
$\square$	I	Bit d	evic	e					Wor	d de	vice					16-bit ins	truction			
	Х	Y	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	-	-	-	-	
S													*			32-bit ins	truction (5 s	steps)		
D													*			DINT	Continuity instruction		Pulse instruction	
1 •	Note	rang	ges.		•		ation ons [						d.	levice	e	<ul> <li>Flags Ox M1808 M1809 M1810</li> <li>Please</li> </ul>	O100 M1968 M1969 M1970 refer to the	Zero flag Borrow flag Carry flag explanation b	elow.	

- S: Source device; D: Conversion result
- The binary floating-point value in S is converted into a binary value. The integer part of the binary value is stored in D, and the fractional part of the binary value is dropped.
- The instruction is the opposite of API 49 DFLT.
- If a conversion result is 0, a zero flag will be ON. If the fractional part of a conversion result is dropped, a borrow flag will be ON. If a conversion result is not in the range of -2,147,483,648 to 2,147,483,647, a carry flag will be ON.
- When X1 is ON, the binary floating-point value in (D21, D20) is converted into a binary value. The integer part of the binary value is stored in (D31, D30), and the fractional part of the binary value is dropped.



Explanation

Example

API 130	D	SI	N	Ρ		<u>(</u>		D		S	ine	of a	bina	ıry fl	oatiı	ng-point v	value		able model 0PM ✓
	I	Bit d	evice	e					Wor	d de	vice	16-bit ins	truction						
	Х	Y	М	S	F	Н	KnX	KnY	KnM	KnS	-	-	-	-					
S					*						truction (6 s	teps)							
D											Continuity instruction	DSINP	Pulse instruction						
•	Note	: 0°≦	Deg	ree≦	360	0										<ul> <li>Flags</li> </ul>			
		Plea rang		efer t	to spe	ecific	ation	s for	more	infor	matio	on at	out c	levice	Э	Ox M1808 M1760	O100 M1968 M1920	Zero flag Radian/Deg	uroo flog
					a floa value		point	valu	e. Th	ere is	s a de	ecima	al poi	nt in	а			additional rei	
		Only	y the	32-b	oit ins	tructi	ons [	DSIN	and	DSIN	IP are	e vali	d.						

- S: Source value; D: Sine value
- Whether the source value in S is a radian or a degree depends on the state of a radian/degree flag.
- If a radian/degree flag is OFF, the source value in S is a radian.
   Radian=Degree×π /180.
- If a radian/degree flag is ON, the source value in **S** is a degree.  $(0^{\circ} \leq \text{Degree} \leq 360^{\circ})$
- If an operation result is 0, a zero flag will be ON.
- The sine of the source value in S is stored in D.
  The relation between radians and sine values is shown below.



Example 1

Explanation

A radian/degree flag is reset to OFF. The binary floating-point value in (D1, D0) is a radian. When X0 is ON, the sine of the binary floating-point value in (D1, D0) is stored in (D11, D10).



#### **5** Applied Instructions and Basic Usage



API 131	D	co	S	Ρ		<u>(</u>		D		Cos	ine	of a	bina	ary fl	loatii	ng-point number		able model 0PM ✓
		Bit d	evice	e					Wo	d de	vice				16-bit instruction			
	Х	Y	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z		-	-
S					*							32-bit instruction (6 s	steps)					
D													*			DCOS Continuity instruction	DCOSP	Pulse instruction
•	Note	rang F re float	ase ro ges. pres ting-p	efer t ents point	to spe a floa value	ecific ating- e.	point	valu	e. Th	infor iere is d DCC	s a de	ecim	al poi			<ul> <li>Flags Ox O100 M1808 M1968 M1760 M1920</li> <li>Please refer to the</li> </ul>	Zero flag Radian/Deg additional re	

- S: Source value; D: Cosine value
- Whether the source value in S is a radian or a degree depends on the state of a radian/degree flag.
- If a radian/degree flag is OFF, the source value in S is a radian. Radian=Degree×π /180.
- If a radian/degree flag is ON, the source value in S is a degree.
   (0°≤ Degree≤ 360°)
- If an operation result is 0, a zero flag will be ON.
- The cosine of the source value in S is stored in D.
  The relation between radians and cosine values is shown below.



- Radian/Degree flag: If a radian/degree flag is OFF, the source value in S is a radian. If a radian/degree flag is ON, the source value in S is a degree in the range of 0° to 360°.
- A radian/degree flag is reset to OFF. The binary floating-point value in (D1, D0) is a radian. When X0 is ON, the cosine of the binary floating-point value in (D1, D0) is stored in (D11, D10).





Explanation

#### **5** Applied Instructions and Basic Usage

D

D 11

- A radian/degree flag is set to ON. The value in (D1, D0) is a degree in the range of 0° to 360°. When X0.0 is ON, the cosine of the value in (D1, D0) is Example 2 stored in (D11, D10). The value in (D11, D10) is a binary floating-point value. M1002 -| |-Radian/Degree flag SET X0 DCOS D0 D10 -| |-Degree S D 1 D 0
  - Binary floating-point value Please refer to section 5.3 for more information about performing operations on floating-point values.

D 10

Cosine



API <b>132</b>	D	ТА	N	Ρ		<u>(</u>		D		Tan	igen	t of	a bii	nary	floa	ating-point value Applicable model 10PM ✓
		Bit d	evice	9					Wor	d de	vice				16-bit instruction	
	X	Y	М	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	
S					*								*			32-bit instruction (6 steps)
D													*			DTAN Continuity DTANP Pulse instruction DTANP instruction
•	Note	ranç F re float	ase ro ges. pres ting-p	efer t ents point	to spe a floa value	ecific ating- e.	ation: point ons <b>[</b>	valu	e. Th	ere is	s a de	ecima	al poi			<ul> <li>Flags Ox O100 M1808 M1968 Zero flag M1760 M1920 Radian/Degree flag</li> <li>Please refer to the additional remark below.</li> </ul>

- S: Source value; D: Tangent value
- Whether the source value in S is a radian or a degree depends on the state of a radian/degree flag.
- If a radian/degree flag is OFF, the source value in **S** is a radian. Radian=Degree  $\times \pi$  /180.
- If a radian/degree flag is ON, the source value in **S** is a degree.  $(0^{\circ} \leq \text{Degree} \leq 360^{\circ})$
- If an operation result is 0, a zero flag will be ON.
- The tangent of the source value in **S** is stored in **D**. The relation between radians and tangent values is shown below.



R: Tangent value







Explanation

#### **5** Applied Instructions and Basic Usage

A radian/degree flag is set to ON. The value in (D1, D0) is a degree in the range of 0° to 360°. When X0 is ON, the tangent of the value in (D1, D0) is stored in (D11, D10). The value in (D11, D10) is a binary floating-point value.



Additional remark

Please refer to section 5.3 for more information about performing operations on floating-point values.

API ASIN	SD	Arcsine of a binary floa	ating-point value	Applicable model
133 D ASIN P				10PM ✓
ranges. Only the 32-bit i	H       KnX       KnY       KnM         specifications for more       Image: Specifications for more         nstructions       DASIN an         loating-point value.       Th         lue.       Image: Specification structure	information about device		DASINP Pulse instruction Zero flag Operation error flag additional remark below.
Explanation ◆	Arcsine value=s	ween sine values and ar	csine values is sh S: Sine value R: Arcsine value	own below.
<ul> <li>▲</li> <li>▲</li></ul>	only be in the ra not be executed will appear. If a conversion r	N D0 D10 D1 D0 Bi	s not in the range, will be ON, and th I be ON. y floating-point val nary floating-poi	the instruction will le error code H0E19 lue in (D1, D0) is int value
Additional remark		section 5.3 for more info	nary floating-poi mation about perf	

## **5** Applied Instructions and Basic Usage



API		<b>Λ</b> Τ 4				Č		<u> </u>		A	rcta	ngei	nt of	a bi	nary	/ floating-point		
135	ATAN       Arctangent of a binary floating-point       Applicable model 10PM         Bit device       Word device       10PM         X       Y       M       S       F         H       KnX Kry KrM KrS       C       D       Y         Note:       Please refer to specifications for more information about device ranges.       16-bit instruction       10PM         Only the 32-bit instructions DATAN and DATANP are valid. F represents a floating-point value. There is a decimal point in a floating-point value.       • Flags OX       0100         Mission       S: Source value (binary floating-point value); D: Arctangent value       • Hease refer to the additional remark below.         Data ation       • S: Source value (binary floating-point value); D: Arctangent value       • Flags OX       0100         • Arctangent value=tan ¹ The relation between tangent values and arctangent values is shown below.       • S: Tangent value         • Arctangent value=tan ¹ • Arctangent value=tan ² • S: Tangent value         • Mission to between tangent of the binary floating-point value       • S: Tangent value         • Mission to be value       • Arctangent value         • Arctangent value       • S: Tangent value         • Mission to be value       • S: Tangent value         • Mission to be value       • S: Tangent value         <																	
	ATAN       P       S       D       Arctarigent or a binary inoating-point value         Bit device       Word device       Image: Continuity of the structure       Image: Continuity of the structure         Note:       Please refer to specifications for more information about device ranges.       Image: Continuity of the structure       Please refer to specifications DATAN and DATANP are valid.         F represents a floating-point value.       F represents a floating-point value.       Please refer to the additional remark below.         Via nation       S: Source value (binary floating-point value); D: Arctangent value       Please refer to additional remark below.         Via nation       S: Source value (binary floating-point value); D: Arctangent value       Please refer to the additional remark below.         Via nation       S: Source value (binary floating-point value); D: Arctangent value       Please refer value         Via nation       S: Source value (binary floating-point value); D: Arctangent value       Please refer value         Via nation       S: Source value (binary floating-point value); D: Arctangent value       Please refer value         Via nation       S: Source value (binary floating-point value); D: Arctangent value       Please refer value         Via nation       S: Tangent value       S: Tangent value         Via nation       Mathitic additional conversion result is 0, a zero flag will be ON.       Mathitic additional conver														<b>v</b>			
	ATAN       P       S       D       Arctangent of a binary floating-point value       10P         Bit device       Word device       Image: Continuity       Image: Continge: Continge: Continge: Continuity       Image: Continui																	
S	ATAN P       Arctangent of a binary floating-point value         Bit device       Word device         X Y M S F H KnX KnY KnM KnS T C D V Z         Iber Please refer to specifications for more information about device ranges. Only the 32-bit instructions DATAN and DATANP are valid. F represents a floating-point value. There is a decimal point in a floating-point value.         • S: Source value (binary floating-point value); D: Arctangent value         • S: Source value (binary floating-point value); D: Arctangent value         • Arctangent value=tan 1         The relation between tangent values and arctangent values is shown below.         • If a conversion result is 0, a zero flag will be ON.         • When X0 is ON, the arctangent of the binary floating-point value in (D1, D0) stored in (D11, D10).         • X0         • D1       D0         Binary floating-point value																	
D													*			DATAN Continuity	DATANP	
• 1	Note			efer	to spe	ecifi	catio	ns for	more	infor	mati	on at	out o	levice	e			
		-	-	32-1	it inc	truc	itone	ΠΔΤΔ	N an		τανί	Daro	valio	1			Zero flag	
															а		-	nark below.
							/ 1						•					
Expl	lan	ati	on			Arc	tang	gent	/alu	e=ta	n ⁻¹		-					n below.
																2: To proont value		
														$\frac{\pi}{2}$	/			
															0	►S		
													/					
														 a				
														- 2				
										1		<b>o</b> -		(				
														-			t value in <i>l</i>	
Fv	o n	nnl	Δ									ang	Cint	51 111		lary heating-point		01, 00) 13
	an	ιμι	C	ļ				Г					<u> </u>					
				/			-		DAT	AN		0	]	D10				
					I			(		П	1		D	)	Bi	nary floating-po	int value	
								<u> </u>		U	1		50	,		nary noating po		
											~							
								D		D	11	Ť	D 1	0				
						ماQ	250		 to s			 ∖3 f⁄				nary floating-poi mation about per		Perations
Ado		on ark						ing-p								mation about per	ioming of	

## ${f 5}$ Applied Instructions and Basic Usage

API <b>136</b>	D	SIN	IH	Ρ		<u>(</u>		D		Нур	erbo	olic	sine		-	ary floating-point		ble model )PM ✔
		Bit device         Word device           X         Y         M         S         F         H         KnX         KnY         KnS         T         C         D         V         V           I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I </th <th>16-bit instruction</th> <th></th> <th></th>														16-bit instruction		
	X	Y	М	S	F	Н	KnX	KnY	Ζ		-	-						
S					*					32-bit instruction (6	steps)							
D	D     *     DSINH     Continuity instruction     DSINH     Pulse instruction																	
•	Note: Please refer to specifications for more information about device ranges. Only the 32-bit instructions DSINH and DSINHP are valid. F represents a floating-point value. There is a decimal point in a															<ul> <li>Flags         <ul> <li>Ox</li> <li>O100</li> <li>M1808</li> <li>M1968</li> <li>M1809</li> <li>M1969</li> <li>M1810</li> <li>M1970</li> </ul> </li> <li>Please refer to the</li> </ul>	Zero flag Borrow flag Carry flag additional rer	nark below.
Exp	lan	ati	on	•			ourc erbo			•	•		•	poin	t val	ue); <b>D</b> : Hyperbol	ic sine valu	Je

When X0 is ON, the hyperbolic sine of the binary floating-point number in (D1, D0) is stored in (D11, D10).



- If the absolute value of a conversion result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of a conversion result is less than the minimum floating-point value available, a borrow flag will be ON.
  - If a conversion result is 0, a zero flag will be ON.
- Please refer to section 5.3 for more information about performing operations on floating-point values.

Example

Additional

remark

API 137	D	203	SH	Ρ		<u>(</u>		D			Ну					e of a binary t value Applicable model 10PM ✓
	E	Bit de	evice	÷					Wor	d de	vice					16-bit instruction
	Х	Y	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	
S					*								*			32-bit instruction (6 steps)
D													*			DCOSH Continuity DCOSHP Pulse instruction
•	Note	rang Only F re	ges. /t the pres	e 32-l ents	bit ins	struct ating-	ation: tions ·point	DCO	SH a	nd D	cos	HP a	re va	lid.		<ul> <li>Flags         <ul> <li>Ox</li> <li>O100</li> <li>M1808</li> <li>M1968</li> <li>Zero flag</li> <li>M1809</li> <li>M1969</li> <li>Borrow flag</li> <li>M1810</li> <li>M1970</li> <li>Carry flag</li> </ul> </li> <li>Please refer to the additional remark below.</li> </ul>

- S: Source value (binary floating-point value); D: Hyperbolic cosine value
   Hyperbolic cosine value=(e^s+e^{-s})/2
- When X0 is ON, the hyperbolic cosine of the binary floating-point number in (D1, D0) is stored in (D11, D10).



- If the absolute value of a conversion result is greater than the maximum floating-point value available, a carry flag will be ON.
- If the absolute value of a conversion result is less than the minimum floating-point value available, a borrow flag will be ON.
  - If a conversion result is 0, a zero flag will be ON.
- Please refer to section 5.3 for more information about performing operations on floating-point values.

#### **DVP-10PM** Application Manual

Explanation

Example

Additional

remark

# ${f 5}$ Applied Instructions and Basic Usage

API <b>D TANH P</b>	SD	Hyperbolic tangent floating-point	2	Applicable model 10PM ✓
ranges. Only the 32-b	F       H       KnX       KnY       KnM         *	information about device	16-bit instruction         -       -         32-bit instruction (6 s         DTANH       Continuity instruction         • Flags       Ox         OX       O100         M1808       M1968         M1809       M1969         M1810       M1970	/ Pulse
Explanation Example	<ul><li>Hyperbolic tanget</li><li>When X0 is ON,</li></ul>			ing-point number in
Additional remark	<ul> <li>floating-point va</li> <li>If the absolute v floating-point va</li> <li>If a conversion r</li> </ul>	D 11 D 10 Bin alue of a conversion resulue available, a carry flag alue of a conversion resulue available, a borrow fl result is 0, a zero flag will section 5.3 for more infor	y will be ON. ult is less than the ag will be ON. be ON.	value n the maximum e minimum

API 172	D	D	DR	Ρ	<u>(</u>		<u>\$2</u>		D			Flc	atin	g-po	oint a	addition		ble model 0PM ✓	
	E	Bit de	evice	e					Wor	d de	vice					16-bit instruction			
	Х	Y	М	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ		-	-	:
S1													*	32-bit instruction (13	steps)		-		
S2													*			DADDR Continuity instruction		Pulse instruction	
D													*			<ul> <li>Flags</li> </ul>			
1 •	Note:	rang	ges.		•		ation:								Ð	Ox O100 M1808 M1968 M1809 M1969 M1810 M1970 • Please refer to the	Zero flag Borrow flag Carry flag additional rer	nark below.	

S₁: Augend; S₂: Addend; D: Sum Explanation  $S_1$  and  $S_2$  can be floating-point values. S₁ and S₂ can be floating-point values (e.g. F1.2), or data registers in which floating-point values are stored. If  $S_1$  and  $S_2$  are data registers in which floating-point values are stored, the function of API 172 DAADR is the same as the function of API 120 DEADD. The floating-point value in  $S_2$  is added to the floating-point value in  $S_1$ , and the sum is stored in D.  $S_1$  and  $S_2$  can be the same register. If the instruction DAADR is used under the circumstances, the value in the register is added to itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DADDRP is used. If the absolute value of an operation result is greater than the maximum floating-point value available, a carry flag will be ON. If the absolute value of an oepration reuslt is less than the minimum floating-point value available, a borrow flag will be ON. If an operation result is 0, a zero flag will be ON. When X0 is ON, the floating-point value F2.200E+0 is added to the floating-point value F1.200E+0, and the sum F3.400E+0 is stored in (D11, Example 1 D10). (The floating-point value F1.2 is represented by the scientific notation F1.200E+0 in a ladder diagram. The number of decimal places which are displayed can be set by means of the View menu in WPLSoft.) X0 F1.200E+0 F2.200E+0 DADDR D10 When X0 is ON, the floating-point value in (D3, D2) is added to the floating-point value in (D1, D0), and the sum is stored in (D11, D10). Example 2 X0 DADDR D0 D2 D10

API 173	D	SUE	BR	Ρ	<u>(</u>		<u>S2</u>		D		I	Floa	ting-	·poir	nt su	btraction	••	ble model 0PM ✓
	Bit device     Word device       X     X																	
													-	-				
S1	* <u>32-bit instruction (13</u>												steps)					
S2	S2-bit instruction (13)       S2-bit instruction (13)       SUBR       Continuity       instruction												Pulse instruction					
D													*			<ul> <li>Flags</li> </ul>		·····,
<ul> <li>Note: Please refer to specifications for more information about device ranges.</li> <li>Only the 32-bit instructions DSUBR and DSUBRP are valid.</li> <li>Only the 32-bit instructions device DSUBR and DSUBRP are valid.</li> </ul>													mark below.					

- **S**₁: Minuend; **S**₂: Subtrahend; **D**: Subtrahend
  - $S_1$  and  $S_2$  can be floating-point values
- ▶ **S**₁ and **S**₂ can be floating-point values (e.g. F1.2), or data registers in which floating-point values are stored.
- If S₁ and S₂ are data registers in which floating-point values are stored, the function of API 172 DSUBR is the same as the function of API 121 DESUB.
- ♦ The floating-point value in S₂ is subtracted from the floating-point value in S₁, and the difference is stored in D.
- S₁ and S₂ can be the same register. If the instruction DSUBR is used under the circumstances, the value in the register is subtracted from itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DSUBRP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON. If the absolute value of an oepration reusit is less than the minimum floating-point value available, a borrow flag will be ON. If an operation result is 0, a zero flag will be ON.
- When X0 is ON, the floating-point value F2.200E+0 is subtracted from the floating-point value F1.200E+0, and the difference F-1.000E+0 is stored in (D11, D10). (The floating-point value F1.2 is represented by the scientific notation F1.200E+0 in a ladder diagram. The number of decimal places which are displayed can be set by means of the View menu in WPLSoft.)

DSUBR F1.200E+0 F2.200E+0 D10		$\dashv$	DSUBR	F1.200E+0	F2.200E+0	D10
-------------------------------	--	----------	-------	-----------	-----------	-----

Example 2

Example 1

Explanation

When X0 is ON, the floating-point value in (D3, D2) is subtracted from the floating-point value in (D1, D0), and the difference is stored in (D11, D10).

	D0	D2	D10
--	----	----	-----

API <b>174</b>	Bit device         Word device           X         Y         M         S         F         H         KnX         KnY         KnS         T         C         D         V           I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I </th <th>mu</th> <th>Itiplication</th> <th></th> <th colspan="2">licable model 10PM ✓</th>													mu	Itiplication		licable model 10PM ✓		
														16-bit instruction					
														-	-				
S1	S1 * 32-b													32-bit instruction (13	steps)				
S2	S2 * *												DMULR Continuity		Pulse instruction				
D													*			<ul> <li>Flags</li> </ul>			
•	<ul> <li>Note: Please refer to specifications for more information about device ranges.</li> <li>Only the 32-bit instructions DSUBR and DSUBRP are valid.</li> </ul>													e	Ox O100 M1808 M1968 M1809 M1969 M1810 M1970 • Please refer to the	Zero flag Borrow flag Carry flag additional rer	mark below.		

- **S**₁: Multiplicand; **S**₂: Multiplier; **D**: Product
- $\mathbf{S}_1$  and  $\mathbf{S}_2$  can be floating-point values.
- S₁ and S₂ can be floating-point values (e.g. F1.2), or data registers in which floating-point values are stored.
- If S₁ and S₂ are data registers in which floating-point values are stored, the function of API 172 DMULR is the same as the function of API 122 DEMUL. •
- The floating-point value in S₁ is multiplied by the floating-point value in S₂, and the product is stored in D.
- S₁ and S₂ can be the same register. If the instruction DSUBR is used under the circumstances, the value in the register is multiplied by itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DMULRP is used.
- If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON. If the absolute value of an oepration reusit is less than the minimum floating-point value available, a borrow flag will be ON. If an operation result is 0, a zero flag will be ON.
- When X0 is ON, the floating-point value F1.200E+0 is multiplied by the floating-point value F2.200E+0, and the product F2.640E+0 is stored in (D11, D10). (The floating-point value F1.2 is represented by the scientific notation F1.200E+0 in a ladder diagram. The number of decimal places which are displayed can be set by means of the View menu in WPLSoft.)

70				
	DMULR	F1.200E+0	F2.200E+0	D10

When X1 is ON, the floating-point value in (D1, D0) is multiplied by the floating-point value in (D11, D10), and the product is stored in (D21, D20).

	0
--	---

Explanation

Example 1

Example 2

API		DIV	′R	Ρ	ভ		<b>S</b> 2		D			Flo	oint d	division	Applicable mode 10PM			
175	D			Ρ														✓
		Bit de	evice	9					Wor	d de	vice					16-bit instruction		
	Х	Y	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ		-	-
S1													*			32-bit instruction (13	steps)	
S2													*			DDIVR Continuit instructio	DDIVP	Pulse instruction
D													*			<ul> <li>Flags</li> </ul>		
•	Note: Please refer to specifications for more information about device ranges.     Only the 22 hit instructions DSLIPD and DSLIPDD are valid.     M1809 M1969 Bd												Zero flag Borrow flag Carry flag additional re	mark below.				

	$S_1$ : Dividend; $S_2$ : Divisor; <b>D</b> : Quotient
Explanation 🔶	$S_1$ and $S_2$ can be floating-point values.
•	${f S}_1$ and ${f S}_2$ can be floating-point values (e.g. F1.2), or data registers in which floating-point values are stored.
•	If $S_1$ and $S_2$ are data registers in which floating-point values are stored, the function of API 172 DDIVR is the same as the function of API 123 DEDIV.
*	The floating-point value in $S_1$ is divided by the floating-point value in $S_2$ , and the product is stored in $D$ .
*	$S_1$ and $S_2$ can be the same register. If the instruction DSUBR is used under the circumstances, the value in the register is divided by itself whenever the conditional contact is ON in a scan cycle. Generally, the pulse instruction DDIVRP is used.
*	If the absolute value of an oepration result is greater than the maximum floating-point value available, a carry flag will be ON. If the absolute value of an oepration reusit is less than the minimum floating-point value available, a borrow flag will be ON. If an operation result is 0, a zero flag will be ON.
Example 1	When X0 is ON, the floating-point value F1.200E is divided by the floating-point value F2.200E+0, and the quotient F0.545E+0 is stored in (D11, D10). (The floating-point value F1.2 is represented by the scientific notation F1.200E+0 in a ladder diagram. The number of decimal places which are displayed can be set by means of the <b>View</b> menu in WPLSoft.)
	X0 DDIVR F1.200E+0 F2.200E+0 D10
Example 2	When X1 is ON, the floating-point value in (D1, D0) is divided by the floating-point value in (D11, D10), and the quotient is stored in (D21, D20).
	DIVR D0 D10 D20

API 215~ 217	D	LD	#			3	Ð	S2					Log	lical	ope	ration	Applicable model 10PM ✓
		Bit d	evice	÷					Wor	d de	vice					16-bit instruction (5 s	steps)
	Х	Y	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	LD# Continuity	
S₁					*	*	*	*	*	*	*	*	*	*	*	instruction	l
																32-bit instruction (7 s	steps)
<b>S</b> ₂					*	*	*	*	*	*	*	*	*	*	*	DLD# Continuity	
• N	ote: i	# rer	orese	ents 8	k,  , o	r ^.										Instruction	L
					•											<ul> <li>Flag: None</li> </ul>	
		Pleas	e refe	er to	speci	ficati	ons f	or m	ore ir	nform	atior	ı abo	ut de	vice			
	I	range	s.		-												

- **S**₁: Source device 1; **S**₂: Source device 2
- The instruction is used to compare the value in  $S_1$  with that in  $S_2$ . If the comparison result is not 0, the condition of the instruction is met. If the comparison result is 0, the condition of the instruction is not met.
- The instruction LD# can be connected to a busbar directly.

API No.	16-bit instruction	32-bit instruction		C	N			0	FF	
215	LD&	DLD&	S ₁	&	S ₂	≠0	<b>S</b> 1	&	S ₂	=0
216	LD	DLD	S ₁		S ₂	≠0	S ₁		S ₂	=0
217	LD^	DLD^	S ₁	۸	S ₂	≠0	<b>S</b> ₁	۸	S ₂	=0

- &: Logical AND operation
- I: Logical OR operation
- ^: Logical exclusive OR operation
- If a 32-bit counter is used, the 32-bit insturciton DLD# must be used. If a 32-bit counter and the 16-bit instruction LD# are used, a program error will occur, and the ERROR LED indicator on the DVP-10PM series motion controller used will blink. (C200~C255 are 32-bit counters.)
  - A logical AND operator takes the values in C0 and C10, and performs the logical AND operation on each pair of corresponding bits. If the operation result is not 0, Y10 will be ON.
  - A logical OR operator takes the values in D200 and D300, and performs the logical OR operation on each pair of corresponding bits. If the operation result is not 0 and X1 is ON, Y11 will be set to ON.
- A logical operator XOR takes the values in C201 and C200, and performs the logical exclusive OR operation on each pair of corresponding bits. If the operation result is not 0, or if M3 is ON, M50 will be ON.



Example

Explanation

API 218~ 220	D	AN	D#	E		3		<u>S2</u> )					Logi	cal c	pera	ation	Ap	plicable mode 10PM ✓	el
$\smallsetminus$		Bit d	evice	e					Wo	rd de	vice					16-bit instruction (5	steps)		
	X	Y	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	AND# Continuity		-	
S ₁					*	*	*	*	*	*	*	*	*	*	*	instruction	)		
						<u> </u>			<u> </u>	<u> </u>		<u> </u>				32-bit instruction (7 s			
<b>S</b> ₂					*	*	*	*	*	*	*	*	*	*	*	DAND# Continuity	_	-	
• •	lote:	# r	epres	sents	s &.	, or ^	_										1		
-			•							:			ام ۲۰۰۰ ما			<ul> <li>Flag: None</li> </ul>			
				eter t	o sp	ecific	ations	s for I	more	Infor	natio	on ab	out a	evice					
		rang	jes.																

Explanation +

Example

- S₁: Source device 1; S₂: Source device 2
- The instruction is used to compare the value in  $S_1$  with that in  $S_2$ . If the comparison result is not 0, the condition of the instruction is met. If the comparison result is 0, the condition of the instruction is not met.
- The instruction AND# is connected to a contact in series.

API No.	16-bit instruction	32-bit instruction		0	N			0	FF	
218	AND&	DAND&	S₁	&	S ₂	≠0	S₁	&	S ₂	=0
219	AND	<b>D</b> AND	S₁		S ₂	≠0	S ₁		S ₂	=0
220	AND^	DAND^	S₁	^	S ₂	≠0	S ₁	Λ	S ₂	=0

- &: Logical AND operation
- I: Logical OR operation
- ^: Logical exclusive OR operation
- If a 32-bit counter is used, the 32-bit instruction DAND# must be used. If a 32-bit counter and the 16-bit instruction AND# are used, a program error will occur, and the ERROR LED indicator on the DVP-10PM series motion controller used will blink. (C200~C255 are 32-bit counters.)
- When X0 is ON, a logical AND operator takes the values in C0 and C10, and performs the logical AND operation on each pair of corresponding bits. If the operation result is not 0, Y10 will be set to ON.
- When X1 is OFF, a logical OR operator takes the values in D10 and D0, and performs the logical OR operation on each pair of corresponding bits. If the operation result is not 0, Y1 will be set to ON.
- When X2 is ON, a logical XOR operator takes the values in (D201, D200) and (D101, D100), and performs the logical exclusive OR operation on each pair of corresponding bits. If the operation result is not 0, or if M3 is ON, M50 will be ON.



API 221~ 223	D	OR	#				<b>S</b> 1	<u>S2</u>				Lo	gical	oper	ation		Applicable model 10PM ✓
	E	Bit de	evice	;					Word	d dev	vice					16-bit instru	uction (5 steps)
	Х	Y	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z	$() P \pm$	ontinuity
S₁															*	ins	struction
																32-bit instru	uction (7 steps)
<b>S</b> ₂		* * * * * * * * * * *															ontinuity
• N																	struction
														<ul> <li>Flag: Non</li> </ul>	ne		
	Please refer to specifications for more information about device ranges.													_			

- S₁: Source device 1; S₂: Source device 2
- The instruction is used to compare the value in  $S_1$  with that in  $S_2$ . If the comparison result is not 0, the condition of the instruction is met. If the comparison result is 0, the condition of the instruction is not met.
- The instruction OR# is connected to a contact in parallel.

API No.	16-bit instruction	32-bit instruction		0	N			0	FF	
221	OR&	DOR&	<b>S</b> ₁	&	S ₂	≠0	S ₁	&	S ₂	=0
222	OR	<b>D</b> OR	<b>S</b> ₁		S ₂	≠0	S ₁		S ₂	=0
223	OR^	DOR^	<b>S</b> ₁	^	S ₂	≠0	S ₁	Λ	S ₂	=0

- ♦ &: Logical AND operation
- I: Logical OR operation

^: Logical exclusive OR operation

- If a 32-bit counter is used, the 32-bit instruction DOR# must be used. If a 32-bit counter and the 16-bit instruction OR# are used, a program error will occur, and the ERROR LED indicator on the DVP-10PM series motion controller used will blink. (C200~C255 are 32-bit counters.)
- Example

Explanation

- When X1 is ON, Y0 is ON. Besides, when a logical AND operator performs the logical AND operation on each pair of corresponding bits in C0 and C10, and the operation result is not 0, Y0 is ON.
- When X2 and M30 are ON, M60 is ON. When a logical OR operator performs the logical OR operation on each pair of corresponding bits in the 32-bit register (D11, D10) and the 32-bit register (D21, D20), and the operation result is not 0, M60 is ON. Besides, when the logical XOR operator performs the logical exclusive OR operation on each pair of corresponding bits in the 32-bit counter C235 and the 32-bit register (D201, D200), and the operation result is not 0, M60 is ON.



API 224~ 230	D	LD	※			3	51)	<b>S</b> 2	)				Cor	npai	ring	values	Applicable model 10PM ✓
$\square$	l	Bit d	evice	e					Wor	rd de	vice					16-bit instruction (5 s	
	Х	Y	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	LD% Continuity	
S1					*	*	*	*	*	*	*	*	*	*	*	instruction	<u>۱</u>
· · ·																32-bit instruction (7 s	steps)
S ₂					*	*	*	*	*	*	*	*	*	*	*	DLD% Continuity	
• N			se re				>, $≤$ , ations			inforr	natio	n abc	out de	vice		Flag: None	<u>.                                    </u>

- Explanation
- S₁: Source device 1; S₂: Source device 2
- The instruction is used to compare the value in  $S_1$  with that in  $S_2$ . Take the instruction LD= for instance. If the comparison result is that the value in  $S_1$  is equal to that in  $S_2$ , the condition of the instruction is met. If the comparison result is that the value in  $S_1$  is not equal to that in  $S_2$ , the condition of the instruction is met. If the instruction of the instruction is not met.
- The instruction LD% can be connected to a busbar directly.

API No.	16-bit instruction	32-bit instruction	ON	OFF
224	LD =	<b>D</b> LD =	$S_1 = S_2$	S₁≠S₂
225	LD >	DLD >	<b>S</b> ₁ > <b>S</b> ₂	$S_1 \leq S_2$
226	LD <	DLD <	<b>S</b> ₁ < <b>S</b> ₂	$S_1 \ge S_2$
228	LD < >	<b>D</b> LD < >	S₁≠S₂	$S_1 = S_2$
229	LD < =	<b>D</b> LD < =	S₁≦ S₂	<b>S</b> ₁ > <b>S</b> ₂
230	LD > =	<b>D</b> LD > =	<b>S</b> ₁≧ <b>S</b> ₂	<b>S</b> ₁ < <b>S</b> ₂

- If a 32-bit counter is used, the 32-bit insturciton DLD% must be used. If a 32-bit counter and the 16-bit instruction LD% are used, ,a program error will occur, and the ERROR LED indicator on the DVP-10PM series motion controller used
  - will blink. (C200~C255 are 32-bit counters.)

# Example

- When the value in C10 is equal to K200, Y10 is ON.
- When the value in D200 is greater than K-30, and X1 is ON, Y11 is set to ON.
- When the value in C200 is less than K678,493, or when M3 is ON, M50 is ON.



API 232~ 238	D	AN	D%	(		C	<u>S1</u> )	<u>(S2</u>	)				Со	mpa	aring	values	Appl	licable model 10PM ✓
	E	Bit d	evic	e					Wor	d de	vice					16-bit instruction (5 ste	ps)	
	Х	Y	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	AND Continuity	-	_
S1					*	*	*	*	*	*	*	*	*	*	*	instruction		
																32-bit instruction (7 ste	ps)	
<b>S</b> ₂					*	*	*	*	*	*	*	*	*	*	*	DAND Continuity	_	_
• N	ote:	∦ re	pres	ents	=, >,	<, <:	>,≦,	or $\geq$								Flag: None		
		Plea: rang		fer to	spe	cifica	itions	for n	nore i	nforn	natio	n abo	out de	vice				

- S₁: Source device 1; S₂: Source device 2
   The instructions are used to compare the
  - The instructions are used to compare the value in  $S_1$  with that in  $S_2$ . Take the instruction AND= for instance. If the comparison result is that the value in  $S_1$  is equal to that in  $S_2$ , the condition of the instruction is met. If the comparison result is that the value in  $S_1$  is not equal to that in  $S_2$ , the condition of the instruction is met. If the comparison result is that the value in  $S_1$  is not equal to that in  $S_2$ , the condition of the instruction is met.
  - The instruction AND[×] is connected to a contact in series.

API No.	16-bit instruction	32-bit instruction	ON	OFF
232	AND =	<b>D</b> AND =	$S_1 = S_2$	S₁≠S₂
233	AND >	DAND >	$S_1 > S_2$	$S_1 \leq S_2$
234	AND <	<b>D</b> AND <	<b>S</b> ₁ < <b>S</b> ₂	$S_1 \ge S_2$
236	AND < >	<b>D</b> AND < >	S₁≠S₂	$S_1 = S_2$
237	AND < =	DAND < =	$S_1 \leq S_2$	$S_1 > S_2$
238	AND > =	<b>D</b> AND > =	<b>S</b> ₁≧ <b>S</b> ₂	<b>S</b> ₁ < <b>S</b> ₂

If a 32-bit counter is used, the 32-bit insturciton DAND% must be used. If a

32-bit counter and the 16-bit instruction AND[×] are used, ,a program error will occur, and the ERROR LED indicator on the DVP-10PM series motion controller used will blink. (C200~C255 are 32-bit counters.)

When X0 is ON and the present value in C10 is equal to K200, Y10 is ON.

When X1 is OFF and the value in D0 is not equal to K-10, Y11 is set to ON.

When X2 is ON and the value in (D11, D10) is less than 678,493, or when M3 is ON, M50 is ON.





API 240~ 246	D	OR	※			C	<u>S1</u> )	<u>(S</u> 2	)				Со	mpa	aring	y values	Ар	plicable moc 10PM ✓	lel
	V	Bit d	evice M	e S	К	Н	KnV	KnV		r <b>d de</b> KnS		С		V	7	16-bit instruction (5)			
S ₁		-	IVI	3	*	*	*	*	*	*	*	*	*	*	*	OR% instruction	_	-	
S ₂					*	*	*	*	*	*	*	*	*	*	*	32-bit instruction (7 DOR Continuity	/	_	
• N	l	∦ rep Pleas range	e ref						ore ir	nform	atior	n abo	ut de	vice		Flag: None	<u>1</u>		

- Explanation
- S₁: Source device 1; S₂: Source device 2
- The instructions are used to compare the value in  $S_1$  with that in  $S_2$ . Take the instruction OR= for instance. If the comparison result is that the value in  $S_1$  is equal to that in  $S_2$ , the condition of the instruction is met. If the comparison result is that the value in  $S_1$  is not equal to that in  $S_2$ , the condition of the instruction is met. If the comparison result is that the value in  $S_1$  is not equal to that in  $S_2$ , the condition of the instruction is not met.
- The instruction OR is connected to a contact in parallel.

API No.	16-bit instruction	32-bit instruction	ON	OFF
240	OR =	DOR =	$S_1 = S_2$	S₁≠S₂
241	OR >	DOR >	$S_1 > S_2$	$S_1 \leq S_2$
242	OR <	DOR <	<b>S</b> ₁ < <b>S</b> ₂	$S_1 \ge S_2$
244	OR < >	<b>D</b> OR < >	S₁≠S₂	$S_1 = S_2$
245	OR < =	<b>D</b> OR < =	<b>S</b> 1≦ <b>S</b> 2	<b>S</b> ₁ > <b>S</b> ₂
246	OR > =	<b>D</b> OR > =	$S_1 \ge S_2$	<b>S</b> ₁ < <b>S</b> ₂

If a 32-bit counter is used, the 32-bit insturciton DOR[®] must be used. If a

32-bit counter and the 16-bit instruction OR[×] are used, ,a program error will occur, and the ERROR LED indicator on the DVP-10PM series motion controller used will blink. (C200~C255 are 32-bit counters.)

- Example
- When X1 is ON, or when the present value in C10 is equal to K200, Y0 is ON. When X2 and M30 are ON, or when the value in (D101, D100) is greater than or equal to K100,000, M60 is ON.



API		Interchanging the	high byte in a	Applicable model
147 D SWAP P	S	device with the lo	w byte in the	10PM
		devic	e	$\checkmark$
instruction is used instruction is used Please refer to sp ranges. If KnX/KnY/KnM/k devices/M device number which is a the decimal nume K4SY20 (octal nu	Word de           H         KnX         KnY         KnM         KnS           ipports         X         X         X         X           ipports         V         devices and Z d         d         Z         devices can not be us           d, Z         devices can not be us         ecifications for more infor         KnS is used, it is suggested         numbers/S device number           Amultiple of 16 in the octational multiple of 16 in the octational system, e.g. K1X0 (octational numeral system), K1M0 (demonstrational numeral system).	T       C       D       V       Z         *       *       *       *       *       *         evices.       (If the 16-bit sed.)       ised.)       ised.)       ised.)         mation about device       ad that X/devices/Y       is should start from a li numeral system or in tal numeral system),	16-bit instruction (5 s         SWAP       Continuity         instruction       32-bit instruction (7 s         DSWAP       Continuity         instruction       *         Flag: None       *	SWAPP Pulse instruction iteps) DSWAPP Pulse
Explanation •	S: Source device When the 16-bit instrinterchanged with the When the 32-bit instrinterchanged with the interchanged with the Generally, the pulse When X0 is ON, the X0 High eight bits Low When X0 is ON, the bits in D11, and the h bits in D10. X0 High eight bits Low	e low eight bits in <b>S</b> . ruction is executed, t e low eight bits in <b>S</b> , e low eight bits in <b>S</b> + instructions SWAPP high byte in D0 is int SWAPP D0 w eight bits high eight bits in D17 high eight bits in D10 DSWAP D10	he high eight bits and the high eigh 1. and DSWAPP ar erchanged with t ]	a in <b>S</b> are nt bits in <b>S</b> +1 are re used. he low byte in D0.

# **5** Applied Instructions and Basic Usage

R				• •	ole model
	and	om	value	10	PM
				,	$\checkmark$
/ice			16-bit instruction (5	steps)	
T C D	V	Ζ		RANDE	Pulse
* * *	*	*			instruction
* * *	*	*	Continuit		Pulse
					instruction
* * *	*	*	<ul> <li>Flag: None</li> </ul>		
			, , , , , , , , , , , , , , , , , , ,		
	t				
nation about de					
	-				
•					
		n)			
	,	,,			
	T     C     D       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *     *       *     *       * <td>T     C     D     V       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *       *     *<td>T       C       D       V       Z         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *</td><td>T       C       D       V       Z         *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *</td><td>T       C       D       V       Z         *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *</td></td>	T     C     D     V       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *     *       *     *     *       *     * <td>T       C       D       V       Z         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *</td> <td>T       C       D       V       Z         *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *</td> <td>T       C       D       V       Z         *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *</td>	T       C       D       V       Z         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *         *       *       *       *       *       *	T       C       D       V       Z         *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *	T       C       D       V       Z         *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *

- S₁: Minimum random value; S₂: Maximum random value; D: Result
  - 16-bit instruction: The value in  $S_1$  and the value in  $S_2$  are in the range of K0 to K32,767.

32-bit instruction: The value in  $\boldsymbol{S}_1$  and the value in  $\boldsymbol{S}_2$  are in the range of K0 to K2,147,483,647.

- The value in  $S_1$  must be less than the value in  $S_2$ . If the value in  $S_1$  is greater than the value in  $S_2$ , an operation error will occur.
- When X0 is ON, the instruction RAND is used to generate a random value in the range of the value in D0 to the value in D10, and the random value is stored in D20. I X0

|--|

Explanation

Example

API 202	ę	SCA	٩L	Ρ	<b>S</b> 1		<u>S2</u> )	<b>S</b> ₃		D				ç	Scal	le Applicable model 10PM ✓
		Bit d	evice	e					Wor	d de	vice					16-bit instruction (9 steps)
	Х	Y	М	S	К	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Z	SCAL Continuity SCALP Pulse
S ₁					*	*							*			- 32-bit instruction (7 steps)
S ₂					*	*							*			
S ₃					*	*							*			Flag: None
D													*			
1	Note:	Plea rang		efer t	o spe	cifica	ations	for r	nore	infor	natic	on ab	out d	evice	9	



- **S**₁: Source device; **S**₂: Slope (Unit: 0.001); **S**₃: Offset; **D**: Destination device
- The values in  $S_1$ ,  $S_2$ , and  $S_3$  must be in the range of -32767 to 32767.
- Equation:  $D = (S_1 \times S_2) \div 1000 + S_3$
- To obtain the value in S₂, users have to use the slope equation below, round the result to the nearest integer, and get a 16-bit integer. To obtain the value in S₃, the users have to use the offset equation below, round the result to the nearest integer, and get a 16-bit integer.
- Slope equation: S₂=[(Maximum destination value–Minimum destination value)÷(Maximum source value–Minimum source value)]×1,000
- Offset equation:  $S_3$ = Minimum destination value–Minimum source value× $S_2$ ÷1,000



◆ Equation: D0=(500×168)÷1000+(-4)=80

SCAL K500 K168 K-4 D0
-----------------------



the value in **D** is less than -32,768, the value stored in **D** will be -32,768.

API 203	D	SCI	_P	Ρ	(	<u>S1</u> )	<u>(</u>	20	D			Parameter scale			nete	er scale Applicable model 10PM ✓
	Bit device Word device 16-bi						16-bit instruction (7 steps)									
	Х	Y	Μ	S	К	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	SCLP Continuity SCLPP Pulse
S ₁					*	*							*			
S ₂					*	*							*			<u>32-bit instruction (13 steps)</u> DSCLP Continuity DSCLPP Pulse
					*	*							*			DSCLP instruction DSCLPP instruction
33																• Flag: M1162
D													*			
•	Note	: Plea rang		efer to	o spe	cifica	ations	for r	nore	infor	matic	on ab	out d	evice	9	



 $S_1$ : Source device;  $S_2$ : Parameter (Unit: 0.001); **D**: Destination device 16-bit instruction: The setting of  $S_2$  is described below.

Device number	Parameter	Setting range					
S ₂	Maximum source value	-32768~32767					
<b>S</b> ₂ +1	Minimum source value	-32768~32767					
<b>S</b> ₂ +2	Maximum destination value	-32768~32767					
<b>S</b> ₂ +3	Minimum destination value	-32768~32767					

- If the 16-bit instruction is used,  $S_2$  will occupy four consecutive devices.
  - 32-bit instruction: The setting of  $S_2$  is decribed below.

Device	Parameter	Setting range					
number	i didilietei	Integer	Floating-point value				
<b>S</b> ₂ , <b>S</b> ₂ +1	Maximum source value						
<b>S₂+2</b> , <b>S₂+3</b>	Minimum source value	-2,147,483,648~	32-bit floating-point				
<b>S₂+4</b> , <b>S₂+5</b>	Maximum destination value	2,147,483,647	values available				
<b>S</b> ₂ +6, <b>S</b> ₂ +7	Minimum destination value						

- If the 32-bit instruction is used, S₂ will occupy eight consecutive devices.
- Equation: D=[(S₁-Minimum source value)×(Maximum destination value-Minimum destination value)]÷(Maximum source value-Minimum source value)+Minimum destination value
- Relation between the source value in S₁ and the destination value in D: y=kx+b
  - y=Destination value (D)

k=Slope=(Maximum destination value–Minimum destination value)÷(Maximum source value–Minimum source value)

x=Source value (S₁)

b=Offset =Minimum destination value-Minimum source valuexSlope

After the parameters above are substituted for y, k, x, and b in the equation y=kx+b, the equation below will be obtained.

 $y=kx+b=D=kS_1+b=Slope\times S_1+Offset=Slope\times S_1+Minimum destination$ 

value–Minimum source value×Slope=Slope×( $S_1$ –Minimum source value) + Minimum destination value =( $S_1$ –Minimum source value)×(Maximum destination value–Minimum destination value)÷(Maximum source)

value-Minimum source value) + Minimum destination value

If the value in S₁ is greater than the maximum source value, the value in S₁ will be equal to the maximum source value. If the value in S₁ is less than the minimum source value, the value in S₁ will be equal to the minimum source value. After input values and parameters are set, an output curve will be gotten.





- Suppose S₁ is D100, the value in D100 is F500, the maximum source value in D0 is F3000, the minimum source value in D2 is F200, the maximum destination value in D4 is F500, and the minimum destination value in D6 is F30. When X0 is ON, M1162 is set to ON, the instruction DSCLP is executed, and a scale is stored in D10.
- Equation: D10=[(F500-F200)×(F500-F30)]÷(F3000-F200)+F30=F80.35
   F80.35 is rounded to the nearest integer, and becomes F80. F80 is stored in D10.

X0		-	_	
⊢Ĥ⊢	SET	M1162		
	DMOVR	F500	D100	]
	 DMOVR	F3000	D0	]
	 DMOVR	F200	D2	]
	 DMOVR	F500	D4	]
	DMOVR	F30	D6	]
xo				
⊢ĩ⊢	DSCLP	D100	D0	D10

Additional remark

- 16-bit instruction: The value in  $S_1$  is in the range of the minimum source value and the maximum source value, i.e. the value in  $S_1$  is in the range of -32,768 to 32,767. If the value in  $S_1$  exceeds the minimum source value/the maximum source value, the minimum source value/the maximum source value will be used.
- ◆ 32-bit instruction: The integer in S₁ is in the range of the minimum source value and the maximum source value, i.e. the integer in S₁ is in the range of -2,147,483,648 to 2,147,483,647. If the integer in S₁ exceeds the minimum source value/the maximum source value, the minimum source value/the maximum source value will be used.
- 32-bit instruction: The floating-point value in S₁ is in the range of the minimum source value and the maximum source value, i.e. the floating-point value in S₁

is a 32-bit floating-point value available. If the floating-point value in  $S_1$  exceeds the minimum source value/the maximum source value, the minimum source value/the maximum source value will be used.

If users use the instruction, the maximum source value must be greater than the minimum source value, and the maximum destination value does not have to be greater than the minimum destination value.

API 256	CJN	S	Negated condition	Applicable model 10PM ✓		
• No	S is in the rag	Wo       K     H       KnX     KnY       KnX     KnY		16-bit instruction (3 s         CJN       Continuity         instruction         32-bit instruction         -         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •	CINP	Pulse instruction

Explanation

#### S: Pointer

- If the conditional contact connected to CJN is ON, the next address will be executed. If the conditional contact connected to CJN is not ON, the address to which S points will be executed.
- If some part of the main program O100 does not need to be executed, users can use CJN or CJNP to shorten the scan time. Besides, if a dual output is used, users can use CJ or CJP.
- If the program specified by a pointer is prior to the instruction CJN, a watchdog timer error will occur, and the main program O100 will not be executed. Please use the instruction carefully.
- The instruction CJN can specify the same pointer repeatedly. The pointer specified by CJN can not be the same as the pointer specified by CALL, otherwise an error will occur.
- When the instruction CJN/CJNP in a program is executed, the actions of the devices in the program are as follows.
  - 1. The states of the Y devices, the states of the M devices, and the states of the S devices in the program remain the same as those before the execution of the jump.
  - 2. The 10 millisecond timers in the program stop counting.
  - 3. The general counters in the program stop counting, and the general applied instructions in the program are not executed.
  - 4. If the instructions which are used to reset the timers in the program are driven before the jump is executed, the timers will still be reset during the execution of the jump.
  - When X0 is OFF, the execution of the program jumps from address 0 to address N (P1), and the addresses between address 0 and address N are skipped.
  - When X0is ON, the execution of the program starts from address 0, and the instruction CJN is not executed.



Example

API <b>257</b>	JMP		S	Uncondition	al jump	Applicable model 10PM ✓
	Bit devic	e	Wo	ord device	16-bit instruction (3	
	X Y M	S	K H KnX KnY KnN	1 KnS T C D V Z	JMP Continuity	·
•	Note: The ope	rand	S can be a pointer.		instruction	n
	S is in th	e rag	e of P0~P255.		32-bit instruction	
	The inst	ructio	n does not need to be di			

- The function of JMP is similar to the function of CJ. CJ must be driven by a contact whereas JMP does not have to be driven by a contact.
- The pulse instruction JMPP is not supported.
- Example

Explanation

After address 0 is scanned, address N will be executed whether there is a conditional contact before the instruction JMP (and whether the conditional contact is ON or OFF), and the addresses between address 0 and address N (P1) will be skipped.



API	BRET		Returning to	a busbar	Applicable model 10PM ✓
X     Note	Bit device Y M S e: There is no op The instruction	K H KnX KnY KnM		ERET Continuity     BRET Continuity     Instruction <u>32-bit instruction     -     -     Flag: None     </u>	/

- The instruction BRET does not have to be driven by a contact.
- After the instruction BRET is executed, the instructions which should be driven by a conditional contact will seem to be connected to a busbar, and will be executed.
- Example

Explanation

In the general program shown below, the instructions are executed only when X0 is ON.



 After the instruction BRET is added, the instructions which should be driven by a contact will seem to be connected to a busbar, and will be executed.

BRET		
MOV	K500	D10
CJ	P10	



Bit 15 is D4 is transferred to bit 15~ bit 31 in (D7, D6). The value in (D7, D6) becomes a negative value. (The value in D4 is also a negative value.)

API 260		RM	ov	I	D	(	S							Applicable model 10PM ✓					
S D	X	Bit de Y Plea rang	M se re	S	K *	H * cifica	*	KnY * *	KnM *	*	T * *	C * *	D * *	V * * evice	Z * *		Continuity Instruction	r <u>ps)</u> RMOVP	Pulse instruction
Expl		atio		* * *	۲ ۲	Data Sisr	in tł etai n X2	ne 3 ned. 24 is	2-bi	t de l, da	vice ta ir	<b>S</b> is	trar and	sfer	red	ination dev to the 16-b ansferred t	oit device		,
					b3 1	1 1	1 1	1 1 24 is		1 1	31	1 1	1 1	b15 10 10 b15		1 1 0 0 1 1 1 1 0 0 1		b( 0 0 0 1 0 0 0 1 bit 0~bit	D7, D6

When X24 is ON, bit 31 in D7 is transferred to bit 15 in D4, bit 0~bit 14 in D6 are transferred, and bit 15~bit 30 in D6 and D7 are not transferred.

# 5.7 Motion Control Function Block Table

Туре	Name	Description	Page No.
	Absolute single-speed motion	Starting absolute single-speed motion	5-152
	Relative single-speed motion	Starting relative single-speed motion	5-156
	Absolute two-speed motion	Starting absolute two-speed motion	5-160
	Relative two-speed motion	Starting relative two-speed motion	5-163
	Inserting single-speed motion	Inserting single-speed motion	5-166
	Inserting two-speed motion	Inserting two-speed motion	5-170
	JOG motion	Starting JOG motion	5-173
Uniaxial motion	Manual pulse generator mode	Enabling a manual pulse generator mode	5-176
control	Electronic gear motion	Starting electronic gear motion	5-179
function	Returning home	Starting motion of returning home	5-181
blocks	Stopping uniaxial motion	Stopping the motion of the axis specified	5-183
	Parameter setting 1	Setting motion parameters	5-186
	Parameter setting 2	Setting motion parameters	5-187
	Reading the present position/speed of an axis	Reading the present position/speed of an axis	5-189
	State of an axis	Reading and clearing the present erroneous state of an axis	5-191
	Setting the present position of an axis	Setting the present position of an axis	5-193
	Setting the polarities of input terminals	Setting the polarities of input terminals	5-194
Multiaxial	Multiaxial absolute linear interpolation	Starting multiaxial absolute linear interpolation	5-196
motion control function	Multiaxial relative linear interpolation	Starting multiaxial relative linear interpolation	5-197
blocks	Stopping multiaxial linear interpolation	Stopping multiaxial linear interpolation	5-200
	High-speed counter	Starting a high-speed counter	5-203
	High-speed timer	Starting a high-speed timer	5-206
Other motion	Setting high-speed comparison	Starting high-speed comparison	5-209
control function	Resetting high-speed comparison	Resetting high-speed comparison	5-211
blocks	Setting high-speed capture	Starting high-speed capture	5-215
	High-speed masking	Starting high-speed masking	5-218
	Setting an interrupt	Setting the trigger for an interrupt subroutine	5-220

# 5.8 Introduction of the Pins in a Motion Control Function Block

#### 5.8.1 Definitions of Input Pins/Output Pins

Common input pins and output pins in motion control function blocks are listed below. The pins listed below do not appear in a single motion control function block. For example, a motion control function block only has one input pin, that is, it has either the Execute input pin or the Enable input pin.

	Input pin									
Name	Description	Format	Setting value							
Execute	Starting the motion control function block	BOOL	True/False							
Enable	Starting the motion control function block	BOOL	True/False							

	Output pin						
Name	Description	Format	Setting value				
Done	The execution of the function block is complete.	BOOL	There is a transition in the Done output pin's signal from low to high when the execution of motion control function block is complete.				
Valid	An output value is valid.	BOOL	There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.				
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.				
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	There is a transition in the Aborted output pin's signal from low to high when the execution of the motion control function block is interrupted by a command.				
Error	An error occurs in a function block.	BOOL	There is a transition in the Error output pin's signal from low to high when an error occurs in the motion control function block.				

A motion control function block has either the Execute input pin or the Enable input pin. The Execute input pin/The Enable input pin in a motion control function block is used to start the motion control function block. A motion control function block generally has the Busy output pin and the Done output pin. The Busy output pin and the Done output pin in a function block indicate the state of the motion control function block. If the execution of motion control function block is to be interrupted by another motion control function block, the Aborted output pin will be added to the motion control function block. Besides, the Error output pin in a motion control function block is used to indicate that an error occurs in the motion control function block is executed.

A motion control function block has not only the Execute input pin/the Enable input pin, but also value/state input pins. The characteristics of the value/state input pins are described below.

- Use of input values
  - If the input pin that a motion control function block has is the Execute input pin, values are used when there is a transition in the Execute input pin's signal from low to high. If a new value is created, it becomes valid when the Execute input pin is triggered again.
  - If the input pin that a motion control function block has is the Enable input pin, values are used when there is a transition in the Enable input pin's signal from low to high. Compared with the Execute input pin, the Enable input pin is used more often when a value used is updated repeatedly.
- An input value exceeds a range.

After a motion control function block is started, the input values which are not in ranges allowed will be limited, or result in an error occurring in the motion control function block. If an error occurring in a motion control function block results in an error occurring in an axis, the motion control function block is applied incorrectly. Users should prevent incorrect values from being generated in an applied

program.

- Output pins are mutually exclusive.
  - If the input pin that a motion control function block has is the Execute input pin, only the Busy output pin, the Done output pin, the Aborted output pin, or the Error output pin can be set to True. If the Execute input pin is set to True, the Busy output pin, the Done output pin, the Aborted output pin, or the Error output pin must be set to True.
  - If the input pin that a motion control function block has is the Enable input pin, the Valid output pin and the Error output pin are mutually exclusive, and only the Valid output pin or the Error output pin can be set to True.
- Time when output data/states are valid
  - If the input pin that a motion control function block has is the Execute input pin, the Done output pin, the Error output pin, the Aborted output pin, and data output are reset when there is a transition in the Execute input pin's signal from high to low, but the execution of the function block does not stop when there is a transition in the Execute input pin's signal from block is reset before the execution of the motion control function block is complete, output states will still be generated and retained for one cycle. If a motion control function block is started again before the execution of the motion control function block will not give feedback to the Done output pin and the Aborted output pin, and an error will occur.
  - If the input pin that a motion control function block has is the Enable input pin, the Valid output pin, the Busy output pin, and the Error output pin are reset when there is a transition in the Enable input pin's signal from high to low.
- Characteristic of the Done output pin The Done output pin in a motion control function block will be set to True after the motion control function block is executed successfully.
- Characteristic of the Busy output pin
  - If the input pin that a motion control function block has is the Execute input pin, the motion control function block uses the Busy output pin to indicate that the execution of the motion control function block is not complete, and new output states (values) are expected to be generated. The Busy output pin is set to True when there is a transition in the Execute input pin's signal from low to high. When the Done output pin, the Aborted output pin, and the Error output pin are set to True, the Busy output pin are reset.
  - If the input pin that a motion control function block has is the Enable input pin, the motion control function block uses the Busy output pin to indicate that the execution of the motion control function block is not complete, and new output states (values) are expected to be generated. The Busy output pin in a motion control function block is set to True when there is a transition in the Enable input pin's signal from low to high, and is set to True when the motion control function block is executed. When the Busy output pin is set to True, output states (values) still change.
- Characteristic of the Aborted output pin The Aborted output pin in a motion control function block is set to True when the execution of the motion control function block is interrupted by a command.
- Relation between the Enable input pin and the Valid output pin If the input pin that a motion control function block has is the Enable input pin, the motion control function block uses the Busy output pin to indicate whether output data/states are valid. The Valid output pin is set to True only when the Enable input pin is set to true or output data/state are valid. If an error occurs in a motion control function block, output data/states will not be valid, and the Valid output pin will be set to False. The Valid output pin in a motion control function block will not be reset until the error occurring in the motion control function block is eliminated, and output data/states become valid.

#### 5.8.2 Timing Diagram for Input/Output Pins



Situation 1: The execution of the motion control function block is interrupted.

- Situation 2: An error occurs in the motion control function block.
- Situation 3: The execution of the motion control function block is complete normally.



Situation 1: The motion control function block is executed normally. Situation 2: An error occurs in the motion control function block.

## 5.8.3 Introducing the Use of PMSoft

The use of the motion control function blocks in PMSoft is introduced below.

(1) Right-click Function Blocks in the system information area in PMSoft.



Click Add Motion Control Function Blocks... on the context menu.

(2) The Add Function Block window appears.



Users can select motion control function blocks in the **Add Function Block** window. If the users click **Select All**, all the motion control function blocks in the **Add Function Block** window will be selected. After users select motion control function blocks, they have to click **OK**.

(3) After the users click **OK**, the motion control function blocks selected in the **Add Function Block** window will be automatically added to **Function Blocks** in the system information area.



• The folders added to **Function Blocks** are shown below.



- Definitions of the folders
  - SingleAxis: Uniaxial motion (Uniaxial point-to-point motion and electronic gear synchronization)
  - MultiAxis: Multi-axis motion (multi-axis linear interpolation)
  - Others: Other functions (measuring time, high-speed comparison, high-speed capture, and setting interrupts)
- (4) After the users drag motion control function blocks in folder, they can use them.



# 5.9 Delta-defined Parameter Table

Delta-defined parameters are for input pins in Delta motion control function blocks. Users can directly use Delta-defined parameters to operate motion control function blocks without having to know the descriptions of the input pins in the motion control function blocks. Delta-defined parameters are described below.

Name	Туре	Value	Motion control function block	Description
TRUE	BOOL	True	All motion control function blocks	Input pin
FALSE	BOOL	False	All motion control function blocks	Input pin
mcRising	BOOL	True	T_TrSeg2, T_TrSeg1,	Transition in DOG's signal from low to high
mcFalling	BOOL	False	T_HomeReturn	Transition in DOG's signal from high to low
mcPositive	BOOL	True	T Here Det av	Returning home in the positive direction
mcNegative	BOOL	False	T_HomeReturn	Returning home in the negative direction
mcSCurve	BOOL	True	<b>T A</b> i <b>O</b> <i>W</i> <b>O</b>	Speed curve: S curve
mcTrapezoid	BOOL	False	T_AxisSetting2	Speed curve: Trapezoid curve
mcNC	BOOL	True	<b></b>	Normally-closed contact
mcNO	BOOL	False	T_InputPolatiry	Normally-open contact
mcUp_Up	BOOL	True	T   T	A high-speed timer becomes active when its signal goes from low to high.
mcUp_Down	BOOL	False	T_HTmr	A high-speed timer becomes active when its signal goes from high to low.
mcCmpSet	BOOL	True	T_Compare	An output is set when the condition of a comparison is met.
mcCmpRst	BOOL	False		An output is reset when the condition of a comparison is met.
mcMotor	WORD	0		Motor unit
mcMachine	WORD	1	T_AxisSetting2	Mechanical unit,
mcComp	WORD	2		Compound unit
mcUD	WORD	0		Counting up/down
mcPD	WORD	1		Pulses+Directions
mcAB	WORD	2	T_AxisSetting2, T_HCnt	A/B-phase pulses
mc4AB	WORD	3		Four times the frequency of A/B-phase pulses
IntTimer	WORD	0		An interrupt signal is triggered by a time interval.
IntX00	WORD	1		The source of an interrupt signal is X0.
IntX01	WORD	2		The source of an interrupt signal is X1.
IntX02	WORD	3		The source of an interrupt signal is X2.
IntX03	WORD	4		The source of an interrupt signal is X3.
IntX04	WORD	5		The source of an interrupt signal is X4.
IntX05	WORD	6	T_Interrupt	The source of an interrupt signal is X5.
IntX06	WORD	7		The source of an interrupt signal is X6.
IntX07	WORD	8		The source of an interrupt signal is X7.
IntStart0	WORD	1		The source of an interrupt signal is Start0.
IntStop0	WORD	2		The source of an interrupt signal is Stop0.
IntStart1	WORD	3		The source of an interrupt signal is Start1.
IntStop1	WORD	4		The source of an interrupt signal is Stop1.
mcCmpAxis1	WORD	0		The source of a comparison is the present position of the first axis.
mcCmpAxis2	WORD	1	T_Compare	The source of a comparison is the present position of the second axis.
mcCmpAxis3	WORD	2		The source of a comparison is the present position of the third axis.

Name	Туре	Value	Motion control function block	Description
mcCmpAxis4	WORD	3		The source of a comparison is the present
псопральч		5		position of the fourth axis.
mcCmpC200	WORD	4		The source of a comparison is the value of C200.
mcCmpC204	WORD	5		The source of a comparison is the value of C204.
mcCmpC208	WORD	6		The source of a comparison is the value of C208.
mcCmpC212	WORD	7		The source of a comparison is the value of C212.
mcCmpCLR0	WORD	0	T_Compare	The device used for a comparison is CLR0.
mcCmpCLR1	WORD	1		The device used for a comparison is CLR1.
mcCmpY0	WORD	0		The device used for a comparison is Y0.
mcCmpY1	WORD	1		The device used for a comparison is Y1.
mcCmpY2	WORD	2		The device used for a comparison is Y2.
mcCmpY3	WORD	3		The device used for a comparison is Y3.
mcCmpRstC200	WORD	4		The device used for a comparison is C200.
mcCmpRstC204	WORD	5		The device used for a comparison is C204.
mcCmpRstC208	WORD	6		The device used for a comparison is C208.
mcCmpRstC212	WORD	7		The device used for a comparison is C212.
mcCapAxis1	WORD	0		The source of capture is the present position of the first axis.
mcCapAxis2	WORD	1		The source of capture is the present position of the second axis.
mcCapAxis3	WORD	2		The source of capture is the present position of the third axis.
mcCapAxis4	WORD	3		The source of capture is the present position of the fourth axis.
mcCapC200	WORD	4		The source of capture is the value of C200.
mcCapC204	WORD	5		The source of capture is the value of C204.
mcCapC208	WORD	9		The source of capture is the value of C208.
mcCapC212	WORD	7		The source of capture is the value of C212.
mcCapPG0	WORD	0		The source of a capture signal is PG0.
mcCapMPGB0	WORD	1		The source of a capture signal is MPGB0.
mcCapMPGA0	WORD	2		The source of a capture signal is MPGA0.
McCapLSN0	WORD	3		The source of a capture signal is LSN0.
McCapLSP0	WORD	4	T_Capture	The source of a capture signal is LSP0.
McCapDOG0	WORD	5		The source of a capture signal is DOG0.
mcCapStop0	WORD	6		The source of a capture signal is Stop0.
mcCapStart0	WORD	7		The source of a capture signal is Start0.
mcCapPG1	WORD	8		The source of a capture signal is PG1.
mcCapMPGB1	WORD	9		The source of a capture signal is MPGB1.
mcCapMPGA1	WORD	10		The source of a capture signal is MPGA1.
mcCapLSN1	WORD	11		The source of a capture signal is LSN1.
mcCapLSP1	WORD	12		The source of a capture signal is LSN1.
McCapDOG1	WORD	13		The source of a capture signal is DOG1.
mcCapStop1	WORD	14		The source of a capture signal is Stop1.
mcCapStart1	WORD	14		The source of a capture signal is Stop 1.
mcX0	WORD	0		The source of a capture signal is X0.
mcX1	WORD	1		The source of a capture signal is X0.
mcX2	WORD	2		The source of a capture signal is X1.
mcX3	WORD	2		The source of a capture signal is X2.
mcX4	WORD	4		The source of a capture signal is X4.

Name	Туре	Value	Motion control function block	Description
mcX5	WORD	5		The source of a capture signal is X5.
mcX6	WORD	6		The source of a capture signal is X6.
mcX7	WORD	7		The source of a capture signal is X7.
mcX10	WORD	8	T_Capture	The source of a capture signal is X10.
mcX11	WORD	9		The source of a capture signal is X11.
mcX12	WORD	10		The source of a capture signal is X12.
mcX13	WORD	11		The source of a capture signal is X13.

# **5.10 Uniaxial Motion Control Function Blocks**

### 5.10.1 Absolute Single-speed Motion

En	T_AbsSegl	Eno
Axis		Done
Execute		Busy
Position	L	Aborted
Velocity	,	Error

## 1. Motion control function block

The motion control function block T_AbsSeg1 is used to start absolute single-speed motion. After absolute single-speed motion is started, the speed of the absolute single-speed motion will increase from the  $V_{BIAS}$  set to the velocity set. The speed of the absolute single-speed motion will not decrease from the velocity set to the  $V_{BIAS}$  set until the present command position of the axis specified is near the target position set. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Position input pin, and the number of pulses per second is a unit for the Velocity input pin. The users can change the unit used by means of the motion control function block T_AxisSetting2.



#### 2. Input pins/Output pins

	Input pin						
Name	Function	Data type	Setting value	Time when a value is valid			
Axis	Motion axis number	WORD	DVP10PM00M: K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.			

	Input pin					
Name	Function	Data type	Setting value	Time when a value is valid		
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-		
Position	Absolute position	DWORD	K-2,147,483,648~ K2,147,483,647	The value of the Position input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
Velocity	Target speed	DWORD	K1~ K2,147,483,647	When the motion control function block is executed, the value of the Velocity input pin is updated repeatedly.		

	Output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Done	The execution of the motion control function block is complete.	BOOL	<ul> <li>There is a transition in the Done output pin's signal when motion is complete.</li> </ul>	<ul> <li>There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.</li> </ul>		
Busy	The motion control function block is being executed.	BOOL	<ul> <li>There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> </ul>		
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	<ul> <li>The execution of the motion control function block is interrupted by a command.</li> </ul>	<ul> <li>There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.</li> </ul>		

	Output pin						
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low			
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The axis specified is in motion before the motion control function block is executed.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> </ul>			

The number of pulses is a unit for the Position input pin, and the number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

#### 4. Example

Purposes:

- After the first single-speed motion is complete, the second single-speed motion will be executed.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.

The motion control function block named FIRST is set so that the first axis moves at a speed of 2,000 pulses per second, and moves for 10,000 pulses. The motion control function block named SECOND is set so that the first axis moves at a speed of 3,000 pulses per second, and moves for 15,000 pulses.



- After the first single-speed motion is complete, the second single-speed motion will be executed. Steps:
  - (a) Set Execute1 to True.
  - (b) Wait for a transition in Done2's signal from low to high or a transition in Error2's signal from low to high.

• The second single-speed motion is executed before the execution of the first single-speed motion is complete.

Steps:

- (a) Set Execute1 to True.
- (b) Set Test to ON when Busy1 is set to True.
- (c) Wait for a transition in Done2's signal from low to high or a transition in Error2's signal from low to high.

Timing diagram:



- After the first single-speed motion is complete, the second single-speed motion will be executed. After the execution of the motion control function block named FIRST is complete, the motion control function block named SECOND will be executed. The first axis moves for 25,000 pulses.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.

When Error2 is set to True, the first axis moves for 10,000 pulses. The motion control function block named SECOND is invalid.

#### 5. Module which is supported

The motion control function block T_AbsSeg1 supports DVP10PM00M.

# 5.10.2 Relative Single-speed Motion

En	T_RelSegl	Eno
Axis		Done
Execute		Busy
Distance		Aborted
Velocity		Error

# 1. Motion control function block

The motion control function block T_RelSeg1 is used to start relative single-speed motion. After relative single-speed motion is started, the speed of the relative single-speed motion will increase from the  $V_{BIAS}$  set to the velocity set. The speed of the relative single-speed motion will not decrease from the velocity set to the  $V_{BIAS}$  set until the distance for which the relative single-speed motion moves is the distance set. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.



2. Input pins/Output pins

	Input pin					
Name	Function	Data type	Setting value	Time when a value is valid		
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-		
Distance	Relative distance	DWORD	K-2,147,483,648~ K2,147,483,647	The value of the Distance input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
Velocity	Target speed	DWORD	K1~K2,147,483,647	When the motion control function block is executed, the value of the Velocity input pin is updated repeatedly.		

Output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low	
Done	The execution of the motion control function block is complete.	BOOL	There is a transition in the Done output pin's signal when motion is complete.	<ul> <li>There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.</li> </ul>	
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> </ul>	
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	The execution of the motion control function block is interrupted by a command.	<ul> <li>There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.</li> </ul>	
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The axis specified is in motion before the motion control function block is executed.</li> </ul>	There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.	

The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.

#### 3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

## 4. Example

Purposes:

- After the first single-speed motion is complete, the second single-speed motion will be executed.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.

The motion control function block named FIRST is set so that the first axis moves at a speed of 2,000 pulses per second, and moves for 10,000 pulses. The motion control function block named SECOND is set so that the first axis moves at a speed of 3,000 pulses per second, and moves for 15,000 pulses.



- After the first single-speed motion is complete, the second single-speed motion will be executed. Steps:
  - (a) Set Execute1 to True.
  - (b) Wait for a transition in Done2's signal from low to high or a transition in Error2's signal from low to high.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.

Steps:

- (a) Set Execute1 to True.
- (b) Set Test to ON when Busy1 is set to true.
- (c) Wait for a transition in Done2's signal from low to high or a transition in Error2's signal from low to high.



Timing diagram:

- After the first single-speed motion is complete, the second single-speed motion will be executed. When the motion control function block named FIRST is executed, the first axis moves for 10,000 pulses. After the execution of the motion control function block named FIRST is complete, the motion control function block named SECOND will be executed. When the motion control function block named SECOND will be executed. When the motion control function block named SECOND is executed, the first axis moves for 15,000 pulses.
- The second single-speed motion is executed before the execution of the first single-speed motion is complete.

When Error2 is set to True, the first axis moves for 10,000 pulses. The motion control function block named SECOND is invalid.

## Module which is supported The motion control function block T_RelSeg1 supports DVP10PM00M.

## 5.10.3 Absolute Two-speed Motion

En	T_AbsSeg2	Eno
Axis		Done
Execute		Busy
Positionl		Aborted
Velocityl		Error
Position2		
Velocity2		

1. Motion control function block

The motion control function block T_AbsSeg2 is used to start absolute two-speed motion. After absolute two-speed motion is started, the speed of the absolute two-speed motion will increase from the V_{BIAS} set to the V (I) set. The speed of the absolute two-speed motion will not increase/decrease from the V (I) set to the V (II) set until the present command position of the axis specified is near the P (I) set. The speed of the absolute two-speed motion will not decrease from the V (II) set to the V_{BIAS} set until the present command position of the axis specified is near the P (I) set. The speed of the absolute two-speed motion will not decrease from the V (II) set to the V_{BIAS} set until the present command position of the axis specified and the P (II) set. The P (I) set must be between the present command position of the axis specified and the P (II) set. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Velocity1 input pin/the Velocity2 input pin. The users can change the unit used by means of the motion control function block T_AxisSetting2.



	Input pin				
Name	Function	Data type	Setting value	Time when a value is valid	
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-	
Position1	Absolute position of the first motion	DWORD	K-2,147,483,648~ K2,147,483,647	The value of the Position1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.	

# **5** Applied Instructions and Basic Usage

	Input pin				
Name	Function	Data type	Setting value	Time when a value is valid	
Velocity1	Target speed of the first motion	DWORD	K1~K2,147,483,647	The value of the Velocity1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Position2	Absolute position of the second motion	DWORD	K-2,147,483,648~ K2,147,483,647 (If the value of the Position1 input pin is greater than 0, the value of the Position2 input pin must be greater than or equal to the value of the Position1 input pin. If the value of the Position1 input pin is less than or equal to 0, the value of the Position2 input pin must be less than or equal to the value of the Position1 input pin.)	The value of the Position2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Velocity2	Target speed of the second motion	DWORD	K1~K2,147,483,647	The value of the Velocity2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.	

	Output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Done	The execution of the motion control function block is complete.	BOOL	<ul> <li>There is a transition in the Done output pin's signal when motion is complete.</li> </ul>	<ul> <li>There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.</li> </ul>		
Busy	The motion control function block is being executed.	BOOL	• There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> </ul>		

	Output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	<ul> <li>The execution of the motion control function block is interrupted by a command.</li> </ul>	<ul> <li>There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.</li> </ul>		
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The axis specified is in motion before the motion control function block is executed.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> </ul>		

The number of pulses is a unit for the Position1 input pin/the Position2 input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.

#### 3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

## 4. Example

Purposes:

• The motion control function block T_AbsSeg2 is used to start absolute two-speed motion of an axis.

The first motion is set so that the first axis moves at a speed of 2,000 pulses per second, and moves for 10,000 pulses. The second motion is set so that the first axis moves at a speed of 3,000 pulses per second, and moves for 15,000 pulses.





After the motion control function block is started, the first axis moves for 10,000 pulses at a speed of 2,000 pulses per second, and moves for 15,000 pulses at a speed of 3,000 pulses per second.

 Module which is supported The motion control function block T_AbsSeg2 supports DVP10PM00M.

## 5.10.4 Relative Two-speed Motion

En	T_RelSeg2	Eno
Axis		Done
Execute		Busy
Distancel		Aborted
Velocityl		Error
Distance2		
Velocity2		

1. Motion control function block

The motion control function block T_RelSeg2 is used to start relative two-speed motion. After relative two-speed motion is started, the speed of the relative two-speed motion will increase from the V_{BIAS} set to the V (I) set. The speed of the relative two-speed motion will not increase/decrease from the V (I) set to the V (II) set until the number of pulses output is near the value of the Distance1 input pin. The speed of the relative two-speed motion will not decrease from the V (II) set to the V_{BIAS} set until the number of pulses output is near the value of the Distance1 input pin. The speed of the relative two-speed motion will not decrease from the V (II) set to the V_{BIAS} set until the number of pulses output is near the value of the Distance2 input pin. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Distance1 input pin/the Distance2 input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.



Input pin					
Name	Function	Data type	Setting value	Time when a value is valid	
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-	
Distance1	Relative distance for which the first motion moves	DWORD	K-2,147,483,648~ K2,147,483,647	The value of the Distance1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Velocity1	Target speed of the first motion	DWORD	K1~K2,147,483,647	The value of the Velocity1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Distance2	Relative distance for which the second motion moves	DWORD	K-2,147,483,648~ K2,147,483,647 (If the value of the Distance1 input pin is a positive value, the value of the Distance2 input pin must be a positive value. If the value of the Distance1 input pin is a negative value, the value of the Distance2 input pin must be a negative value.)	The value of the Distance2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Velocity2	Target speed of the second motion	DWORD	K1~K2,147,483,647	The value of the Velocity2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.	

	Output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Done	The execution of the motion control function block is complete.	BOOL	<ul> <li>There is a transition in the Done output pin's signal when motion is complete.</li> </ul>	<ul> <li>There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.</li> </ul>		
Busy	The motion control function block is being executed.	BOOL	• There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> </ul>		
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	<ul> <li>The execution of the motion control function block is interrupted by a command.</li> </ul>	<ul> <li>There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.</li> </ul>		
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The axis specified is in motion before the motion control function block is executed.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> </ul>		

The number of pulses is a unit for the Distance1 input pin/the Distance2 input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.

#### 3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

## 4. Example

Purpose:

• The motion control function block T_AbsSeg2 is used to start relative two-speed motion of an axis. The first motion is set so that the first axis moves at a speed of 2,000 pulses per second, and moves for 10,000 pulses. The second motion is set so that the first axis moves at a speed of 3,000 pulses per second, and moves for 15,000 pulses.



After the motion control function block is started, the first axis moves for 10,000 pulses at a speed of 2,000 pulses per second, and moves for 15,000 pulses at a speed of 3,000 pulses per second.

## 5. Module which is supported

The motion control function block T_RelSeg2 supports DVP10PM00M.

## 5.10.5 Inserting Single-speed Motion

En	T_TrSegl	Eno
Axis		Done
Execute		Busy
DogEdge		Aborted
Distance		Error
Velocity		

## 1. Motion control function block

The motion control function block T_TrSeg1 is used to insert single-speed motion. The speed of motion increases from the  $V_{BIAS}$  set to the velocity set. After DOG's signal goes from low to high or from high to low, the DVP-10PM series motion controller used will continue sending pulses. The speed of the motion will not decrease from the velocity set to the  $V_{BIAS}$  set until the number of pulses output is near the value of the Distance input pin. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the

Velocity input pin. The users can change the unit used by means of the motion control function block T_AxisSetting2. If the value of the DogEdge input pin is mcRising, motion will be triggered by a transition in DOG's signal from low to high. If the value of the DogEdge input pin is mcFalling, motion will be triggered by a transition in DOG's signal from high to low.



	Input pin				
Name	Function	Data type	Setting value	Time when a value is valid	
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-	
DogEdge	Transition in DOG's signal from low to high or from high to low	BOOL	mcRising (True)/ mcFalling (False)	The value of the DogEdge input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Distance	Distance for which motion moves after a transition in DOG's signal from low to high or from high to low	DWORD	K-2,147,483,648~ K2,147,483,647	The value of the Distance input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Velocity	Target speed	DWORD	K1~K2,147,483,647	The value of the Velocity input pin is valid when there is a transition in the Execute input pin's signal from low to high.	

Output pin						
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Done	The execution of the motion control function block is complete.	BOOL	<ul> <li>There is a transition in the Done output pin's signal when motion is complete.</li> </ul>	<ul> <li>There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.</li> </ul>		
Busy	The motion control function block is being executed.	BOOL	<ul> <li>There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> </ul>		
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	<ul> <li>The execution of the motion control function block is interrupted by a command.</li> </ul>	<ul> <li>There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.</li> </ul>		
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The axis specified is in motion before the motion control function block is executed.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> </ul>		

The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2. If the value of the DogEdge input pin is mcRising, motion will be triggered by a transition in DOG's signal from low to high. If the value of the DogEdge input pin is mcFalling, motion will be triggered by a transition in DOG's signal from high to low.

#### 3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

## 4. Examples

Example 1:

 The motion control function block T_TrSeg1 is used to insert single-speed motion which is triggered by a transition in DOG's signal from high to low.

The motion control function block named T_TrSeg1_U1 is set so that the first axis moves at a speed of 3,000 pulses per second, and will move for 5,000 pulses after a transition in DOG's signal from high to low. After the first axis moves for 5,000 pulses, Done will be set to True.



Example2:

• The motion control function block T_TrSeg1 is used to insert single-speed motion which is triggered by a transition in DOG's signal from low to high.

The motion control function block named T_TrSeg1_U1 is set so that the first axis moves at a speed of 3,000 pulses per second, and will move for 5,000 pulses after a transition in DOG's signal from low to high. After the first axis moves for 5,000 pulses, Done will be set to True.





5. Module which is supported

The motion control function block T_TrSeg1 supports DVP10PM00M.

## 5.10.6 Inserting Two-speed Motion

En	T_TrSeg2	Eno
Axis		Done
Execute		Busy
Velocityl		Aborted
DogEdge		Error
Distance		
Velocity2		

## 1. Motion control function block

The motion control function block T_TrSeg2 is used to insert two-speed motion. The speed of motion increases from the  $V_{BIAS}$  set to the V (I) set. After DOG's signal goes from low to high or from high to low, the speed of the motion will increase/decrease from the V (I) set to the V (II) set. The motion will not stop until the number of pulses output is near the value of the Distance input pin. Users can set the Vbias input pin, the Vmax input pin, the Tacc input pin, and the Tdec input pin in the motion control function block T_AxisSetting1. The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. The users can change the unit used by means of the motion control function block T_AxisSetting2. If the value of the DogEdge input pin is mcRising, motion will be triggered by a transition in DOG's signal from low to high. If the value of the DogEdge input pin is mcFalling, motion will be triggered by a transition in DOG's signal from high to low.



Input pin						
Name	Function	Data type	Setting value	Time when a value is valid		
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-		
DogEdge	Transition in DOG's signal from low to high or from high to low	BOOL	mcRising (True)/ mcFalling (False)	The value of the DogEdge input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
Velocity1	Target speed before a transition in DOG's signal from low to high or from high to low	DWORD	K1~K2,147,483,647	The value of the Velocity1 input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
Distance	Distance for which motion moves after a transition in DOG's signal from low to high or from high to low	DWORD	K-2,147,483,648~ K2,147,483,647	The value of the Distance input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
Velocity2	Target speed after a transition in DOG's signal from low to high or from high to low	DWORD	K1~K2,147,483,647	The value of the Velocity2 input pin is valid when there is a transition in the Execute input pin's signal from low to high.		

Output pin						
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Done	The execution of the motion control function block is complete.	BOOL	<ul> <li>There is a transition in the Done output pin's signal when motion is complete.</li> </ul>	<ul> <li>There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when motion is complete, the Done output pin will be set to False in the next cycle.</li> </ul>		
Busy	The motion control function block is being executed.	BOOL	<ul> <li>There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> </ul>		
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	<ul> <li>The execution of the motion control function block is interrupted by a command.</li> </ul>	<ul> <li>There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.</li> </ul>		
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The axis specified is in motion before the motion control function block is executed.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> </ul>		

The number of pulses is a unit for the Distance input pin, and the number of pulses per second is a unit for the Velocity1 input pin/the Velocity2 input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2. If the value of the DogEdge input pin is mcRising, motion will be triggered by a transition in DOG's signal from low to high. If the value of the DogEdge input pin is mcFalling, motion will be triggered by a transition in DOG's signal from high to low.

#### 3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

## 4. Example

The motion control function block T_TrSeg2 is used to insert two-speed motion which is triggered by a transition in DOG's signal from low to high.

The motion control function block named T_TrSeg2_U1 is set so that the first axis moves at a speed of 3,000 pulses per second, and will move for 2,000 pulses at a speed of 1,000 pulses per second after a transition in DOG's signal from low to high.



After the first axis moves for 2,000 pulses, Done will be set to True.

 Module which is supported The motion control function block T_TrSeg2 supports DVP10PM00M.

## 5.10.7 JOG Motion

En	T_Jog	Eno
Axis		Busy
PositiveEnable		Aborted
NegativeE	nable	Error
Velocity		

## 1. Motion control function block

The motion control function block T_Jog is used to start JOG motion. The value of the Axis input pin indicates an axis number, and the value of the Velocity input pin indicates the speed of JOG motion. If the PositiveEnable input pin is set to True, positive JOG motion will be started. If the NegativeEnable input pin is set to True, negative JOG motion will be started. The number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.



Input pin						
Name	Function	Data type	Setting value	Time when a value is valid		
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
PositiveEnable	Enabling positive JOG motion	BOOL	True/False	<ul> <li>If the PositiveEnable input pin and the NegativeEnable input pin are set to True simultaneously, positive JOG motion will be enabled, and the NegativeEnable input pin will be reset to False.</li> <li>If the PositiveEnable input pin is set to True after the NegativeEnable input pin is set to True, the NegativeEnable input pin is set to True, the NegativeEnable input pin will be reset to False, the negative JOG motion will stop, and the positive JOG motion will be enabled.</li> </ul>		
NegativeEnable	Enabling negative JOG motion	BOOL	True/False	<ul> <li>If the PositiveEnable input pin and the NegativeEnable input pin are set to True simultaneously, positive JOG motion will be enabled, and the NegativeEnable input pin will be reset to False.</li> <li>If the NegativeEnable input pin is set to True after the PositiveEnable input pin is set to True, the PositiveEnable input pin is set to True, the PositiveEnable input pin will be reset to False, the positive JOG motion will stop, and the negative JOG motion will be enabled.</li> </ul>		
Velocity	Target speed	DWORD	K1~K2,147,483,647	When the motion control function block is executed, the value of the Velocity input pin is updated repeatedly.		

Output pin						
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Busy	The motion control function block is being executed.	BOOL	<ul> <li>There is a transition in the Busy output pin's signal from low to high when there is a transition in the PositiveEnable input pin's signal from low to high or when there is a transition in the NegativeEnable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when motion stops.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Busy output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.</li> </ul>		
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	<ul> <li>The execution of the motion control function block is interrupted by a command.</li> </ul>	<ul> <li>There is a transition in the Aborted output pin's signal from high to low when there is a transition in the PositiveEnable input pin's signal from high to low or when there is a transition in the NegativeEnable input pin's signal from high to low.</li> <li>If the PositiveEnable input pin and the NegativeEnable are set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.</li> </ul>		
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The axis specified is in motion before the motion control function block is executed.</li> </ul>	There is a transition in the Error output pin's signal from high to low when there is a transition in the PositiveEnable input pin's signal from high to low or when there is a transition in the NegativeEnable input pin's signal from high to low.		

The number of pulses per second is a unit for the Velocity input pin. Users can change the unit used by means of the motion control function block T_AxisSetting2.

#### 3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

#### 4. Example

The motion control function block T_Jog is used to start JOG motion. Positive JOG motion is enabled by EnableP, and negative JOG motion is enabled by EnableN.

The first axis moves at a speed of 10,000 pulses per second. If EnableP is set to 1, the first axis will move in the positive direction. If EnableN is set to 1, the first axis will move in the negative direction.



When EnableP is set to 1, the first axis moves at a speed of 10,000 pulses per second in the positive direction. When EnableN is set to 1, the first axis moves at a speed of 10,000 pulses per second in the negative direction. When EnableP and EnableN are not set to 1, the first axis stops moving.

5. Module which is supported

The motion control function block T_Jog supports DVP10PM00M.

## 5.10.8 Manual Pulse Generator Mode

En	T_MPG	Eno
Axis		Valid
Enable		Busy
Reset		Aborted
RatioNum		Error
RatioDen		InputPulses
		InputFreq

1. Motion control function block

The motion control function block T_MPG is used to enable a manual pulse generator mode. The value of the Axis input pin indicates an axis number. The motion of the axis specified follows the operation of a manual pulse generator. The relation between the position of the axis specified and the input pulses generated by the manual pulse generator used is determined by the RatioNum input pin and the RatioDen input pin. The speed at which the manual pulse generator used responds depends on the value of the Tacc input pin and the value of the Tdec input pin. Users can set the Tacc input pin and the Tdec input pin in the motion control function block T_AxisSetting1.

$\bigcirc$		Servo dri	ve
A phase B phase	Frequency of input pulses X RatioNum = Frequency of output pulses	RP	Servo motor

The input terminals which can be connected to a manual pulse generator are shown below.

÷	٠	24G	+24V	X0	X2	X4	X6	X10	)+ X1	1+ X	2+	X13+	
	. (	N	• S/	S X	1 X	(3 X	(5 X	7	X10-	X11-	X1:	2- X'	13-
DVP-10PM ( AC Power IN, DC Signal IN )													
Y0	Y1	Y2	Y3	Y10+	Y11+	Y12+	Y13+	Y14	4+ Y1	5+ Y	16+	Y17+	
С	0 C	C1 C	2 C	3 Y1	0- Y1	1- Y	12- Y1	3-	Y14-	Y15-	Y1	6- Y	17-

The terminals in the red frame are for the first axis~the sixth axis.

	Input pin						
Name	Function	Data type	Setting value	Time when a value is valid			
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Enable input pin's signal from low to high.			
Enable	Manual pulse generator mode	BOOL	True/False	-			
Reset	Resetting the manual pulse generator used	BOOL	True/False	The value of the Reset input pin is valid when there is a transition in the Enable input pin's signal from low to high.			
RatioNum	Numerator of an electronic gear ratio	DWORD	K0~K32,767	When the motion control function block is executed, the value of the RatioNum input pin is updated repeatedly.			
RatioDen	Denominator of an electronic gear ratio	DWORD	K1~K32,767	When the motion control function block is executed, the value of the RatioDen input pin is updated repeatedly.			

			State output pin	
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	The execution of the motion control function block is complete.	BOOL	<ul> <li>There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Valid output pin's signal from high to low when motion stops.</li> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Aborted output pin's signal from high to low to high.</li> </ul>
Busy	The motion control function block is being executed.	BOOL	<ul> <li>The execution of the motion control function block is interrupted by a command.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> <li>If the Enable input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.</li> </ul>

	State output pin						
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low			
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	• The execution of the motion control function block is interrupted by a command.	<ul> <li>There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>			
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The axis specified is in motion before the motion control function block is executed.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>			

			Value output pin	
Name	Function	Data type	Output range	Update
InputPulses	Number of pulses generated by the manual pulse generator used	DWORD	K-2,147,483,648~ K2,147,483,647	When the motion control function block is executed, the value of the InputPulses output pin is updated repeatedly.
InputFreq	Frequency of pulses generated by the manual pulses generator used	DWORD	K0~K2,147,483,647	When the motion control function block is executed, the value of the InputFreq output pin is updated repeatedly.

## 3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

## 4. Module which is supported

The motion control function block T_MPG supports DVP10PM00M.

#### 5.10.9 Electronic Gear Motion

En	T_GearIn	Eno
Axis		Valid
Enable		Busy
Reset		Aborted
RatioNur	n	Error
RatioDer	ı Inj	putPulses
	I	nputFreq

1. Motion control function block

The value of the RatioNum input pin is the numerator of an electronic gear ratio. The value of the RatioDen input pin is the denominator of an electronic gear ration. The Reset input pin is used to clear the number of input pulses. The speed at which the electronic gear used responds does not depend on the value of the Tacc input pin and the value of the Tdec input pin. The electronic gear used operates in accordance with the source of input. The input terminals for electronic gear motion are the same as the input terminals which can be connected to a manual pulse generator.

	Input pin						
Name	Function	Data type	Setting value	Time when a value is valid			
Axis	Slave axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Enable input pin's signal from low to high.			
Enable	Enabling electronic gear motion	BOOL	True/False	-			
Reset	Resetting the InputPulses output pin	BOOL	True/False	The value of the Reset input pin is valid when there is a transition in the Enable input pin's signal from low to high.			
RatioNum	Numerator of an electronic gear ratio	DWORD	K-32,767~K32,767	When the motion control function block is executed, the value of the RatioNum input pin is updated repeatedly.			
RatioDen	Denominator of an electronic gear ratio	DWORD	K1~K32,767	When the motion control function block is executed, the value of the RatioDen input pin is updated repeatedly.			

			State output pin	
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	<ul> <li>There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Valid output pin's signal from high to low when motion stops.</li> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Aborted output pin's signal from high to low when there is a transition in the Aborted output pin's signal from low to high.</li> </ul>

			State output pin	
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	<ul> <li>The execution of the motion control function block is interrupted by a command.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> <li>If the Enable input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.</li> </ul>
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	• The execution of the motion control function block is interrupted by a command.	• There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The axis specified is in motion before the motion control function block is executed.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>

	Value output pin					
Name	Function	Data type	Output range	Update		
InputPulses	Number of input pulses	DWORD	K-2,147,483,648~ K2,147,483,647	When the motion control function block is executed, the value of the InputPulses output pin is updated repeatedly.		
InputFreq	Frequency of input pulses	DWORD	K0~K2,147,483,647	When the motion control function block is executed, the value of the InputFreq output pin is updated repeatedly.		

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

## 4. Module which is supported

The motion control function block T_GearIn supports DVP10PM00M.

#### 5.10.10 Returning Home

En T_HomeReturn	Eno
Axis	Done
Execute	Busy
Direction	Aborted
DogEdge	Error
HomePosition	
VRT	
VCR	
Signal_N	
Distance_P	

1. Motion control function block

The motion control function block T-HomeReturn is used to start motion of returning home. The value of the Axis input pin indicates an axis number, and the value of the Direction input pin indicates whether the axis specified returns home in the positive direction or in the negative direction. The value of the VRT input pin indicates the speed at which the axis specified returns home. The value of the DogEdge input pin indicates whether motion is triggered by a transition in DOG's signal from low to high or from high to low. The value of the VCR input pin indicates the speed of the specified decreases. The value of the Signal_N input pin is the number of zero pulses. The value of the Distance_P is the number of supplementary pulses needed. After motion of returning home is complete, the value of the HomePosition input pin will be taken as the present position of the axis specified. Motion of returning home is shown below.



Position (1): Position [1] is at the right side of the home and DOG, and DOG is OFF. Position (2)*: Position [2] is at the right side of the home, and DOG is ON.

- *: Position (2) does not support the fifth axis and the sixth axis.
- 2. Input pins/Output pins

	Input pin				
Name	Function	Data type	Setting value	Time when a value is valid	
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-	

	Input pin				
Name	Function	Data type	Setting value	Time when a value is valid	
Direction	Direction in which the axis specified returns home	BOOL	mcNegative (False)/ mcPositive (True)	The value of the Direction input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
DogEdge	Transition in DOG's signal from low to high or from high to low	BOOL	mcFalling (False)/ mcRising (True)	The value of the DogEdge input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
HomePosition	Home position	DWORD	K-2,147,483,648~ K2,147,483,647	The value of the HomePosition input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
VRT	Speed at which the axis specified returns home	DWORD	K1~K1000000	The value of the VRT input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
VCR	Speed to which the speed of the axis specified decreases	DWORD	K1~VRT	The value of the VCR input pin is valid when there is a transition in the Execute input pin's signal form low to high.	
Signal_N	Number of zero pulses	WORD	K0~K32,767	The value of the Signal_N input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Distance_P	Number of supplementa ry pulses	WORD	K-32768~K32,767	The value of the Distance_P input pin is valid when there is a transition in the Execute input pin's signal from low to high.	

	State output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Done	The execution of the motion control function block is complete.	BOOL	<ul> <li>There is a transition in the Done output pin's signal from low to high when motion of returning home is complete.</li> </ul>	<ul> <li>There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when the execution of the motion control function block is complete, the Done output pin will be set to False in the next cycle.</li> </ul>		

	State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low	
Busy	The motion control function block is being executed.	BOOL	• There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> </ul>	
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	<ul> <li>The execution of the motion control function block is interrupted by a command.</li> </ul>	<ul> <li>There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when the execution of the motion control function block is interrupted, the Aborted output pin will be set to False in the next cycle.</li> </ul>	
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The axis specified is in motion before the motion control function block is executed.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> </ul>	

#### 3. Troubleshooting

•	
Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

### 4. Module which is supported

The motion control function block T-HomeReturn supports DVP10PM00M.

## 5.10.11 Stopping Uniaxial Motion

En	T_AxisStop	Eno
Axis		Done
Execute		Busy
		Enor

### 1. Motion control function block

The motion control function block T_AxisStop is used to stop the motion of the axis specified. The value of the Axis input pin indicates an axis number.

## 2. Input pins/Output pins

	Input pin				
Name	Function	Data type	Setting value	Time when a value is valid	
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-	

	State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low	
Done	The execution of the motion control function block is complete.	BOOL	<ul> <li>There is a transition in the Done output pin's signal from low to high when motion of returning home is complete.</li> </ul>	<ul> <li>There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when the execution of the motion control function block is complete, the Done output pin will be set to False in the next cycle.</li> </ul>	
Busy	The motion control function block is being executed.	BOOL	• There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> </ul>	
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The motion of the axis specified is not uniaxial motion, gear motion, or cam motion.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> </ul>	

## 3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function	Check whether the values of the input pins are in the
block are incorrect.	ranges allowed.

Error	Troubleshooting
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

#### 4. Example

The single-speed motion of an axis is started, and then the motion control function block T_AxisStop is used to stop the motion.

The motion control function block named First is used to start single-speed motion. It is set so that the first axis moves for 50,000 pulses at a speed of 10,000 per second. The motion control function block named Second is used to stop the motion of the first axis.



The motion control function block named First is started. Before Done 1 is set to True, Execute2 is used to start the motion control function block named Second.



After the motion control function block named First is started, the first axis will move at a speed of 10,000 pulses per second. After the motion control function block named Second is started, Aborted1 will be set to True, Busy1 will be set to False, and the first axis will stop moving. When the motion control function block named Second is used to stop the motion of the first axis, no motion can be started. If any motion is started, an error will occur.

## 5. Module which is supported

The motion control function block T_AxisStop supports DVP10PM00M.

## 5.10.12 Parameter Setting I

En	T_AxisSetting1	Eno
Axis		Done
Execute		Busy
Vmax		Error
Vbias		
Tace		
Tdec		

## 1. Motion control function block

The motion control function block T_AxisSetting1 is used to set motion parameters. The value of the Axis input pin indicates an axis number. Users can set the maximum speed of the axis specified, the start-up speed of the axis specified, the time it takes for the start-up speed of the axis specified to increase to its maximum speed, and the time it takes for the maximum speed of the axis specified to decrease to its start-up speed. The setting of the Unit input pin in the motion control function block T_AxisSetting2 determines the unit for the Vmax input pin and the unit for the Vbias input pin.

	Input pin					
Name	Function	Data type	Setting value	Time when a value is valid		
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-		
Vmax	Maximum speed	DWORD	K1~K2,147,483,647	The value of the Vmax input pin is valid when there is a transition in the Execute input pin's signal from low tot high.		
Vbias	Start-up speed	DWORD	K0~K2,147,483,647	The value of the Vbias input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
Тасс	Acceleration time (Unit: ms)	WORD	K0~K32,767	The value of the Tacc input pin is valid when there is a transition in the Execute input pin's signal from low to high.		
Tdec	Deceleration time (Unit: ms)	WORD	K0~K32,767	The value of the Tdec input pin is valid when there is a transition in the Execute input pin's signal from low to high.		

	State output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Done	The execution of the motion control function block is complete.	BOOL	<ul> <li>There is a transition in the Done output pin's signal from low to high when motion of returning home is complete.</li> </ul>	<ul> <li>There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when the execution of the motion control function block is complete, the Done output pin will be set to False in the next cycle. •</li> </ul>		
Busy	The motion control function block is being executed.	BOOL	• There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> </ul>		
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> </ul>	• There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.		

#### 3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function	Check whether the values of the input pins are in the
block are incorrect.	ranges allowed.

#### 4. Module which is supported The motion control function block T_AxisSetting1 supports DVP10PM00M.

## 5.10.13 Parameter Setting II

En	T_AxisSetting2	Eno
Axis		Done
Execut	te	Busy
Veurve	2	Error
Output	tТуре	
Unit		
PulseR	lev	
Distan	ceRev	

#### 1. Motion control function block

The motion control function block T_AxisSetting2 is used to set motion parameters. The value of the Axis input pin indicates an axis number. Users can set the velocity curve of the axis specified, an output type, and a unit. The setting of a unit requires the number of pulses it takes for a motor to rotate once and the distance for which the axis specified moves when the motor rotates once.

There are three types of units. They are motor units, compound units, and mechanical units. The setting of a unit requires the number of pulses it takes for a motor to rotate once (the value of the PulseRev input pin) and the distance for which the axis specified moves when the motor rotates once (the value of the DistanceRev input pin). The units for positions and speeds are as shown below.

	Motor unit	Compound unit	Mechanical unit
	pulse	μm	μm
Position	pulse	mdeg	mdeg
	pulse	10 ⁻⁴ inches	10 ⁻⁴ inches
	pulse/second	centimeter/minute	pulse/second
Speed	pulse/second	10 degrees/minute	pulse/second
	pulse/second	inch/minute	pulse/second

	Input pin				
Name	Function	Data type	Setting value	Time when a value is valid	
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-	
Vcure	Velocity curve	BOOL	mcTrapezoid: False mcSCurve: True	The value of the Vcurve input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
OutputType	Output type	WORD	mcUD: 0 mcPD: 1 mcAB: 2 mc4AB: 3	The value of the OutputType input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Unit	Unit	WORD	mcMotor: 0 mcMachine: 1 mcComp: 2	The value of the Unit input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
PulseRev	Number of pulses it takes for a motor to rotate once	WORD	K1~K2,147,483,647	The value of the PulseRev input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
DistanceRev	Distance for which the axis		K1~K2,147,483,647	The value of the DistanceRev input pin is valid when there is a transition in the Execute input pin's signal from low to high.	

			State output pin	
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Done	The execution of the motion control function block is complete.	BOOL	<ul> <li>There is a transition in the Done output pin's signal from low to high when motion of returning home is complete.</li> </ul>	<ul> <li>There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> <li>If the Execute input pin is set to False when the execution of the motion control function block is complete, the Done output pin will be set to False in the next cycle.</li> </ul>
Busy	The motion control function block is being executed.	BOOL	• There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from low to high.</li> </ul>
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> </ul>	• There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

#### 3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function	Check whether the values of the input pins are in the
block are incorrect.	ranges allowed.

## 4. Module which is supported

The motion control function block T_AxisSetting2 supports DVP10PM00M.

## 5.10.14 Reading the Present Position/Speed of an Axis

En	T_MotionObserve	Eno
Axis		Valid
Enable		Busy
		Error
		Position
		Velocity

1. Motion control function block

The motion control function block T_MotionObserve is used to read the present position/speed of an axis. The value of the Axis input pin indicates an axis number. After the motion control function block is started, users can read the present position of the axis specified through the Position output pin, and the speed of the axis specified through the Velocity output pin.

## 2. Input pins/Output pins

	Input pin					
Name	Function	Data type	Setting value	Time when a value is valid		
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Enable input pin's signal from low to high.		
Enable	Manual pulse generator mode	BOOL	True/False	-		

	State output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Valid	The execution of the motion control function block is complete.	BOOL	• There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	<ul> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Error input pin's signal from low to high.</li> </ul>		
Busy	The motion control function block is being executed.	BOOL	• There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> </ul>		
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> </ul>	• There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.		

Value output pin						
Name	Function	Data type	Output range	Update		
Position	Present position (Pulse unit)	DWORD	K-2,147,483,648~ K2,147,483,647	When the motion control function block is executed, the value of the Position output pin is updated repeatedly.		
Velocity	Present speed (Pulse unit)	DWORD	K0~K2,147,483,647	When the motion control function block is executed, the value of the Velocity output pin is updated repeatedly.		

#### 3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function	Check whether the values of the input pins are in the
block are incorrect.	ranges allowed.

## 4. Module which is supported

The motion control function block T_MotionObserve supports DVP10PM00M.

## 5.10.15 State of an Axis

En	T_AxisStatu	s Eno
Axis		Valid
Enable		Busy
ClearEr	ror	Error
		Mode
		AxisReady
		AxisError
	A	xisErrorID

1. Motion control function block

The motion control function block is T_AxisStatus is used to read and clear the present erroneous state of an axis. The value of the Axis input pin indicates an axis number. Users can clear the present erroneous state of the axis specified by means of the ClearError input pin. The value of the AxisErrorID output pin indicates the present erroneous state of the axis specified.

	Input pin				
Name	Function	Data type	Setting value	Time when a value is valid	
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Enable input pin's signal from low to high.	
Enable	Reading the present erroneous state of the axis specified.	BOOL	True/False	-	
ClearError	The erroneous state of the axis specified is cleared when there is a transition in the ClearError input pin's signal from low to high.	BOOL	True/False	The value of the ClearError input pin is valid when the motion control function block is executed.	

	State output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Valid	An output value is valid.	BOOL	• There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	<ul> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> </ul>		

	State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low	
Busy	The motion control function block is being executed.	BOOL	<ul> <li>There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> </ul>	
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> </ul>	• There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.	

	Value output pin					
Name Function		Data type	Output range	Update		
Mode	Mode of motion	WORD	H0~H32x (*1)	When the motion control function block is executed, the value of the Mode output pin is updated repeatedly.		
AxisReady	Ready flag for the axis specified	BOOL	True/False	When the motion control function block is executed, the value of the AxisReady output pin is updated repeatedly.		
AxisError	Axis error flag	BOOL	True/False	When the motion control function block is executed, the value of the AxisError output pin is updated repeatedly.		
AxisErrorID	Error code	WORD	H0002~HC4FF	When the motion control function block is executed, the value of the AxisErrorID output pin is updated repeatedly.		

## *1: Value of the Mode output pin

Value	Definition			
H0	Idle			
H100	Uniaxial motion is being stopped.			
H101	Absolute single-speed motion			
H102	Relative single-speed motion			
H103	Absolute two-speed motion			
H104	Relative two-speed motion			
H105	Inserting single-speed motion			
H106	Inserting two-speed motion			
H107	JOG motion			
H108	Manual pulse generator mode			
H109	Motion of returning home			
H10A	Electronic gear motion			
H300	Multiaxial interpolation is being stopped.			
H31x	Multiaxial absolute linear interpolation			
H32x	Multiaxial relative linear interpolation			

Please refer to appendix A in chapter 9 for more information about error codes.

#### 3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function	Check whether the values of the input pins are in the
block are incorrect.	ranges allowed.

4. Module which is supported The motion control function block is T_AxisStatus supports DVP10PM00M.

#### 5.10.16 Setting the Present Position of an Axis

En	T_SetPosition	Eno
Axis		Done
Execute		Busy
Position	L	Error

### 1. Motion control function block

The motion control function block T_SetPosition is used to set the present position of an axis. The value of the Axis input pin indicates an axis number. Users can set the present position of the axis specified by means of the Position input pin. Note: To prevent errors from occurring, please avoid using the motion control function block to set the present position of the master axis involved in cam motion or gear motion.

	Input pin				
Name	Function	Data type	Setting value	Time when a value is valid	
Axis	Motion axis number	WORD	K1~K6	The value of the Axis input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-	
Position	Present position of the axis specified	DWORD	K-2,147,483,648~ K2,147,483,647	The value of the Position input pin is valid when there is a transition in the Execute input pin's signal from low to high.	

	State output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Done	The execution of the motion control function block is complete.	BOOL	<ul> <li>The writing of a position is complete.</li> </ul>	• There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.		

State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	• There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> </ul>
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> </ul>	• There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.

Error	Troubleshooting
The values of input pins in the motion control function	
block are incorrect.	ranges allowed.

## Module which is supported The motion control function block T_SetPosition supports DVP10PM00M.

## 5.10.17 Setting the Polarities of Input Terminals

En T_Inpu	tPolari~ Eno
Enable	Valid
X0_Dog0	Dog0_X0
X1_Pg0	Pg0_X1
X2_Dogl	Dogl_X2
X3_Pgl	Pgl_X3
X4_Dog2	Dog2_X4
XS_Pg2	Pg2_XS
X6_Dog3	Dog3_X6
X7_Pg3	Pg3_X7
X10_mpgA	mpgA_X10
X11_mpgB	mpgB_X11
X12_Dog4	Dog4_X12
X13_DogS	Dog5_X13
	Busy

## 1. Motion control function block

The motion control function block T_InputPolarity is used to set the polarities of the input terminals on the DVP-10PM series motion controller used. Users can set the polarities of the input terminals on the DVP-10PM series motion controller used by means of input pins.

	Input pin					
Name	Function	Data type	Setting value	Time when a value is valid		
Enable	Manual pulse generator mode	BOOL	True/False	-		

	Input pin						
Name	Function	Data type	Setting value	Time when a value is valid			
X0_Dog0	Polarity	BOOL					
X1_Pg0	Polarity	BOOL					
X2_Dog1	Polarity	BOOL					
X3_Pg1	Polarity	BOOL		When the motion control function block is executed, the values of the input pins are updated repeatedly.			
X4_Dog2	Polarity	BOOL					
X5_Pg2	Polarity	BOOL	mcNO: False				
X6_Dog3	Polarity	BOOL	mcNC: True				
X7_Pg3	Polarity	BOOL					
X10_mpgA	Polarity	BOOL					
X11_mpgB	Polarity	BOOL					
X12_Dog4	Polarity	BOOL					
X13_Dog5	Polarity	BOOL					

	State output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Valid	The execution of the motion control function block is complete.	BOOL	• There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	<ul> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>		
Busy	The motion control function block is being executed.	BOOL	<ul> <li>There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>		
Dog0_X0	Polarity	BOOL	<ul> <li>When input pins</li> </ul>	When input pins are set to True, and		
Pg0_X1	Polarity	BOOL	are set to True,	the input terminals are ON, there are		
Dog1_X2	Polarity	BOOL	and the input terminals are OFF,	transitions in these output pins' signals from high to low.		
Pg1_X3	Polarity	BOOL	there are	<ul> <li>When input pins are set to False,</li> </ul>		
Dog2_X4	Polarity	BOOL	transitions in	and the input terminals are OFF,		
Pg2_X5	Polarity	BOOL	these output pins'	there are transitions in these output		
Dog3_X6	Polarity	BOOL	signals from low to	pins' signals from high to low.		
Pg3_X7	Polarity	BOOL	<ul> <li>high.</li> <li>When input pins</li> </ul>	There are transitions in these output		
mpgA_X10	Polarity	BOOL	are set to False,	pins' signals from high to low when there is a transition in the Enable		
mpgB_X11	Polarity	BOOL	and the input	input pin's signal from high to low.		
Dog4_X12	Polarity	BOOL	terminals are ON,			
Dog5_X13	Polarity	BOOL	there are transitions in these output pins' signals from low to high.			

The values of input pins in the motion control function Check	
	whether the values of the input pins are in the s allowed.

 Module which is supported The motion control function block T_InputPolarity supports DVP10PM00M.

## **5.11 Multiaxial Motion Control Function Blocks**

## 5.11.1 Multiaxial Absolute Linear Interpolation

En T_AbsMoveLin	^{ear} Eno
AxesGroup	Done
Execute	Busy
Position	Error
Velocity	Aborted

### 1. Motion control function block

The motion control function block T_AbsMoveLinear is used to start multiaxial absolute linear interpolation. Users can set the axes which execute interpolation by means of the AxesGroup input pin, set the target positions of the axes specified by means of the Position input pin, and set the speed of the axes specified by means of the Velocity input pin.

Input pin					
Name	Function	Data type	Setting value	Time when a value is valid	
AxesGroup	Axes which execute interpolation	WORD[6]	[_,_,_,,] 0: Not setting axes n: Adding the n th axis (n is in the range of 1 to 6.) (The first cell must be set.)	The value of the AxesGroup input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-	
Position	Target positions	DWORD[6]	[_,_,_,_,_,_] K-2,147,483,648~ K2,147,483,647	The value of the Position input pin is valid when there is a transition in the Execute input pin's signal from low to high.	
Velocity	Speed of interpolation	DWORD	K1~K2,147,483,647	The value of the Velocity input pin is valid when there is a transition in the Execute input pin's signal from low to high.	

	State output pin				
Name	Function	Data type	Time when there is a transition in an	Time when there is a transition in an	
			output pin's signal from low to high	output pin's signal from high to low	
Done	The execution of the motion control function block is complete.	BOOL	<ul> <li>There is a transition in the Done output pin's signal from low to high when the execution of the motion control function block is complete.</li> </ul>	<ul> <li>There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> </ul>	
Busy	The motion control function block is being executed.	BOOL	<ul> <li>There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.</li> </ul>	
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> </ul>	
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	• The execution of the motion control function block is interrupted by a command.	<ul> <li>There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> </ul>	

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

## 4. Module which is supported

The motion control function block T_AbsMoveLinear supports DVP10PM00M.

## 5.11.2 Multiaxial Relative Linear Interpolation

En	T_RelMoveLinear	Eno
AxesGn	oup	Done
Execute	•	Busy
Distanc	e	Error
Velocity	7	Aborted

#### 1. Motion control function block

The motion control function block T_RelMoveLinear is used to start multiaxial relative linear interpolation. Users can set the axes which execute interpolation by means of the AxesGroup input pin, set the distances for which the axes specified move by means of the Distance input pin, and set the

speed of the axes specified by means of the Velocity input pin.

	Input pin						
Name	Function	Data type	Setting value	Time when a value is valid			
AxesGroup	Axes which execute interpolation	WORD[6]	[_,_,_,] 0: Not setting axes n: Adding the n th axis (n is in the range of 1 to 6.) (The first cell must be set.)	The value of the AxesGroup input pin is valid when there is a transition in the Execute input pin's signal from low to high.			
Execute	Motion is started when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-			
Distance	Distances for which the axes specified move	DWORD[6]	[_,_,_,_,_,_] K-2,147,483,648~ K2,147,483,647	The value of the Distance input pin is valid when there is a transition in the Execute input pin's signal from low to high.			
Velocity	Speed of interpolation	DWORD	K1~K2,147,483,647	The value of the Velocity input pin is valid when there is a transition in the Execute input pin's signal from low to high.			

	State output pin						
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low			
Done	The execution of the motion control function block is complete.	BOOL	<ul> <li>There is a transition in the Done output pin's signal from low to high when the execution of the motion control function block is complete.</li> </ul>	<ul> <li>There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> </ul>			
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.</li> </ul>			
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> </ul>			

	State output pin						
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low			
Aborted	The execution of the motion control function block is interrupted by a command.	BOOL	<ul> <li>The execution of the motion control function block is interrupted by a command.</li> </ul>	• There is a transition in the Aborted output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.			

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The motion control function block conflicts with other motion control function blocks.	Make sure that other uniaxial motion control function blocks are not started or the execution of other uniaxial motion control function blocks is complete before the motion control function block is started.

#### 4. Example

### Purpose:

• The motion control function block T_AbsMoveLinear and the motion control function block T_RelMoveLinear are used to start the absolute linear interpolation executed by the axes specified and the relative linear interpolation executed by the axes specified.

	Local Symbols							
Class	Identifiers	Address	Type	Initial	Comment			
VAR	Group1		WORD[6]	[0(6)]				
VAR	Group2		WORD[6]	[0(6)]				
VAR	Position		DWORD[6]	[0(6)]				
VAR	Distance		DWORD[6]	[0(6)]				



DMOV

k-10000

distance[2]

Positio

Velocit

-D12



• Create the two identifiers Group1 and Group2 in the local symbol table in O100. Group1 is an array composed of 6 words. Group2 is an array composed of 6 words.

Position-D16

Velocit

- Create the two identifiers Position and Distance in the local symbol table in O100. Position is an array composed of 6 double words. Distance is an array composed of 6 double words.
- When the program is executed, the array indicated by Group1 is set to [1, 2, 3, 0, 0, 0]. The first axis, the second axis, and the third axis are used to execute linear interpolation.
- When the program is executed, the array indicated by Group2 is set to [4, 5, 6, 0, 0, 0]. The fourth axis, the fifth axis, and the sixth axis are used to execute linear interpolation.
- When the program is executed, the array indicated by Position is set to [15000, 30000, -15000, 0, 0, 0]. [15000, 30000, -15000, 0, 0] indicates the target positions of the absolute linear interpolation executed by the first axis, the second axis, and the third axis.
- When the program is executed, the array indicated by Distance is set to [1000, 10000, -10000, 0, 0, 0]. [1000, 10000, -10000, 0, 0] indicates the distances for which the fourth axis, the fifith axis, and the sixth axis move when the fourth axis, the fifith axis, and the sixth axis execute relative linear interpolation.
- After M1 is set to ON, the multiaxial absolute linear interpolation set will be started.
- After M10 is set to ON, the multiaxial absolute linear interpolation set will be started.
- Users can use the motion control function block T_MotionObserve to check whether the positions
  of the axes which execute the linear interpolation set are correct.

#### 5. Module which is supported

The motion control function block T_RelMoveLinear supports DVP10PM00M.

## 5.11.3 Stopping Multiaxial Linear Interpolation

En	T_GroupStop	Eno
Execute		Done
AxesGrou	₽	Busy
		Error

#### 1. Motion control function block

The motion control function block T_GroupStop is used to stop multiaxial linear interpolation. Users can set the axes which execute interpolation by means of the AxesGroup input pin.

Positio:

Veloci

-D20

## 2. Input pins/Output pins

			Input pin	
Name	Function	Data type	Setting value	Time when a value is valid
Execute	Linear interpolation is stopped when there is a transition in the Execute input pin's signal from low to high.	BOOL	True/False	-
AxesGroup	Axes which execute interpolation	WORD[6]	[_,_,_,,] 0: Not setting axes n: Adding the n th axis (n is in the range of 1 to 6.) (The first cell must be set.)	The value of the AxesGroup input pin is valid when there is a transition in the Execute input pin's signal from low to high.

			State output pin	
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in a output pin's signal from high to lo
Done	The execution of the motion control function block is complete.	BOOL	<ul> <li>There is a transition in the Done output pin's signal from low to high when the execution of the motion control function block is complete.</li> </ul>	There is a transition in the Done output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.
Busy	The motion control function block is being executed.	BOOL	<ul> <li>There is a transition in the Busy output pin's signal from low to high when there is a transition in the Execute input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Done output pin's signal from low to high.</li> </ul>
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Execute input pin's signal from high to low.</li> </ul>

#### 3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function	Check whether the values of the input pins are in the
block are incorrect.	ranges allowed.

#### 4. Example

Purpose:

• The motion control function block T_AbsMoveLinear and the motion control function block T_RelMoveLinear are used to start the absolute linear interpolation executed by the axes specified

				cal Symbols					
	Class	Identifiers	Address		pe	Initi	al	Comme	nt
	VAR	Group1			RD[6]	[0(6)]			
	VAR	Position		DWC	)RD[6]	[0(6)]			
м1002								kl	group1[0]
							MOV	KI	groupiloj
							MOV	k2	group1[1]
							MOV	k3	group1[2]
							MOA	k4	group1[3]
							MOV	kS	group1[4]
							MOV	kб	group1[5]
							DMOV	k15000	position[0
							DMOV	k30000	position[]
							DMOV	k1000	position[2
							-DMOV	k10000	position[3
							DMOV	k-10000	position[4
							DMOV	k-15000	position[:
1000	T_Abs	MoveLinear_Ul		T_Group Stop_U	1				
	En T	AbsMoveLi~ Eno	E	n T_GroupStop	Eno				
Г	Group1 AxeGroup	p Done- <u>M2</u>	Group 1 - A	.xesGroup	Done-M	11			
	M1-Execute	Busy – M3	M10-E		Busy M				
	position—Position 10000—Velocity	Aborted—M4 Error—M5			Error-M	13			
1000		ionObserve_Ul	F	T_MotionObserve	U2			ionObserve_U3	
1	En T	MotionObs~ Eno	E	n T_MotionObs~	Eno		En ^T -	MotionObs~ E	no
Γ	1-Axis	Valid— <mark>M30</mark>	A		Valid – <mark>M</mark>		3–Axis	Va	lid M50
	M1000-Enable	Busy- <mark>M31</mark>	M1000-E	nable	Busy M		00-Enable	Bu	sy <mark>MS1</mark>
		Error – M32 Position – D0		<b>D</b> -	Error M.				or M52
		Position—D0 Velocity—D2			sition_D4 locity_D6				on <mark>- D8</mark> ty - <mark>D10</mark>
1000	T_Mot	ionObserve_U4		T_MotionObserve	_U5		T_Moti	ionObserve_U6	
		MotionObs~ Eno	E	n T_MotionObs~	Eno		En T_	MotionObs~ E	no
_	4-Axis	Valid—M60	A	xis	Valid-M	70	6-Axis	_	lid <mark>M80</mark>
	M1000-Enable	Busy - M61	M1000-E		Busy M		00-Enable		sy M81
	MILOOD	Error-M62			Error M	72		En	or M82
	MIOOO	Error – M62 Position – D12 Velocity – D14			Error – M osition – D1 locity – D1	.6		Positi	or - <u>M82</u> on - <u>D20</u> ty - <u>D22</u>

and the relative linear interpolation executed by the axes specified.

- Create the identifier Group1 in the local symbol table in O100. Group1 is an array composed of 6 words.
- Create the identifier Position in the local symbol table in O100. Position is an array composed of 6 double words.
- When the program is executed, the array indicated by Group1 is set to [1, 2, 3, 4, 5, 6]. The first axis, the second axis, the third axis, the fourth axis, the fifth axis, and the sixth axis are used to execute linear interpolation.

- When the program is executed, the array indicated by Position is set to [15000, 30000, 1000, 10000, -10000, -15000]. [15000, 30000, 1000, 10000, -10000, -15000] indicates the target positions of the absolute linear interpolation executed by the first axis, the second axis, the third axis, the fourth axis, the fifth axis, and the sixth axis.
- After M1 is set to ON, the multiaxial absolute linear interpolation set will be started.
- Set M10 to ON when M1 is ON. When the multiaxial absolute linear interpolation set is stopped, the Aborted output pin the the motion control function block T_AbsMoveLinear is True, and the Done output pin in the motion control function block T_GroupStop is True.
- 5. Module which is supported The motion control function block T_GroupStop supports DVP10PM00M.

## 5.12 Other Motion Control Function Blocks

#### 5.12.1 High-speed Counter

En	T_HCnt	Eno
Channel		Valid
Enable		Busy
ExtRstEN		Error
InputType		CountValue
InitialValue		

## 1. Motion control function block

The motion control function block T_HCnt is used to start a high-speed counter. The value of the Channel input pin indicates a counter number, and the value of the InputType input pin indicates an input pulse type. The ExtRstEN input pin is used to set an external reset switch. The value of the InitialValue input pin is the initial value in the counter specified, and the value of the CountValue output pin is the value in the counter specified.

The input terminals for the high-speed counters in a DVP-10PM series motion controller are shown below.



X0 and X1 are for high-speed counter 0; X2 and X3 are for high-speed counter 1; X4 and X5 are for high-speed counter 2; X6 and X7 are for high-speed counter 3; X10+, X10-, X11+, and X11- are for high-speed counter 4; X12+, X12-, X13+, and X13- are for high-speed counter 5.

	Input pin						
Name	Function	Data type	Setting value	Time when a value is valid			
Channel	Counter number	WORD	0~5 (*1)	The value of the Channel input pin is valid when there is a transition in the Enable input pin's signal from low to high.			

	Input pin					
Name	Function	Function Data type Setting value		Time when a value is valid		
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-		
InputType	Input pulse type	WORD	mcUD: 0 mcPD: 1 mcAB: 2 mc4AB: 3	When the motion control function block is executed, the value of the InputType input pin is updated repeatedly.		
ExtRstEN	External reset switch	BOOL	True/False (*2)	The value of the ExtRstEN input pin is valid when there is a transition in the Enable input pin's signal from low to high.		
InitialValue	Initial value in the counter specified	DWORD	K0~2,147,483,647	The value of the InitialValue input pin is valid when there is a transition in the Enable input pin's signal from low to high.		

	State output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Valid	An output value is valid.	BOOL	<ul> <li>There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>		
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>		
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The source specified has been occupied.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>		

	Value output pin						
Name	Function	Data type Output range Time when a v		alue is valid			
CountValue	Value in the counter specified	DWORD	DWORD K0~2,147,483,647		Tru	nen the Valid outpu ue, the value of the tput pin is updated	CountValue
*1: Value of	*1: Value of the Channel input pin *2: External terminals for resetting the high-speed				he high-speed		
Value	Definition			counters in	a D'	VP-10PM series	motion
0	C200			controller			
1	C204	-		Counter numb	ber	Reset terminal	
2	C208	-		0		X10	
3	C212	_		1		X11	
4	C216	-	2			X12	
5	C220	-	3			X13	
L			4			X0	
				5		X1	

reasiesting	
Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The counter specified has been used.	Use another counter, or stop the counter which has been used.

#### 4. Example

Purpose:

The first axis sends pulses to high-speed counter 4. Users can check whether the number of
pulses output is the same as the number of pulses input. The external wiring required is shown
below.



Y10+ is connected to X10+. Y10- is connected to X10.-Y11+ is connected to X11+. Y11- is connected to X11-.



- The pulses output by the first axis are A/B-phase pulses.
- After M21 is set to ON, high-speed counter 4 will be started.
- The value of POS is 30,000, and the value of VEL is 10,000.
- After M20 is set to ON, the absolute single-speed motion set will be started.
- Compare the value in D0 (the value in high-speed counter 4) with the value in D2 when M3 is ON.

## 5. Module which is supported

The motion control function block T_HCnt supports DVP10PM00M.

## 5.12.2 High-speed Timer

En	T_HTn	ur Eno
Chann	el	Valid
Enable		Busy
Trigger	rMode	Error
		TimerValue

## 1. Motion control function block

The motion control function block T_HTmr is used to start a high-speed timer. The value of the Channel input pin indicates a timer number, the value of the TriggerMode indicates a mode of triggering the measurement of time, and the value of the TimerValue output pin the value in the timer specified. 0.01  $\mu$ s is a unit. The high-speed timer numbers available are the same as the high-speed counter numbers available.

	Input pin								
Name	Function	Data type	Setting value	Time when a value is valid					
Channel	Timer number	WORD	0~5 (*1)	The value of the Channel input pin is valid when there is a transition in the Enable input pin's signal from low to high.					

	Input pin					
Name	Function	Data type	Setting value	Time when a value is valid		
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-		
TriggerMode	Mode of triggering the measurement of timer	BOOL	mcUp_Down: False mcUp_Up: True	When the motion control function block is executed, the value of the TriggerMode input pin is updated repeatedly.		

	State output pin						
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low			
Valid	An output value is valid.	BOOL	<ul> <li>There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>			
Busy	The motion control function block is being executed.	BOOL	<ul> <li>There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>			
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The source specified has been occupied.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>			

	Value output pin						
Name	Function	Data type	Output range	Time when a value is valid			
TimeValue	Value in the timer specified	DWORD	K0~2,147,483,647	When the motion control function block is executed, the value of the TimerValue output pin is updated repeatedly. If there is no trigger, the value in the timer specified will remain unchanged.			

*1: Value of the Channel input pin

Value	Definition	Terminal
0	C200	X10
1	C204	X11
2	C208	X12
3	C212	X13
4	C216	X0
5	C220	X1

3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The timer specified has been used.	Use another timer, or stop the timer which has been used.

4. Example

Purpose:

• Users can use the motion control function block T_InputPolarity to simulate the state of the terminal for a high-speed timer.

M1000	T_HTmr_	ุขา	T_Input	Polarity_U1
	En T_HTn	u Eno	En T_Ir	nputPola~ Eno
	3 Channel	Valid M101	M0-Enable	Valid M13
ľv	1100-Enable	Busy M102	Ml X0_Dog0	Dog0_X0-M14
mcUP_I	) _{own} – TriggerMode	Error M103	M2 X1_Pg0	Pg0_X1 M15
	]	FimerValue <mark>- D0</mark>	M3-X2_Dogl	Dogl_X2-M16
			M4-X3_Pgl	Pgl_X3-M17
			M5-X4_Dog2	Dog2_X4 -M18
			M6-X5_Pg2	Pg2_X5-M19
			M7-X6_Dog3	Dog3_X6 - <mark>M20</mark>
			<u>M8</u> -X7_Pg3	Pg3_X7-M21
			M9-X10_mpgA	mpgA_X10-M22
			M10-X11_mpgB	mpgB_X11 - M23
			M11 - X12_Dog4	Dog4_X12- <u>M24</u>
			M12-X13_DogS	Dog5_X13- <u>M25</u>
				Busy-M26

- After M0 is set to ON, the motion control function block T_InputPolarity will be started.
- After M100 is set to ON, high-speed timer 3 will be started.
- Set M12 to ON.
- Set M12 to OFF.
- The value of the TimerValue input pin indicates the time it takes for M12 to be turned from ON to OFF. If the value of the TimerValue input pin is multiplied by 0.01, the product gotten will be the number of microseconds.
- 5. Module which is supported

The motion control function block T_HTmr supports DVP10PM00M.

#### 5.12.3 Setting High-speed Comparison

En	T_Compare	Eno
Channel	L	Valid
Enable		Busy
Source		Error
CmpMo	de	
OutputI	)evice	
Outputl	/Iode	
CmpVal	tie	

1. Motion control function block

The motion control function block T_Compare is used to start high-speed comparison. The value of the Channel input pin indicates a comparator number, the value of the Source input pin indicates a source, the value of the CmpMode input pin indicates a comparison condition, and the value of the OutputDevice indicates an output device.

	Input pin				
Name	Function	Data type	Setting value	Time when a value is valid	
Channel	Comparator number	WORD	0~7	The value of the Channel input pin is valid when there is a transition in the Enable input pin's signal from low to high.	
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-	
Source	Source	WORD	mcCmpAxis1: 0 mcCmpAxis2: 1 mcCmpAxis3: 2 mcCmpAxis4: 3 mcCmpC200: 4 mcCmpC204: 5 mcCmpC208: 6 mcCmpC212: 7	The value of the Source input pin is valid when there is a transition in the Enable input pin's signal from low to high.	
CmpMode	Comparison condition	WORD	1: = 2: ≧ 3: ≦	The value of the CmpMode input pin is valid when there is a transition in the Enable input pin's signal from low to high.	
OutputDevice	Output device	WORD	mcCmpY0: 0 mcCmpY1: 1 mcCmpY2: 2 mcCmpY3: 3 mcCmpRstC200: 4 mcCmpRstC204: 5 mcCmpRstC208: 6 mcCmpRstC212: 7	The value of the OutputDevice input pin is valid when there is a transition in the Enable input pin's signal from low to high.	
OutputMode	Output mode	BOOL	mcCmpSet: True mcCmpRst: False	The value of the OutputMode input pin is valid when there is a transition in the Enable input pin's signal from low to high.	

# **5** Applied Instructions and Basic Usage

	Input pin			
Name	Function	Data type	Setting value	Time when a value is valid
CmpValue	Value with which a source is compared	DWORD	K-2,147,483,647~ K2,147,483,647	The value of the CmpValue input pin is valid when there is a transition in the Enable input pin's signal from low to high.

	State output pin					
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low		
Valid	An output value is valid.	BOOL	<ul> <li>There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>		
Busy	The motion control function block is being executed.	BOOL	<ul> <li>There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>		
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The source specified has been occupied.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>		

Please note that the number of high-speed comparators plus the number of high-speed capturers is 8 at most.

- Source
  - mcCmpAxis1: Present position of the first axis
  - mcCmpAxis2: Present position of the second axis
  - mcCmpAxis3: Present position of the third axis
  - mcCmpAxis4: Present position of the fourth axis
  - mcCmpC200: Present value in C200
  - mcCmpC204: Present value in C204
  - mcCmpC204: Present value in C208
  - mcCmpC204: Present value in C212
- Output device
  - mcCmpY0: Y0
  - mcCmpY1: Y1
  - mcCmpY2: Y2
  - mcCmpY3: Y3
  - mcCmpRstC200: Resetting C200
  - mcCmpRstC204: Resetting C204
  - mcCmpRstC208: Resetting C208

- mcCmpRstC212: Resetting C212
- Output mode
  - The device specified is Y0, Y1, Y2, or Y3. McCmpSet: Enabling the output device specified McCmpRst: Diabling the output device specified
  - The device specified is C200, C204, C208, or C212. McCmpSet: The value in the counter specified is cleared. McCmpRst: The counter specified counts.
- 3. Troubleshooting

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The comparator specified has been used.	Use another comparator.

 Module which is supported The motion control function block T_Compare supports DVP10PM00M.

## 5.12.4 Resetting High-speed Comparison

En T_CmpF	StOut Eno
Enable	Valid
CLRYO	CmpY0
CLRY1	Cmp¥1
CLRY2	CmpY2
CLRY3	СтрҮ3
CLRC200Rst	CmpC200
CLRC204Rst	CmpC204
CLRC208Rst	CmpC208
CLRC212Rst	CmpC212
	Busy

1. Motion control function block

The motion control function block T_CmpRstOut is used to reset high-speed comparison. CLRY0, CLRY1, CLRY2, CLRY3, CLRC200Rst, CLRC204Rst, CLRC208Rst, and CLRC212Rst determine the output devices which will be reset. The values of the output pins indicate whether the output devices Y0, Y1, Y2, Y3, C200, C204, C208, and C212 are enabled or disabled.

	Input pin			
Name	Function	Data type	Setting value	Time when a value is valid
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-

# ${\bf 5}$ Applied Instructions and Basic Usage

	Input pin				
Name	Function	Data type	Setting value	Time when a value is valid	
CLRY0					
CLRY1					
CLRY2	Resetting the	e l			
CLRY3	output devices			When the motion control function	
CLRC200Rst	Y0, Y1, Y2, Y3, C200, C204,	BOOL	True/False	block is executed, the values of these	
CLRC204Rst	C208, and				input pins are updated repeatedly.
CLRC208Rst	C212				
CLRC212Rst					

	State output pin				
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low	
Valid	An output value is valid.	BOOL	<ul> <li>There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>	
Busy	The motion control function block is being executed.	BOOL	There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>	
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The source specified has been occupied.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>	

	Value output pin					
Name	Function	Data type	Output range	Time when a value is valid		
CmpY0				When the Valid output pin is set		
CmpY1	States of the			to True, the values of these output pins are updated		
CmpY2	output devices	BOOL True/False				
CmpY3	Y0, Y1, Y2, Y3,		repeatedly.			
CmpC200	C200, C204,		BOOL	BOOL	BOOL ITUE/Faise	
CmpC204	C208, and					
CmpC208	C212					
CmpC212						

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
Evennele	

4. Example

Purpose:

• Two high-speed comparators are set. When the conditions set are met, users can check whether the output devices specified are set/reset. The external wiring required is shown below.



Y10± are connected to X10±. Y11± are connected to X11±. C2 is connected to 24G. Y2 is connected to X0. S/S is connected to +24V.



- If the program is executed, the pulses output by the first axis will be A/B-phase pulses, the motion control function block T_CmpRstOut will be started, and the states of output devices will be read.
- After M53 is set to ON, a high-speed counter will be started.
- After M1 is set to ON, high-speed comparator 0 will be started.
   Setting high-speed comparator 0: If the number of pulses output by the first axis is greater than or equal to 50,000, Y2 will be set to ON.
- After M10 is set to ON, high-speed comparator 1 will be started. Setting high-speed comparator 1: If the value in C200 is equal to 5,000, the value in C200 will be cleared to 0.
- After M40 is set to ON, the first axis will move for 100,000 pulses.
- If the value in C200 is equal to 5,000, and M31 is ON, the comparison condition set for high-speed comparator 1 is met, and the value in C200 is cleared to 0. The value in C200 will be cleared to 0 next time the value in C200 becomes 5,000. If M31 is not reset, high-speed comparator 1 will not act next time the comparison condition set for high-speed comparator 1 is met.
- If the number of pulses output by the first axis is 100,000, the comparison condition set for high-speed comparator 0 is met, and Y2 is set to ON. When Y2 is set to ON, the users can check whether X0 is ON.
- If X0 is ON, the comparison condition set for high-speed comparator 0 is met. The users can turn X0 OFF by means of M22.

## 5. Module which is supported

The motion control function block T_CmpRstOut supports DVP10PM00M.

### 5.12.5 Setting High-speed Capture

En	T_Capture	Eno
Channel		Valid
Enable		Busy
Source		Error
TriggerDe	evice	CapValue
InitialVab	le	

#### 1. Motion control function block

The motion control function block T_Capture is used to start high-speed capture. The value of the Channel input pin indicates a capturer number. The value of the Source input pin indicates a source, the value of the TriggerDevice input pin indicates the device which triggers the capture of a value, the value of the InitialValue input pin is an initial value, and the value of the CapValue output pin is the value captured.

	-		Input pin	
Name	Function	Data type	Setting value	Time when a value is valid
Channel	Capturer number	WORD	0~7	The value of the Channel input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-
Source	Source	WORD	mcCapAxis1: 0 mcCapAxis2: 1 mcCapAxis3: 2 mcCapAxis4: 3 mcCapC200: 4 mcCapC204: 5 mcCapC208: 6 mcCapC212: 7	The value of the Source input pin is valid when there is a transition in the Enable input pin's signal from low to high.
TriggerDevice	Device which triggers the capture of a value	WORD	mcX0 (0): X0 mcX1 (1): X1 mcX2 (2): X2 mcX3 (3): X3 mcX4 (4): X4 mcX5 (5): X5 mcX6 (6): X6 mcX7 (7): X7 mcX10 (8): X10 mcX11 (9): X11 mcX12 (10): X12 mcX13 (11): X13	The value of the TriggerDevice input pin is valid when there is a transition in the Enable input pin's signal from low to high.

	Input pin							
Name	Function	Data type	Setting value	Time when a value is valid				
InitialValue	Initial value	DWORD	K-2,147,483,648~ K2,147,483,647	The value of the InitialValue input pin is valid when there is a transition in the Enable input pin's signal from low to high.				

			State output pin	
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An output value is valid.	BOOL	<ul> <li>There is a transition in the Valid output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>
Busy	The motion control function block is being executed.	BOOL	<ul> <li>There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The source specified has been occupied.</li> </ul>	<ul> <li>There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>

Value output pin						
Name	Function	Data type	Output range	Time when a value is valid		
CapValue	Value which is captured	DWORD	K-2,147,483,648~ K2,147,483,647	When the motion control function block is executed, the value of the CapValue output pin is updated repeatedly. If there is no trigger, the value captured will remain unchanged.		

Error	Troubleshooting
The values of input pins in the motion control function block are incorrect.	Check whether the values of the input pins are in the ranges allowed.
The capturer specified has been used.	Use another capturer.

### 4. Example

Purpose:

• Two high-speed capturers are used. If external terminals are turned ON, the present position of the first axis and the present value in C200 will be captured. The motion control function block

T_InputPolarity is used to set the polarity of the external terminal which triggers the capture of the present position of the first axis, and the polarity of the external terminal which triggers the capture of the present value in C200. The external wiring required is shown below.



- The pulses output by the first axis are A/B-phase pulses. After the motion control function block T_MotionObserve is enabled, the present position of the first axis and the present speed of the first axis will be read.
- After M53 is set to ON, a high-speed counter will be started.
- After M1 is set to ON, high-speed capturer 0 will be started.
- Setting high-speed capturer 0: If X0 is turned ON, the present position of the first axis will be captured.

- After M10 is set to ON, high-speed capturer 1 will be started.
   Setting high-speed capturer 1: If X10 is turned ON, the present value in C200 will be captured.
- After M40 is set to ON, the positive JOG motion of the first axis will be started.
- If M101 is turned ON, X0 will become a normally-closed contact, there will be a transition in X0's signal from low to high, and the value in D0 will change.
- If M109 is turned ON, X10 will become a normally-closed contact, there will be a transition in X10's signal from low to high, and the value in D10 will change.

## 5. Module which is supported

The motion control function block T_Capture supports DVP10PM00M.

## 5.12.6 High-speed Masking

En	T_CapMask	Eno
Enable		Busy
MaskV.	alue	Error

1. Motion control function block



The motion control function block T_CapMask is used to start high-speed masking. The MaskValue input pin determines the range which will be masked. After high-speed masking is started, if the relative difference between the value captured this time and the value captured last time is in the range which can be masked, the signal which triggers the capture of the value this time will be disregarded.

	Input pin							
Name	Function	Data type	Setting value	Time when a value is valid				
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-				
MaskValue	Range which is masked	DWORD	K0~2,147,483,647	When the motion control function block is executed, the value of the MaskValue input pin is updated repeatedly.				

			State output pin	
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Busy	The motion control function block is being executed.	BOOL	<ul> <li>There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The source specified has been occupied.</li> </ul>	• There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Error	Troubleshooting
The values of input pins in the motion control function	Check whether the values of the input pins are in the
block are incorrect.	ranges allowed.

#### 4. Example

#### Purpose

A high-speed capturer and the motion control function block T_CapMask are used. If the present position of the first axis is in the range (the value of the CapValue output pin±the value of the MaskValue input pin) which is masked, it will not be captured after an external device is set to ON.

M1000		T_SetPosition_	UI			T_N	lotionObserve_U1			1	_CapMask_U	1	
$\neg$	En	T_SetPositio~	Eno			En	T_MotionOb~ End			En	T_CapMask	Eno	
[	l-Axis		Done	-M21	1	Axis	Vali	4- <mark>M30</mark>	M10-	Enable		Busy	M11
	M20 Exec	rute	Busy	-M22	M1000	Enable	Busy	M31	D10-	MaskVa	alue	Error	-M12
	D20 Posi	tion	Error	-M23			Erro	r-M32					
L					-		Position	n D2					
							Velocity	7-D4					

11000	T_Capture_Ul	T_InputPolarity_U1	
1	En ^{T_Capture} Eno	En T_InputPola~ Eno	
	0-Channel Valid-M2	M1000-Enable Valid	M113
	M1-Enable Busy-M3	M101-X0_Dog0 Dog0_X0	M114
	0-Source Error-M4	M102 X1_Pg0 Pg0_X1	M115
	0-TriggerDevice CapValue-D0	M103-X2_Dogl Dogl_X2	M116
	D12-InitialValue	M104 X3_Pg1 Pg1_X3	M117
		M105-X4_Dog2 Dog2_X4	M118
		M106-X5_Pg2 Pg2_X5	M119
		M107-X6_Dog3 Dog3_X6	M120
		M108-X7_Pg3 Pg3_X7	M121
		M109-X10_mpgA mpgA_X10	-M122
		M110-X11_mpgB mpgB_X11	M123
		M111-X12_Dog4 Dog4_X12	M124
		M112-X13_Dog5 Dog5_X13	M125
		Busy	-M126

- After the program is executed, the present position of the first axis and the present speed of the first axis will be read.
- After the value in D20 is set to 0, and M20 is turned ON, the first axis will output 0 pulses.
- Set the value in D12 to 100. After M1 is turned ON, high-speed capturer 0 will be started. Setting high-speed capturer 0: If X0 is turned ON, the present position of the first axis will be captured.
- Set the value in D10 to 500. After M10 is turned ON, the high-speed masking specified will be started.
- After M101 is set to ON, there will be a transition in X0's signal from low to high, and the value of

the CapValue output pin will still be 100.

- After the value in D20 is set to 500, and M20 is turned ON. The first axis will output 500 pulses.
- After M101 is set to ON, there will be a transition in X0's signal from low to high, and the value of the CapValue output pin will still be 100.
- After the value in D20 is set to 600, and M20 is turned ON. The first axis will output 600 pulses.
- After M101 is set to ON, there will be a transition in X0's signal from low to high, and the value of the CapValue output pin will become 600.

## 5. Module which is supported

The motion control function block T_CapMask supports DVP10PM00M.

## 5.12.7 Setting an Interrupt

En	T_Interrupt	Eno
IntSrc		Valid
Enable		Busy
TimePe	riod	Error

## 1. Motion control function block

The motion control function block T_Interrupt is used to set the trigger for an interrupt subroutine. The value of the IntSCR input pin indicates the trigger for an interrupt subroutine. If the interrupt set is a time interrupt, the value of the TimePeriod input pin indicates the cycle of the interrupt.

			Input pin	
Name	Function	Data type	Setting value	Time when a value is valid
IntSrc	Setting an interrupt	WORD	IntTimer: 0 IntX00: 1 IntX01: 2 IntX02: 3 IntX03: 4 IntX04: 5 IntX05: 6 IntX06: 7 IntX07: 8	The value of the IntSrc input pin is valid when there is a transition in the Enable input pin's signal from low to high.
Enable	The motion control function block is enabled when there is a transition in the Enable input pin's signal from low to high.	BOOL	True/False	-
TimePeriod	Cycle of a time interrupt (Unit: ms) (Not applicable to terminal interrupts)	WORD	K1~K65,535	When the motion control function block is executed, the value of the TimePeriod input pin is updated repeatedly.

			State output pin	
Name	Function	Data type	Time when there is a transition in an output pin's signal from low to high	Time when there is a transition in an output pin's signal from high to low
Valid	An Interrupt is enabled.	BOOL	<ul> <li>There is a transition in the Valid output pin's signal from low to high when an interrupt is enabled.</li> </ul>	<ul> <li>There is a transition in the Valid output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>
Busy	The motion control function block is being executed.	BOOL	<ul> <li>There is a transition in the Busy output pin's signal from low to high when there is a transition in the Enable input pin's signal from low to high.</li> </ul>	<ul> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Error output pin's signal from low to high.</li> <li>There is a transition in the Busy output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.</li> </ul>
Error	An error occurs in the motion control function block.	BOOL	<ul> <li>Input values are incorrect.</li> <li>The source specified has been occupied.</li> </ul>	• There is a transition in the Error output pin's signal from high to low when there is a transition in the Enable input pin's signal from high to low.

Error	Troubleshooting
The values of input pins in the motion control function	Check whether the values of the input pins are in the
block are incorrect.	ranges allowed.

## 4. Example

- Purpose:
  - A time interrupt and an external interrupt are used. Users can use the motion control function block T_InputPolarity to simulate the state of an external terminal.



#### O100:

м1000			n <b>putPolarity_Ul</b> T_InputPola~ En				<mark>Interrupt_UI</mark> T_Interrupt	Eno			T En	Interrupt_U2 T_Interrupt	2 Eno	ļ
	M0-	Enable	Vali	d-M13		IntSrc		Valid	M31	1-	IntSrc		Valid	-M34
	M2-	XO_Dog X1_Pg0	Pg0_X	1-M15		Enable TimePer		Busy Error	-M32 -M33		Enable TimePe			-M35 -M36
	M4-	X2_Dog X3_Pgl X4_D	Pgl_X	3-M17										
	M6-	X4_Dog X5_Pg2 X6_Dog	Pg2_X	5-M19	1									
	M8-	X7_Pg3 X10_mj	Pg3_X	7- <mark>M2</mark> 1	1									
	M10-	X10_m X11_m X12_Do	pgB mpgB_Xl	1-M23	1									
		X12_D0 X13_Do	ogS DogS_X1		]									

• After M0 is set to ON, the motion control function block T_InputPolarity will be started.

- After M30 is set to ON, the time interrupt I0 and the external interrupt I1 will be started.
- After the time interrupt I0 is started, it will be executed every three seconds, and the value in D9000 will increase by one every three seconds.
- After the external interrupt I1 is started, the users can simulate the state of X0 by setting M1. If M1 is turned from OFF to ON, the value in D9001 will increase by one.
- 5. Module which is supported

The motion control function block T_Interrupt supports DVP10PM00M.

## 6.1 Introduction of Multiaxial Interpolation

DVP-10PM series motion controllers support multiaxial interpolation. Users can execute linear interpolation by means of the instruction TO.

## 6.2 Description of TO

A DVP-10PM series motion controller can start and stop linear interpolation by means of the instruction TO. The use of TO to set linear interpolation is described below.

CR#2: Starting interpolation



• Evey axis is controlled by two bits in (**S**, **S**₊₁).

Value	Definition
0	Not participating in interpolation
1	Stopping linear interpolation

Value	Definition
2	Not used
3	Not used

Users can set the parameters of the axes participating in linear interpolation by means of D1816, D1896, D1976, D2056, D2136, and D2216..

Bit#	Parameter of the axis	Bit#	Parameter of the axis
0	Unit (Note 1)	8	Direction in which the axis returns home (Note 3)
1		9	Mode of returning home (Note 3)
2	Ratio (Note 2)	10	Mode of triggering the return to home (Note 3)
3		11	Direction in which the motor rotates (Note 3)
4		12	Relative/Absolute coordinates (Note 3)
5	Output type(Note 2)	13	Mode of triggering the calculation of the target position (Note 3)
6*	PWM mode (Note 3)	14	Curve (Note 3)
7		15	

Note 1:

	•					
b1	b0	Unit		Motor unit	Compound unit	Mechanical unit
0	0	Motor unit		pulse	um	
0	1	Mechanical unit	Position	pulse	mdeg	
1	0	Compound unit		pulse	10 ^{-₄} inches	
1	1	Compound unit		pulse/secon	d	centimeter/minute
			Speed	pulse/second		10 degrees/minute
				pulse/secon	d	inch/minute

Note 2:						
b3	b2	Ratio	b5			
0	0	100	0			
•		404	-			

b3	b2	Ratio	b5	b4	Description
0	0	100	0	0	Positive-going pulse+Negative-going pulse
0	1	101	0	1	Pulse+Direction
1	0	102	1	0	A/B-phase pulse (two phases and two inputs)
1	1	103	1	1	

Note 3:

Note 3:								
Bit#	Description							
	Bit 6=1: Enabling a PWM mode							
	(1) If positive JOG motion is started, Y0~Y3 will execute PWM.							
6	(2) If single-speed motion is started, Y0~Y3 will send single-phase pulses.							
	(3) Pulse width: D1838, D1918, D1998, and D2078							
	(4) Output period: D1842, D1922, D2002, and D2082							
	Bit 8=0: The value indicating the present command position of the axis decreases							
8	progressively.							
	Bit 8=1: The value indicating the present command position of the axis increases							
	progressively.							
9	Bit 9=0: Normal mode ; bit 9=1: Overwrite mode							
	Bit 10=0: The return to home is triggered by a transition in DOG's signal from high to low.							
10								
	Bit 10=1: The return to home is triggered by a transition in DOG's signal from low to high.							
	Bit 11=0: When the motor rotates clockwise, the value indicating the present command							
11	position of the axis increases.							
	Bit 11=1: When the motor rotates clockwise, the value indicating the present command position of the axis decreases.							
	Bit 12=0: Absolute coordinates							
12	Bit 12=0: Absolute coordinates Bit 12=1: Relative coordinates							

Bit#	Description
	Bit 13=0: The calculation of the target position of the axis is triggered by a transition in DOG's signal from low to high.
13	Bit 13=1: The calculation of the target position of the axis is triggered by a transition in DOG's signal from high to low.
	(The setting of bit 13 is applicable to the insertion of single-speed motion, and the insertion of two-speed motion.)
14	Bit 14=0: Trapezoid curve
.4	Bit 14=1: S curve

Users can use M1792, M1872, M2032, M2112, M2192, and M2272 to judge whether the axes complete the execution of linear interpolation.

MEMO

# 7.1 Introduction of DVP-FPMC: CANopen Communication Card

DVP-FPMC is a CANopen communication card for a DVP-10PM series motion controller to conduct data exchange. The functions of DVP-FPMC are as follows.

- It conforms to the CANopen standard protocol DS301 v4.02.
- It supports an NMT protocol.
- It supports an SDO protocol.
- It supports the CANopen standard protocol DS402 v2.0. Four motion axes at most are supported.
- Motion axes support a profile position mode.

## 7.2 Specifications

CANopen connector

Item	Specifications	
Transmission method	CAN	
Electrical isolation	500 V DC	
Туре	Removable connector (5.08 mm)	
Transmission cable	2 communication cables, 1 shielded cable, and 1 ground	
Ethernet connector		

Item	Specifications	
Transmission method	Ethernet	
Electrical isolation	500 V DC	
Туре	Removable connector (5.08 mm)	
Transmission cable 2 communication cables, 1 shielded cable, and 1 ground		

Communication

Item	Specifications		
Protocol type	PDO, SDO, SYNC (synchronous object), EMCY (emergency object), NMT, Heartbeat		
Serial transmission speed	500 kbps, 1 Mbps (bits per second)		
Product code	254		
Equipment type	0 (Non-profile)		
Company ID	477 (Delta Electronics, Inc.)		

• Electrical specifications

Item	Specifications	
Supply voltage	24 V DC (-15~20%)	
	(A DVP-10PM series motion controller supplies power through its internal bus.)	
Electric energy consumption	1.7 W	
Insulation voltage	500 V	
Weight	Approximately 66 g	

Environmental specifications

Item	Specifications
	ESD (IEC 61131-2, IEC 61000-4-2): 8 kV air discharge, 4 kV contact discharge
Noise immunity	EFT (IEC 61131-2, IEC 61000-4-4): Power line: 2 kV; Digital I/O: 1 kV; Analog & Communication I/O: 1 kV
	Damped-Oscillatory Wave: Power line: 1 kV; Digital I/O: 1 kV
	RS (IEC 61131-2, IEC 61000-4-3): 80 MHz~1000 MHz, 1.4 GHz~2.0GHz, 10V/m
Operation/Storage	Operation: 0°C ~ 55°C (Temperature), 50~95% (Humidity), pollution degree 2
	Storage: -25°C~70°C (Temperature), 5~95% (Humidity)
Vibration/Shock	International standards IEC 61131-2, IEC 68-2-6 (TEST Fc)/IEC 61131-2 & IEC
resistance	68-2-27 (TEST Ea)
Standard	IEC 61131-2

# 7.3 Product Profile and Installation

Product profile:



① CANopen connector

② Ethernet connector

③ CANopen indicator

④ Ethernet indicator

⑤ Communication connector

Installing DVP-FPMC on a DVP-10PM series motion controller, and connecting it to a communication cable:





# 7.4 Parameters for Control Registers

## Normal mode: Common parameters

CR number	Function	Attribute	Data type	Length
#001	Firmware version of DVP-FPMC	R	Word	1
#052	CANopen synchronous packet sending setting	R/W	Word	1
#053	CANopen node ID setting	R/W	Word	1
#054	CANopen transmission speed setting	R/W	Word	1
#055	CANopen SDO/NMT timeout	R/W	Word	1
#056	DVP-FPMC error status	R/W	Word	1
#059	Network IP address and port setting for DVP-FPMC	R/W	Word	3
#062	Ethernet connection command and status	R/W	Word	1
#063	IP address and port setting for an Ethernet master	R/W	Word	3
#064	Length of data to be transmitted through Ethernet	R/W	Word	1
#065	Data to be transmitted through Ethernet	R/W	Word	512
#066	Length of data to be received through Ethernet	R	Word	1
#067	Data to be received through Ethernet	R	Word	512
#070	Node ID of an SDO server	R/W	Word	1
#071	SDO access command and status	R/W	Word	1
#072	SDO OD index	R/W	Word	1
#073	SDO OD transmission/reception register 1	R/W	Word	512
#074	SDO OD transmission/reception register 2	R/W	Word	512
#075	SDO OD transmission/reception register 3	R/W	Word	512
#076	SDO OD transmission/reception register 4	R/W	Word	512
#080	NMT command	R/W	Word	1

CR number	Function	Attribute	Data type	Length
#010	CANopen bus scan	R/W	Word	1
#020	CANopen bus communication status	R	Word	1
#040	Error status of a server	R	Word	1
#050	CANopen bus control command	R/W	Word	1
#090	Data written into a DVP-FPMC QBuffer	R/W	Word	32
#091	Address of the data written into a DVP-FPMC QBuffer	R/W	Word	32
#092	Data read from a DVP-FPMC QBuffer	R/W	Word	32
#093	Address of the data read from a DVP-FPMC QBuffer	R/W	Word	32
# <b>n</b> 00	Node ID	R	Word	1
# <b>n</b> 01		Р	\A/ord	4
# <b>n</b> 02	- Manufacturer ID	R	Word	1
# <b>n</b> 03				
# <b>n</b> 04	Product ID	R	Word	1
# <b>n</b> 05				
# <b>n</b> 06	- Firmware version	R	Word	1
# <b>n</b> 07			Word	1
# <b>n</b> 08	Product type	R		
# <b>n</b> 09	CANopen node communication status	R	Word	1
# <b>n</b> 10	Emergency error code	R	Word	1
# <b>n</b> 11				
# <b>n</b> 12	- Manufacturer's error code	R	Word	1
# <b>n</b> 20	Servo drive status	R	Word	1
# <b>n</b> 21	Present motion mode of a servo drive	R	Word	1
# <b>n</b> 22				
# <b>n</b> 23	Servo drive position	R	Word	1
# <b>n</b> 40	Node control command	R/W	Word	1
# <b>n</b> 50	SDO access command and status	R/W	Word	1
# <b>n</b> 51	SDO OD (object dictionary) index	R/W	Word	1
# <b>n</b> 52	SDO transmission/reception register 1	R/W	Word	512
# <b>n</b> 53	SDO transmission/reception register 2	R/W	Word	512
# <b>n</b> 54	SDO transmission/reception register 3	R/W	Word	512
# <b>n</b> 55	SDO transmission/reception register 4	R/W	Word	512
# <b>n</b> 60	Servo drive control	R/W	Word	1
# <b>n</b> 61	Motion mode selection	R/W	Word	1
# <b>n</b> 70		R/W	Word	1
<b>#n</b> 71	- Target position of a profile position mode			
# <b>n</b> 72				1
# <b>n</b> 73	- Target speed of a profile position mode	R/W	Word	
# <b>n</b> 74			+	
# <b>n</b> 75	Acceleration time of a profile position mode (ms)	R/W	Word	1
# <b>n</b> 76				
#n77	Deceleration time of a profile position mode (ms)	R/W	Word	1
# <b>n</b> 78	Profile position settings	R/W	Word	1
# <b>n</b> 80	Homing method	R/W	Word	1
# <b>n</b> 81				1
# <b>n</b> 82	Home offset	R/W	Word	1
#n83			++	
#n84	Homing speed	R/W	Word	1

## • A2 mode: Four-axis parameters

# **7**CANopen Communication Card

Function	Attribute	Data type	Length	
Speed at which motion homes after a transition in a	D/M	Word	1	
DOG signal		vvoru	I	
Homing accoloration time	DM	Word	1	
		word	1	
Enabling a homing mode	R/W	Word	1	
Target position of an interpolation mode		Word	1	
rarger position of an interpolation mode	1 1/ 1/	vvolu		
Enabling an interpolation mode	R/W	Word	1	
	Speed at which motion homes after a transition in a DOG signal         Homing acceleration time         Enabling a homing mode         Target position of an interpolation mode	Speed at which motion homes after a transition in a DOG signalR/WHoming acceleration timeR/WEnabling a homing modeR/WTarget position of an interpolation modeR/W	Speed at which motion homes after a transition in a DOG signalR/WWordHoming acceleration timeR/WWordEnabling a homing modeR/WWordTarget position of an interpolation modeR/WWord	

#### • CANopen common mode

CR number	Function	Attribute	Data type	Length
#500	CANopen mode switch	R/W	Word	1
#504	Enabling a heartbeat protocol	R/W	Word	1
#505	Execution status of a heartbeat protocol	R	Word	1
#506	Heartbeat statuses	R	Word	1

• Object dictionary parameters

CR number	Function	Attribute	Data type	Length
#H'1006	Synchronization cycle setting	R/W	DWord	1
#H'1017	DVP-FPMC heartbeat cycle setting	R/W	Word	1
#H'1400~#H'143F	Parameter settings for a RPDO	R/W	Word	3
#H'1600~#H'163F	Parameter settings for RPDO data mapping	R/W	DWord	4
#H'1800~#H'183F	Parameter settings for a TPDO	R/W	Word	3
#H'1A00~#H'1A3F	Parameter settings for TPDO data mapping	R/W	Dword	4
#H'2000~#H'207F	PDO data registers	R/W	Word	4

## 7.5 Descriptions of Control Registers

#### • Normal mode: Common parameters

CR#001: Firmware version of DVP-FPMC

#### [Description]

The firmware version of DVP-FPMC is displayed in a hex value, e.g. H'8161 indicates that the data of issuing the firmware of DVP-FPMC is "Afternoon, August 16".

## CR#052: CANopen synchronous packet sending setting

#### [Description]

The control register has two functions.

- The low byte of CR052 sets up a CANopen synchronous function. If the value of the low byte is 1, DVP-FPMC will send out a synchronous packet. If the value is 0, the function will be disabled.
- The high byte of CR052 sets up a synchronous cycle. Setting valuex5=Value in D1040. If the value of the high byte is greater than 0, the synchronization between the DVP-10PM series motion controller used and DVP-FPMC will be enabled.

Bit	Bit [15:8]	Bit [7:0]
Value	Synchronous cycle	Enabling the sending of a synchronous packet

## CR#053: CANopen node ID setting

#### [Description]

The control register is used to set a CANopen node ID. A CANopen node ID is in the range of 5 to 127. Default value: 127

#### CR#054: CANopen transmission speed setting

#### [Description]

The control register is used to set a CANopen transmission speed. The setting status is indicated by bit 15. If bit 15 is 1, the setting is in progress. If bit 15 is 0, the setting is completed. For example, if the CANopen transmission speed required is 1000 kb/s, users can write K1000 into CR#054.

Bit	Bit [15]	Bit [14:0]
Setting value	Setting status 0: Completed 1: In progress	1000: CANopen speed=1000 kb/s 500: CANopen speed=500 kb/s

#### CR#055: CANopen SDO/NMT timeout

[Description]

The control register is used to set a CANopen SDO/NMT timeout. Unit: Millisecond

Default value: 1000

#### **CR#056**: DVP-FPMC error status

#### [Description]

The control register is used to display the error status of DVP-FPMC. Please refer to the table below for more information.

Error status	Value	Resolution
CANopen connection error	C1	Check the CANopen nodes of the present slaves.
Ethernet connection error	E1	Check the connection between the communication module and Ethernet.

#### CR#059: Network IP address and port setting for DVP-FPMC

[Description]

The control register is used to set an IP address and a port number for DVP-FPMC.

Data length: 3 words

Default IP address: 192.168.0.100

Port number: 1024

Please refer to the example below. (IP address: 192.168.0.100; Port number: 1024)

Word 0		Word 1		Word 2
H-byte	L-byte	H-byte	L-byte	1024
192	168	0	100	1024

#### CR#062: Ethernet connection command and status

## [Description]

The control register is used to set an Ethernet connection command, and obtain a connection status.

- H'0: Disconnected
- H'30: Connected
- H'10: Sending a connection command
- H'20: Sending a disconnection command

#### CR#063: IP address and port setting for an Ethernet master

#### [Description]

The control register is used to set an IP address and a port number for an Ethernet master.

#### Data length: 3 words

#### Please refer to the table below for more information.

Word 0		Word 1		Word 2
H-byte	L-byte	H-byte	L-byte	1024
192	168	0	100	1024

CR#064~CR#67: Length of data to be transmitted/received through Ethernet/Data to be transmitted/received through Ethernet

#### [Description]

The control register is used to set the data to be accessed through Ethernet. The maximum capacity is 1024 bytes.

- Sending data: After users write a data length data into CR#064, and data into CR#65, DVP-FPMC will automatically clear values in the two control registers to 0.
- Receiving data: Users read the contents of CR#066 first, and then read the data in CR#067.

#### CR#070: Node ID of an SDO server

#### [Description]

The control register is used to set the node ID of an SDO server. A node ID is in the range of 1 to 127.

#### CR#071: SDO access command and status

#### [Description]

The control register is used to set an SDO access command, and obtain a status. Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:4]	Bit [3]	Bit [2:0]
Setting value	Subindex of a target OD index	Data length (Unit: Byte) Range: 1~8 If users want to write data, they have to specify a data length.	Error flag	Command: 0: Completed 1: Writing (including a check) 2: Reading (including a check) 3: Writing (not including a check) 4: Reading (not including a check)

Example: SDO data transmission

- 1. Specify the OD index of an SDO server (CR#070) in CR#072.
- 2. Set the data to be transmitted in CR#073~CR#076.
- 3. Refer to the table above. Specify a subindex in bit 15~bit 8 in CR#071, and an SDO access command.

(1)			-
$\rightarrow$	OD index		
	Subindex	Data 🚽	2
3	Subindex	Data	
			1

#### CR#072: SDO OD index

[Description]

The control register is used to specify a target OD index. Range: H'0000~H'FFFF.

**CR#073~CR#76**: SDO OD transmission/reception register 1~SDO OD transmission/reception register 4

#### [Description]

The data to be accessed through an SDO protocol is stored in the four control registers. The maximum capacity is 1024 bytes. If an error occurs during SDO data transmission, an error code will be stored in CR#073 and CR#074. If CR#073~CR#076 are used at a time, CR#073 functions as the LSB and CR#076 functions as the MSB.

#### CR#080: NMT command

#### [Description]

If DVP-FPMC is a master, an NMT command can be used to change a network status. Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:0]
Setting value	Network management command 1: Enabling node communication 2: Disabling node communication 128: Switch an operation mode 129: Resetting node communication	Node ID of a slave

#### Parameters for an A2 mode

An A2 mode is one of the applications of DVP-FPMC specifically for Delta ASDA-A2 series servo drives. In an A2 mode, CANopen node ID 1~CANopen ID 4 are for ASDA-A2 series servo drives, and CR#100~CR#499 correspond to servo parameters. CR#100~CR#199 are control registers for node ID 1, CR#200~CR#299 are control registers for node ID 2, CR#300~CR#399 are control registers for node ID 3, CR#400~CR#499 are control registers for node ID 4. n in a control register number represents the digit in the hundreds place of the control register number. It is in the range of 1 to 4. Control registers for ASDA-A2 application are applicable only in an A2 mode.

#### CR#010: CANopen bus scan

#### [Description]

The control register is used to scan CANopen node ID 1~CANopen node ID 4. Bit 0~bit 3 in CR#010 correspond to node 1~node 4. If a bit is 1, its corresponding node will be scanned, and the contents of the control register will be cleared automatically. Please refer to the table below for more information.

Bit	Bit [15:4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]
Node number	Reserved	Node 4	Node 3	Node 2	Node 1

#### CR#020: CANopen bus communication status

#### [Description]

Two consecutive bits in the control register are used to display a node communication status.

00: Disconnected

01: Connected

11: Ready

Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:6]	Bit [5:4]	Bit [3:2]	Bit [1:0]
Node number	Reserved	Node 4	Node 3	Node 2	Node 1

CR#040: Error status of a server

[Description]

The control register is used to display the error status of a servo drive. Bit 0~bit 3 in CR#010 correspond to node 1~node 4. If an error occurs, its corresponding bit will be 1. If an error reset command is executed, the contents of the register will be cleared automatically. Please refer to the table below for more information.

Bit	Bit [15:4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]
Node number	Reserved	Node 4	Node 3	Node 2	Node 1

CR#050: CANopen bus control command

[Description]

The control register is used to send bus control commands to the nodes connected successfully in a CANopen network. If the value in the control register is 1, the servos which have been connected are ON. If the value in the control registers is 128, the servos which have been connected are OFF. If the value in the control register is 129, the errors which appear are cleared. After the setting of the control register is completed, the contents of the register will be cleared automatically. Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:0]
		1: All servos are ON.
Value	Reserved	128: All servos are OFF.
		129: All errors are cleared.

CR#090~CR#093: Data written into/read from a DVP-FPMC QBuffer/Address of the data written into/read from a DVP-FPMC QBuffer

#### [Description]

A QBuffer is designed for accessing several inconsecutive control registers by means of executing TO/FROM once. PLC scan time can be reduced by decreasing the number of times TO/FROM is executed. QBuffer access operation is described below.

For example, after the inconsecutive control register numbers CR#170, CR#171, CR#280, CR#289, and CR#376 are written into the QBuffer address CR#91, DVP-FPMC will connect the data in CR#170, CR#171, CR#280, CR#289, and CR#376 with CR#90 automatically. Users only need to access CR#90, and the data in CR#170, CR#171, CR#280, CR#289, and CR#376 can be modified.

## Registers in a DVP-10PM series motion controller

CR#90 QBuffer data CR#91 QBuffer address



## CR#n00: Node ID

[Description]

The control register is used to display the node ID of a servo drive in a CANopen network.

Node ID=1: CR#100=1 Node ID=2: CR#200=2 Node ID=3: CR#300=3

Node ID=4: CR#400=4

## CR#n01~CR#n02: Manufacturer ID

[Description]

The control registers are used to display the manufacturer ID of an ASDA-A2 series servo drive. Data type: Double word

## CR#n03~CR#n04: Product ID

[Description]

The control registers are used to display the product ID of an ASDA-A2 series servo drive. Data type: Double word

#### CR#n05~CR#n06: Firmware version

[Description]

The control registers are used to display the firmware version of an ASDA-A2 series servo drive. Data type: Double word

## CR#n07~CR#n08: Product type

[Description]

The control registers are used to display the product type of an ASDA-A2 servo drive.

Data type: Double word

## CR#n09: CANopen node communication status

#### [Description]

The control register is used to display a node communication status in a CANopen network. Please refer to the table below for more information.

Status	Value
Disconnected	H'1
Connected	H'2
Operation mode	H'5
Error	H'6
Reset	H'7

#### CR#n10: Emergency error code

#### [Description]

The control register is used to display an error code defined by a CANopen protocol when an error occurs in a certain node.

## CR#n11~CR#n12: Manufacturer's error code

#### [Description]

The control registers are used to display an error code defined by a manufacturer when an error occurs in an ASDA-A2 series servo drive. Please refer to Delta ASDA-A2 User Manual for more information about error codes.

#### CR#n20: Servo drive status

#### [Description]

The value in the control register indicates the present status of an ASDA-A2 series servo drive. Please refer to the table below for more information.

	Status word															
	Х	ОМ	ОМ	ОМ	Х	TR	RM	Х	WR	Х	QS	Х	FT	so	Х	RS
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

- RS: The servo drive is ready. After the initialization of the servo drive is completed, the bit will be 1.
- SO: The servo drive is ON. The bit will be 1 if the servo drive is ON.
- FT: It is an error flag. If an error occurs in the servo drive, the bit will be 1.
- QS: If the bit is 1, the servo drive can be stopped urgently.
- WR: It is a warning flag. If the servo drive sends a warning message, the bit will be 1.
- RM: If the bit is 1, remote monitoring can be executed.
- TR: If the execution of a motion command is completed, the bit will be 1.
- OM [14:12]: The bits indicate the statuses of motion modes. Please see the table below for more information.

	Profile position mode	Homing mode	Interpolation mode
OM [12]	A target position has been set successfully.	A homing mode is being executed.	An interpolation mode is being executed.
OM [13]	Following error	Homing error	Х

	Profile position mode	Homing mode	Interpolation mode
OM [14]	Х	Х	Enabling synchronization

#### **CR#n21**: Present motion mode of a servo drive

#### [Description]

The control register is used to display the present motion mode of a servo drive.

Value	Motion mode
0x01	Profile position mode
0x06	Homing mode
0x07	Interpolation mode

#### CR#n22~CR#n23: Servo drive position

[Description]

The control registers are used to display the present position of a servo drive.

Data type: Double word

R#n40: Node control command
-----------------------------

[Description]

The control register is used to send a node control command to the node connected. If the value in the control register is 1, the servo which has been connected is ON. If the value in the control registers is 128, the servo which has been connected is OFF. If the value in the control register is 129, the error which appears is cleared. Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:0]			
		1: The servo which has been connected is ON.			
Value	Reserved	128: The servo drive which has been connected is OFF.			
		129: The error which appears is cleared.			

#### CR#n50: SDO access command and status

#### [Description]

The control register is used to set an SDO access command, and obtain a status. Please refer to the table below for more information.

Bit	Bit [15:8]	Bit [7:4]	Bit [3]	Bit [2:0]
Setting value	Subindex of a target OD index	Data length (Unit: Byte) Range: 1~8 If users want to write data, they have to specify a data length.	Error flag	Command: 0: Completed 1: Writing (including a check) 2: Reading (including a check) 3: Writing (not including a check) 4: Reading (not including a check)

Example: SDO data transmission

- 1. Specify the OD index of an SDO server in CR#n51.
- 2. Set the data to be transmitted in CR#n52~CR#n55.
- 3. Refer to the table above. Specify a subindex in bit 15~bit 8 in CR#n50, and an SDO access command.



CR#n51: SDO OD (object dictionary) index

#### [Description]

The control register is used to specify the OD index of a node. Range: H'0000~H'FFFF.

CR#n52~CR#n55: SDO transmission/reception register 1~SDO transmission/reception register 4

#### [Description]

The data to be accessed through an SDO protocol is stored in the four control registers. The maximum capacity is 1024 bytes. If an error occurs during SDO data transmission, an error code will be stored in CR#n52 and CR#n53. If CR#n52~CR#n55 are used at a time, CR#n52 functions as the LSB and CR#n55 functions as the MSB.

#### CR#n60: Servo drive control

#### [Description]

The control register is used to send a control command to an ASDA-A2 series servo drive. Please refer to the table below for more information.



- EO: The servo drive is enabled. The servo drive will be ON if the bit is 1.
- FR: The error occurs in the servo is cleared. The servo drive will clear the error which appears if the bit is 1.
- OM: It is used to control the function of motion modes. Please refer to the table below for more information.

	Profile position mode	Homing mode	Interpolation mode
OM [4]	Setting a new target position	Enabling a homing mode	Х
OM [5]	A target position is allowed to be changed during motion.	Х	Х
OM [6]	Absolute/Relative positioning	Х	Х

Note: "X" indicates "Reserved".

#### CR#n61: Motion mode selection

#### [Description]

The control register is used to set the motion mode of a servo drive. Please refer to the table below for more information.

Setting value	Motion mode
0x01	Profile position mode
0x06	Homing mode
0x07	Interpolation mode

CR#n70~CR#n71: Target position of a profile position mode

[Description]

The control registers are used to set the target position of a profile position mode. Data type: Double word

#### CR#n72~CR#n73: Target speed of a profile position mode

[Description]

The control registers are used to set the target speed of a profile position mode. Data type: Double word

#### CR#n74~CR#n75: Acceleration time of a profile position mode

[Description]

The control registers are used to set the acceleration time of a profile position mode. Data type: Double word

#### CR#n76~CR#n77: Deceleration time of a profile position mode

[Description]

The control registers are used to set the deceleration time of a profile position mode. Data type: Double word

#### CR#n78: Profile position settings

#### [Description]

The control register is used to set a profile position mode. A profile position mode can be absolute positioning or relative positioning.

- 0: Positioning is completed.
- 1: A profile position mode is absolute positioning. The value in the control register will be cleared to 0 after positioning is completed.
- 2: A profile position mode is relative positioning. The value in the control register will be cleared to 0 after positioning is completed.
- 3: A profile position mode is absolute positioning. The value in the control register will be retained after positioning is completed.

## CR#n80: Homing method

## [Description]

The control register is used to set a homing method.

Range: 1~35

For more information, please refer to chapter 13 in CiA DSP402 V2.0.

## CR#n81~CR#n82: Home offset

[Description] The control registers are used to set a home offset. Range: -2,147,483,648~2,147,483,647 Data type: Double word

## CR#n83~CR#n84: Homing speed

[Description] The control registers are used to set a homing speed. Range: 0~2,147,483,647 Data type: Double word

## CR#n85~CR#n86: Speed at which motion homes after a transition in a DOG signal

[Description] The control registers are used to set the speed at which motion homes after a transition in a DOG signal. Range: 0~2,147,483,647 Data type: Double word

## CR#n87~CR#n88: Homing acceleration time

[Description] The control registers are used to set homing acceleration time. Range: 0~2,147,483,647 Data type: Double word

CR#n89: Enabling a homing mode

[Description]

A homing mode will be executed if the value in the control register is 1. After homing is completed, the value in the control register will be cleared to 0 automatically.

## CR#n90~CR#n91: Target position of an interpolation mode

[Description]

The control registers are used to set the target position of an interpolation mode. Range: -2,147,483,648 ~2,147,483,647 Data type: Double word

#### CR#n92: Enabling an interpolation mode

#### [Description]

An interpolation mode will be executed if the value in the control register is 1. An interpolation mode will be disabled if the value in the control register is 0.

#### • CANopen common mode

CR#500: CANopen mode switch

#### [Description]

The control register is used to switch the CANopen mode of DVP-FPMC. If the value in the control register is 1, the CANopen mode of DVP-FPMC is an A2 mode. If the value in the control register is 2, the CANopen mode of DVP-FPMC is a normal mode.

#### Default value: 1

Control registers for an A2 mode will be unavailable if the CANopen mode of DVP-FPMC is a normal mode. Control registers for a normal mode will be unavailable if the CANopen mode of DVP-FPMC is an A2 mode.

#### CR#504: Enabling a heartbeat protocol

#### [Description]

If a heartbeat protocol is enabled in a common mode, the heartbeat mechanisms of node ID 1~nod ID 16 (slaves) will be enabled by a master. If the value in the control register is 0, a heartbeat protocol is disabled. If the value in the control register is 1, a heartbeat protocol is enabled.

CR#505: Execution statuses of a heartbeat protocol

#### [Description]

The control register is used to display the execution statuses of the heartbeat protocol executed by node ID 1~node ID 16. If the value in the control register is 0, the execution of a heartbeat protocol is completed. If the value in the control register is 1, a heartbeat protocol is being executed.

#### CR#506: Heartbeat statuses

#### [Description]

The control register is used to display the heartbeat statuses of node ID1~node ID 16. Node ID 1~node ID 16 correspond to bit 0~bit 15. If the heartbeat mechanism of a slave is enabled successfully, the bit corresponding to the salve is 1. If the heartbeat mechanism of a slave is not enabled, the bit corresponding to the salve is 0. In addition, if a slave is disconnected from a master, the bit corresponding to the slave is 0.

		Heartbeat statuses of slaves															
Node IDs		16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## • Object dictionary parameters

#### CR#H'1006: Synchronization cycle setting

[Description]

The control register is used to set a time interval (unit) for the sending of CANopen synchronization packets in a normal mode.

Unit: µs

Data type: Double word

Default value: 5000

A synchronization cycle is measured by the millisecond now. The time less than one millisecond is ignored. It is suggested that the minimum synchronization cycle for 1 PDO~3 PDOs in a CANopen network should be 3 milliseconds, and the minimum synchronization cycle for 4 PDOs~8PDOs should be 4 milliseconds. That is to say, one millisecond will be added to a minimum synchronization cycle if four PDOs are added.

**CR#H'1017**: DVP-FPMC heartbeat cycle setting

[Description]

The control register is used to set a heartbeat cycle.

Unit: Millisecond

Default value: 0

If the value in the control register is 0, the heartbeat mechanism of DVP-FPMC is not enabled.

## CR#H'1400~CR#H'143F: Parameter settings for a RPDO

[Description]

The control registers are used to set the parameters for RPDO in a normal mode. The capacity of the control registers is 3 words. Please refer to the table below for more information.

Transmission method	PDO ID				
Word 2	Word 1 (High)	Word 0 (Low)			

• PDO ID: A CANopen POD ID occupies two words.

Default values:

CR#H'1400=H180+FPMC DVP-FPMC node ID (CR#053) CR# H'1401=H280+FPMC DVP-FPMC node ID (CR#053) CR#H'1403=H380+FPMC DVP-FPMC node ID (CR#053) CR#H'1404=H480+FPMC DVP-FPMC node ID (CR#053)

 Transmission method: If the value set is in the range of 1 to 240, the sending of a PDO is synchronized with the sending of a CANopen packet, and is executed every synchronization cycle. If the value set is in the range of 241 to 255, no PDO is sent. Default value: 241

## CR#H'1600~CR#H'163F: Parameter settings for RPDO data mapping

#### [Description]

The control registers are used to set parameters for RPDO data mapping in a normal mode. A RPDO parameter is composed of a double word. The first word is used to set an OD Index. The high byte of the second word is used to set a subindex, and the low byte is used to set a data type. A bit is a unit for setting a data type. Please refer to the figure below for more information.



#### CR#H'1800~CR#H'183F: Parameter settings for a TPDO

#### [Description]

The control registers are used to set the parameters for TPDO in a normal mode. The capacity of the control registers is 3 words. Please refer to the table below for more information.

Transmission method	PD	O ID
Word 2	Word 1 (High)	Word 0 (Low)

- PDO ID: A CANopen POD ID occupies two words. Default values: CR#H'1800=H200+ DVP-FPMC node ID (CR#053) CR# H'1801=H300+ DVP-FPMC node ID (CR#053) CR#H'1803=H400+ DVP-FPMC node ID (CR#053) CR#H'1804=H500+ DVP-FPMC node ID (CR#053)
- Transmission method: If the value set is in the range of 1 to 240, the sending of a PDO is synchronized with the sending of a CANopen packet, and is executed every synchronization cycle. If the value set is in the range of 241 to 255, no PDO is sent. Default value: 241

Transmission method	PDO	DID
Word 2	Word 1 (High)	Word 0 (Low)

#### CR#H'1A00~CR#H'1A3F: Parameter settings for TPDO data mapping

#### [Description]

The control registers are used to set parameters for TPDO data mapping in a normal mode. A TPDO parameter is composed of a double word. The first word is used to set an OD Index. The high byte of the second word is used to a subindex, and the low byte is used to set a data type (unit: bit). Please refer to the figure below for more information.



## CR#H'2000~CR#H'207F: PDO data registers

## [Description]

Index

Data registers storing the data for PDO access. DVP-FPMC takes CR#H'2000~CR#H'207F in an OD as data registers. Every index has 4 subindices in which data can be stored. The size of a subindex is one word. If the size of the data to be accessed is bigger than one word, users have to use several subindex areas for data transmission.

Index (Hexadecimal value)	Object name	Number of subindices	Name	Data type	Attribute	Mapping target
1000	VAR	1	Product type	UNSIGNED32	RO	Ν
1006	VAR	1	Synchronization cycle	UNSIGNED32	RW	Ν
1018	ARRAY	5	Product information	UNSIGNED32	RO	Ν
1200	ARRAY	3	SDO parameter of a master	UNSIGNED32	RO	Ν
1280	ARRAY	4	SDO parameter of a slave	UNSIGNED32	RO	Ν
:	-	:	:	:	:	:
128F	ARRAY	4	SDO parameter of a slave	UNSIGNED32	RO	Ν
1400	ARRAY	6	RPDO parameter	UNSIGNED32	RW	Ν
:		<u> </u>		:		:
143F	ARRAY	6	RPDO parameter	UNSIGNED32	RW	Ν
1600	ARRAY	9	RPDO mapping parameter	UNSIGNED32	RW	Ν
:	:	:	:	:	:	
163F	ARRAY	9	RPDO mapping parameter	UNSIGNED32	RW	Ν
1800	ARRAY	6	TPDO parameter	UNSIGNED32	RW	Ν
:	:	:	:	:	:	:
183F	ARRAY	6	TPDO parameter	UNSIGNED32	RW	Ν
1A00	ARRAY	9	TPDO mapping parameter	UNSIGNED32	RW	Ν
:	:	:	:	:	:	:
1A3F	ARRAY	9	TPDO mapping parameter	UNSIGNED32	RW	Ν
2000	ARRAY	5	PDO data register	UNSIGNED32	RW	Y
:	:	:	:	:	:	:
207F	ARRAY	5	PDO data register	UNSIGNED32	RW	Y
6000	ARRAY	5	Mode switch	UNSIGNED8	R	Y
6100	ARRAY	17	Servo drive control	UNSIGNED16	R	Y
6120	ARRAY	17	Parameter of a profile position mode	UNSIGNED32	R	Y
6200	ARRAY	5	Present motion mode of a servo drive	UNSIGNED8	RW	Y
6300	ARRAY	5	Servo drive status	UNSIGNED16	RW	Y
6320	ARRAY	5	Servo drive position	UNSIGNED32	RW	Y

• Object dictionary for DVP-FPMC

## 7.6 Setting a DVP-FPMC Mode

#### A2 mode

In an A2 mode, DVP-FPMC communicates with four Delta ASDA-A2 series servo drives through a CANopen network. During the communication, DVP-FPMC functions as a master, and the servo drives functions as slaves. The communication structure required is show below. The default node ID of DVP-FPMC is 127. The objects which are connected are node ID 1~ node ID 4. After users assign node ID 1~node ID4 to the servo drives, the servo drives can exchange data with DVP-FPMC.



In the A2 mode, there are six PDOs for the setting of servo parameters. The users can monitor the statuses of the servo drives directly by accessing control registers in a CANopen network. They do not need to set PDO parameters. Four PDOs are assigned to DVP-FPMC, and two PDOs are assigned to the servo drives. Please refer to the table below for more information.

PDO	Master (transmission)	Slave (transmission)
1	Target position of a profile position mode (CR#n70~CR#n71)	
I	Target speed of a profile position mode (CR#n72~CR#n73)	
2	Acceleration time of a profile position mode (CR#n74~CR#n75)	
Ζ	Deceleration time of a profile position mode (CR#n76~CR#n77)	
3	Servo drive control (CR#n60)	
4	Target position of an interpolation mode (CR#n90~CR#n91)	
		Servo drive status (CR#n20)
5		Present motion mode of a servo drive (CR#n21)
6		Servo drive position (CR#n22~CR#n23)

Setting communication in an A2 mode:

• Setting the ASDA-A2 series servo drives

Before creating a CANopen connection, the users have to set the servo drives to CANopen mode.

- 1. Set P1-01 to H'0B. (The servo drive is set to CANopen mode.)
- 2. Set P3-00. The value of P3-00 indicates a node number. It is in the range of H'01 to H'04.
- Set P3-01 to H'0403. The value of P3-01 indicates a baud rate. (If the high byte of the value of P3-01 is 2, the baud rate used is 500 kbps. If the high byte of the value of P3-01 is 4, the baud rate used is 1 Mbps.) The baud rates which are supported by DVP-FPMC now are 1 Mbps and 500 kbps. (Default: 1 Mbps)
- Setting DVP-FPMC

After the setting of the CNopen parameters in the servo drives connected is completed, the users can create a CANopen network by means of DVP-FPMC.

- 1. Write 1 into CR#500. DVP-FPMC is set to A2 mode.
- 2. Write a node ID into CR#053. The default node ID of DVP-FPMC is 127.
- 3. Write H'FFFF into CR#010. All servo drives which are connected are scanned.
- 4. Read the value in CR#010 by means of the instruction FROM, and check whether the value in CR#010 is cleared to 0.
- 5. Write 1 into CR#050. All servo drives which has been connected are set to ON.
- Normal mode

In a normal mode, users have to set the PDO parameters in DVP-FPMC and the slaves which are connected. They have to use FROM/TO to set control registers in DVP-FPMC, and use an SDO protocol to set the PDO parameters in the servo drives connected. The steps of setting the PDO parameters in DVP-FPMC are as follows.

1. Setting PDO transmission parameters

The setting of PDO parameters includes the setting of a frame ID and the setting of a synchronization cycle. A frame ID is in the range of H'181 to H'578. Please note that the frame ID and the synchronization cycle in the PDO for a master must be the same as the frame ID and the synchronization cycle in the PDO for the slave connected. There are two kinds of PDOs: transmit and receive PDOs (TPDO and RPDO).

Setting a TPDO

CR#H'1800~CR#H'183F in DVP-DPMC function as TPDOs. They communicate with a slave's RPDOs. For example, the OD index H'1800 (TPDO) in a master communicates with the OD index H'143F (RPDO) in a slave. The synchronization cycle set is 240, and the frame ID set is H'181.



• Setting a RPDO

CR#H'1400~CR#H'143F in DVP-DPMC function as RPDOs. They communicate with a slave's TPDOs. For example, the OD index H'1438 (RPDO) in a master communicates with the OD index H'1800 (TPDO) in a slave. The synchronization cycle set is 5, and the frame ID set is H'400.



## 2. Setting PDO mapping parameters

The setting of PDO mapping parameters includes the setting of a mapping target and the setting of a data length in a PDO data buffer. The maximum data length which can be set is 64 bits, that is to say, four subindices in a PDO data buffer can be occupied at a time. For example, the mapping target set is the second subindex in CR#H'200A, and the data length set is 48 bits. Subindex 2~subindex 4 in the PDO data buffer used are occupied.



3. Setting PDO data

Write the data to be transmitted by a PDO into the OD indices set. For example, subindex 2~subindex 4 in CR#H'200A in DVP-FPMC is TPDO data, and subindex 1~subindex 3 in CR#H'203F in the slave connected is RPDO data. After communication is enabled, data will be transmitted/received every synchronization cycle.



## 7.7 Ethernet Mode of DVP-FPMC

DVP-FPMC supports Ethernet connection. It can be connected to an Ethernet device or a PC. If DVP-FPMC is connected to a PC, PMSoft can be used to upload/download a program and monitor devices. Users only need to connect the communication port on DVP-FPMC to a communication port on equipment. Please refer to section 9.3 for more information about installing hardware. If DVP-FPMC is connected to a PC, the Ethernet LED indicator will be ON. Please check the setting of hardware or the setting of the PC connected if the Ethernet LED indicator is not ON.

## 7.7.1 Communication between DVP-FPMC and an HMI

#### Configuration

In this example, two DVP-10PM series motion controllers equipped with DVP-FPMC exchange data with the HMI DOP-B10E615 through Ethernet. The hardware configuration required is shown below. The program in the HMI controls Y0~Y7 on the two DVP-10PM series motion controllers.



## Setting DVP-FPMC

.

In this example, DVP-FPMC functions as a slave. The IP address of DVP-FPMC needs to be set. The IP address of the equipment to be connected and Ethernet connections do not need to be set. Users need to write the IP address of DVP-FPMC into CR#59. Please refer to 7.5 for more information about setting CR#59. Take the IP address 192.168.0.100 for instance. The program in DVP-PM is shown below.

M1002	-	MOV	HC0A8	D0		
		MOV	H66	D1		
		то	K254	K59	D0	K2

I

Setting an HMI

An HMI is used as a master. It is connected to two slaves. The IP address of the HMI and Ethernet connections need to be set. The steps of creating the connection between the HMI and DVP-FPMC are as follows.

1. Click **Configuration...** on the **Options** menu.



2. Click the **Main** tab, and then select **DOP-B10E615 65536 Colors** in the **HMI Type** drop-down list box.

	Standard
Main	НМІ Туре
	DOP-B10E615 65536 Colors

3. Click Communication Setting on the Options menu.



4. Click the Ethernet tab.

0	Device LocalHost SMTP	
COM1	🖻 🖻	
	Link Name	Detail
COM2		
0 <b>1111</b> 0		
СОМЗ		
Ethernet		

5. After users click (*), they have to type a link name in the Link Name box, and select Delta DVP TCP/IP in the Controller drop-down list box.

	Device	LocalHost	SMTP			
	× 🖪 🗸	2				
$\cup$		Link Name	:		Detail	
	Ether	Link1		Controller	Delta DVP TCP/IP	~

6. The users have to set the IP address of DVP- FPMC in the **Communication Parameter** section.

Communication Parameter				
Controller IP : Port	192 . 168 . 0 . 100	:	502	\$

7. After the users select the link name created in step 5 in the **Input** window for an element, they can operate the memory defined by the element by means of Ethernet.

Link: EtherLink1
------------------

The HMI needs to control Y0~Y7 on two DVP-10PM series motion controllers which function as slaves. The interface required is shown below. The buttons Y0~Y7 correspond to Y0~Y7 on EtherLink1 and EtherLink2, that is to say, they correspond to Y0~Y7 on the two slaves connected. After the setting described above is completed, the HMI can connect to the two slaves by means of Ethernet.



## 7.7.2 Communication between DVP-FPMC and PMSoft

Before users create communication between DVP-FPMC and PMSoft, they have to use COMMG to create an Ethernet driver. An Ethernet driver can be used to upload the program in a DVP-10PM series motion controller, download a program into a DVP-10PM series motion controller, and monitor a DVP-10PM series motion controller.

Wiring hardware

Users can connect the network port on DVP-FPMC to a network port on a PC by means of a network cable. If DVP-FPMC is connected to a PC, the Ethernet LED indicator on DVP-FPMC will be ON. Please check the setting of hardware and or the setting of the PC is the Ethernet LED indicator is not ON.



- Setting a PC
  - 1. Click Internet Protocol (TCP/IP) in the Local Area Connection Properties window, and then click Properties.



 Select the Use the following IP address option button in the Internet Protocol (TCP/IP) Properties window. Type 192.168.0.55 in the IP address box. The last number is in the range of 1 to 255, bit it can not be 100. Type 255.255.255.0 in the Subnet mask box, and click OK.

── Use the following IP address: —	
IP address:	192.168.0.55
Subnet mask:	255 . 255 . 255 . 0
Default gateway:	

- Setting PMSoft
  - 1. Click **Add** in the **COMMGR** window, and then create an Ethernet driver in the **Driver Properties** window.



The IP Address set is 192.168.0.100, and the port number set is 502.

 Start PMSoft, and click Communication Setting on the Communication menu. In the Communication Setting window, select the driver created in the first step in the Driver drop-down list box, and select the IP address 192.168.1.100. After OK is clicked, users can upload/download a program and monitor devices by means of Ethernet.

<u>Communication</u> Options Window E		
<u>]</u> Download Program Ctrl+F8	Communication S	etting 🛛 🛛
🕎 Upload Program Ctrl+F9		
🔒 Password Setting Ctrl+W	Driver	Driver1
<u>Run</u> O100 Ctrl+F11	Station Address	0 🔻
Stop 0100 Ctrl+F12	Staton Address	× •
Tracing Ox Position	IP Address	192.168.0.100
System <u>L</u> og		
PM Information	Connection Targ	et
Edit Register Memory	O AH CPU	Rack 1 💌 Slot 0 💌
Edit Bit Memory	<ul> <li>Motion Cont</li> </ul>	roller
🖉 Monitoring		OK Close
Communication Setting		

- 3. Downloading a program: If users want to download a program, they can click **Download Program** on the **Communication** menu. The procedure for downloading a program through Ethernet is the same as the procedure for downloading a program through a general communication port.
- 4. Uploading a program: If users want to upload a program, they can click **Upload Program** on the **Communication** menu. The procedure for uploading a program through Ethernet is the same as the procedure for uploading a program through a general communication port.
- 5. Monitoring a DVP-10PM series motion controller: If users want to monitor a DVP-10PM series

motion controller, they can click is on the toolbar, or click **Monitoring** on the **Communication** menu. The procedure for monitoring a DVP-10PM series motion controller through Ethernet is the same as the procedure for monitoring a DVP-10PM series motion controller through a general communication port.

## 7.8 LED Indicators and Troubleshooting

	CANopen	LED	indicator
--	---------	-----	-----------

LED indicator	Description	Resolution
The green light is OFF.	A CANopen cable is not connected.	Check whether cables are connected correctly.
The green light is ON.	A CANopen cable is connected normally.	No action is required.
Ethernet LED indicator		

LED indicator	Description	Resolution			
The green light is OFF.	DVP-FPMC is not connected to a network.	Check whether a network cable is connected correctly.			
The green light is ON.	DVP-FPMC is connected to a network normally.	No action is required.			
The green light blinks.	There is data exchange.				

MEMO

## 8.1 High-speed Comparison and High-speed Capture

A DVP-10PM series motion controller sets and reads values by means of the instructions FROM and TO. The use of FROM/TO to set high-speed comparison and high-speed capture, and to read values is described below.

Control



Device	Control	Resetting output devices	Setting a range which is masked
S	Initial group number n (n=0~7)	0	0
S ₊₁	0	1	2
(S ₊₃ , S ₊₂ )	Control register whose group number is n		
(S ₊₅ , S ₊₄ )	Data registers whose group numbers are n		
(S ₊₇ , S ₊₆ )	Control register whose group number is n+1		
(S ₊₉ , S ₊₈ )	Data registers whose group numbers are n+1		
:	:		
(S ₊₃₁ , S ₊₃₀ )	Control register whose group number is n+7		
(S ₊₃₃ , S ₊₃₂ )	Data registers whose group numbers are n+7		
N	Data length=2+m*4		
	m=number of groups (8 groups at most can be used.)		

Reading



Device	Reading the values in counters	Reading the states of output devices/Enabling capture
S	Initial group number n (n=0~7)	0
S ₊₁	0	1
(S ₊₃ , S ₊₂ )	Control register whose group number is n	States of output devices
(S ₊₅ , S ₊₄ )	Data registers whose group numbers are n	Enabling capture (8 bits)
(S ₊₇ , S ₊₆ )	Control register whose group number is n+1	
(S ₊₉ , S ₊₈ )	Data registers whose group numbers are n+1	
:	:	
(S ₊₃₁ , S ₊₃₀ )	Control register whose group number is n+7	
(S ₊₃₃ , S ₊₃₂ )	Data registers whose group numbers are n+7	
N	Data length=2+m*4	
IN	m=number of groups (8 groups at most can be used.)	

#### Control/Reading

(1) The format of a control register in a high-speed comparison mode is described below.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Item	/					nparis	on re	sult	Out acti		Cond	diti on	Corr	nparis	on so	urce

ltem	Bit	Setting value	DVP-10PM series motion controller
		0	Present position of the X-axis
		1	Present position of the Y-axis
		2	Present position of the Z-axis
Comparison	[3-0]	3	Present position of the A-axis
source	[0 0]	4	Value in C200
		5	Value in C204
		6	Value in C208
		7	Value in C212
		1	Equal to (=)
Comparison condition	[5-4]	2	Greater than or equal to ( $\geq$ )
		3	Less than or equal to ( $\leq$ )
Output		0	Set
Output action	[7-6]	1	Reset
action		2, 3	No output
		0	YO
		1	Y1
		2	Y2
Comparison	[11-8]	3	Y3
result	[11-0]	4	Clearing the value in C200
		5	Clearing the value in C204
		6	Clearing the value in C208
		7	Clearing the value in C212

(2) The format of a control register in a high-speed capture mode is described below.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Item	Trigger										Set	ting	Ca	ptur	e sou	urce	

Item	Bit	Setting value	DVP-10PM series motion controller	
		0	Present position of the X-axis	
		1	Present position of the Y-axis	
			2	Present position of the Z-axis
Capture	[3-0]	3	Present position of the A-axis	
source	[3-0]	4	Value in C200	
		5	Value in C204	
		6	Value in C208	
		7	Value in C212	
Setting	[5-4]	0	Capture mode	
		0	X0	
		1	X1	
		2	X2	
		3	X3	
		4	X4	
External		5	X5	
trigger	[15-12]	6	X6	
linggoi		7	X7	
		8	X10	
		9	X11	
		10	X12	
		11	X13	
		12	-	

Item	Bit	Setting value	DVP-10PM series motion controller	
	[15-12]	13	-	
External trigger		[15-12] 14		-
uiggei		15	-	

## 8.2 High-speed Comparison

A high-speed comparison is shown below. Users use FROM/TO to read/write values so that they can compare data.



- ※ The dotted lines are data procedures, and the solid lines are control procedures.
- Block (A): The instruction TO is used to write data into control registers (block C) and data registers (block D).
- Block (B): The instruction FROM is used to read data from control registers (block C) and data registers (block D).
- Block (C): User set a comparison source (block E), a comparison condition (block F), and an output terminal (block G) in a control register in accordance with the value it receives by means of TO.
- Block (D): The value that users write into data registers by means of the instruction TO is compared with a comparison source (block E).
- Block (E): The present positions of four axes, the values in C200, C204, C208, and C212 are comparison sources.
- Block (F): There are three comparison conditions, they are equal to, greater than or equal to, and less than or equal to. If block D and block E meet the comparison condition set, the output terminal selected will be set to ON, the counter selected will be reset, the output terminal selected will be reset to OFF, or the counter selected will not be reset.
- Block (G): If a comparison condition is met, Y0, Y1, Y2, Y3, C200, C204, C208, or C212 will be set or reset.

Procedure for a high-speed comparison: The instruction TO is used to write data into control registers and data registers (block A).  $\rightarrow$  The comparison source set (block E) is compared with the value in data registers (block D). The comparison result meets the condition set (block F).  $\rightarrow$  Y0, Y1, Y2, Y3, C200, C204, C208, or C212 will be set or reset (block G).

Example

[Description]

The high-speed counter C204 is used. If the value in C204 is greater than 100, Y1 will be set to ON. If the value in C204 is greater than 300, Y1 will be reset to OFF. Two comparators are used in a program. One comparator is used to set Y1 to ON, and the other is used to reset Y1 to OFF. When Y1 is set to ON, no LED indicator on DVP10PM00M will indicate that Y1 is ON, but users can know whether Y1 is ON by means of its external wiring. As a result, the terminal C1 is connected to the terminal 24G, Y1 is connected to X7, S/S2 is connected to +24V. A manual pulse generator is used, and is connected to X2 and X3.

【Steps】

- After O100 is started, the initial setting of two high-speed comparisons will be carried out.
   (1) D0=0→Initial group number n=0
  - (2) D1=0
  - (3) D20=10→Writing 10 values by means of the instruction TO (two groups of high-speed comparison values)
  - (4) D60=10→Reading 10 values by means of the instruction FROM (two high-speed comparison values)
- 2. Two groups of high-speed comparison values are set when M1 is ON.
  - (1) First group: The value in (D3, D2) is H125. → The comparison source set is C204. (The value of bit 3~bit 0 is 5.) The comparison condition set is greater than or equal to. (The value of bit 5~bit 4 is 2.) The output action selected is set. (The value of bit7~bit 6 is 0.) The terminal selected is Y1 (The value of bit1~bit 8 is 1.)
  - (2) First group: The value in (D5, D4) is K100. If the value in C204 is greater or equal to K100, Y1 will be set to ON.
  - (3) Second group: The value in (D7, D6) is H165.→ The comparison source set is C204. (The value of bit 3~bit 0 is 5.) The comparison condition set is greater than or equal to. (The value of bit 5~bit 4 is 2.) The output action selected is reset. (The value of bit7~bit 6 is 1.) The terminal selected is Y1. (The value of bit1~bit 8 is 1.)
  - (4) Second group: The value in (D9, D8) is K300. If the value in C204 is greater or equal to K300, Y1 will be reset to OFF.
- 3. The two high-speed comparisons are started when M2 is ON.
- 4. The setting of the two high-speed comparisons is read when M3 is ON.

🖳 MonitorTable						
Γ	Device No.	Radix	Value	Comment		
Г	C204	d32u	0			
	D44	d32u	100			
	D48	d32u	300			
	D40	d1 <i>6</i> u	0			
	D41	d16u	0			
	D42	h32	00000125			
	D44	d32u	100			
	D46	h32	00000165			
	D48	d32s	300			

- 5. When M4 is ON, K1 is moved to M1204~M1207. C204 is started when M5 is set to ON. (Mode of counting: Pulse/Direction)
- 6. Use the manual pulse generator, and check whether C204 counts.

-				
	Device No.	Radix	Value	Comment
	C204	d32u	95	
	D44	d32u	100	
	D48	d32u	300	

- 7. Use the manual pulse generator. Check whether X7 on the DVP-10PM series motion controller used is ON when the value in C204 is greater than 100. If X7 is ON, Y1 is set to ON.
- 8. Use the manual pulse generator. Check whether X7 on the DVP-10PM series motion controller used is OFF when the value in C204 is greater than 300. If X7 is OFF, Y1 is reset to OFF.

## [Program in PMSoft]



## 8.3 High-speed Capture

A deviation often occurs when the present position of an axis or the value in C200/C204/C208/C212 is read. To prevent a deviation from occurring, users read a value immediately by setting an input terminal to ON. Capture is described below.



- Block (A): The instruction TO is used to write data into control registers (block B).
- Block (B): Users set a capture source (block D), set bit 5~bit 4 to 0 (block E), and set a trigger (block F) in a control register.
- Block (C): The capture of a value (block D) is triggered by an input terminal, and the value captured is stored in data registers.
- Block (D): The present positions of four axes, the values in C200, C204, C208, and C212 are capture sources.
- Block (E): Capture mode
- Block (F): External trigger
- Block (G): The instruction FROM is used to read data from control registers (block C) and data registers (block B). The values stored in the data registers are values captured.

Procedure for a high-speed capture: The instruction TO is used to write data into control registers (block A).  $\rightarrow$  An input terminal is set to ON (block F).  $\rightarrow$  The present position of the

X-axis/Y-axis/Z-axis/A-axis, or the value in C200/C204/C208/C212 is captured (block D). The value captured is stored in data registers (block C).  $\rightarrow$ Users read the value captured by means of the instruction FROM.

Example

## [Description]

Start the high-speed counter C204. The value in C204 is captured when X5 is set to ON. A manual pulse generator is used, and is connected to X2 and X3.

## [Steps]

- 1. When M1002 in O100 is ON, the initial setting of high-speed capture is carried out.
  - (1) D0=0→Initial group number n=0
  - (2) D1=0
  - (3) D20=6 $\rightarrow$ Writing 6 values by means of the instruction TO (Only one value is captured.)
  - (4) D60=10 $\rightarrow$ Reading 6 values by means of the instruction FROM (Only one value is captured.)
- 2. When M1 is ON, the high-speed capture is set.
  - The value in (D3, D2) is H5005.→The capture source set is C204. (The value of bit 3~bit 0 is 5). The mode selected is a capture mode. (The value of bit 5~bit 4 is 0.) The trigger selected is X5. (The value of bit 15~bit 12 is 5.)
  - (2) The value in (D5, D4) is K100. Users can set (D5, D4) by themselves.
- 3. The high-speed capture is started when M2 is ON.

4. The setting of the high-speed capture is read when M3 is ON.

	🖵 MonitorTable 📃 🗖 🗙						
	Device No.	Comment					
$\vdash$	C204	d32u	Value 0	COMMINIA			
$\vdash$	D44	d32u	100				
F	D48	d32u	300				
	D40	d1 <i>6</i> u	0				
	D41	d16u	0				
	D42	h32	00005005				
	D44	d32u	100				

- 5. When M4 is ON, K1 is moved to M1204~M1207. C204 is started when M5 is set to ON. (Mode of counting: Pulse/Direction)
- 6. Use a manual pulse generator, and check whether C204 counts.

🖵 MonitorTable					
	Device No.	Radix	Value	Comment	
	C204	d32u	244		
	D44	d32u	100		
	D40	d1 <i>6</i> u	0		
	D41	d1 <i>6</i> u	0		
	D42	h32	00005005		
	D44	d32u	100		

- 7. Use the manual pulse generator, and set X5 to ON.
- 8. The value captured is read when M3 is ON. When X5 is ON, the value in C204 is captured. The value captured is 677.

1	🖵 Monitor	Table			
Γ	Device No	). Radix	Value	Comment	
	C204	d32u	726		
	D44	d32u	677		
					When X5 is ON, the value in C204
	D40	d1 <i>6</i> u	0		is captured.
	D41	d16u	0		
	D42	h32	00005005		
	D44	d32u	677		

## [Program in PMSoft]



## 9.1 Appendix A: Error Code Table

After a program is written into a DVP-10PM series motion controller, the ERROR LED indicator will blink and an error flag will be ON if an error occurs in O100 or an Ox motion subroutine. The reason for the error occurring in O100 or an Ox motion subroutine may be that the use of operands (devices) is incorrect, syntax is incorrect, or the setting of motion parameters is incorrect. Users can know the reasons for the errors occurring in a DVP-10PM series motion controller by means of the error codes (hexadecimal codes) stored in error registers.

	age table								
Program block	<b>ו</b>			O100					
	Program	Program Motion error							
Error typ	e error	X-axis	Y-axis	Z-axis	A-axis	B-axis	C-axis		
Error flag	g M1953	M1793	M1873	M2033	M2113	M2193	M2273		
Error regis	ter D1802	D1857	D1937	D2017	D2097	D2177	D2257		
Step numb	<b>D1803</b>	D1869							
Program block	ו			Ox					
Error typ	Program			Moti	on error				
Епогтур	error	X-axis	Y-axis	Z-axis	A-axis	B-axis	C-axis		
Error flag	g M1793	M1793	M1873	M2033	M2113	M2193	M2273		
Error regis	ter D1857	D1857	D1937	D2017	D2097	D2177	D2257		
Step numb	<b>D1869</b>	D1869							
Program er	ror codes and	d motion erro	or codes (hexa	adecimal co	odes)				
Error code		Description		Error code	-	Description			
0002	The subroutir	subroutine used has no data. 0031 The positive-going pulses generation of the positive sector of the positive sect				nerated by			
0003	CJ, CJN, and pointers.	J, CJN, and JMP have no matching pinters.			The negative-going pulses generated by motion are inhibited.				
0004	There is a su program.	nere is a subroutine pointer in the main			The motor used comes into contact with the left/right limit switch set.				
0005	Lack of a sub	ack of a subroutine 0040 A device exceeds the device rang available.				range			
0006	A pointer is up program.	pointer is used repeatedly in the same rogram.			A communication timeout occurs when MODRD/MODWR is executed.				
0007	A subroutine	utine pointer is used repeatedly. 0044 An error occurs when a device is more by a 16-bit index register/32-bit index register.							
0008		ne pointer used in JMP is used peatedly in different subroutines.			The conversion into a floating-point numb is incorrect.				
0009	The pointer u the pointer us	sed in JMP is sed in CALL.	the same as	0E18	The conversion into a binary-coded decimal number is incorrect.				
000A	A pointer is th pointer.	pointer is the same as a subroutine pointer.			Incorrect division operation (The divisor 0.)				
0011	Target positio	arget position (I) is incorrect.			General program error				
0012	Target positio	arget position (II) is incorrect.			LD/LDI has been used more than nine times.				
0021	Velocity (I) is	elocity (I) is incorrect.			There is more than one nested program structure supported by RPT/RPE.				
0022	Velocity (II) is	Velocity (II) is incorrect.			SRET is used between RPT and RPE.				
0023	D23 The velocity $(V_{RT})$ of returning home is incorrect.			C4EE	There is no M102 in the main program, or there is no M2 in a motion subroutine.				
0024	$\begin{array}{c} 0024 \\ \hline 0024 \end{array} \begin{array}{c} \text{The velocity (V_{CR}) to which the velocity of the axis specified decreases when the axis returns home is incorrect.} \end{array} \begin{array}{c} \text{C4FF} \\ \hline \text{C4FF} \end{array} \begin{array}{c} \text{A wrong instruction is used, or a devused exceeds the range available.} \end{array}$								
0025	The JOG spe	ed set is incor	rect.						

MEMO